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ABSTRACT: The study of rivers as ecosystems has many fidds of research, like the resolution and compre-
henson of flow and sediment trangport phenomena. In this communication a 2D numericd modd using the
Finite Volume Method is presented, throughout a Fortran code including both hydrodynamic and morpho-
logical processes. Water depth and the two components of velocity are obtained in the tydrodynamic block.
Then, the code enters the morphologica block and evolution of bed surface due to erosion and deposition is
edimated. A specific tolerance in morphologica changes is introduced and, if exceeded, the numericd modd
turns to the hydrodynamic block to evduate again the new conditions, and so on. The modd is tested and
vdidated with data from PIV and 3D Scanning Technologies in laboratory works a the Civil Engineering

School and the CITEEC of the University of A Coruiia, Spain.

1 INTRODUCTION

The gudy of bidimensond phenomena induding
flow and sediment transport has a great importance
in many fidds of civil engineering. Processes rdat-
ing to these disciplines have specid rdevance in dl
kind of hydraulic works, dlowing to andyse the flu-
vid dterdions in the river ecosysem and surround-
INgs

Fulfilling these sudies may be esser with the avall-
ability of numericd modes to predict the hydrody-
namic and morphologicd variaions. The determina
tion of depths, veocties and eroson or
sedimentation zones is very important to know the
characterigtics of the environment and its evolution.
Numericd models capabilities depend on the power
of the exiging computers. The decrease in the com-
putationd time for their gpplication by the interma
tiond scientific community is a determinant fegture.
Convergence, stability and an gppropriate cdibration
are necessary to use properly these tools, and valida
tion must be carried out with laboratory experiments
and fiedd work. Another important condition when
using these modds is the adaptation to the selected
problem, even more in sediment transport processes,
because coherent results may vary according to the
mean diameter of the sdected sediment (and if this
one vaies in the domain), a proper formulaion of
the bedload and suspended load transport, tempord
horizon, etc.

This communication presents a bidimensond nu-
mericd modd uncoupled for flow and sediment
transport, with separated explanation and validation
results. Both blocks of the developed modd are For-
tran codes that use the Finite Volume Method
(FVM) in discretization and resolution of the repre-
sentetive egquations.

2 HYDRODYNAMIC BLOCK

This part of the code develops the FVM to solve the
commonly known Shalow Water Equations (SWE).
Reaults in this block are the water depth and the two
horizontal components of depth-averaged veloaity.

2.1 Shallow water equations

Shdlow water equations (SWE) ae a wdl-known
st of equations that describe the behaviour of flow
when the verticad dimendon is smdl compared to
the others. They are frequently used in the evaua
tion of processes related to water flow that take
place in channds, rivers and estuaries. SWE can be
obtained by integrating the Navier Stokes equations
in the verticd direction and making some samplifica-
tions like incompressble flow, smdl dopes and hy-
drogatic pressure  digtribution  (Chaudhry, 1993).
SWE may appear in some dightly different forms,
presented here in the next format:
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where: h(x,y,t) = water depth, (u,v) = components of
depth-averaged velocity
Dynamic equetions:
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where: (Sox,Sy) = the geometric dopes, (Sx.Sy) =
friction dopes, computed with Manning's formulae:

@D

h we
o, - %g ghS,
@

_nfnu? +v* WU +V
Sy, ——pE Sy, =T E ©)

2.2 Discretization of domain and equations.
I ntegration.

Application of FVM in our case comes from a pre-
vious triagle mesh discretization. The vertexes of
this triangles are the nodes of the find mesh. For a
given node N; we use the barycentres of the triangles
that have N; as a common vertex and the middle
point of the triangle dde that meets a N;. The
boundary of the cdl of the finite volume C; is then
obtained by joining these points together as can be
seen in Figure 1. This type of FV appears frequently
in  scientific literature (Godlewsky and Ravart
(1996)).

Figure 1. Construction of finite volumes

Working with the SWE in ther conservaive form
and benefit from these equations advantages (Toro,
1997), we carry out a change in notation as follows:.
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System is written in amore compact form:
ﬂ—ﬁ:ﬂ K> (w) = G(x, y,w) (5)
where:
F(w)=(F.(w).F,(w))";  N>F = div(F) )

Now we gpproximate the exact solution of the equa
tions a the time t, (t, = nt) by means of the vaue
W, condat in every cdl and time sep. The firg

teem is discretized in advance usng the Euler
method:
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Next we integrate the equations over C;:
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Usng the Theorem of Divergence in the second
term we change the integrd over C; into an integrd
over G, boundary of C,.

Teking into account that Wh, Whe1 and Dt are con-
dants, they can be caried out of the integrd. Flux
and source terms required decentre and upwind
schemes. To discretize the flux term we follow the
Q-scheme of Van Leer, used in Bermldez et al
(1998). The discretization of the source term aso re-
quires an upwind scheme, as it has been recently
andysed in Vazquez (1999) and Garcia Navarro et
al (2000).

