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Summary 
 
A Finite Element based program has been released to solve the steady 2D Navier-Stokes 
equations. The mixed-variable algorithm is used as a first approach to solve the 
differential problem. In order to reduce the number of equations, both a penalty and 
segregated techniques are implemented to give solution to the viscous incompressible 
flow and their results are compared with the former formulation. The program makes 
use of a SUPG type algorithm as a stabilisation procedure, in order to eliminate the 
numerical oscillations, which may appear when the boundary conditions force a sudden 
change in the solution, without necessarily refining the mesh. The three different 
algorithms are checked making use of the cavity flow benchmark problem and their 
results are commented. 

 
Governing Equations 

 
The equations used are the steady Navier-Stokes equations, which may be written in the 
usual indicial notation as follows: 
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ρ
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where u is velocity, p is pressure, ρ  is the density, ν  is the cinematic viscosity, f is the 
body force and the derivation is made with respect to indices after commas. The 
boundary conditions given to complete the definition of the differential problem are 
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FEM Formulation 
 

The method of weighted residuals is applied, therefore the Navier-Stokes equation is 
multiplied by a weighting function and integrated over the domain  Ω  
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The consideration of flows with large enough Reynolds numbers, may be the cause of 
the appearance of the well known ‘wiggles’ in the resulting velocity field, when using 
the standard Galerkin formulation. Although this may be suppressed by a severe 
refinement of the mesh, the usage of a SUPG (Streamline Upwinding / Petrov-Galerkin) 
algorithm, manages to overcome this difficulty with less computational cost. The SUPG 
algorithm, makes an upwind weighting of the equations by using weighting functions 
that differ from trial functions in a term depending on the first derivative of the former. 
This procedure is the cause of the appearance of an over diffusion in the direction 
normal to the flow. To overcome this difficulty an artificial diffusion coefficient 



modifies the newly introduced term. The numerical instability is thus, drastically 
reduced even for large convective-term-including equations. To implement the SUPG 
formulation we are going to add to the weighting function a term ip~  (see [1]), for the 
convective terms, where: 
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Three different approaches to the problem have been used, the mixed, the penalty and 
the segregated 
 

Mixed formulation 
 
First, a formulation to solve velocity and pressure in a simultaneous procedure is 
introduced. Once we have integrated by parts equation (3) and applied the Gauss 
theorem we obtain the weak expression: 
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Then, the discretization of velocity and pressure in terms of the basic shape 
functions with respect to a Q1P0 (bilinear pressure-constant velocity) elements is 
carried out 
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Once the approximation is introduced and the elementary matrices are integrated by the 
Gauss 2x2point rule, the matrices are assembled to yield. 

( ) fBpAuuC =++ν   0uB =T  (7) 
A successive approximation algorithm now linearizes the convective non-linear term, in 
order to turn the non-linear system of differential equations into a linear system of 
algebraic equations.  

( ) ( ) ( )∫
Ω

−− Ω=≈  dwuu uC i
k

ji
k
j

k
i

kk
,uCu 11  (8) 

 
Penalty formulation 

 
This alternative method, based upon the Lagrange multipliers theory, gives the 
possibility of imposing the incompressibility constraint without solving an auxiliary 
pressure equation by replacing the continuity equation by Pu ii ε−=, , where the so-
called penalty parameter ε  is a number that tends to zero. This equation is incorporated 
into the dynamic equation and therefore a system of equations that depends on both 
velocity and pressure is transformed into a velocity-dependant single equation that 
converges to the fully incompressible problem as ε  approaches to zero. By applying 
this method we can achieve a considerable reduction in the memory requirements. The 
equation to be solved is now 
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and afterward the value of the pressure field can be post-processed by using 
h

ii
h up ,ε

1
−= . A ‘reduced numerical integration’ is used to integrate penalty elementary 

matrices, thus avoiding the ‘locking of the solution’. Once the basic element has been 
chosen and the approximation for ui is introduced, we can carry out the integration and 
assembling of the elementary matrices to obtain the ‘single matrix equation  

( ) fpBAuuuC =++
ε
1

  (10) 

