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Abstract

Many engineering problems require solving PDEs by means of numerical
methods (type FEM/BEM) which sensitivity analysis entails taking deriva-
tives of functions defined through integration. In sizing optimization prob-
lems, the integration domains are fixed, what enables the regular use of
analytical sensitivity techniques. In shape optimization problems, the in-
tegration domains are nevertheless variable. This fact causes some cum-
bersome difficulties [1], that have traditionally been overcome by means of
finite difference approximations [2]. Three kinds of analytical approaches
have been proposed for computing sensitivity derivatives in shape optimiza-
tion problems. The first is based on differentiation of the final discretized
equations [1]. The second is based on variation of the continuum equa-
tions [1] and on the concept of material derivative. The third is based upon
the existence of a mapping that links the material space with a fixed space
of reference coordinates [3]. This is not restrictive, since such a transfor-
mation is inherent to FEM and BEM implementations.

In this paper, we present a generalization of the latter approach on
the basis of a unified procedure for integration in manifolds. Our aim is
to obtain a single, unified, compact procedure to compute arbitrarily high
order directional derivatives of the objective function and the constraints in
FEM/BEM shape optimization problems. Special care has been taken on
heading for easy-to-compute recurrent expressions. The proposed scheme
is basically independent from the specific form of the state equations, and
can be applied to both, direct and adjoint state formulations. Thus, its
numerical implementation in current engineering codes is straightforward.

An application example is finally presented.



1 Statement of the problem

The first step in the statement of a design optimization problem is the def-
inition of the criteria that will allow to decide whether a candidate design
is acceptable or not, as much as to select the preferable among the accept-
able designs. The acceptability is normally expressed by means of equality
(h() = 0) and inequality (g(7) < 0) constraints, while the preference is usu-
ally expressed by means of a suitable objective function f(«) that should
take the lower values for the better designs. The magnitudes 7y, in terms of
which the optimization problem is stated, are called control variables [4].

The second step is the definition of a design parametric model. In
other words, the fundamental properties ¢ —that fully describe the object
to be designed— must be expressed in terms of a reduced set of design
parameters. Some of them will be design constants (¢), while the rest will
be the so-called design variables & which optimal value must be found [4].
The set of all possible values of the design variables is called design space.
The subset in which the constraints are verified is called feasible region.

Normally, most of control variables do not depend only on the proper-
ties of the design itself, but on the so-called state variables w that describe
the performance of the design in construction, service or fail conditions.
Hence, the third step is the definition of an analysis model to analyze the
involved physical phenomena. Different analysis models could be proposed,
each one requiring specific input data a that must be well defined in terms
of the properties ¢. We symbolically represent the analysis model by means
of a system of n,, implicit equations

Plo,w) =0, Ylo,w)={¢;(a,w)}, i=1,...,n, (1)
with n,, unknowns w = {w; }. This is the so-called state equation [4], which
solution may involve severe difficulties in engineering problems.

Therefore, the optimum design problem takes the form of a general
constrained minimization problem [4]
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which solution must be found by means of a suitable MP algorithm [5].
It is quite obvious that more efficient MP algorithms could be achieved if
not just the values of the objective function and the constraints, but also

their derivatives, are supplied [5]. The techniques that let us evaluate these
derivatives receive the generic name of sensitivity analysis.



2 Sensitivity analysis

First we discuss how to obtain the directional derivative Dz = (dz/d7y)s of
any given function z(vy) of the control variables, for an arbitrary unit vector
s in the design space. Direct differentiation of (2) leads to the first order
direct scheme:
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where obtaining the directional derivatives of the state variables requires
solving the boxed linear system of n,, equations with n, unknowns.

