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Abstract. Numerical simulation in Fluid Mechanics is an extremely difficult task,
which complexity increases exponentially as the velocity of the fluid becomes higher. In
particular, it is known that serious troubles are encountered when the FEM is applied to
the resolution of high-advective fluid problems, despite the fact that the method has been
successfully applied to a large number of sundry problems of Computational Mechanics.
As a general rule, these drawbacks are announced by large oscillations of the Galerkin
numerical solution in specific areas, or even through the whole domain.

In order to understand the reasons for this unexpected behaviour, we focus our attention
in the convective-diffusive transport differential equation, which can be interpreted as
the linear version of the Navier-Stokes equations. By means of this simplified analysis,
we try to identify the origin of the numerical oscillations phenomena, as much as to
find a generic way to stabilize the numerical solution of the problem.

In this paper we review the most significant alternative approaches that have been
proposed to overcome these troubles when the Galerkin formulation is intended to solve
the problem. Then, we propose a new technique that allows to obtain the stabilization
parameters for the Petrov-Galerkin approach. Our procedure is based on the eigenvalue
analysis of the elemental matrices of the discretized problem. Thus, the outlined process
could be applied independently on the specific formulation being used and the dimension
of the problem being solved. Finally, we present different convective-diffusive numerical
tests for different Péclet numbers.
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1. INTRODUCTION

1.1. Mathematical model: the convective-diffusive transport equation

It is well-known that the finite element solution of fluid problems presents some
difficulties related with the instabilities of the numerical solution for medium and high
values of the velocity of the fluid [1,2]. In order to understand the reasons of this
anomalous behaviour and to study this phenomenon in a linear problem, we focuse our
attention to the convective-diffusive transport differential equation, which can also be
interpreted as the “linear version” of the Navier-Stokes equations.

Generally speaking, the transport phenomena in a fluid media involve two different
main processes: the “diffusion”, which can be mathematically described by the parabolic
equation

2 -V (&), )
where ¢ is the transported unknown (eg., the concentration of a pollutant spilt in
a harbour area) and K the diffusion tensor of the fluid; and the “convection” or
“advection” process, which appears when the fluid moves carrying with it any substance
along the mainstream velocity. This process can be modelled by the hyperbolic equation:

¢ B
5 tuVo=0 (2)

being u the velocity of the fluid. It is obvious, that the dominance of one process over
the other will determine the main nature of the transport in a particular case.

Now, if we take into account both processes in an isotropic medium, the sourceless
convective-diffusive transport problem in a domain €2 is given by the partial differential
equation

%Jru.vqb:v.(wqb) inQ, t>0, (3)

with the following general boundary and initial conditions

Vé-n=0 inl';; Vopn=q inly; Vo-n=rv—ap inl3; ¢z,0) = f(z),zc,

(4)
where I'1, I'y and I'g denote different parts of the boundary I' where the above conditions
are prescribed (I'yUT'9UT'3 =T). In general, v, k, a, ¢ and f could be time and position
dependants data.
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1.2. Variational statement of the problem and finite element numerical
approach

For the transport problem defined in (3) and (4), it can be written the variational
form

9
/Q{a—eru-vgb—v-(kv¢)}wdﬂ+/rz{v¢-n—7+a¢}wr2dfz=0, (5)

which must hold for all members w and wr,, of suitable classes of test functions defined
in 2 and I'5[3]. Now, a weak variational statement of this expression can be derived by
applying the Green’s Identity:

1)) B
/Q {wa +wu-Vo+kVop- Vw} dQ) + /1“2 adkwdl'y = /1“2 ~vkwdls. (6)

Finite element numerical modelling of this problem requires the definition of a
discrete approach to its solution and the partition of the domain €2 in e elements
(U UQU Q3U...UQe, so that ;N Q; = 0, i # j); therefore, a finite element
discretization {2} of domain  is obtained. Now, if we select a set of local shape
functions p; defined on €, and T'g, so that

6~ Blx,t) = Zl 6,(8)p; (%), )
2

and we select a set of n test functions w;, expression (6) is reduced to the following
system of linear equations:

dé B
B—-+A¢=c, (8)