 
Segregated Formulation 

 
The penalty method succeeds in solving the Navier-Stokes Equations with a large 
reduction in the execution time and great memory savings, thanks to the smaller number 
of equations to be solved. Anyhow, this is an approximate method that depends on the 
election of the parameter ε , which for very small values produces an ill conditioning of 
the stiffness matrix and a certain loss of accuracy and for too large values, may prevent 
the system from converging. The segregated method calculates velocities and pressures 
in an alternative iterative sequence, requiring less storing requirements than the 
conventional mixed method. Moreover, achieves a greater reduction in the number of 
equations compared to the penalty parameter that is reduced to the number of nodes, 
and avoids the use of the sometimes-inconvenient penalty parameter. Another gain of 
these segregated algorithms is that a mixed-order interpolation can be used. 
The momentum equations are treated by the weighted residuals finite element method as 
in the former cases, but this time, the pressure term ∫Ω Ωdpw ii  ,  is not considered as an 

unknown but included in the right hand of the system 
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(11), once we have obtained the velocity field we solve the pressure equation. Rewriting 
the dynamic equation as: 
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where the pseudo-velocities and the coefficients v
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i KK  , are equal to: 
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and Ki  is taken as zero when the velocity is prescribed in the node.  
Applying the Galerkin method of weighted residuals to the continuity equation we 
obtain: 

( ) Γ+=Ω
∂
∂

+
∂
∂

∫∫Ω dnvNnuNNdvN
y

N
uN

x

N
yjjxjjijj

i
jj

i     (14) 

Which once assembled can be written as: 
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Once we have solved the pressure system, velocities are updated using: 
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 to ensure continuity. Then the dynamic system is again assembled and solved and the 
same procedure is repeated until convergence is achieved. 
 

Numerical Results 
 

The benchmark problem of the flow in a square cavity with a prescription of unitary 
velocity on the topside and the no-slip condition on the other sides, has been considered 
to check the algorithms. The pressure is fixed as zero in the centre of the lower side of 
the cavity. The domain has been interpolated in terms of a 31x31 node non-regular 
mesh with Q1/P0 basic elements. We will assume we have reached convergence once 

41

1
10−−

=
<− n

i
n
i

Ni
max φφ

,..
for each of the unknowns.  

For the mixed formulation a direct Crout algorithm has been used to solve the system of 
equations with a column profile storing procedure. The results for the pressure and 
velocity for Reynolds numbers of 1000 and 5000, compared to those of other authors 
[3] for more refined meshes, are shown bellow. 
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Fig1. - Horizontal velocity along a central vertical line and pressure field. 

 
The results for the penalty algorithm for Reynolds numbers of 100, 1000, 5000 and 
10000 are shown bellow. In all the cases considered the penalty parameter has been 
taken as 10-4. The solution has been obtained using a PBCG iterative method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. - Horizontal velocities along a central vertical line compared with those of Ghia [2] for a Reynolds 
number of 100. Velocity field and streamlines 
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Fig 3. - Horizontal velocities along a central vertical line compared with those of Hannani [3] and Ghia 
[2] for a Reynolds number of 1000. Velocity field and streamlines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. - Horizontal velocities along a central vertical line compared with those of Hannani [3] and Ghia 
[2] for a Reynolds number of 5000. Velocity field and streamlines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5.- Horizontal velocities along a central vertical line compared with those of Kondo [4] Ghia [2] for a 
Reynolds number of 10000. Velocity field and streamlines. 
 
When the segregated algorithm is used, an under-relaxation of the unknowns has to be 
introduced in order of the algorithm to converge. The relaxation parameters used were 
taken as 70.=uα and 20.=pα , with the relaxation formula ( )11 −− −+= nnnn φφαφφ . 
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The results obtained for the segregated formulation when a Reynolds number of 400 is 
used are shown bellow. 
 
 
 
 
 
 
 
 
 
Fig 5. - Pressure field, Horizontal velocities along a central vertical line and Pressures along a horizontal 
central line compared with those of Winters and du Toit [5]. 
 

Conclusions 
 

The program seems to achieve good results for the three formulations as can be seen in 
the plots, compared with results from Winters, Hannani, Ghia, Kondo and others. The 
results from the present study seem to adjust to those of the others, with even a less 
refined mesh. When a mixed formulation is used, the matrices involved in the resolution 
of the Navier-Stokes equations became large and this implies that very big meshes can 
not be used, therefore small vortices are not detected. However the iteration process is 
reduced to the achievement of the convection effect, so a few iterations are needed, and 
therefore the CPU time involved is less than one hour in a conventional PC. When a 
mixed or segregated algorithm is used, the iterative process becomes much longer. The 
program has been run in a Digital AlphaServer 1000A computer, taking CPU times of 
one or two hours for the 31x31 mesh, depending on the Reynolds number. With respect 
to the basic elements, when a Q1/P0 basic element is used, the pressure results for the 
mixed algorithm are polluted by a checker board pressure mode. This unwanted 
distortion does not appear when an equal order four-node basic element is used for the 
segregated procedure. 
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