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Abstract. Three basic analytical approaches have been proposed for the calculation
of sensitivity derivatives in shape optimization problems. The first approach is based
on differentiation of the discretized equations*3. The second approach is based on
variation of the continuum equations™*° and on the concept of material derivative. The
third approach® is based upon the existence of a transformation that links the material
coordinate system with a fized reference coordinate system. This is not restrictive, since
such a transformation is inherent to FEM and BEM implementations.

In this paper we present a generalization of the latter approach on the basis of a generic
unified procedure for integration in manifolds. Our aim is to obtain a single, unified,
compact expression to compute arbitrarily high order directional derivatives, indepen-
dently of the dimension of the material coordinates system and of the dimension of
the elements. Special care has been taken on giving the final results in terms of easy-
to-compute expressions, and special emphasis has been made in holding recurrence and
simplicity of intermediate operations. The proposed scheme does not depend on any par-
ticular form of the state equations, and can be applied to both, direct and adjoint state
formulations. Thus, its numerical implementation in standard engineering codes should
be considered as a straightforward process. As an example, a second order sensitivity
analysis is applied to the solution of a 3D shape design optimization problem.
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1 INTRODUCTION

Most of analysis and design problems in engineering involve solving systems of partial
differential equations (PDEs). Currently, the most powerfull and widely used methods
for solving PDEs are the so-called integral methods, such as the Finite Element (FEM)
and the Boundary Element (BEM) methods. The sensitivity analysis of this kind of
methods requires taking derivatives of functions defined through integration. In fixed-
geometry problems, the integration domains remain unchanged during the optimization
process, and sensitivity analysis is usually performed by analytical techniques. How-
ever, integration domains are variable in shape optimization. This creates important
additional difficulties’ that have generally been overcome by employing finite difference

approximations’.

2 STATEMENT OF THE PROBLEM

According to the methology proposed by Navarrina and Casteleiro®® the first step
in the statement of a design optimization problem is the definition of the criteria that
will allow to decide whether a candidate design is acceptable or not, as much as to
select the preferable design among the acceptable ones. The admissibility conditions
are normally expressed by means of equality constraints (h(y) = 0) and inequality
constraints (g(q) < 0) that must be verified by the final design. On the other hand,
the quality of different acceptable designs can be normally compared by means of an
adequate objective function (f(y)), defined in such a way that a lower value of the
function is associated to a preferred design. The values (), in terms of which the
constraints and the objective function are defined, are called control variables of the
problem.

The second step is the definition of a design parametric model, that for given values
of the selected design constants (¢) and design variables (z) will determine the corre-
sponding value of the fundamental properties () that describe the nature of the object
to be designed and its interactions with the environment. Hence, the design variables
() are the primal variables of the problem, that is, the unknown parameters which
optimal value must be found.

It is obvious that some of the control variables () might be expressed directly in terms
of the fundamental properties (). However, in most of engineering design problems,
an important part of the control variables will not depend directly on the properties of
the design itself, but on the so-called state variables (w) that describe the behaviour
of the design in construction, service or fail conditions. Since the underlying physical
phenomena must be analyzed, the third step is the definition of an analysis model,
that for given values of the fundamental properties (¢) will allow to compute the state
variables (w). Different analysis models could be proposed to analyze the same physical
phenomena, and each one should require specific input data (), that must be well de-
fined in terms of the fundamental properties (). Moreover, the dependence relationship
between the input data (a) and the state variables (w) may involve severe difficulties.
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Thus, we symbolically represent the analysis model by means of a system of n,, implicit
equations

"/)(a’w) =0, ’l/)(&,u)) = {¢i(avw)}7 1=1,...,nu, (1)

with ny, unknowns (w = {w;} for i = 1,...,ny), being ¥(a,w) = 0 the so-called
state equation. Therefore, the optimum design problem takes the form of a general
constrained minimization problem

given c,
obtain x, that
for »=p(c,x),
a=a(p),
w such that |¢P(a,w)=0|, (2)
7 =(p,w),
minimize f(y),
verifying  g;(7) <0, j=1,...,m,
hg(’)‘)zo, 521,...,]9,

which solution must be found by means of a suitable Mathematical Programming (MP)
algorithm®1%11:12 " The set of all possible values of the design variables is called design
space. The subset in which the constraints are verified is called feasible region.

3 SENSITIVITY ANALYSIS

Mathematical Programming!? shows that more efficient algorithms can be achieved
when the derivatives of the functions that define the problem (objective function and
constraints) are known, at least up to the first order. The techniques that let us evaluate
these desired derivatives receive the generic name of sensitivity analysis.

