
1 INTRODUCTION  
The study of bidimensional phenomena including 
flow and sediment transport has a great importance 
in many fields of civil engineering. Processes relat-
ing to these disciplines have special relevance in all 
kind of hydraulic works, allowing to analyse the flu-
vial alterations in the river ecosystem and surround-
ings.  
Fulfilling these studies may be easier with the avail-
ability of numerical models to predict the hydrody-
namic and morphological variations. The determina-
tion of depths, velocities and erosion or 
sedimentation zones is very important to know the 
characteristics of the environment and its evolution. 
Numerical models capabilities depend on the power 
of the existing computers. The decrease in the com-
putational time for their application by the interna-
tional scientific community is a determinant feature. 
Convergence, stability and an appropriate calibration 
are necessary to use properly these tools, and valida-
tion must be carried out with laboratory experiments 
and field work. Another important condition when 
using these models is the adaptation to the selected 
problem, even more in sediment transport processes, 
because coherent results may vary according to the 
mean diameter of the selected sediment (and if this 
one varies in the domain), a proper formulation of 
the bedload and suspended load transport, temporal 
horizon, etc. 

This communication presents a bidimensional nu-
merical model uncoupled for flow and sediment 
transport, with separated explanation and validation 
results. Both blocks of the developed model are For-
tran codes that use the Finite Volume Method 
(FVM) in discretization and resolution of the repre-
sentative equations.  

2 HYDRODYNAMIC BLOCK 
This part of the code develops the FVM to solve the 
commonly known Shallow Water Equations (SWE). 
Results in this block are the water depth and the two 
horizontal components of depth-averaged velocity. 

2.1 Shallow water equations 

Shallow water equations (SWE) are a well-known 
set of equations that describe the behaviour of flow 
when the vertical dimension is small compared to 
the others. They are frequently used in the evalua-
tion of processes related to water flow that take 
place in channels, rivers and estuaries. SWE can be 
obtained by integrating the Navier Stokes equations 
in the vertical direction and making some simplifica-
tions like incompressible flow, small slopes and hy-
drostatic pressure distribution (Chaudhry, 1993). 
SWE may appear in some slightly different forms, 
presented here in the next format:  
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Continuity equation: 
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where: h(x,y,t) = water depth, (u,v) = components of  
depth-averaged velocity   
Dynamic equations: 
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where: (S0x,S0y) = the geometric slopes; (Sfx,Sfy) =   
friction slopes, computed with Manning’s formulae: 
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2.2 Discretization of domain and equations. 
Integration. 

Application of FVM in our case comes from a pre-
vious triangle mesh discretization. The vertexes of 
this triangles are the nodes of the final mesh. For a 
given node Ni we use the barycentres of the triangles 
that have Ni as a common vertex and the middle 
point of the triangle side that meets at Ni. The 
boundary of the cell of the finite volume Ci is then 
obtained by joining these points together as can be 
seen in Figure 1. This type of FV appears frequently 
in scientific literature (Godlewsky and Raviart 
(1996)). 
 

 
Figure 1. Construction of finite volumes 
 
Working with the SWE in their conservative form 
and benefit from these equations advantages (Toro, 
1997), we carry out a change in notation as follows: 
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System is written in a more compact form: 
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where:  
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Now we approximate the exact solution of the equa-
tions at the time tn (tn = n∆t) by means of the value 
Wn, constant in every cell and time step. The first 
term is discretized in advance using the Euler 
method: 
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 Next we integrate the equations over Ci: 
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Using the Theorem of Divergence in the second 
term we change the integral over Ci into an integral 
over Γi, boundary of Ci. 
Taking into account that Wn, Wn+1 and ∆t are con-
stants, they can be carried out of the integral. Flux 
and source terms required decentre and upwind 
schemes. To discretize the flux term we follow the 
Q-scheme of Van Leer, used in Bermúdez et al 
(1998). The discretization of the source term also re-
quires an upwind scheme, as it has been recently 
analysed in Vázquez (1999) and García Navarro et 
al (2000).  
Finally we obtain an explicit in time iterative 
method allowing us to determinate the variables h,  
hu and hv in each node Ni at time tn+1, starting from 
the values of these variables at time tn  in Ni, and the 
nodes Nj surrounding node Ni. 

