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A Numerical Formulation for Grounding Analysis in
Stratified Soils

I. Colominas, F. Navarrina, M. Casteleiro

Abstract— The design of safe grounding systems in elec-
trical installations is essential to assure the security of the
persons, the protection of the equipment and the continu-
ity of the power supply. In order to achieve these goals, it
is necessary to compute the equivalent electrical resistance
of the system and the potential distribution on the earth
surface when a fault condition occurs.

In this paper we present a formulation for the analysis of
grounding systems embedded in stratified soils, on the basis
of the Boundary Element Method (BEM). Suitable arrange-
ments of the final discretized equations allow to use the
highly efficient analytical integration techniques derived by
the authors for grounding systems buried in uniform soils.
The feasibility of this approach is demonstrated by apply-
ing the BEM formulation to the analysis of a real grounding
system with a two-layer soil model.

Keywords— Grounding analysis, Layered soils, BEM for-
mulation.

I. INTRODUCTION

HE main objective of a grounding system is to provide

means to dissipate electrical currents into the ground,
in order to guarantee the continuity of the power supply
and the integrity of the equipment, and to ensure that a
person in the vicinity of the grounded installation is not
exposed to a critical electrical shock. To achieve these tar-
gets, the apparent electrical resistance of the grounding sys-
tem must be low enough to guarantee that fault currents
dissipate mainly through the earthing electrode into the
ground, while the potential gradients between close points
that can be connected by a person must be kept under
certain maximum safe limits [1], [2].

Since the sixties, several methods and procedures for
the analysis and design of grounding systems of electrical
substations have been proposed, most of them based on
practice, on semi-empirical works or on intuitive ideas [2],
[3], [4], [5]. Although these techniques represented an im-
portant improvement in the grounding analysis area, some
problems have been reported such as large computational
requirements, unrealistic results when segmentation of con-
ductors is increased, and uncertainty in the margin of error
[1], [6].

In the last years we have developed a general BEM for-
mulation for grounding analysis in uniform soils [7], [8].
Several widespread intuitive methods and techniques can
be identified as the result of introducing suitable assump-
tions in this general BEM approach in order to reduce the
computational cost for a specific selection of test and trial
functions. Furthermore, it has been possible to explain
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from a mathematical point of view the anomalous asymp-
totic behaviour of this kind of methods, and to point out
the sources of error [8]. Finally, more efficient and accurate
numerical formulations have been derived from this BEM
approach. These formulations have been implemented in a
CAD system for earthing analysis, and have been success-
fully applied (with a very reasonable computational cost)
to large grounding systems in real cases [9)].

II. MATHEMATICAL MODEL OF THE PHYSICAL PROBLEM
A. General statement of the problem

The physical phenomena that underlies the fault current
dissipation into the ground can be studied by means of
Maxwell’s Electromagnetic Theory [10]. Thus, if one con-
strains the analysis to the obtention of the electrokinetic
steady-state response and one neglects the inner resistiv-
ity of the grounding electrode (therefore, potential can be
assumed constant in every point of the surface of the elec-
trode), the 3D problem can be written as

div(e) =0, o= —qgrad(V)in F;
O'tnEZOinFE; V:VFiHF;
V =0, if |z| — oo (1)
being E the earth, v its conductivity tensor, I'y the earth
surface, n its normal exterior unit field and I" the electrode
surface [8]. Therefore, when the earthing electrode attains
a voltage Vi (Ground Potential Rise, or GPR) relative to a
distant grounding point, the solution to problem (1) gives
potential V' and current density ¢ at an arbitrary point .
Furthermore, other essential parameters for grounding
design, such as the leakage current density o at an arbitrary
point of the electrode surface, the total surge current Ip
that flows into the ground, and the equivalent resistance
of the earthing system R., —apparent electrical resistance
of the earth-electrode circuit— can be easily obtained in
terms of V' and o
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being n the normal exterior unit field to I'. On the other
hand, since V' and o are proportional to the GPR value, the
normalized boundary condition Vr = 1 is not restrictive at
all [8], and it will be used from here on.

(2)

B. Statement of the grounding problem with a multilayer
soil model

Most of methods proposed up to this moment are based
on the assumption that soil can be considered homogeneous
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and isotropic. Hence, the conductivity tensor « is substi-
tuted by an apparent scalar conductivity v that can be
experimentally obtained [1], [2]. It is widely accepted that
this hypothesis does not introduce significant errors if the
soil is basically uniform —both in horizontal and vertical
direction— up to a distance of approximately three to five
times the diagonal dimension of the grounding grid, mea-
sured from its edge. Furthermore, this uniform soil model
can also be used but with less accuracy, if the resistivity
varies slightly with depth [1]. Nevertheless, parameters in-
volved in the design of grounding systems can significantly
change as soil conductivity varies through the substation
site. Thus, it is advisable to develop more accurate models
to take into account variations of soil conductivity in the
surroundings of the grounding site.