Let s be an arbitrary unit vector in the space of design variables, that represents a
certain direction in which the actual design is modified. For given functions n(z), and
((n) the directional derivatives

d d
D =|— d D ( ) =|— ‘ D
@) = (@) s a0 (et ) = (G| D)
(3)
will be abbreviately written as
dn d¢
D= — D¢ = — Dgn. 4
sT dz S, sC dn sT (4)
In these terms, we shall discuss how to obtain the first order directional derivative
Dgz of any given function z(vy) of the control variables.
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3.1 First Order Direct Differentiation Method

Direct differentiation of (2) gives the first order direct differentiation method:

given 8,
) 0
obtain Dgp = 8—(: s,
Oa
Dsa — % Ds(p,
Dsw Such that % DSw et —@ Dsa , (5)
Ow oo
Oy oy
Dgy=— D — D
57 op ° + B 3
d
Dgz = it Dy,

where obtaining the directional derivatives of the state variables requires solving the
linear system of n,, equations with n, unknowns
lg—f] Dyw = —g—z Dsa. (6)

In engineering practice, equation (1) is frequently a discretized form of a certain
boundary-value problem. Most of the available analysis programs to solve this kind
of problems (i.e. wide purpose FEM or BEM codes) do not provide the derivatives
of the state function ([0¢/0w] and 0% /0a) required by (6). In this cases, only finite
difference approximations can be used to obtain the directional derivatives of the state
variables. This produces a significative loss of accuracy in the information supplied to
the Mathematical Programming algorithm and a high computational cost’”. On the
other hand, to implement the additional computations required by (6) may involve some
unexpected conceptual and practical difficulties, depending on the particular form of the
state equation that describes the underlying physical phenomena, and on the numerical
strategy outlined to solve it.

In optimum structural design —and particularly when the structural analysis is per-
formed by a FEM code— explicit distinctions are made between sizing (fized-geometry)
optimization and shape optimization™'3. In the former, the difficulties involved in the
differentiation of the state equation are significantly reduced, provided that the input
variables that define the structural shape do not depend on the design variables, but
only on the design constants. In the latter, some subtle aspects —related to the dif-
ferentiation of functions defined by integration in variable domains— interfere in the
sensitivity analysis.

To these topics is mainly devoted this paper.
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3.2 Higher order derivatives

For a given set of unit vectors {s;}, kK =1,...,k, we are interested in computing
DSl;527"'7Skz = Dsk ( c DSZ (Dslz)> . (7)

A scheme for high order sensitivity analysis can be easily derived following the same
principles outlined before. Conceptually, such a scheme is only slightly more complex
than the first order one, but the computational requirements increase exponentially
with the order of differentiation, due to the number of derivatives to be computed®®.
This precludes the use of Mathematical Programming algorithms that require full high
order information. However, a high order sensitivity analysis for a given direction in the
design space can be performed with relatively small computational requirements. This
provides an extremely useful tool for improving first order algorithms®%10:1%,

3.3 Adjoint State

It is easy to show how the direct differentiation computational scheme (5) can be
reordered?, giving the so-called adjoint state method

given: s,
obtain: Dgp = 6_<p s
CP T g ®
0
Dsa — a—a DS‘P)
i . . 8)
oY dz Ov
p. such that 2wl P = _<d_'y %> ,

dz Oy o
DSZ = —’Y % S‘p—i_“g% Dsa,

where the unknown vector p, is known as the adjoint state corresponding to the function
z(1y), associated to the so-called direct state (5). While in (5) it is necessary to compute
the derivatives of the state variables (Dsw) as an intermediate result for each direction
s, in (8) it is necessary to compute p. for each function z(«). Therefore, (8) will be
preferred rather than (5) when the number of functions to be derived is significantly
smaller than the number of directions in which derivatives must be computed .
Normally, the adjoint state scheme in design optimization does not offer significant
advantages over the direct differentiation scheme. Consider that in practical optimiza-
tion problems, the number of constraints is often much larger than the number of design
variables. In any case, a wide purpose general optimum design system must include the
possibility of using any of both schemes, depending on the problem statement.
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4 SENSITIVITY ANALYSIS FOR INTEGRAL METHODS

4.1 Discretized State Equations in Integral Methods

As it was mentioned before, equation (1) is frequently a discretized form —obtained
by means of one of the so-called integral methods— of a certain boundary-value problem.
Let the original form of this problem be:

find u(r, @), r € Q(a) c RI™®)
such that P(u,a) =0  on Q(a) (9)
and B(u,a)=0  onI'(a) C Q(a)

where  is an open bounded domain with Lipschitzian boundary 02 and closure §2,
[ is the subset of Q where (boundary) conditions are prescribed, r is the material
coordinates vector of an arbitrary point in €, and P and B are generic differential-
algebraic operators that represent the system of partial differential equations that must
be satisfied on €2 and the prescribed conditions that must be fulfilled on I'.