Findly we obtan an expliat in time iteaive
method dlowing us to determinate the variables h,
hu and hv in each node N; a time tn.1, Sating from
the values of these variables & time t, in N;, and the
nodes N; surrounding node N;.

3 MORPHOLOGICAL BLOCK

As previoudy dated, this part of the code works ur
coupled to the hydrodynamic block. The domain in
this part, discretized firg in triangles and then in fi-



nite volumes, is exactly the same in order to reduce
computationd time in solving both processes.

The morphologica part of the modd uses the previ-
oudy computed hydrodynamics, so water depth and
components of depth-averaged velocity are known.
Sediment  trangport iterations results in evauation of
the bed surface evolution and sediment volumes ex-
changed between cdls. The exiding materid must
be granular and uniform in dl the domain, and an
unsteady regime is assured as it will be explained &
terwards in both blocks interactions.

3.1 Continuity equation

The continuity equation for sediment trangport by
Exner (Exner 1925) dlows many kinds of presenta
tion, varying according to the different types of
trangport.  The morphologica  block caculates the
bedload transport with non cohesve sediments, pre-
senting here the mentioned continuity equation from
Garcia (Garcia, 2000).
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where: p = porosity; z = bed surface; (Qox,Oby) =
components of bed load transport; ws = fdl veocity
of sediment, Es = re-sugpenson factor, ¢, = median
concentration of sediment in equilibrium.

Firg performances usng a centred method led to
some indabilities, so an upwind scheme was aso
used in this pat of the modd. Surface integrd de-
velopment and divergence theorem application lead
to:
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In this case the preceding equation shows an itera-
tive explicdt method in time, dlowing to obtain the
bed surface evolution in each node N; a any intervd,
coming from vadues of the varigbles in the previous
moment, in the node N; and nodes N; surrounding it.

3.2 Equationsfor bed load transport

There are many empirical bed load transport eque-
tions in the literature. Morphologica block of the
model was caibrated with different laboratory ex-
periments, usng the best relations for the conditions
of our dudies. In the results included in this paper
the andyses have been made with Meyer-
Peter& Mller bed load transport formula

qbs
(G - 1)gd§o
where: t+~ = non dimensgond shear sress, t«. = non

dimengond criticd shear dress, dsg = mean diame-
ter of sediment, g = gravity, G = pecific gravity.
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4 COUPLING BLOCKS

The coupling of both parts of the modd is as fol-
lows. Firg of dl, the hydrodynamic block is run
solving the initid hydraulics according to the exist-
ing domain and boundary conditions. Reaching a -
lected convergence, the modd enters the morpho-
logicd block with the computed hydrodynamic data.
In this part, the surface evolution (eroson or sedi-
mentation) of the nodes is edimaed, until one of
them exceeds a sgnificant levd (3 do, depending on
dso). When the iteraion arrives a this threshold, the
modd goes back to the hydrodynamic block, esti-
mating new vaues for hydraulic varisbles. As con
vergence is reached again, modd goes to morpho-
logicd block and so on. There is a maximum erosion
level introduced by the user, dthough the modd
may finish execution, if conditions for eroson or
deposition disappear in every point of the mesh a
any momert.

The modd admits any modification in boundary
conditions during the process as a pat of an ut
seady behaviour, re-esimating hydraulic and mor-
phologca variables with these new data. In case of
soilling in downsream border with critical depth,
the mode may modify this boundary condition turn-
ing to the introduced levd if eroson leadsto that.

The red time of the whole process is the correspon-
dent to the morphologica block, because the time
between iterations in the hydrodynamic one is a time
of adaptation, that in redity happens a the same
time of morphologica processes.

5 RESULTS

Some results of the modd are presented here. Al-
though the modd is presented in only one Fortran
code, hydrodynamic results are presented previoudy
and separately. Then, an example of the full numeri-
cd modd is incduded and compared with the ex-
perimentd results of the same test. The reason is that
the hydrodynamic block was firg finished and vai-
dated before developing the sediment transport sub-
routines.

5.1 Hydrodynamic block

Hydrodynamic pat of the modd was vdidated with
ome paticular cases exiding in the scientific litera
ture. These examples were not developed with the
complete numericdl mode because of the gpecific
hydraulic problem that they represent, and dso be-
cause the morphologicd block is not able to solve
some of these particular cases with movable bed.

5.1.1 Channel with an obstacle at the bottom.

A 25x1 m laboratory flume is presented with an -
dacle of parabolic section at its bottom, unitary dis-
charge of 0.18 ntf/s, downstream depth 0.33 m,
Manning’s n=0.01 and 505 nodes mesh.



