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COMPUTING STABILIZATION PARAMETERS
IN NUMERICAL MODELS FOR ADVECTIVE-DIFFUSIVE
TRANSPORT PROBLEMS

I. Colominas!, R. Lépez-Jato!, C.A. Figueroa2, F. Navarrinal and M. Casteleiro!

ABSTRACT

Numerical modelling in Fluid Mechanics is particularly difficult in high-advective
fluid problems. The Finite Element Method, which has been succesfully applied to
very challenging problems in Computational Mechanics, presents some troubles in the
resolution of high velocity fluid problems due to the appearance of important oscillations
of the solution in specific parts of the domain.

In this paper, we consider the advective-diffusive transport differential equation,
which models a great number of problems in engineering. We briefly review the origin
of the numerical oscillations and the alternative approaches proposed to overcome these
phenomena, and we propose a procedure to obtain stabilization parameters in Petrov-
Galerkin formulations from the eigenvalue analysis of the elemental matrices in the
discretized problem. Finally, we present and discuss the results obtained for different
tests problems.

1. INTRODUCTION

1.1. Mathematical model: the advective-diffusive transport equation

As it is well-known, the numerical solution of fluid problems obtained by means
of Galerkin type Finite Element formulations presents some instabilities for medium and
high values of the fluid velocity 2. In order to understand the reasons of this anoma-
lous behaviour, we focuse our attention to the advective-diffusive transport differential
equation, which can also be interpreted as the “linear version” of the Navier-Stokes
equations, and we can study the numerical oscillations in a linear problem.
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In the transport phenomena in a fluid media there are two different main pro-
cesses: the “diffusion”, which can be mathematically described by the parabolic equation
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where ¢ is the transported unknown and K the diffusion tensor of the fluid; and the
“convection” or “advection” process, which appears when the fluid moves and any
substance within it will be carried along or “convected” by the mainstream velocity.
For a 1D case, this process can be modelled by the hyperbolic equation:
9¢ + u% =0 (2)
ot or
being u the fluid velocity. Obviously, the dominance of one process over the other will
determine the main nature of the transport in a particular case.
Taking into account both processes and considering an isotropic medium, the
sourceless advective-diffusive transport problem in a domain 2 is given by the partial
differential equation

V- (KV¢), (1)

%Jru.vqg:v.(wqb) inQ, t>0, (3)

with the following boundary and initial conditions

Vé-n=0 inl';; Vo-n=¢q inTy; Vo-n=rv—a¢p inl3; ¢(z,0) = f(x),zc,

(4)
being I'{, I'y and I'g different parts of the boundary I" where the above conditions are
prescribed (I'y UT9 UT3 = T'). In general, v, k, a, ¢ and f are time and position
dependants data.

1.2. Variational statement of the problem and Numerical model

A variational form of the boundary-value problem defined in (3) and (4) can be
written as

/{@+u-v¢—v-(kv¢)}wd9+/ {V¢-n—~+ad}wr,dl's =0, (5)
¢ 875 FZ

which must hold for all members w and wr., of suitable classes of test functions defined
in Q and T'9®. Now, the application of Green’s Identity allows to obtain the following
weak variational statement:

/ {w@+wu.v¢+w¢.vw}da+ [ astwdrs = [ ykwars. (©
9 ot Ty Iy

The FEM numerical model of this problem requires the definition of a discrete
approach to its solution and the partition of the domain 2 in e elements (27 U Q9 U
Q3U...USe, so that Q; NQ; =0, i # j); therefore, a finite element discretization §2;, of
domain {2 is obtained. Next, the definition of a basis of local shape functions p; so that

o= 1) =3 6;(t)p;(x). (7)
j=1



and the selection of n test functions w; leads to the linear system of equations:

dé B
B—+A¢=c, (8)

being
B;; =/ wip; dQp, 4,5 =1,n
Qp,

Aij = / (u'ij)wi dasdy, —|—/ k?ij -Vw; dQy, + / akw;p; dl'o,, 4,5 =1,n (9)
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2. NUMERICAL INSTABILITIES IN GALERKIN TYPE APPROACHES

The Galerkin type weighting (w; = p;, i = 1,n), which has been successfully used
in the finite element solution of a great number of problems in solid mechanics, produces
unstable numerical schemes when it is applied to advective-diffusive transport problems
with medium and high values of the velocity of the fluid. In these cases, it can be shown
34 that the Galerkin type numerical model is unable to propagate precisely both the
frecuency and the amplitude of an eigenfunction of the analytical solution of certain
problems. This frequency and this amplitude arises as a consequence of the existence of
complex eigenvalues associated to a certain eigenfunction. These complex eigenvalues
are the origin of the apperance of the numerical oscillations. Next, we ilustrate the
appearance of these complex eigenvalues and its influence in the problem.