In these terms, the state equation (1) is generally derived as follows:

a) First, the so-called strong —or classical— form of the problem (9) must be re-
duced to an equivalent weak —or variational— form. If this process is based on a
weighted residual approach!®!%, as usual, the variational form can be written as

B(u,a)| w(r,a)dl =0, (10)

/rEQ(a) Plu,a) ‘u:u(r,a) @(r,e)) d +

rel(a) u=u(r,a)
that must hold for all members w(r, @) of a suitable class Hy of test functions
defined on Q(a). The actual expression of the variational form may differ from the
one exposed in (10), since additional analytical work (i.e. application of Greens’
Identity!”, integration by parts or the Divergence theorem!®) could be specifically
applied, as the case may require, in order to get more compact expressions, reduce
derivability requisites, etc.

b) Let H, be the class of trial functions (candidate solutions to satisfy the above
stated variational form), and let u(r, &) € H,, be the exact solution of the previous
problem. The first step to develop the method is to construct a finite-dimensional
(discretized) approximation'® of H,,. Thus, for a chosen set of trial functions

v(r,a) ={y(r,a)}, i=1,...,ny (11)

let HY, C H,, be the collection of functions

u(r,a,w) = % wivi(r,a) = w v(r, ). (12)
i=1
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The objective is to approximate the exact solution u(r,a) of (10) in this finite-
dimensional context. Namely, for given values of the input variables a of the
model, the unknown values of the state variables w must be determined (1) in
such a way that the corresponding discretized solution (12) is as close as possible
to the exact solution of the boundary-value problem.

c) Since the exact solution u(r,a) will not be included (as a general rule) in the
subspace HY, variational equality (10) will not hold anymore. However, if we
restrict the class of test functions H to the collection HE generated by a chosen
set of test functions

w(r,a) = {m;(r,a)}, i=1,...,nu (13)

the variational equality (10) is reduced to the system of n,, equations

/reQ(a) Plu, a)‘u:ﬂ(r,a,w) mi(r, @) €2 + (14)
/rET(a) B(u,a)‘u:a(r,a’w) 7 (r,a) dl’ = 0, 1=1,...,ny,
with n, unknowns w. B B
d) For practical reasons, domains Q and T' can be discretized in subdomains'®1?.
Thus
B nQo B B nr B
Qa) = | Qe and Ia)= | Iy, (15)
e=1 b=1

where each subdomain (€, or I'}) is closed and consist on a nonempty interior (£2,
or I'y, respectively) and a Lipschitzian boundary (02 or 9y, respectively), and

Qcy (@) (N Qep(@) =0 Vey # e,

(16)
Fbl (a) mrbg (a) =0 Vb, 7£ ba.
e) And, finally, equations (14) can be reduced to the standard form (1), being
nQo nr
Plaw) =3 law) + > P (ew) =0 (17)
e=1 b=1
with
Q —
pllaw) = [P, g, mre) 0, "
I —
Yy, (o, w) = /rer(a) B(u,a)‘u:a(r’avw) w(r,a)dl.
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Thus, contributions 1/;? and ’ll)g to the state equation (1) are obtained by computing
and assembling terms of the general type

P (a,w) = / ¢F(r, a,w) dE, (19)

reE(a)

where E(a) is an element (that is, a closed subdomain with nonempty interior E(cx)
and Lipschitzian boundary 0F(e)) of dimension dim(FE) < dim(€2) within domain €.
4.2 Standard definition of elements

It is obvious that trying to calculate the element contributions (19) in terms of the
material coordinates r would be awkward!®!?. However, in most of the cases it is
relatively easy to introduce an invertible differentiable mapping (see Figure 1)

pEXA 0
& a) r=p¢ )

such that the element E(a) = p(Z, @) is the image of a convenient fixed reference domain
= (also called master element or parent domain) by the coordinate transformation p.

(20)

A
inode
@ )
Einode
O

d & S

=

=
O o D

Fig. 1. Standard FEM Mapping

Then, every point in the element E, given by its material (also called global) coordi-

nates
r={r;}, i=1,...,n, = dim(Q) (21)

is the image of an unique corresponding point in the reference domain =, given by its
reference (also called local or natural) coordinates

g¢=1{&}, i=1,...,n=dim(E), (22)
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and the mapping depends on the input variables a that describe the numerical model.
In a FEM context such a transformation is inherent to the formulation, and is nor-
mally written as

nnode

pEa)= > "% a) N, (23)

inode=1

where the master element = is defined by the reference coordinates {€0%€} of the
“nnode” so-called nodal points (or nodes) of the element!>?. In these terms, the element
E is defined by the corresponding material coordinates of the nodal points {rm‘)de(a)},
and the so-called shape functions

Ninode = R
¢ Ninode(g) (24)
that must verify the standard interpolation conditions
inode (gjnodey __ 0, if inode # jnode;
N (€ )= { 1, otherwise. (25)
In these terms, the jacobian matrix of the transformation (20) can be written as
o nnode o )
J(€ q) = p(§, a) _ Z rmode(a) v Nmode(g). (26)
o€ inode=1 o€