B;j = /Qh wipj dQp, 4,5 =1,n
Aij :/ (u'ij)wi asyy, —I-/ kinj -Vw; dQy, —I—/ akw;p; dl,, i,j5=1,n (9)
Qp Qp Iy,

¢ = . vkw;dl,, i=1,n
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2 NUMERICAL INSTABILITIES IN GALERKIN TYPE APPROACHES

The Galerkin type weighting (w; = p;, i = 1,n), which has been successfully used in
the FE solution of an important number of problems in Solid Mechanics, produces
unstable numerical approaches when it is applied to convective-diffusive transport
problems with medium and high values of the velocity of the fluid. In these cases, it can
be shown [3,4] that the Galerkin type numerical model is unable to propagate precisely
both the frecuency and the amplitude of an eigenfunction of the analytical solution of
certain problems. This frequency and this amplitude arises as a consequence of the
existence of complex eigenvalues associated to a certain eigenfunction. These complex
eigenvalues are the origin of the apperance of the numerical oscillations. Next, we
ilustrate the appearance of these complex eigenvalues and its influence in the problem.

The common procedure to study the stability of a numerical scheme arises from the
von Neumann stability theory, in which the evolution of components of an eigenfunction
expansion or Fourier series of an initial data or the error is considered. Thus, the
set of eigenvalues of the system obtained for a specific numerical approach determines
its stability and provides the means to analyze effects such as the dispersion or the
dissipation of the numerical solution. A complete study of the qualitative properties of
the spectrum of eigenvalues for a given numerical approach can be found in reference [2].
This analysis leads to the Gershgorin circle theorems to determine the distribution of
the eigenvalues in the complex plan, and to the theory of oscillatory matrices obtained
from finite element numerical schemes. Since the full development of this analysis is
too cumbersome to be made explicit in this paper[3,4,5], we show their influence and
express the main conclusions in a particular example. If we consider a 1D convective-
diffusive transport problem with constant physical properties and discretize the domain
in a mesh of linear finite elements which size is h, the elemental matrices are given by

h12 1 ul[—1 1 ElT 1 -1
e - . € _ —~ —
B_6[1 2}’ A_2[—1 1} h[—l 1]' (10

Constraining the analysis to the obtention of the steady-state response of the problem,
the assembly process of the matrix A in (8) leads to the following system of linear
equations

-1 1 0 1 -1 0 o1 c1
1 0 1 1 2 -1 b9
ul 0 -1 0 El o -1 2 1.
2 o 1 o|T% 2 —1 0 =] an
1 0 1 1 2 -1
0 -1 1 0 -1 1 bn Cn

where the different influence of diffusive and convective terms in the coefficients of
the assembled matrix. As it can be seen, the convective contribution produces a non-
symmetrical matrix with many zeros in the main diagonal. This fact is the origin of
tﬁe apperance of complex eigenvalues when the influence of this matrix is dominant in
the final system of linear equations, that is, when convection is more important than
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diffussion. This effect can be shown in the following three cases corresponding to the
above example for a mesh of 7 elements with different Péclet numbers (Pe = uh/2k,
k=5 h=1):

u=2, Pe=0.2 u=10, Pe=1 u=12, Pe=1.2 u=40, Pe=/4
T A1 r18.8287 M A1 r10.07 M A1 r 00.0 T M A1 r00.0 T
A2 16.109 Ao 10.0 Ao 10.0 — 1.48: A2 10.0 — 8.62¢
As 12.180 A3 10.0 A3 10.0 + 1.48: As 10.0 + 8.62¢
M| = 7.820 |; Ay | = [10.0]; A | =1100—-4145|; | Ay | = | 10.0—-24.15¢
As 3.891 As 10.0 As 10.0 +4.14: As 10.0 + 24.153
A6 1.172 A6 10.0 A6 10.0 — 5.98: Ag 10.0 — 34.89¢
L A7 L 0.000 | L A7 L 00.0 | L A7 L 10.0 + 5.98¢ L A7 L10.0 4 34.897
(12)

According to (11), an effective way to stabilize the problem and to reduce spurious
oscillations is the control of the mesh size by using a smaller size of element h, since then
the convective contribution becomes less important than the diffusive one. Obviously, a
remeshing procedure, which is feasible for 1D test problems, would imply an unaffordable
computational cost in practice. For this reason, alternative numerical approaches have
been proposed in last years to the Galerkin type weighting in order to obtain stable
finite element formulations for the convective-diffusive transport equation.

