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SUMMARY

Several widespread intuitive techniques developed during the last two de-
cades for substation grounding analysis, such as the Average Potential Method
(APM), have been recently identi�ed as particular cases of a more general Bound-
ary Element formulation [1]. In this approach, problems encountered with the
application of these methods [3] can be explained from a mathematically rigor-
ous point of view, and innovative advanced and more e�cient techniques can be
derived [2].

Numerical results obtained with low and medium levels of discretization
(equivalent resistance and leakage current density) seem to be reasonable. How-
ever, these solutions still have not been validated. Unrealistic results are ob-
tained when domain discretization is increased, since no one procedure is yet
available to eliminate the above mentioned problems. Hence, numerical con-
vergence analyses are precluded. The obtention of highly accurate numerical
results by means of standard techniques (FEM, Finite Di�erences) implies un-
approachable computing requirements in practical cases. On the other side,
neither practical error estimates have been derived, nor analytical solutions are
known for practical cases, nor su�ciently accurate experimental measurements
have been reported up to this point.

In this paper, we present a validation of the results obtained by the Bound-
ary Element proposed formulation, including the classical methods. A highly
accurate solution to a specially designed test problem is obtained by means of a
2D FEM model, using up to 80; 000 degrees of freedom. Results are compared
with those carried out by Boundary Elements.

1. INTRODUCTION

The electrokinetic stationary problem, related to fault electric currents dis-
sipation into earth, can be written in the following form [1, 2, 8]

��� = ( �  grad V ) ; div ( ��� ) = 0 in E ;

���TnE = 0 in �E ; V = 1 in � ; V �! 0 if jxj �! 1
(1)

where V and ��� are the potential and current density at an arbitrary point x;
domain E is the earth,  its conductivity (assumed constant), �E its surface (as-
sumed horizontal) and nE its normal exterior unit �eld; and � is the grounding
electrode surface.



Another important magnitude is the equivalent resistance of the grounding
electrode-earth system
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being � = ���
T
n in �, the leakage current density and n the normal exterior unit

�eld to the grounding electrode surface �.

In the last decades some intuitive techniques for grounding grid analysis,
such as the Average Potential Method (APM), have been developed. However,
signi�cant problems have been encountered in the application of these meth-
ods [3].

A new Boundary Element approach has been recently presented [1, 6] that
includes the above mentioned intuitive techniques as particular cases. In this
kind of formulation the unknown quantity is the leakage current density �, while
the potential at an arbitrary point and the equivalent resistance Req must be
computed subsequently.

Although new more e�cient techniques can be derived from this approach,
it has not been possible to test the accuracy of the results (that seem reasonable
for low and medium levels of discretization) up to this point. Large numerical
instabilities appear when discretization is re�ned, giving unrealistic results [1, 2,
3]. On the other hand, to obtain highly accurate solutions by means of standard
techniques (FEM, Finite Di�erences) should imply unapproachable computing
requirements; analytical solutions are not available for real problems; neither
accurate experimental measurements nor practical error estimates have been
obtained; and, �nally, the leakage current density is a di�cult magnitude to
compare, which real distribution is not obvious.

All these aspects are specially important because the Boundary Element
Method could become a powerful numerical computing tool for the systematic
analysis of this kind of problems.

A validation of BEM results is presented in this paper. A test has been
speci�cally designed in order to be solved by a 2D Finite Element model and a
Boundary Element technique in order to compare the results.

2. TEST PROBLEM STATEMENT

Let the grounding electrode be a single cylindrical conductor bar, which
radius of the cross section a is small in comparison with its length L (' 10�3

times smaller). This seems to be an adecquate geometry for our purposes, since
grounding electrodes in practice consist of a number of interconnected bare cylin-
drical conductors (grounding grids).

Let the electrode be buried so deep that the Neumann boundary condition
in (1) can be neglected, domain E can be considered in�nite, and the problem
becomes symmetric with respect to the axis of the cylinder.

Although an analytical solution for this test problem is available in terms
of Bessel expansions [8], we turn our attention to a FEM axial symmetry model,
because computing the leakage current density throughout the bar length should
be extremely time-consuming by this kind of series.



Taking advantage of the symmetries, we can write our test problems in
cylindrical coordinates (Figure 1.a)
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being r and z the radial and latitude coordinates.