In order to simplify further analysis, we will consider the problem (8) in its
homogeneous form (¢ = 0). Thus, by using the expansion in Taylor series, the next
fully discrete forward system for the problem can be derived

B (‘/’(t * AA’Z - "’(t)> + Ad(t) = O(At), (10)

which can be rewritten (if we denote t/ = ¢ and #/*1 = ¢ + At) in the following form:
¢l=1-AB A, (11)

that is, the approximation to the solution in time step j + 1 is obtained from the
approximation in a time j multiplied by the factor (I — AtB_lA). Analysis of the
temporal evolution of unknown ¢ can be performed by defining a norm to this factor,
which can be set in term of the eigenvalues of B"1A*%. Since the full development of
this analysis is too cumbersome to be made completely explicit in this paper®*°, we
show their influence in an example. If we consider a 1D problem with constant physical
properties and discretize the domain in a mesh of linear finite elements which size is A,

the elemental matrices are given by

h 12 1 ul|-1 1 El 1 -1
e _ ¥ . e _ —
B_m{l 2], A_J_l 1]+h{_1 1]. (12)



Constraining the analysis to the obtention of the steady-state response of the
problem, the assembly process of the matrix A in (8) leads to the following linear
system of equations

11 0 1 -1 0 1 .
1 0 1 1 2 -1 s
U 0O -1 o0 k 0 -1 2
) o 1 ol T 2 1 0 = (13)
10 1 1 2 -1
0 —1 1 0 -1 1 (bn Cn

In this expression, it can be seen the different contribution of diffusive and ad-
vective terms in the coefficients matrix. The advective component produces a non-
symmetrical matrix, with many null elements in the main diagonal, is the origin of the
apperance of the complex eigenvalues when the contribution of this matrix is dominant
in the final linear system of equations, that is when advection is more important than
diffussion. This effect can be shown in the following three cases corresponding to the
above example for a mesh of 7 elements with different Péclet numbers (Pe = uh/k):

u=2, k=5, h=1, Pe=0./ u=12, k=5, h=1, Pe=2.} u=40, k=5, h=1, Pe=8
"7 [18.8287 "A\17 100.0 +0.00i1 "A\17  [00.0+ 0.00i"
Ao 16.109 Ao 10.0 — 4.144 Ao 10.0 4 34.89i
A3 12.180 A3 10.0 — 1.48i A3 10.0 — 34.89i
M| =1 7820 |; A | = |10.0+1.48i | ; Ay | = |10.0 +24.156
A5 3.891 A5 10.0 — 5.98i A5 10.0 — 24.15i
X 1.172 X 10.0 + 5.98i X 10.0 + 8.62i
[ \7] L 0.000 A\l L10.0 + 4144 a1 L10.0— 8.62i
(14)

According to (13), a straightforward way to stabilize the problem is to use a
smaller size of element A, since then the advective component becomes less important
than the diffusive one. Obviously, a remeshing procedure, which is feasible for 1D test
problems, would imply an unaffordable computational cost in practice. For this reason,
alternative numerical approaches have been proposed in last years to the Galerkin type
weighting in order to obtain stable finite element formulations for the advective-diffusive
transport equation.

3. NUMERICAL APPROACHES FOR THE ADVECTIVE-DIFFUSIVE
TRANSPORT PROBLEM

Numerical formulations proposed to stabilize the finite element equations for the
transport problem are based on the selection of different types of weighting in order
to enhance the diffusive contribution, that is, in the previous example the symmetrical
part of the equation (13). The simplest ones directly introduce an additional diffu-
sive term, while more recent and rigorous techniques modify the variational form in
the Galerkin type weighting (SUPG?®, GLS®, Taylor-Galerkin methods”, Characteristic-
Galerkin method®, etc.), introducing one or more parameters which adjust the stability
of the numerical approximation. Thus, the variational statement (6) of the problem is
modified by the addition of a term of the general form®

/Q P (wp) TR (pp) Y, (15)



being P(wp,) an operator applied to the test functions, 7 the stabilization parameters,
and R(py,) the residual of the differential equation:

Ripn) = 22 4 0. V6 - V- (kV9) (16)

Most of the proposed stabilization methods can be included in this general frame-

work. In the case of the Petrov-Galerkin formulations the stabilization of the numerical

solution is performed upwinding the test functions against the current lines of the fluid;

in the 1D case, for example, test functions w;(£) and trial functions p;(£) can be defined
for linear elements as

p1(€) = $(1—¢€) wi(€) = 5(1—€) — (L +E)(1—¢)
pil€) = L we= : R

p2(§) = 5(1+¢) we(§) =5(1+&+F(L+E(1-¢)

being « the scaling factor that controls the amount of upwind bias desired (“upwind
parameter”), as it is shown in Fig. 1.