Now, it seems clear that contributions (19) should be computed by integration in
terms of the reference coordinates €. Thus (19) must be reduced to the standard form

dE

= ng
Prlaw = | ¢ Eaw) zd ==l (27)
= = i=1

It is obvious that

$=(¢ 0, w) = 6" (r, 0, w)| (28)

r—p€a)
On the other hand, it is widely known?! that for ng = ny the integration jacobian
|dE'/d=| is the determinant of the jacobian matrix (26). This result is frequently referred
to as Theorem of Gauss-Binnet. Otherwise, the value |dFE/dZ| is generally computed
by means of a specific expression that depends on the dimension n, of the material co-
ordinates space and the dimension n¢ of the reference coordinates space. In engineering
practice n, = 3 as maximum. Thus, when ng = 1, E is a curve and |dE/d=| is normally
computed as the modulus of the tangent vector; on the other hand, when nge = 2, E is
a surface and |dF/dZ| is normally computed as the modulus of the normal vector.
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4.3 Metric Tensor of the Element

Let Cg(a) be a curve in E(a) with sufficient regularity conditions, image of a curve
Cz in = by the transformation r = p(§, @) at . Let the reference coordinates of an
arbitrary point of the curve C'z in parametric form be

E=€0)  LAEA. (29)

It is known that the length of the curve C'p(a) can be calculated as

L(a) = / ds,  ds = drldr. (30)
reCp(a)

Taking into account that

dr = J(¢, @) d¢ (31)

ds = \/deTG(€, a)dE, (32)

Le)= [, J (%)T Gl& @ _g, (%) ak, (33)

G(¢ a)=J (£ a)(¢ (34)

one can write

and finally

where

is the so-called metric tensor?? of the riemannian manifold E(e) (see Appendix I).

4.4 Integration of element contributions in reference coordinates

It seems to be not so widely known that the value |dE/dZ| in (27), that is the
integration jacobian corresponding to the mapping (20), admits the following expression

dE r
dE = | = | d= = \/det[G(€ @) d=,  d== ] d&;, (35)
= 1=1

in direct terms of the metric tensor. An original, comprehensive and straightforward
proof of (35) is given in Appendix I. A classical, more involved proof can be found in
[Courant and John|?**. This expression gives the “ne¢—dimensional hypersurface element
in IR""”, being dF the generalized volume of the n¢—dimensional hypercube defined by
the infinitesimal vectors {¢;(§, a)d¢;}, where ¢;(§, @) = 0p(§,@)/0¢; fori =1,... ,n¢ are

10
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the so-called natural vectors of the reference coordinates. Thus, the integration jacobian
|dE /dZ]| is the square root of the determinant of the metric tensor.

It is interesting to notice that this expression for the integration jacobian is intrinsic
to the riemannian ng¢—dimensional manifold. Thus, once the metric tensor is known, the
integration jacobian is completely defined regardless of the dimension n, of the material
space and the specific mapping (20) that we use. Obviously, (35) is equivalent to the
usual expressions of the differential elements of arc length, surface and volume when
ny <3

Hence, contributions (19) can be computed as

prlaw) = | ¢~ aw) det[GE )] d=. (36)

being this expression valid for all cases ng < n,. Obviously, the metric tensor is re-
quired to be positive-definite, for the mapping (23) to be acceptable (see Appendix I).
Therefore, det [G(€, @)] > 0 and the integration jacobian in (36) is always well defined.

Finally, a numerical quadrature (very often a Gauss type formula) could be imple-
mented, resulting in

ngaue

Plaws Y $HE aw) e [GE, o wiome | (37

igaue=1

for the selected sets of “ngaue”integration points {£/9%€} and weights {WW9uel,

The above stated numerical integration procedure does not depend either on the
dimension of the material coordinates space [n,] nor on the dimension of the reference
coordinates space [ng] Thus, a general purpose subroutine should be able to compute
contributions (19) independently of the dimension of the problem —generally 1D, 2D or
3D (it could be higher in special applications)— and of the dimension of the elements
being used.

4.5 First Order Sensitivity Analysis in Integral Methods

At this point we recall equations (5). For a given arbitrary unit vector s in the space
of design variables one should easily compute the directional derivative of the input
variables (Dsar). Therefore, taking into account equations (17), one concludes that the
terms which computation we must discuss are

[g_ﬂ:g[ ¢e‘“’1+2[ ¢baw)] (38)
and

D% = ZD"«/JG o,w +ZDa¢b (a,w), (39)

b=1

11
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where we introduce the symbolic operator
O[]

In these terms, (19) shows that the derivatives of the contributions %% and ’lljg should
be obtained by computing and assembling terms of the general type

ow
D (aw) - 0 (

and

E
cEla) o (r,a,w) dE) : (42)

Normally, the shape of elements does not depend on the state variables w. Thus,
computation of terms (41) is considered trivial since

9 .k 9 .k
- = — E 4
Ve = | [ g aw) ds). (43
which can be computed by integration in reference coordinates as
0 g B 0 = -
v = | [ e aw) e GE )] & (44

In shape optimization, however, the shape of elements does depend on the input vari-
ables a. For this reason, computation of terms (42) is much more difficult, since the
integration domains vary. Therefore, the derivative of the integral cannot be computed
by integration of the derivative, as in the former case.