3 MORPHOLOGICAL BLOCK 
As previously stated, this part of the code works un-
coupled to the hydrodynamic block. The domain in 
this part, discretized first in triangles and then in fi-
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nite volumes, is exactly the same in order to reduce 
computational time in solving both processes. 
The morphological part of the model uses the previ-
ously computed hydrodynamics, so water depth and 
components of depth-averaged velocity are known. 
Sediment transport iterations results in evaluation of  
the  bed surface evolution and sediment volumes ex-
changed between cells. The existing material must 
be granular and uniform in all the domain, and an 
unsteady regime is assured as it will be explained af-
terwards in both blocks interactions.  

3.1 Continuity equation 

The continuity equation for sediment transport by 
Exner (Exner 1925) allows many kinds of presenta-
tion, varying according to the different types of 
transport. The morphological block calculates the 
bedload transport with non cohesive sediments, pre-
senting here the mentioned continuity equation from 
García (García, 2000). 
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where: p = porosity; z = bed surface; (qbx,qby) =  
components of bed load transport; ws = fall velocity 
of sediment, Es = re-suspension factor, cb = median 
concentration of sediment in equilibrium. 
First performances using a centred method led to 
some instabilities, so an upwind scheme was also 
used in this part of the model. Surface integral de-
velopment and divergence theorem application lead 
to: 
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In this case the preceding equation shows an itera-
tive explicit method in time, allowing to obtain the 
bed surface evolution in each node Ni at any interval, 
coming from values of the variables in the previous 
moment, in the node Ni and nodes Nj surrounding it.  

3.2 Equations for bed load transport 

There are many empirical bed load transport equa-
tions in the literature. Morphological block of the 
model was calibrated with different laboratory ex-
periments, using the best relations for the conditions 
of our studies. In the results included in this paper 
the analyses have been made with Meyer-
Peter&Müller bed load transport formula. 
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where: τ* = non dimensional shear stress, τ*c = non 
dimensional critical shear stress, d50 = mean diame-
ter of sediment, g = gravity, G = specific gravity. 

4 COUPLING BLOCKS 
The coupling of both parts of the model is as fol-
lows. First of all, the hydrodynamic block is run 
solving the initial hydraulics according to the exist-
ing domain and boundary conditions. Reaching a se-
lected convergence, the model enters the morpho-
logical block with the computed hydrodynamic data. 
In this part, the surface evolution (erosion or sedi-
mentation) of the nodes is estimated, until one of 
them exceeds a significant level (3 d50, depending on 
d50). When the iteration arrives at this threshold, the 
model goes back to the hydrodynamic block, esti-
mating new values for hydraulic variables. As con-
vergence is reached again, model goes to morpho-
logical block and so on. There is a maximum erosion 
level introduced by the user, although the model 
may finish execution, if conditions for erosion or 
deposition disappear in every point of the mesh at 
any moment.  
The model admits any modification in boundary 
conditions during the process as a part of an un-
steady behaviour, re-estimating hydraulic and mor-
phological variables with these new data. In case of 
spilling in downstream border with critical depth, 
the model may modify this boundary condition turn-
ing to the introduced level if erosion leads to that.  
The real time of the whole process is the correspon-
dent to the morphological block, because the time 
between iterations in the hydrodynamic one is a time 
of adaptation, that in reality happens at the same 
time of morphological processes.  

5 RESULTS 
Some results of the model are presented here. Al-
though the model is presented in only one Fortran 
code, hydrodynamic results are presented previously 
and separately. Then, an example of the full numeri-
cal model is included and compared with the ex-
perimental results of the same test. The reason is that 
the hydrodynamic block was first finished and vali-
dated before developing the sediment transport sub-
routines. 

5.1 Hydrodynamic block 

Hydrodynamic part of the model was validated with 
some particular cases existing in the scientific litera-
ture. These examples were not developed with the 
complete numerical model because of the specific 
hydraulic problem that they represent, and also be-
cause the morphological block is not able to solve 
some of these particular cases with movable bed.  

5.1.1 Channel with an obstacle at the bottom. 
A 25x1 m laboratory flume is presented with an ob-
stacle of parabolic section at its bottom, unitary dis-
charge of 0.18 m2/s, downstream depth 0.33 m, 
Manning’s n=0.01 and 505 nodes mesh. 



Figure 2 shows the water depth in the axis of sym-
metry, in order to be able to compare the results of 
our 2D model with those obtained in a 1D model 
and the 1D exact solution. 
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Figure 2. Longitudinal profile (x axis) and depths (y axis) in 
meters, in a channel with obstacle and with double changing 
regime. 