(17)

Fig. 1.-Standard piecewise-linear basis functions and quadratically based test functions for Petrov-
Galerkin approaches.

If we recover the 1D example presented in (12) and introduce a bias in the test
functions, we can show the stabilization mechanism of the numerical model. Thus,
taking into account the trial and the test functions defined in (17), the following linear
system of equations is obtained, instead of (8):

d¢ ~d¢p -~
B— +A B—+A¢| = 1
( dt+ ¢>—|—a< dt+ ¢> c, (18)
where the elemental matrices associated to the cuadratic bias ]§, A are given by

N Bl N _
Bezﬁ{_i ﬂ Ae:%{_i ﬂwo. (19)



Now, in this approach it is added a new advective term (there is no new diffu-
sive contribution), which is a symmetrical matrix and will contribute to stabilize the
numerical scheme balancing the contribution of the non-symmetrical matrix A€ in the
assembled matrix of coefficients of the final system. It is important to notice that this
analysis can also be made for high-order elements and 2D and 3D problems, obtaining
similar conclusions®*.

It is obvious that the obtention of suitable stabilization parameters for this kind
of finite element approaches is now the key of the problem!’. Nowadays, computation of
stabilization parameters for finite element approaches of the advective-diffusive trans-
port equation remains an open field of study'!. Thus, for example, some approaches
propose the computation of the “best” parameter analitically or imposing the exact so-
lution at nodes (which is possible to obtain for simple 1D problems), by the comparison
of results from a poor mesh with those obtained from an enriched mesh, or by means
of smoothing procedures, and parameters for 1D problems are heuristically used for 2D
and 3D cases in practice.

In previous works®'“, we have proposed a different method for the computa-
tion of the stabilization parameter. As we have shown, the ill-conditioning character
of the numerical formulation based on Galerkin type weighting is due to the assem-
bling of non-symmetrical elemental matrices, which may have complex eigenvalues in
high-advective fluid problems, that produce oscillating solutions of the problem. The
stabilization approaches try to overcome this fact by modifying the variational form
and so, the elemental matrices associated to advection, just like we have presented in
the above examples for a Petrov-Galerkin formulation. Our proposal is to obtain the
stabilization parameter from the information of the eigenvalues of the elemental matri-
ces: the elemental matrices are computed starting with a null stabilization parameter
(i.e., we use a Galerkin type weghting approach), and we obtain (or estimate) the set
of eigenvalues {)\;} of each elemental matrix. If all of them are real numbers, then the
stabilization parameter remains equals zero, but if it should not be so, then the value of
the stabilization parameter is increased until no complex eigenvalues in the elemental
matrices appear.

In this point, it is important to remark an essential characteristic of this pro-
posal: it is absolutely general and independent of the dimension of the problem. The
stabilization parameters are not computed in an heuristic way, and it is also possible to
use this methodology if source and reactive terms are considered in the transport differ-
ential equation. Consequently, it is a general technique, very simple from a conceptual
point of view, that stabilizes the finite element equations of the problem by analyzing
only its elemental matrices.

At present, we have obtained very promising results in the cases studied until
now >12 for 1D and 2D problems. In the next section, we present a 1D test numerical
test to demonstrate the feasability of the proposed method for computing stabilization
parameters and we discuss the results obtained.

3,12

4. NUMERICAL EXAMPLES

The example that we present is the 1D test —Fig. 2 a)— defined by

o¢ 8% o >
g = k@ o 0<az<Ly ¢(0)=¢p , Z-(L)=h[or—¢(L)]  (20)

with the following parameters: L =7, ¢y = 0.001, ¢y, = 0.005, £ = 0.07 and h = 1.0.



We have analyzed the numerical results for different velocities in the domain of
the problem (from u = 0.1 to w = 50), and discretizations of the domain of 10 and 50
elements. In all cases, we have considered parabolic elements®'? (3 nodes per element).
Péclet numbers (Pe = uh/k) vary from 1 to 500 (in the discretization of 10 elements)
and from 0.2 to 100 (in the case of 50 elements).

a) ¢(0)=q 4 T T T  4— @, L)=h(@- L))
) 100 3.00 L 500 700

bl) b2) b3)

u=5 u=10 u= 40
0001080 ~ 0001040 — 0001008 —
(p7 ————— Analytical solution (p _____ Analytical solution (p’ ————— A'nulyl?cul solution :'
Galerkin _ 7 Galerkin . Galerkin ) :
0001040 - | ==+ Petrov-Galerkin —t— Petrov-Galerkin i ocomo| | Petrov-Galerkin

0.001020 —

MV

0.000980 —

0.001020 — 0.001000

0.001000

0.001000

0.000980 —

0.000992 —

0000960 . ‘ , 0.000960 : : 0000988 .