3 NUMERICAL APPROACHES FOR THE CONVECTIVE-DIFFUSIVE
TRANSPORT PROBLEM

Different numerical formulations have been propose to stabilize the finite element
equations for the convective-diffusive transport problem. Most of them are based
on the selection of different types of weighting in order to reforce the diffusive
contribution (in the previous example, the symmetrical part of the equation (11)).
The simplest methods directly introduce an additional diffusive term, while more recent
and rigorous techniques modify the variational form in the Galerkin type weighting
(SUPG[5], GLS[6], Taylor-Galerkin methods|7], Characteristic-Galerkin method[8],
etc.), introducing one or more parameters which adjust the stability of the numerical
approximation. These methods can be understood as a modification of the variational
statement of the problem by adding a term of the general form[9]

o, P )R (1), (13)

where P(wy,) is a differential operator which is applied to the test functions, 7 is the
stabilization parameter, and R(py,) is the residual of the partial differential equation:

Ripn) = 22 4 u- V6~ V- (kV9) (14)
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In this general statement, most of the proposed stabilization techniques proposed
in last years can be included. In particular, for Petrov-Galerkin formulations the
stabilization of the numerical solution is carried out by upwinding the test functions
against the current lines of the fluid. In a 1D problem, for example, test functions w;(§)
and trial functions p;(£) can be defined for linear elements as

pi(€) = 31— ¢) wi(€) =516 - TA+€)(1-¢)
pi(&) = ) , o wi(§) = . (15)
pa€) = S(L+€) wy(€) = L1+ &)+ TA+EA—¢)

where 7 scales the amount of upwind bias desired (“upwind parameter”), as it is shown
in Fig. 1.

p] p2
J )
> . 1
E, -1 ) +1 &
w w =P;-aPP, <02=P2+ap1p2
ﬁ;> 1
= >

Fig. 1.-Standard piecewise-linear basis functions and quadratically based test
functions for Petrov-Galerkin approaches.

The effect of introducing a bias in the test functions can be seen in the previous 1D
example, and we can show the stabilization mechanism of the numerical formulation.
Thus, taking into account the trial and the test functions defined in (17), the following
system of linear equations is obtained, instead of (8):

de _dp
( E+A¢>—|—T<BE+A¢>—C, (16)

where the elemental matrices associated to the cuadratic bias f’), A are given by

fe h[—l 1]; Ke:g{ 1 -1

=171 =l |k (17)
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As it can be seen, in this new numerical approach only a convective term is added
(there is no new diffusive contribution), which is a symmetrical matrix, and will
contribute to stabilize the numerical scheme balancing the contribution of the non-
symmetrical matrix A€ in the assembled matrix of coefficients of the final system of
equations. It is important to remark that this analysis can also be made for high-order
elements and 2D and 3D problems, obtaining similar conclusions|3,4].

One of the keys of the stabilization methods is the obtention of the suitable
parameters 7 that adjust the correction to the Galerkin approach[10]. Nowadays,
computation of these parameters for finite element formulations of the convective-
diffusive transport equation still remains an open field of study[11]. Thus, for example,
some approaches propose the analytical computation of the “best” parameter by
imposing the exact solution at nodes (which is possible to obtain for simple 1D
problems), by comparing results from a poor mesh with those obtained from an enriched
mesh, or by means of smoothing procedures, and sometimes parameters for 1D problems
are heuristically used in practice for 2D and 3D cases.