4.6 First Order Shape Sensitivity

Our goal is to compute contributions (42). Using equation (36) we can write
a B _ Do
D¢ ¢p™ (a,w) = Dg (/
&=

= /€:D§ <¢E(€,a,w) m) Iz

¢= (&, o, w) \/det [G(E, @)] dE)

—

= /£ = (Dé" ¢~ (€, a.w) + (45)

&= (€, @, w) D2 ln( det [G(€, a)])>

Jdet [G(€, )] d=.

12
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For the sake of compacity we define the symbolic operator D: such that

D 0= D200 + Oy D In(det [G(£, ). (16)

which reduces (45) to the compact form
DY (aw) = [ D5 (76 o,w)) \/det [G(€, @) d=. (47)

Finally, by means of some additional analytical work (see Appendix III) we obtain
the explicit ready-for-computation expression

DI 0=020+ 0, (6 (€ @) DIG(E )], (48)
where direct differentiation of (34) and (26) gives
DEG(E a) = [17(¢.0) D2 J(¢,0)| + [IT(€,a) D2 J(€,)] (49)
and
a node a inode 9 rinode
DEJ(§ @)= > DIr'"%(o) oz N"(E). (50)
inode=1 43

On the other hand, (47) can be written in terms of the material coordinates as

D& '«/}E(a,w) = /1'€E(a) DSE ¢E(r, o,w) dE, (51)

by means of the corresponding symbolic operator

Dio-D; (O

(52)

i) ey

Expressions (47) and (51) are equivalent. So are operators (48) and (52). Since
integration is performed in reference coordinates, the expression (47) and the operator
(48) will be preferred in practice. However, equation (51) shows that the derivative of an
integral with respect to a parameter that modifies the integration domain can be easily
calculated as the integral of the operator (52) applied to the subintegrand function, that
is

Q E B E  p
D5 </reE(a>¢ (r,0) dE) a /rEE(a) D; ¢"(r.aw) dE, (53)

which explains why recurrency is allowed in high order shape sensitivity expressions.

13
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4.7 High Order Shape Sensitivity

When a shape sensitivity analysis of order k£ > 1 is required, we must develop symbolic
terms of the general type
E
D% D% DY - Dyt =
D% -.-D% DY ...D¥ E dE >4
% - DEDY D /1'€E(a)¢ (r,o,w)
for values 0 < ko < k, 0 < Ky < k, 1 < Ko + kw < k. Obviously, all the related
directional derivatives of lower order (up to the order k — 1) of the state variables,
along directions s¢,..., s and s{,...,s; should be computed in advance. In (54) we
use the symbolic operators.
oL] o]
The result is simply obtained applying (43) and (51) recurrently, and can be written
symbolically as

o oa NHw w EF
Dsga"'Ds?Ds‘,;’w”'Ds“f'/’ =

/ DL .. Do, .. D2 ¢F(r a,w) dE, (56)
rcFE(a) Ka 1 Kw

51

which should be actually expressed for integration in reference coordinates as

E
D ---D% D - Dy’ =
/ S DD - DY ¢ (€, aw) \/det [G(E, @)] dE (&7)
rcE(a) Ska ST SEL sY T ’ =

Notice that the shape variation is entirely introduced in the sensitivity analysis by
means of the sequential directional derivatives of the jacobian matrix (26) of the trans-
formation, that is, through the sequential directional derivatives of the nodal coordinates
rm‘)de(a), that must be known in advance up to the order k. For x < k, the x—order
directional derivative of the jacobian matrix (26) along directions s1, ..., 8 in the space
of design variables can be obviously written as:

nnode od O irod
D& DA JIEa)= > D DIrm () S NT(E), (58)
! 1node=1 ! 3

14
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5 APPLICATION EXAMPLE

In this example we present the sensitivity analysis performed during the shape opti-
mization of a 3D structure: a concrete roof spanning over a square room and supported
on its four vertices (see Figure 2).