At this point, it is obvious that the development of mod-
els describing all variations of the soil conductivity in the
vicinity of a grounding system would never be affordable,
neither from the economical nor from the technical point
of view. A more practical approach (and still quite realis-
tic when conductivity is not markedly uniform with depth)
consists of considering the soil stratified in a number of hor-
izontal layers. Then, each layer is defined by an appropriate
thickness and an apparent scalar conductivity that must be
experimentally obtained. In fact, it is widely accepted that
two-layer (or even three-layer) soil models should be suffi-
cient to obtain good and safe designs of grounding systems
in most practical cases [1], [11], [12].

If one considers that the soil is formed by C' horizon-
tal layers (each one with a different conductivity) and the
grounding electrode is buried in the upper layer, mathe-
matical problem (1) can be written in terms of the following
Neumann exterior problem

AV; =0 in Ey; ... ;AVe =0 in Eg;
Vi=Ve, in Ty ... Vo1 =Ve, in I'ig_1,0);
71%272% in Loy oo
70—1%6;;—1 :'YC%‘% in L'ic-1,0)3
V0 in Ty Vi=1 in Ty
Vi—0, ... ,Vo—0, if |z|— oc; (3)

being E. each one of the soil layer (¢ = 1,C), T'(._1,¢) the
interphase between whatever two layers (¢ — 1 and ¢), 7.
the scalar conductivity of layer ¢, and V. the potential at
every point of layer ¢ [13], [14], [15], as it is shown in figure
(1). Obviously, if the grounding electrode is buried in any
other layer (i.e. in layer b, V;, = 1 in IT), the statement of
the exterior problem is analogous to (3) [15].

Grounding systems in most of real electrical substations
consist of a mesh of interconnected cylindrical conductors,
horizontally buried and supplemented by ground rods ver-
tically thrust in specific places of the installation site. The
ratio between the diameter and the length of the electrodes
is usually small (~ 10~3). Obviously, in problems with this
kind of geometries, it is not possible to obtain analytical
solutions to problem (3), and the use of widespread nu-
merical techniques —such as Finite Differences (FD) or
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Fig. 1. Fault current disipation in a stratified soil model.

the Finite Element Method (FEM) [16]— that require the
discretization of the 3D domains E., should involve a com-
pletely out of range computing effort [8]. Recently other
numerical techniques based on meshless methods have been
proposed for grounding analysis [17], [18]; these works are
under development at the present moment, and their ap-
plications are still restricted to the solution of academical
problems and numerical tests.

At this point, it is important to remark that computing
the potential distribution is only required on the earth sur-
face I'g, since from this distribution one can obtain all the
other important grounding design parameters such as the
“mesh”, “step” or “touch” voltages [1]. Furthermore, the
equivalent electrical resistance of the earthing system (R.,)
and the total surge current (I) can be easily obtained from
the leakage current density o that leaks at every point of
the electrode surface T’ by means of (2).

Taking into account all these facts, we work to achieve
an equivalent expression to problem (3) in terms of the un-
known leakage current density function o on the boundary
I". Thus, a boundary element approach for this equiva-
lent problem would only require the discretization of the
grounding surface I' [8], avoiding the discretization of the
whole domain (i.e., the earth).

If one takes into account that the surroundings of the
substation site are levelled and regularized during its con-
struction —i.e., the earth surface I'p and the interphase
between soil layers I'(._ ) can be assumed horizontal [8],
[15]—, the application of the “method of images” allows
to rewrite (3) in terms of a Dirichlet exterior problem [13],
[15], [19], [20]. Next, if the Green’s Identity is applied to
this problem [20], we obtain the following integral expres-
sions for potential V,(xz.) at an arbitrary point . € E.
(¢ =1,C), in terms of the leakage current density o(€) at
every point £ of the electrode surface I', which is buried in
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the upper layer (layer # 1):

1
- 41y,

Vi(ze) / [ bz o@r,

V. € E;; (¢c=1,C); (4)

where the integral kernel k1.(z., €) is formed by an infinite
series of terms corresponding to the resultant images ob-
tained when Neumann exterior problem (3) is transformed
into a Dirichlet one [13]. This weakly singular kernel de-
pends on the inverse of the distances from the point z. to
the point € and to all the symmetric points of £ (its images)
with respect to the earth surface I'; and to the interphases
['(c_1,c) between layers. Therefore, this kernel depends on
the thickness and conductivity of each layer [13], [15].

On the other hand, if the grounding electrode is buried
in any other layer (i.e., layer b), the application of Green’s
Identity yields to an expression that is analogous to (4), in
terms of the integral kernel kp.(x., §):

Vi) / [ Julee @,

Ve, € B, (c=1,0). (5)

~ day

Although generation of electrical images in a general case
is a conceptually simple well-known process [19], the fi-
nal expression of the integral kernels kp.(%c, &) can be very
complicated, and its evaluation in practice may require a
high computing effort. As an example, explicit expressions
of the integral kernels for a two-layer soil model can be
found in Appendix I.