In previous works|[3,12], we have proposed a different method for the computation of
the stabilization parameter. As we have shown, the oscillatory nature of the numerical
solution obtained with Galerkin type weighting formulations is due to the assembling
of non-symmetrical elemental matrices that produces complex eigenvalues in high-
convective fluid problems. Stabilization methods, like the Petrov-Galerkin presented
in the above examples, try to overcome this phenomenum by means of the modification
of the variational form and so, the elemental matrices associated to the convection
process. Our proposal is to obtain the stabilization parameter from the information of
the eigenvalues of the elemental matrices: the elemental matrices are computed starting
with a null stabilization parameter (i.e., we use a Galerkin type weghting approach),
and we obtain (or estimate) the set of eigenvalues {\;} of each elemental matrix. If all
of them are real numbers, then the stabilization parameter remains equals zero, but if
it should not be so, then the value of the stabilization parameter is increased until no
complex eigenvalues in the elemental matrices appear.

In this point, it is important to remark an essential characteristic of this proposal:
it is a general procedure and, in principle, it is independent of the dimension of the
problem. The stabilization parameters are not computed in an heuristic way, and it is
also possible to use this methodology if source and reactive terms are considered in the
transport differential equation. Consequently, it is a general method, very simple from
a conceptual point of view, that stabilizes the finite element equations of the problem
by analyzing only its elemental matrices. At present, we have obtained very promising
results in the cases studied until now [3,12]. In the next section, we present some 1D
numerical tests to demonstrate the feasability of the proposed method for computing
stabilization parameters and we discuss the results obtained. Furthermore we point out
a way to accelerate the computing of this stabilization parameter.
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4 NUMERICAL EXAMPLES
The first example (test #1) that we present is the 1D test defined by

2
% _
T

u@x o

L 0<a<l 60)=dy , SAD)= o -(L)] (8
with the following parameters: L =7, ¢g = 2, ¢;, = 0.5 and k£ = 0.07.

We have analyzed the numerical results for different velocities in the domain of
the problem and discretizations of the domain of 10 and 50 elements. In all cases,
we have considered parabolic elements[3,12] (3 nodes per element). Péclet numbers
(Pe = uh/2k) vary from 0.5 to 250 (in the discretization of 10 elements) and from 0.1
to 250 (in the case of 50 elements).

a.l) a2) a3)
280 u=0.1 280 — u=1

R

160 —

160 —

6000

080 —

40.00

040 —
2000

000 T T T T 1 000 T T T T |
0.00 1000 2000 30.00 4000 1] so00 000 2000 40.00 60.00 80.00 100.00
tang®

Fig. 2.-Test #1: Results obtained with a discretization of 10 parabolic elements.

Numerical results obtained with Galerkin and Petrov-Galerkin with the proposed
method for computing the stabilization parameters based on the eigenvalues of the
elemental matrices are presented in Fig. 2 (for a discretization of 10 elements) and Fig.
3 (for a discretization of 50 elements). In both cases, figures a#) are the comparison of
the numerical solutions obtained with Galerkin and Petrov-Galerkin approach, and the
analytical solution for different fluid velocities, figure b) presents the evolution of the
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a.l) a.2) 3
20 u=0.1 . u=1 & u=10

5 200

160 —f

60.00 —

0.80 —

40.00 —

0.40 —
20.00 —

0.00 T T T T T T T T T ] 0.00 T T T T T T T T T ]
0.00 50.00 100.00 150.00 20000 1] 250.00 0.00 20.00 40.00 60.00 80.00 100.00

Fig. 3.-Test #1: Results obtained with a discretization of 50 parabolic elements.

stabilization parameter 7 depending on the velocity, and figure ¢) shows the relation

that exits between the stabilization parameter for a specific velocity of the fluid and the

tangent of the polar angle of the eigenvalue obtained with a Galerkin approach. This

linear relation between 7 and the polar angle can also be analitycally demonstrated.
The second example (test #2) that we present is the 1D test defined by