Fig. 2. Design Model

The shape of the roof is defined by its mid-surface and the thickness distribu-
tion. Thus, over a point of material coordinates (ri,79,0), the height of the mid-
surface r3(rq,r2) (measured from the plane of the supports) and the corresponding
half-thickness of the wall §(rq,79) are modelled as

r3(r1, o) = x2 + (21 — 22) l(%)Q + (%)2] + (z2 — 221) (%)2 (%2)2,
6(r1,7m2) = 74 + (23 — 74) l(%f + (%)21 + (25 + 74 — 223) (%)2 (%2)2,

for given values of the design variables {x1,z9,23,z4,25}. The outside and inside
surfaces of the roof are generated by carrying the half-thickness of the wall over the
mid-surface normal vector. As geometric side constraints we impose

z1 > 0.000m, z9>0.000m, z3>0.050m, z4>0.050m, z5>0.075m, (60)

(59)

in order to avoid geometrically unfeasible designs, ensure the roof mid-surface to be
entirely over the supports plane, and limit the minimum thickness of the wall. As design
constants we choose L = 12m (span), g5 = 0.784 KPa (snow load), E = 0.294 - 10° KPa
(Young modulus), v = 0 (Poisson modulus), and p. = 0.23 - 104 Kg/m? (density of
concrete). The objective function is the weight of the roof. As load cases we consider
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self weight (case 1), and self weight plus snow load (case 2). We state that
o7 <0.000 KPa, o7 > —980.000 KPa (61)

to limit the maximum allowable tension (o) and compression (o777) in both load cases.

The structural behaviour is analyzed by a linear elastic three-dimensional FEM
model. Because of symmetry, only a quarter of the roof is discretized in 20-nodes
3D isoparametric elements. Null displacements are prescribed at the supports. Integra-
tion is performed by Gauss quadratures, using 3 x 3 x 3 points for the 3D elements and
3 x 3 points for their boundaries. Constraints (61) are imposed at the Gauss integra-
tion points located at the center of the upper and lower layers of each element. The
results presented in this paper were obtained with a mesh of 3 x 3 x 1 elements. There-
fore, 72 non-linear inequality constraints were imposed (considering both load cases).
A tolerance of 0.490 KPa was accepted in the stress constraints violation.

In Figures 3 and 4 we compare some predicted values (obtained from the second order
sensitivity analysis at the optimal solution) with the corresponding FEM computed
results for different values of the design variable x9 around the optimum.

3 85
= OooOoom -
e = il
= ! R
<3 ! RE
= | s 3
= ! N TTTTTTTTTTTT TR 1
u\—c?E i : E |
= | 3= I
40 I R l
o 4 1 E [
N 1 == |
| I P I
i | g |
3 1 = |
[To | o |
S A L A e A AU & LA L e L A L R U
12 13 14 15 16 17 18 19 20 21 22 23 24 25 12 13 14 15 16 17 18 19 20 21 22 23 24 25
a) V.DISP. [mm] at KEYSTONE vs. X2 [m] b) H.REACT.[KN] at SUPPORT vs. X2 [m]

Fig. 3. FEM second order predicted values (solid lines) and FEM computed results
(squares) of the following control variables: vertical displacement at the key-
stone (a), and horizontal reaction at the support (b), versus design variable 5.
[Load case 1; z3"" = 1.83992 m (circles)]

Namely, we compare the corresponding values of the vertical displacement at the
keystone (see Figure 3a), the horizontal reaction at the supports (see Figure 3b), and
the 1st and 3rd principal stresses at several points in which constraints are imposed (see
Figure 4) for load case number 1. (Note: LWE# and UPE# respectively stand for the
Gauss points located at the center of the lower and upper layers of element number #;
being element number 1 the closest to the keystone, element number 9 the closest to
the support, and element number 3 the closest to the center of one of the free borders.)

The optimization process was performed by the DAO? computer aided optimum
design system® developed by the authors, giving the optimal solution

r1 = 0.680349m, x9=1.83992m, x3=0.05m, x4 =0.0om, z5=0.075m.
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Fig. 4. FEM second order predicted values (solid lines) and FEM computed results
(squares) of the following control variables: o; at Gauss points LWEL (a),
LWES3 (c) and LWE9 (e), and orrr at Gauss points UPE1 (b), UPE3 (d) and
UPEY (f), versus design variable z5. [Load case 1; 237" = 1.83992 m (circles)]

As shown in Figures 3 and 4, the quality of the quadratic approximations of the
structural behaviour (obtained by high order sensitivity analysis) explains the efficiency,
reliability and robustness of the DAO? system®. A detailed description of this opti-
mization problem can be found in [Navarrina et al.]%. A description of the proposed MP
algorithm can be found in [Navarrina et al.]'®!!.
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APPENDIX I.- A General Expression of the Hypersurface Element for In-
tegration in Manifolds

—_—
—

Let E be an open domain in IR"™ of dimension ng < np, and let = be an open
reference domain in IR™¢, such that E is the image of = by the invertible differentiable

mapping - -
p:EC]Rn5 — s ECR™

(Al1.1)
3 r=p(£)
Let € be an arbitrary point in = given by its reference coordinates
&= {4} i=1,...,ne =dim(E), (A1.2)

and let r = p(€) be the corresponding point in E given by its material coordinates
r={r} 1=1,...,np. (A1.3)

Let d€ be an arbitrary infinitesimal vector in IR"¢, and let dr be the corresponding
infinitesimal vector in IR that joins the point r = p(§) to the point r + dr = p(€ + d€)
(see Figure Al.1). Therefore we can write