Problem (3) can now be solved by the Finite Element Method. Results ob-
tained will be potential values at selected nodal points in the discretized domain

. In order to validate BEM solutions, the leakage current density � must be
computed from potential values at nodal points close to the cylinder boundary
�. Because of our high accuracy requirements in computing �, the �nite element
mesh arrangement should be carefully designed.

3. NUMERICAL MODEL

A weighted residuals statement for problem (3) can be written as
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Applying Green's identity and taking into account the Neumann boundary
conditions we obtain the weaker form
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for all members W of a suitable class of weight functions on 
, with boundary
conditions

V = 1 in � ; V �! 0 if (r; z) �! 1 (6)

Potential V can now be discretized

V (r; z) =

j=NX
j=1

Vj Nj(r; z) (7)

being Vj the nodal potential values and Nj the shape functions.

Using Galerkin formulation (W = Ni), functional equation (5) results in a
linear equations system

j=NX
j=1

Kij Vj = qi ; i = 1; :::;N

Vj = 1 ; 8 j 2 Q

qi = 0 ; 8 i 62 Q

(8)



being Q the set of nodal points on the boundary �, and

Kij =

Z



r

�
@Ni

@r

@Nj

@r
+

@Ni

@z

@Nj

@z

�
d
 (9)

Leakage current density � can be computed subsequently, either by inter-
polation over potential values on nodal points close to boundary �, or by means
of the ux quantities qi in equations system (8). Equivalent resistance Req can
be computed next by means of expression (2).

Since we are analyzing a Dirichlet Exterior Problem, the Finite Element
mesh should be large enough (in extension) to adecquately simulate the null
potential boundary condition in the in�nite, by prescribing null potential values
at su�ciently remote nodal points. On the other hand, our purpose is to obtain
highly accurate results for leakage current and equivalent resistance. Therefore,
we need to design highly dense and regular meshes only in the proximity of the
electrode boundary.

For these reasons, an speci�c mesh generator for this kind of test problems
has been developed. Several layers of small (in comparison with the electrode
radius a) regular quadrilateral elements are generated around boundary �, in
order to capture high precision results in this area. Next, elements size grows
exponentially as distance to boundary increases, by alternating layers of triangles
and quadrilaterals. Since the number of elements in consecutive layers decreases
exponentially, the null potential boundary condition is prescribed in relatively
few nodal points. Special care has been taken to preserve regularity of elements
through the growing process (see Figures 1.a and 1.b).

In the structured grids that we have generated by means of this strategy,
most of elements (around 75% of total) are placed in the proximity of the elec-
trode surface. Therefore, the greater part of the computing e�ort is devoted to
ensure a su�ciently high level of accuracy in this area.

Di�erent techniques have been tested for solving the linear system of equa-
tions (8). Although matrices are symmetric, positive de�nite and banded, direct
methods are out of range due to the size of the problems (up to eighty thou-
sand degrees of freedom). Several iterative methods have been tested for a set
of medium size problems. Namely: Jacobi and Gauss-Seidel (with and without
overrelaxation and preconditioning) and Conjugate Gradients. The very best
results have been obtained by an element-by-element preconditioned conjugate
gradients algorithm [7] without assembly of the global matrix. This technique
turned out to be extremely e�cient, and it was �nally used for solving the large
scale problems that are presented in this paper.

4. NUMERICAL RESULTS

The test problem characteristics presented are : bar length = 2.0 m; radius
of the bar cross section = 0.005 m; and earth resistivity = 1.0 Ohm � m.

Figures 2 and 3 present di�erent leakage current density distributions throu-
ghout the bar length obtained by a BEM formulation [2] for several type of
elements (constant, linear and parabolic leakage current) with results obtained
by FEM with large structured grids (12441 d.o.f./13410 elements in case 3.b,



24987 d.o.f./26914 elements in case 3.d, and 80533 d.o.f./84528 elements in case
3.f). Figure 4 presents a summary of the equivalent resistance values in all these
cases.

With respect to the equivalent resistance, it can be shown that BEM results
agree signi�cantly with those obtained by FEM. The relative error between the
BEM solution for one single parabolic element and the FEM solution for more
than eighty thousand degrees of freedom is less than 1:25%. On the other hand,
no signi�cant improvement seems to be achieved by increasing discretization
level, since solution obtained by BEM for one single and �fty parabolic elements
di�ers in less than 0:6%. Actually, the solution obtained by BEM for one single
constant element (equivalent to the Average Potential Method with one segmen-
tation [2, 3, 5]) could be considered accurate enough for practical purposes.