2
EkIS, 0<e<L d0)=d . HD) =6 (19)
with the following parameters: L =7, ¢g = 16, ¢, = 80 and k = 0.07.

Like in the previous example, we have analyzed the numerical results for different
velocities in the domain of the problem and discretizations of the domain of 10 and
50 elements. In all cases, we have considered parabolic elements[3,12] (3 nodes per
element). Péclet numbers (Pe = uh/2k) vary from 0.5 to 250 (in the discretization of
10 elements) and from 0.1 to 250 (in the case of 50 elements). Figures 4 and 5 show
a comparison of the numerical solutions obtained with different approaches (a#)), the
evolution of the stabilization parameter 7 depending on the fluid velocity (b)), and the
relation between 7 and the tangent of the polar angle of the eigenvalue obtained with a
Galerkin approach (c)).
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a.l)

a.2)
100.00 — u=1 / 100.00 — u=50
000 —| V\l/
-100.00 —
-200.00 —
L Analytical solution
—— Galerkin
0000 ——  Petrov-Galerkin
-400.00 : T T T | 40000 . . : T |
100 300 500 X e 100 300 500 X 700
b) c
160 100.00 7"
T4 Pe /5 7
120 80.00 —
] 60.00 —
0,80 —| 1
4 40.00 —
040 —| 1
20.00 —
B I e A 000 F——————T—— T
0.00 10.00 20.00 30.00 40.00 u 50.00 0.00 2000 40,00 60.00 80.00 100.00
tang@
Fig. 4.-Test #2: Results obtained with a discretization of 10 parabolic elements.
a.l) u=1 a.2) u=50
80.00 — 80.00 —
60.00 —| 60.00 —|
40.00 —| 4000 —
20.00 — 2000 — MAMMM
AANARI]
0.00 — 0.00 —
20,00 : : . : . 2000 . . . T |
1.00 3.00 5.00 X 7.00 1.00 3.00 5.00 X 7.00
b) ©)
1.60 — 100.00 —
T Pe 1/5]
80.00 —
1.20 o
] 60.00 —
0.80 — b
i 40.00 —
040 — |
20.00
77 7 1 1 17 1
0.00 50.00 100.00 150.00 200.00 u 250.00 0.00 20.00 40.00 60.00

80.00 100.00
tang®

Fig. 5.-Test #2: Results obtained with a discretization of 50 parabolic elements.
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In these examples, we remark the great advantage of the proposed formulation since
it is independent on any heuristic method for computing the stabilization parameters,
which we obtain by a systematic analysis of the eigenvalues of each elemental matrix;
that is, computing the stabilization parameter starting with a Galerkin type weighting
approach (7 = 0) and increasing its value until no complex eigenvalues in the elemental
matrices appears. However, we have found that there should be a faster way to obtain
the stabilization parameter, since it exists a clear relation between the stabilization
parameter and the greater polar angle of the complex eigenvalues of an elemental matrix
—graph (c)) in figures 2, 3, 4 and 5—. In order to verify this fact, we have executed
other examples modifying the transport differential equation to include reactive terms
(tests #3 and #4). Test #3 consists of the problem

o6 8%¢ ¢ u

— =k—5 — L; = —(L) = —|¢, — &(L 2
uge—k=G—ad, O0<z<Li 9(0)=dy , sL(L)=Flor—o(D)] (0)
with the following parameters: L =7, ¢g = 2, ¢; = 0.5 and k£ = 0.07, and being « the
reactive coefficient.

a.l) a.2)
n u=10, a=1 o u=10, a=10
[0) ¢

0,00 | 0.00 |

T T T ! T T T ]
1.00 300 500 X 7 100 300 500 X 7%
b) 0

8000 4 g Reactiveterm>
Pe 1/54

60.00 —

0.80 — 40.00 —

040 — 20,00 —|

0.00

T ] 0.00 T T T T T T T ]
0.00 10.00 20.00 30.00 40.00 50.00 0.00 20,00 4000 60.00 tangem 00

Fig. 6.-Test #3: Results obtained with a discretization of 10 parabolic elements.
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We have analyzed the numerical results for different velocities in the domain of the
problem and different values of the reactive coefficient (from o = 1 to o = 100), and
discretizations of the domain of 10 and 50 elements. In all cases, we have considered
parabolic elements, and Péclet numbers (Pe = uh/2k) vary from 0.5 to 250 (in the
discretization of 10 elements) and from 0.1 to 250 (in the case of 50 elements).