0
ir= Iy, IO =2, (A1.4)
where J(€) is the jacobian matrix of the mapping. Then, the distance ds between

the point r = p(§) and the point r + dr = p(€ + d€) is given by the modulus of the
infinitesimal vector dr. Thus

ds = \drTdr = \/dE'G(&)ds,  G(&) = [T (€)J(©)], (A1.5)

where the matrix G(£) is the so-called metric tensor, which is required to be positive-
definite for the mapping (A1.1) to be acceptable. According to the above expression?
E'is said to be a riemannian ng-dimensional manifold in R,

Let the so-called natural vector of the reference coordinate §; at r = p(€) be

L =229 g g (A1.6)

0¢; '

Obviously, each natural vector is tangent to its corresponding coordinate curve (see
Figure Al.1). In these terms, the jacobian matrix (A1.4) can be written as

(&)  p(e)

ﬂ0=[ ]:h@~wgﬂ, (AL7)
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and the coefficients of the metric tensor defined in (A1.5) are

¢e =[] w@=tdene.  {J77000 )

We are now interested in obtaining an expression for the “ng¢—dimensional hypersur-
face element in IR™"”, that is the generalized volume dF of the ng—dimensional hyper-
cube defined by the infinitesimal vectors {¢;(§)d¢;} for i = 1,...,n¢ (see Figure Al.1).

Fig. Al.1. Infinitesimal vectors dr and {t;d§;}, Fig. Al.2. Definition of the hypersurface element
and 2-dimensional hypersurface ele- dFE.+1 in terms of the hypersurface
ment (dE) in R?. element dE,.

We shall first show by induction that the generalized volume dF;. of the k—dimensional
hypercube defined by the infinitesimal vectors {¢;(§)d¢;} for i = 1,...,k < ng is

ABy = At Grl@)] dér--de. G =[o©]. {27 (AL9)

where

Gi(&) = [TL@©TL®)],  Tu®) =[t1(&) - £,(8)]. (A1.10)

It is obvious that (A1.9) holds for the case k = 1, since the length of the segment
(1-dimensional cube) defined by the infinitesimal vector {#;(€)d¢;} in R™ is

dEy = [t;(&)] dé1 =\t (E)t1(€) d&q = y/det [G1(8)] d&y. (A1.11)

We shall prove now that if (A1.9) holds for any given k = x < ng¢ then (A1.9) holds
inmediately for k =k + 1 < ng.

Let dE); be the generalized volume of the k—dimensional hypercube defined by the set
of infinitesimal vectors {t;(§)d¢;} for i = 1,...,k < ng. When the infinitesimal vector
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{ti+1(€)d€x11} is added to the former set, it seems natural to define the generalized
volume of the corresponding (x + 1)-dimensional hypercube as

dEyy1 = dEy |m11(8)] d€xqa, (AL.12)
where n,1(€) is the projection of ¢, 1(§) on the orthogonal subspace to the vectors
t;(€) for i =1,...,k (see Figure A1.2). To get an expression for |n,1(§)| we write

e+ 1(8) = ter1(8) — 2_:1 Bir+1(8)ti(§) = tiy1(8) — Tu(§)Br41(8), (A1.13)

where the unknown coefficients

ﬂﬁ—i—l(&) = {ﬁi,/@—l—l(&)}v t=1,...,kK, (A1~14)

must be obtained by imposing that m,1(§) be orthogonal to all the vectors ¢;(€) for
t=1,...,k. Thus

tz'T(f)’"'ml =0 for i=1,...,k = Jg(E)nﬁ+1(£) =0. (A1.15)
Hence

TEE) (te11(8) = Tu(©)Brs1(8)) = 9r41(€) — Gi(€)B11(§) =0, (A1.16)

and therefore

gl,n+1(£)

Bii16) =Gl (&)g.1(6)  with g6 = : : (A1.17)
g/ﬁ:,li+1(£>

1 1(8) =t 1) — Ju(€)Gr L (€)g,41(6), (A1.18)

s 1§ = Yl €)ni1(6) = Vonr1001(8) — 9511 (G (©)g,11(6).  (AL19)
Finally, if (A1.9) holds for k& = &, introducing (A1.19) in (A1.12) gives

dEy 41 = ¢det (Gr(8)] [9541.511(8) — L, 1(O)G 1 ()9, 11(8)] -+ déyr. (A1.20)
In Appendix II we show that

det [Gx(8)] [grt1,511(8) — 9h 118G (€)g411(§)] = det [Go1(8)],  (AL.21)
which completes the proof, since
dEy1 = y/det [Gyy1(8)] dé1 -+ - d€pya- (A1.22)

Therefore (A1.9) holds for all k£ > 0. In particular, for k = n,¢ we get

dE = \/det [G(§)] d&; -+~ dén,. (A1.23)
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APPENDIX II.— Determinant of a Symmetrical Positive-Definite Matrix

Let G = [g;;] be a given symmetrical positive-definite matrix of order ng. Let G, be
the k x k principal submatrix

i=1,...k
Gi=lo)h 1<k<ng {270y (A2.1)

It can be easily proven that all submatrices G}. are also symmetrical positive-definite.
Therefore?*, all inverse matrices Glzl exist and are also symmetrical positive-definite,
all principal minors det [G},] are positive, and the Cholesky factorization

G.=L,Li. (A2.2)

is possible for all k = 1,...,nq, being L;. a lower triangular matrix of order k.