It is easy to show how the direct differentiation computational scheme
(3) can be reordered [6,4], giving the so-called adjoint state method
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where the unknown vector g, is known as the adjoint state corresponding
to the function z(). While in (3) it is necessary to compute the derivatives
of the state variables (Dyw) as an intermediate result for each direction s, in
(4) it is necessary to compute p, for each function z(vy). Therefore, (4) will
be preferred rather than (3) when the number of functions to be derived is
significantly smaller than the number of directions in which derivatives must
be computed [6]. Normally, the adjoint state scheme in design optimization
does not offer significant advantages over the direct differentiation scheme.
Consider that in practical optimization problems, the number of constraints
is often much larger than the number of design variables. In any case, a
wide purpose optimum design system must include the possibility of using
any of both schemes, depending on the problem statement.

A scheme for high order directional sensitivity analysis can be easily
derived following the same principles outlined before [4]. Conceptually, a
high order scheme is just slightly more complex than the first order one,
although the computational requirements increase with the order of differ-
entiation due to the number of derivatives to be computed [4,5].



3 The FEM/BEM discretized state equation

In engineering practice, equation (1) is frequently a discretized form of a
certain boundary-value problem. Let the exact solution to this problem be:

u(r, @),  1eQ(p) Cc REE (5)

where (2 is an open bounded domain with lipschitzian boundary 02 and
closure Q and r is the material coordinates vector of an arbitrary point
in . Let T be the subset of { in which (boundary) conditions are pre-
scribed. Since this exact solution is generally unknown, engineers pur-
sue to approximate u(r,¢) by means of numerical techniques in a finite-
dimensional context. Thus, for a certain set of so-called trial functions

{vi(r,a)}, i =1,...,n,), one considers discretized approximations type

iir.aw) = Y wnilr,a). (6)
=1

Namely, for given values of the fundamental properties ¢, the input variables
a are known, while the unknown values of the state variables w must be
determined in such a way that the corresponding discretized approximation
(6) is as close as possible to the exact solution (5). Thus, each numerical
technique involves solving a corresponding state equation (1), that is just
the specific way of choosing the desired approximation.

In integral methods —such as FEM and BEM— the strong form of
the problem is first reduced to an equivalent weak (or variational) form
on the basis of a weighted residual approach, while domains € and T' are
discretized in subdomains [7] (also called elements) due to practical reasons.
Thus, these approaches yield state equations type

Plow) = 9 (aw) =0, (7)
e=1
which require computing and assembling the so-called element contributions
Viaw = [  ¢rawdb (®)
rcE(a)

where E(a) is an element (that is, a closed subdomain with nonempty
interior E(a) and lipschitzian boundary OF(a)) of dimension dim(E) =
ne < n, = dim(0) within domain (.

Most of the available wide purpose FEM or BEM codes do not provide
the derivatives of the state function ([0%/0w] and 09 /0a) required by (3).
It is obvious that one can always use finite difference approximations, but
this produces a significative loss of accuracy in the information supplied
to the MP algorithm and a high computational cost [1,2]. On the other
hand, to implement the additional computations required by (3) may involve
some unexpected conceptual and practical difficulties, specially in shape
optimization problems.



4 A unified procedure for integration

It is obvious that trying to calculate the element contributions (8) in terms
of the material coordinates r would be awkward [7]. However, in most of the
cases it is relatively easy to introduce an invertible differentiable mapping

(9)

PEXA — Q)
(ga a) r :P(ﬁ, a)

such that the element E(a) = p(Z,a) is the image of a convenient fixed
reference domain = (also called master element or parent domain) by the
coordinate transformation p (see Figure 1).

inode

Einodc

[1]|

Fig. 1.— Standard FEM Mapping

Thus, every point in element E, given by its material (global) coordinates
r={r}, i=1,...,n, = dim(Q) (10)

is the image by the mapping p of a unique corresponding point in the ref-
erence domain =, given by its reference (or local) coordinates