u=10, a=10

1.00 —

000 —| 000 —

-0.50

T T T 1 T T T ]
1.00 300 500 "X 700 1.00 300 500 "X 7m
e) f)
160 — 80.00 — Reactive term>
aa a & a &
T & Pe /51
120 & 60.00 |
®
080 —{ 40,00 |

040 — 20.00 —

000 LA L R L I R T T T T T T T ]
0.00 50.00 100.00 150.00 20000 U 250.00 0.00 20.00 40.00 60.00 80.00
tang®

Fig. 7.-Test #3: Results obtained with a discretization of 50 parabolic elements.

Now, like in the previous examples, we compare results obtained with different
numerical formulations (a#)), the evolution of the stabilization parameter 7 depending
on the fluid velocity for different values of the reactive coefficient(b)), and the relation
between stabilization parameter 7 and the tangent of the polar angle of the eigenvalue
obtained with a Galerkin approach (c)).

Test #4 consists of the 1D test defined by

o 9?
ugl =S G—ap, 0<z<Li 90)=dy . OL)=dr (21

with the following parameters: L =7, ¢g = 16, ¢;, = 80 and k£ = 0.07, and being « the
reactive coefficient.

12
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Fig. 8.-Test #4:

T
10.00 2000 30.00

4000 U 5000

Pet5 |

20.00 —|

Reactive term>

[F=—-Convective-Diffusive casd

% Reactive term,a=1

+ Reactive term,a=100
O Reactive term,a=0.1

000

T T T T T T T 1
6000 tang 80.00

Results obtained with a discretization of 10 parabolic elements.

d.1) d.2) _ —
w000 u=10,0=1 e u=10,0=10
4000 —| 40.00 —|
000 —| 000 - l
-40.00 - T - - ! -40.00 T T T T T 1
100 3.00 500 X 700 100 3.00 500 X 700
e H
) Reactive term>
160 — 80.00 —
a & &
P
T] & Pe 1/5
a
120 8 60.00 — %l
1o 4
080 —a 40.00 —| /
040 — 20,00 —
—--- Convective-Diffusive casc
x Reactive term,a=1
4 4 o Reactive term,a=10
+
a
000 T — T T ] 000 T T r T r
000 50.00 100.00 150.00 20000 U 250,00 000 2000 40.00

60.00 tange 80.00

Fig. 9.-Test #4: Results obtained with a discretization of 50 parabolic elements.
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This example has been solved like test #3 and results are shown in figures 8 and 9.
Like in the previous example, we can observed the linear relation that exists between
stabilization parameter 7 and the tangent of the polar angle of the eigenvalue obtained
with a Galerkin approach. At the present time, we are studying this possible linear
relation in general cases and trying to explain it from a mathematically point of view,
since it should represent a significant improvement in the computing of the stabilization
parameter which it could be directly obtained from the eigenvalues of the elemental
matrices of the Galerkin formulation with a fairly low computational effort.

5 CONCLUSIONS

In this paper, we have revised the origin of the numerical oscillations that appear in
the finite element solution of the convective-diffusive transport problem when a Galerkin
type weighting is used. Furthermore, we have proposed a different way for computing
the stabilization parameters by analyzing the elemental matrices of the finite element
discretization, and it has been applied to Petrov-Galerkin formulations. This general
method is applicable to 1D, 2D and 3D problems, and it can be carried out during the
integration and assembly of the elemental matrices of the discretization of the problem.

Results obtained in 1D problems are excellent and very promising, and they
can assure a good performance of this method in 2D and 3D cases. Although
the computational effort required to determine the stabilization parameter from the
eigenvalue analysis of the elemental matrices could become important, it is possible to
reduce it drastically if this parameter is obtained from the polar angle of the eigenvalues
of the elemental matrices in the Galerkin type weighting finite element approach, just
as we have pointed out in the examples presented.
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