T T T T T 1 T
1.00 3.00 5.00 X 700 1.00 3.00 5.00 X 700 1.00 ! 3.00 5.00 X 700

c) d)

1.60 — 1.60 —

| a | &

+

120 —| 120 —|

. 7 +
0.80 — 0.80 — +
0.40 —F 0.40 — +

- +

000 \ \ \ I 0.00 \ \ \ \ ‘e

0.00 10.00 20.00 30.00 40.00 u 50.00 0.00 20.00 40.00 60.00 80.00

Fig. 2.- a) Domain and boundary conditions of the test problem. Results obtained with a dis-
cretization of 10 parabolic elements: b#) Comparison of the numerical solutions obtained
with Galerkin and Petrov-Galerkin approach, and the analytical solution for different fluid
velocities. ¢) Stabilization parameter o versus the fluid velocity; d) Stabilization pa-
rameter « versus the polar angle 6 (degrees) of the eigenvalue obtained with a Galerkin
approach.



Numerical results obtained with Galerkin and Petrov-Galerkin with the proposed
method for computing the stabilization parameters based on the eigenvalues of the el-
emental matrices are presented in Fig. 2 b) and e), in comparison with the analytical
solution. As it can be seen, we obtain very good numerical results and an important re-
duction of the oscillations (these results also agree with those obtained by using Petrov-
Galerkin approaches with others methods for computing the stabilization parameters®).
Furthermore, in Fig. 2 ¢) and f), we present the evolution of the stabilization parameter
depending on the fluid velocity; obviously, the stabilization parameter increases when
the velocity does.

el) e2)
u=>5 _
0.001060 — 0.001030 — u= 1 0
(U @ - 1
_____ alytical solutis i
0.001040 | amyteal solution 0001020 —| === Analytcal soution
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Fig. 2.-Results obtained with a discretization of 50 parabolic elements: e#) Comparison of
the numerical solutions obtained with Galerkin and Petrov-Galerkin approach, and the
analytical solution for different fluid velocities. f) Stabilization parameter « versus the
fluid velocity; g) Stabilization parameter « versus the polar angle 8 (degrees) of the
eigenvalue obtained with a Galerkin approach.



In these examples, we remark the great advantage of the formulation that we
propose since it is independent on any heuristic method for computing the stabilization
parameters, which we obtain by a systematic analysis of the eigenvalues of each ele-
mental matrix; that is, computing the stabilization parameter starting with a Galerkin
type weighting approach (parameter equals zero) and increasing its value until no com-
plex eigenvalues in the elemental matrices appears. However, we have found that there
should be a faster way to obtain the stabilization parameter, since it seems to exist
a clear relation between the stabilization parameter and the greater polar angle of the
complex eigenvalues of an elemental matrix —Fig. 2 d) and g)— and it is independent of
the fluid velocity, and the discretization level (in Fig. 3 we have represented all results
together). At the present time, we are studying this possible linear (or cuasi-linear)
relation and trying to explain it from a mathematically point of view, since it should
represent a significant improvement in the computing of the stabilization parameter
which it could be directly obtained from the eigenvalues of the elemental matrices of
the Galerkin formulation with a low computational effort.

1.60 —
a | epﬁ
+
+
1.20 — + O
] +
0.80 | ®
0.40 — o
O 10 elements
- + 50 elements
+
0.00 \ \ \ 9
0.00 20.00 40.00 60.00 80.00

Fig. 3.-Stabilization parameter o versus the polar angle 6 (degrees) of the eigenvalue obtained
with a Galerkin approach (cases d), and g) in Fig. 2).

5. CONCLUSIONS

In this paper, we have revised the origin of the numerical oscillations in the fi-
nite element solution of the advective-diffusive transport differential equation and the
method that we propose for computing stabilization parameters required in Petrov-
Galerkin weighting formulations. These parameters are computed analyzing the eigen-
values of the elemental matrices of the FE discretization, by imposing that these matrices
have no complex eigenvalues. This general methodology is applicable to 1D, 2D and 3D
problems and no heuristic arguments are used to obtain the stabilization parameters,
what makes it more attractive. These parameters are computed during the integration
and the assembly of the elemental matrices.

Results obtained in 1D problems are excellent and very promising, and they can
assure a good performance of this method in 2D and 3D cases. The computational cost
that implies the computing of the stabilization parameter from the eigenvalue analysis



of the elemental matrices of the discretization could be drastically decreased if this
parameter is obtained from the polar angle of the eigenvalues of the elemental matrices
in the Galerkin type weighting finite element approach.
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