Figure 2 shows the water depth in the axis of sym-
metry, in order to be able to compare the results of
our 2D mode with those obtained in a 1D modd
and the 1D exact solution.
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Figure 2. Longitudinal profile (x axis) and depths (y axis) in

meters, in a channel with obstacle and with double changing
regime.

Due to the presence of the obstacle, it appears a
double changing regime, with a clear hydraulic jump
in the second one. This result is very dmilar to the
example showed in Vazquez (1999).

5.1.2 Dam-break problem.

It is very frequent in scientific literature to use the
dam-bresk problem for the vdidatiion of a modd. A
domain of 5x200 m without friction a the bottom
has been considered, ensuring depths of 1 m and 0.1
m as initid conditions in the two Separated areas.
Agan the water depth in the axis of symmetry, at
timet=25s is presented. The Dt used (0.2 9) isthe
maximum one in which there are no osdllaions, o
is equivdlent to Courant’'s number for one dimen
gon. Results match very wdl the exact solution as
can be seen in Burguete & Garcia-Navarro (2000).

NN
|
b

0 50 100 150 200

0

Figure 3. Longitudinal profile (x axis) and depths (y axis) in
meters, in adam-break test in 5x200 m, Dt=0.2 s, t=25s.

5.1.3 Settling tanks.

This example, gill without experimental vaidetion,
represents a double settling tank with dimensons of
4x3 m, a mesh size of 0.05 m, discharge of 0.1 n¥/s,
downgtream depth of 0.25 m and Manning's coeffi-
cient of 0.014. In Figure 4 we can see the Stream-
lines and eddies properly formed, and fluid separa-
tions gppearing in different parts of the areain study.
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Figure 4. Streamlinesin settling tanks of 4x3 m.
5.2 Morphological block.

The complete numericd modd (including hydrody-
namic and morphologica blocks) was run and vali-
dated with different experimenta tests developed in
the Civil Enginering School, Universty of A
Coruria, Spain.

The experiment included in this presentation was
developed in a 50 x 50 cm, 15 m long current flume.
Between two centra points of the flume (4.5 and 9.0
meters, from upstream), a volume of sediment of 4
cm haght covering the whole cross section was
placed, in order to andyse the hydraulic and mor-
phologica behaviour until equilibrium with a con-
dant discharge. Experimental test last 3 hours until



this condition was reached, with sediment transport
towards downstream produced by the bed load. In-
srumentation tools included a Particle Image Ve
locimetry (PIV) to obtan the whole veocity fidd
and depths in the centrad section, between points 7.6
and 8.3 (in meters, from upstream). Bed surface ele-
vation was obtained from data of PIV and other -
grumentetion tools.

The following figures present the results of the com
plete numericd modd (hydrodynamic and morpho-
logicd blocks) and the comparison with the experi-
mental data messured in the mentioned test in the
axis of symmetry.

Slope was 0.052%, discharge 21.9 I/s, downstream
level 0.12 m, mean diameter of sediment of 1 mm
and meshszeof 0.1 m.
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Figure 5. Comparison of experimental and numerical results of
bed surface elevation (y axis, in mm) versus longitudinal pro-
file (x axis, in m) in two time steps

Figure 5 shows a good agreement of the morpho-
logical results and the experimenta data for bed sur-
face evolution. It turns out a better accuracy of the
modd in higher seps of time until equilibrium is
reached in both numerical and experimental tests.
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Figure 6. Evolution of bed surface elevation (y axis, in mm) in
a cross section located 5.5 meters from upstream the flume (x
axis, in m), from beginning to minute 40

Figure 6 dso presents a good behaviour of the nu-
mericad modd representing the bed surface evolu-
tion of a certan cross section. Similar results were
obtained for the rest of the sediment domain in the
centra part of the flume.
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Figure 7. Velocity distribution in longitudinal profile (x axis, in
m) versus water depth (y axis, in m). Results of depth-averaged
velocity of experimental and numerical tests are also plotted.

Lag figure points out some differences in veocity
digribution results, although smilar vdues of depth
averaged velocity assure the agreement of the hy-
drodynamic vaiables of the numericd modd with
the experimenta data.



6 CONCLUSIONS

The present 2D numericd mode developing Finite
Volume Method and Shdlow Water Equetions in
unsteady flow represent properly the hydrodynamic
phenomena of many exisding problems in sdentific
literature. Results of the morphologcal block of the
model show the agreement of the bed surface evolu-
tion compared with data from laboratory experi-
ments, gpplying laser indrumentetion as Particle Im-
age Vdocimetry. Upwind schemes are used to
assure convergence and stability in both parts of the
model, and Meyer-Peter& MUller bed load transport
formula is found accurate to represent sediment
trangport evolution.
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