We shall show how to obtain L;. proceeding by induction. It is obvious that equation
(A2.2) holds for k = 1, being L1 = [{11] with 17 = {/g11. Now, let’s suppose that
(A2.2) holds for k = k. Obviously we can write

GH 9k+1

T
gT 1 k41,41 ’ where 9k+1 = [gﬁ+1,1 e 'glﬁ—l—l,li} ) (A2.3)
K+ k+1,k+1 |

Gﬁ+1 =

and let’s conjecture that L, can be written as

L 0 1
ZTL ot nr1) where lgﬂ = [ﬁﬁﬂ,l . .gﬁﬂﬁ} : (A2.4)
K , i

Lﬁ+1 = [

Then, by multiplying and identifying the contents of the corresponding submatrices, it
is trivial to verify that (A2.2) will hold for k = x + 1 if L, is chosen as shown in
(A2.4) with

g/@—l—l = L,ng,@ﬂ and g,‘@—l—l,/@—l—l = \/g/i—Fl,/i—Fl - KE_HZK—H- (A2'5)

Since such an election is always possible under the above stated conditions®*, expressions

(A2.4) and (A2.5) provide a recurrent procedure to perform the Cholesky factorization
(A2.2) of any given symmetrical positive-definite matrix.

Finally, from (A2.2) and (A2.4) we can derive a recurrent procedure to evaluate the
determinant. Thus,

2
det [Gyo41] = det [Ly1]* = (det [Ly] lyrr1)” =det [Gr] g par-  (A2:6)
Then, taking into account (A2.5) we can write
— T _
det (Gyit] =det[Gu] (gt — [Bi'gun] Li'genn). (427

and therefore

det [G ;1] = det [G] (9/<;+1,/<;—|—1 - 9£+1G;19/@+1) : (A2.8)
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APPENDIX IIl.— Derivative of the Logarithm of the Determinant. Deriva-
tive of the Inverse Matrix.

Let the matricial function with sufficient regularity conditions

1=1,...,n4,
A(x) = [a;(z)], aij(xz) €e R Ve e X C R", {j 1 (A3.1)
Let the square matrix A(z) be invertible, and let the inverse matrix be
_ Aji(z) i=1,...,n
1 J? ) y VA
— — [bis biig) = — L7 . A3.2
A7'@) = B@) = by(@],  bye) = g oy e (As)

where Aj; is the adjoint of the coefficient a;;. For a given direction s € R" we are
interested in calculating the directional derivatives

DsIn(det [A(z)])  and Dy [A7'(z)]. (A3.3)

In these terms, it is easy to verify that

Dy In(det [A(z)]) = m Dy det [A(z)]
B 1 0 det [A] N
- det [A(=)] zz,]: daij a;=a;;(T) Deaisl@) (43.4)
1
= det (4] & 0D
and finally
Dy In(det [A(z)]) = Tr |4} (z) Ds A(z)], (A3.5)
where Tr[A] means trace of matrix A.
On the other hand, since B(z)A(xz) = I we can write
Ds B(z) A(z) + B(z) Ds A(z) = O, (A3.6)

where I and O are the unit and null matrix respectively, and finally

Ds [A7 (@) = A (x) Ds A(z) A (). (A3.7)
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CONCLUSIONS

An unified approach for high order shape design sensitivity analysis has been pre-
sented in this paper. The proposed approach is based on a generic procedure for in-
tegration in manifolds. An original, comprehensive and straightforward proof of this
procedure is given in Appendix I. Thus, we obtain a single, unified, compact expression
to compute high order directional shape sensitivity derivatives, independently of the
dimension of the material coordinates system and of the dimension of the elements.

The sensitivity analysis is naturally based upon the existence of a transformation
that links the material coordinate system with a fixed reference coordinate system.
This is not restrictive, because such a transformation does usually exist in a simple
form. Moreover, the implementation of this formulation takes advantage of the fact
that such a transformation is inherent to FEM and BEM practical implementations.

Special care has been taken on giving the final results in terms of easy-to-compute
expressions, and special emphasis has been made in holding recurrence and simplicity of
intermediate operations. The proposed scheme does not depend on any particular form
of the state equations, and can be applied to both, direct and adjoint state formulations.
Thus, its numerical implementation in standard engineering codes should be considered
as a straightforward process.
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