 
Due to the presence of the obstacle, it appears a 
double changing regime, with a clear hydraulic jump 
in the second one. This result is very similar to the 
example showed in Vázquez (1999).  

5.1.2 Dam-break problem. 
It is very frequent in scientific literature to use the 
dam-break problem for the validation of a model. A 
domain of 5x200 m without friction at the bottom 
has been considered, ensuring depths of 1 m and 0.1 
m as initial conditions in the two separated areas. 
Again the water depth in the axis of symmetry, at 
time t = 25 s, is presented. The ∆t used (0.2 s) is the 
maximum one in which there are no oscillations, so 
is equivalent to Courant´s number for one dimen-
sion. Results match very well the exact solution as 
can be seen in Burguete & García-Navarro (2000). 
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Figure 3. Longitudinal profile (x axis) and depths (y axis) in 
meters, in a dam-break test in 5x200 m, ∆t=0.2 s, t=25 s.  

5.1.3 Settling tanks.  
This example, still without experimental validation, 
represents a double settling tank with dimensions of 
4x3 m, a mesh size of 0.05 m, discharge of 0.1 m3/s, 
downstream depth of 0.25 m and Manning’s coeffi-
cient of 0.014. In Figure 4 we can see the stream-
lines and eddies properly formed, and fluid separa-
tions appearing in different parts of the area in study.  
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Figure 4. Streamlines in settling tanks of 4x3 m. 

5.2 Morphological block. 

The complete numerical model (including hydrody-
namic and morphological blocks) was run and vali-
dated with different experimental tests developed in 
the Civil Engineering School, University of A 
Coruña, Spain. 
The experiment included in this presentation was 
developed in a 50 x 50 cm, 15 m long current flume. 
Between two central points of the flume (4.5 and 9.0 
meters, from upstream), a volume of sediment of 4 
cm height covering the whole cross section was 
placed, in order to analyse the hydraulic and mor-
phological behaviour until equilibrium with a con-
stant discharge. Experimental test last 3 hours until 



this condition was reached, with sediment transport 
towards downstream produced by the bed load. In-
strumentation tools included a Particle Image Ve-
locimetry (PIV) to obtain the whole velocity field 
and depths in the central section, between points 7.6 
and 8.3 (in meters, from upstream). Bed surface ele-
vation was obtained from data of PIV and other in-
strumentation tools.  
The following figures present the results of the com-
plete numerical model (hydrodynamic and morpho-
logical blocks) and the comparison with the experi-
mental data measured in the mentioned test in the 
axis of symmetry.   
Slope was 0.052%, discharge 21.9 l/s, downstream 
level 0.12 m, mean diameter of sediment of  1 mm 
and mesh size of 0.1 m.  
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Figure 5. Comparison of experimental and numerical results of 
bed surface elevation (y axis, in mm) versus longitudinal pro-
file (x axis, in m) in two time steps  

 
Figure 5 shows a good agreement of the morpho-
logical results and the experimental data for bed sur-
face evolution. It turns out a better accuracy of the 
model in higher steps of time until equilibrium is 
reached in both numerical and experimental tests.  
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Figure 6. Evolution of bed surface elevation (y axis, in mm) in 
a cross section located 5.5 meters from upstream the flume (x 
axis, in m), from beginning to minute 40  
 
Figure 6 also presents a good behaviour of the nu-
merical model representing the bed surface evolu-
tion of a certain cross section. Similar results were 
obtained for the rest of the sediment domain in the 
central part of the flume.  
 

 
 
Figure 7. Velocity distribution in longitudinal profile (x axis, in 
m) versus water depth (y axis, in m). Results of depth-averaged 
velocity of experimental and numerical tests are also plotted.  
 
Last figure points out some differences in velocity 
distribution results, although similar values of depth-
averaged velocity assure the agreement of the hy-
drodynamic variables of the numerical model with 
the experimental data. 



6 CONCLUSIONS 
The present 2D numerical model developing Finite 
Volume Method and Shallow Water Equations in 
unsteady flow represent properly the hydrodynamic 
phenomena of many existing problems in scientific 
literature. Results of the morphological block of the 
model show the agreement of the bed surface evolu-
tion compared with data from laboratory experi-
ments, applying laser instrumentation as Particle Im-
age Velocimetry. Upwind schemes are used to 
assure convergence and stability in both parts of the 
model, and Meyer-Peter&Müller bed load transport 
formula is found accurate to represent sediment 
transport evolution.  
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