However, signi�cant di�erences are found with respect to the leakage current
density distributions throughout the bar length. FEM results (Figures 3.b, 3.d
and 3.f) show that real distribution is quite smooth in the center of the bar, but
varies sharply near both free ends. All the BEM models give an accurate average
(the equivalent resistance di�ers slightly, as pointed out before), but the leakage
current density distribution is substantially di�erent. Obviously, is di�cult for
the BEM models to adjust the boundary condition V = 1 on the electrode
surface near the free ends [1, 2]. Nevertheless, this e�ect is less pronounced in
interconnected bars within grounding grids, and has no special importance in
practical cases.

Anyhow, it seems important to obtain an accurate enough distribution of
the leakage current. In fact, the computed potential level at a certain point on
the earth surface can vary signi�cantly if the leakage current distribution in a
close electrode is erroneous [3]. After all, a 2:0% relative error for a 50; 000V

fault condition represents a 1; 000V absolute error.

METHOD Discretization Equiv. Resist. (
)

BEM { 3 Constant Elements 0.451706
BEM { 10 Constant Elements 0.449737
BEM { 100 Constant Elements 0.447752

BEM { 2 Linear Elements 0.450381
BEM { 10 Linear Elements 0.448693
BEM { 100 Linear Elements 0.447327

BEM { 1 Parabolic Element 0.449764
BEM { 5 Parabolic Elements 0.448595
BEM { 50 Parabolic Elements 0.447297

FEM { 12441 Degrees of Freedom 0.439689
FEM { 24987 Degrees of Freedom 0.454940
FEM { 80533 Degrees of Freedom 0.444223

Figure 4.|Equivalent resistances obtained by BEM and FEM for di�erent levels of
discretization.



Figure 3 shows that actual BEM models (including the classical methods)
fail to provide an accurate leakage current distribution when discretization is
increased, due to numerical instabilities which origin can now be explained [2].
For higher orders of discretization, instabilities can strecht out the whole bar
length, giving unrealistic results in subsequent computation of potential levels
on the earth surface [3]. However, results obtained for low levels of discretization
(Figure 2) are accurate enough for most practical purposes. In fact, the solutions
obtained for one single parabolic element (Figure 2.e), and two linear elements
(Figure 2.c) seem to be quite reasonable. On the other hand, results obtained
by BEM for higher levels of discretization (Figures 3.a, 3.c and 3.e) could be
considered extremely accurate if oscillations around the real solution could be
avoided or eliminated by smoothing.

Passing now to other matters, some additional tests have also been carried
out with the FEM model. No signi�cant variations have been observed when
the internal electrode resistivity is considered. On the other hand, the current
density leaving the ends of the conductor has been computed. Obtained values
are negligible, in the oreder of magnitude predicted by other authors [3].
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Figure 5.|Evolution of Logarithmic Error Norm versus the Number of Iterations
in the algorithm of Preconditioned Conjugate Gradient Method.

5. CONCLUSIONS

In this paper, a numerical validation of a general BEM formulation for sub-
station grounding analysis has been presented. The proposed BEM formulation
includes several widespread intuitive techniques (such as the Average Potential
Method) as particular cases.

A highly accurate solution to a specially designed test problem has been
obtained by means of a 2D FEM model, using up to 80; 000 degrees of free-



dom. Results have been compared with those carried out by the proposed BEM
formulation [1, 2].

Numerical results show that, for practical purposes, BEM formulations pro-
vide accurate enough results with low/medium levels of discretization, while
higher order elements (linear or parabolics) seem to be quite more e�cient than
traditional constant elements.

However, further research will be necessary to avoid or eliminate numerical
instabilities (which origin can now be explained [2]), that produce unrealistic
results when discretization level is increased. These powerful numerical tools
should probably become widespread techniques for the systematic analysis of
substation groundings in a near future.
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Figure 2.|Comparison between results obtained by BEMwith di�erent type and num-
ber of elements. Leakage Current Density throughout the bar length.
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Figure 3.|Comparison between results obtained by BEMwith di�erent type and num-
ber of elements and results obtained by FEM with three meshes. Leakage
Current Density throughout the bar length.



Figure 1.a.|Test Problem Schematic Representation. Bar Boundary marked with
thick line.

Figure 1.b.|Structured Grid used in FEM. Detail of zone close to point A.