&={&}, i=1,...,n = dim(E). (11)
In a FEM context such a transformation is normally written as

nnode
p.a)= Y % (a) N7, (12)
inode=1

where the master element = is defined by the reference coordinates {£°9¢}

of the “nnode” so-called nodal points (or nodes) of the element [7]. There-
fore, each element E is defined by the corresponding material coordinates of
its nodal points {r"°¥¢(a)}, and its so-called shape functions {N®"°d¢(£)}
that must verify the standard interpolation conditions

Ninode(é-jnode) _ {0, if inode 7& j’I’LOde;

1, otherwise.
In these terms, the jacobian matrix of the mapping (9) can be written as

nnode
Ja) = %6") =Y pineie(g) 8% Ninede(g) (1)

(13)

inode=1



Now, it seems clear that contributions (8) should be computed by integra-
tion in the reference system. Thus (8) must be reduced to the form

iaw = [ FEaw ‘@

£cE d=

ng
dz, = =[] d¢, (15)
i=1

where it is obvious that
¢~ (& a,w) = ¢"(r,a,w)

On the other hand, it is widely known [8] that for ng = n, the integration
jacobian |dE/dE]| is the determinant of the jacobian matrix (14). Otherwise,
it is generally computed by means of a specific expression that depends on
the dimensions n, and n¢. In engineering practice n, < 3. Thus, when
ne = 1, E is a curve and |dE/dE| is computed as the modulus of the
tangent vector; on the other hand, when ng = 2, E is a surface and |dE/dE|
is computed as the modulus of the normal vector.

It seems to be not so widely known that the integration jacobian
|dE/d=| in (15) admits the following unified expression

B\ _ /it [GEa) whee Glé.a)=J (Ea)JEa) (17)

d=
is the so-called metric tensor [9] of the riemannian manifold E(a). Obvi-
ously, the metric tensor is required to be positive-definite, for the mapping
(12) to be acceptable [9]. Therefore, det [G(€, @)] > 0 and the integration
jacobian in (18) is always well defined. It is interesting to notice that this
expression for the integration jacobian is intrinsic to the riemannian ng.—
dimensional manifold, and indeed equivalent to the usual expressions for
the arc length, surface and volume differential elements when n, < 3.

Hence, contributions (8) can be computed as

'/)E(avw) - ez ¢:(§a aaw) V/ det [G(£7 a)] d=, (18)
being this expression valid for all cases ng < n,. An original, comprehensive
and straightforward proof of (17) is given in [Navarrina et al.] [9]. A classical,
more involved proof can be found in [Courant and John] [8].

Finally, a numerical quadrature (very often a Gauss type formula)
could be implemented, resulting in

. 16
'I':p(ﬁ,(!) ( )

ngaue

Prlaw ~ Y FE aw)/det [GE @) W (19)

igaue=1

for the selected sets of integration points {¢"9°““} and weights {WW?9ue},
The above stated numerical integration procedure does not depend on
the dimensions n, and n¢. Thus, a general purpose subroutine should be
able to compute contributions (8) independently from the dimension of the
problem (1D, 2D or 3D) and from the dimension of the elements being used.



5 Sensitivity analysis of the state equation

At this point we recall equations (3). For a given arbitrary unit vector s
in the design space one should easily compute the directional derivative of
the input variables (Dye). Then, taking into account equations (7), one
concludes that the terms which computation must be discussed are

[%} = i:l [% 'z/;f(a,w)} and D¢ = iD;"«lzf(a,w% (20)

where we introduce the symbolic operator

o]
D¢ |= — D.a. 21
0= (21)
Hence, the desired derivatives of the state function should be obtained by
computing and assembling derivatives of the element contributions (8) type

@] |5 ([, # e o)

D2 P (a,w) = D= / o )¢E('r,a,w) dE ) . (23)

Normally, the element shape will not depend on the state variables.
Thus, computing terms (22) is considered trivial since the integration do-
mains are fixed. Thus

[% ¢E(a’w)} - Uremm % Hrew) dF

which can be computed by integration in reference coordinates as
0 g 0 = \/7
— = —¢~ det d=| . 2
vt ew)] - || eaw vimGEal = o)

The shape of the elements should be defined by part of the input
variables e. For this reason, computing the remaining terms (23) may be
much more difficult, since the integration domains could be variable.

In optimum structural design, explicit distinctions are made between
sizing optimization (fixed-geometry) and shape optimization [1,4]. In the
former, the difficulties involved in the differentiation of the state equation
are significantly reduced, provided that the input variables that define the
structural shape do not depend on the design variables, but only on the
design constants. Thus, the integration domains are fixed, and terms (23)
can be easily obtained. In the latter, the input variables that define the
structural shape depend on the design variables. Thus, some non obvious
aspects —related to the differentiation of functions defined by integration
in variable domains— interfere in the sensitivity analysis.

and

; (24)




6 High order shape sensitivity
Using equation (18) we can write terms (23) as
DryFiaw) = [ D7 <¢E<e, ow) m) d=(26)
For the sake of compacity v;e define the symbolic operator

D 0= 00 + O 0% n(det [G(€ ), (27)

which reduces (26) to the compact form

prvtaw) - [ D] (FEaw) VEmGED = (@9

Finally, by means of some additional analytical work [9] we obtain the ex-
plicit ready-for-computation expression

DiO-pe0+0; B[6 € DEGEa)],  (20)

where direct differentiation of (17) and (14) give

{24 Qa Qa T
DEG(§ a) = [J7(¢e)D I a)] + [J' (¢, @)D J(€ )], (30)
nnode
, o
D* _ D% inode _Nznode ) 1
SIEa = D DIr @) N (31)
On the other hand, (28) can be written in terms of material coordinates as
pefaw) = [ D¢f(raw) dF. (32
rcE(a)

by means of the corresponding symbolic operator
E =
D/O-7 (0. ) .
r=p&) /) lg—p=1(r.a)

Expressions (28) and (32) are equivalent. So are operators (29) and
(33). Since integration is performed in reference coordinates, the expression
(28) and the operator (29) will be preferred in practice. However, equation
(32) shows that the derivative of an integral with respect to a parameter
that modifies the integration domain can be easily calculated as the integral
of the operator (33) applied to the subintegrand function, that is

D2 (/ " (r,a,w) dE) = 'Df ¢" (r,a,w) dE, (34)
rcE(a)

rcE(a)

(33)

which explains why recurrency is allowed. Thus, high order shape sensitiv-
ity expressions can be immediately obtained [9] by reiterative application of
operators (29) or (33). Notice that the shape variation is entirely introduced
in the sensitivity analysis by means of the sequential directional derivatives
of the jacobian matrix (14) of the transformation, that is, through the se-
quential directional derivatives of the nodal coordinates r*°%¢(a), that must
be known in advance up to the desired order.



7 Application example

Following, we show some results for a simply supported concrete shell (see
Figure 2). A detailed description of this shape optimization problem can
be found in [3,9]. The shape optimization was performed by the DAO?

system [4] using second order directional sensitivity analysis [5].
A T3

Fig. 2.— Design Model
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Figure 3 compares some predicted values (obtained from the second
order sensitivity analysis at the optimal solution) with the corresponding
FEM computed results for different values of the design variable 5. (Note:



GP-LWE# and GP-UPE# respectively stand for the central lower and cen-
tral upper Gauss points of element number #; being element 9 the closest
to the support, and element 3 the closest to the center of the free border.)

Conclusions

A unified approach for high order shape design sensitivity analysis has been
presented in this paper. The proposed approach is based on a generic pro-
cedure for integration in manifolds which implementation in standard FEM
and BEM engineering codes is straightforward. Special care has been taken
on giving the final results in terms of easy-to-compute compact expressions
that could be applied to any kind of elements, and special emphasis has
been made in holding recurrence and simplicity of intermediate operations.
The proposed scheme does not depend on any particular form of the state
equations, and can be used in both, direct and adjoint state formulations.
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