C. Variational statement of the problem

On the other hand, the expression for potential (5) also
holds on the grounding electrode surface I', where poten-
tial is given by the boundary condition (V; = 1 in T').
Therefore, the leakage current density o must satisfy the
Fredholm integral equation of the first kind defined on T" :

1
4y

1 —

/ / bo8ol®) T = 0. xeT. (O

On the basis of the weighted residuals concept it must
be clear that we can substitute this equation by the weaker
variational form

[0 (1 i [ suteom@ar)ar o

(7)
which must hold for all members w(x) of a suitable class
of weight functions defined on the surface I' [8], [20]. At
this point, it should be obvious that a boundary element
formulation seems to be the right choice to solve the above
stated equation.

The essential concept of methods like BEM (and FEM)
is quite simple: since the exact solution o(€) to our prob-
lem (7) is unknown, we pursue to approximate it by
means of numerical techniques in a finite-dimensional sub-
space. Thus, for a certain set of N so-called trial functions

{N;(&)}, we consider discretized approximations type

o(¢) ~ Z N;(&) 0. (8)

Namely, the unknown values of the N variables {o;}
must be determined in such a way that the corresponding
discretized approximation (8) is as close as possible to the
exact solution o(£€). Because of practical reasons, the solu-
tion domain (the electrode surface I') is normally divided
into a finite number of subdomains (boundary elements),
and the trial functions are normally chosen as piecewise
functions defined over these subdomains. Since the exact
solution will not be included (as a general rule) in the ap-
proximating subspace, equation (7) can not be forced to
hold for any weight function w(x). However, as it is shown
in Appendix II, we can force this equation to hold for a
set of N so-called test functions {w;(x)}. This approach
yields a system on linear equations type

N
Z[Rﬂ] 0y = Vj, jzl,...,N, (9)

i=1

which solution gives the numerical solution (8) to our prob-
lem. The elements Rj; of the coefficients matrix, and the
right-hand-side terms v; must be computed, and depend
on the geometry of the electrode, and on the thickness and
respective conductivities of the layers. The selection of
different sets of trial and test functions leads to specific
numerical approaches. The discussion and examples pre-
sented in this paper are restricted to Galerkin type weight-
ing approaches (test functions are identical to trial func-
tions). Thus, the coefficients matrix in linear system (9) is
symmetric and positive definite [21].

TABLE I
SANTIAGO II GROUNDING SYSTEM: CHARACTERISTICS AND
NUMERICAL MODEL

Data
Number of electrodes: 534
Number of ground rods: 24
Diameter of electrodes: 11.28 mm
Diameter of ground rods: 15.00 mm
Depth of the grid: 0.75 m
Length of ground rods: 4 m
Max. dimensions of grid:  230x195 m?
GPR: 10 kV
BEM Numerical Model
Type of approach: Galerkin
Type of 1D element: Linear
Number of elements: 582
Degrees of freedom: 386

In Appendix II, we summarize our BEM numerical ap-
proach for grounding analysis. First of all, we develop a
general formulation for solving variational form (7). As
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stated before, grounding grids in most of electrical substa-
tions consist of a mesh of interconnected cylindrical elec-
trodes which length is huge in comparison with its diam-
eter. Thus, taking into account this specific geometry, we
finally derive an approximated but more convenient for-
mulation which allows to solve practical problems with an
acceptable computational cost. We remark that the whole
development is an extension to the one involved for uni-
form soil models, what can be found completely explicit in
8], [20].

1 Unit=10m
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Fig. 2. Santiago II grounding system: Plan of the earthing grid (the
situation of the ground rods is marked with black points).

The final layout of the numerical procedure to be im-
plemented reminds the so-called “computer methods” for
grounding analysis [6], where Rj; coefficients correspond to
“mutual and self resistances” between segments of conduc-
tors. In fact, some particular cases of our BEM approach
(e.g., a Point Collocation scheme using constant leakage
current elements) can be identified with any of the very
early intuitive methods that were proposed in the sixties
on the basis of replacing each segment of electrode by an
imaginary sphere’. In the case of a Galerkin type weight-
ing with constant leakage current elements, the numeri-
cal approach can be identified with a kind of more recent
methods, like the Average Potential Method [3], in which
each segment of electrode is substituted by ’a line of point
sources over the length of the conductor’ [8], [6], [20]. Thus,
in the framework of our BEM approach it is possible to ex-
plain from a mathematical point of view [8] the problems
encountered by other authors with the application of these
widespread methods [6], while new more efficient and ac-
curate numerical formulations can be derived [20].

Obviously, this BEM formulation could be applied to
other cases with a higher number of layers. However, it is
important to take into account that the CPU time may
increase considerably, mainly because of two facts that
are not strictly related to the boundary element approach:
first, the complexity of the kernels in the integral expres-
sion of potential (4) obtained by application of the method
of images (usually a multiple infinite series); and second,
the number of terms of these series that it is necessary to
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Fig. 3. Santiago II grounding system: Potential distribution
(%10 kV) on ground surface obtained with a homogeneous and
isotropic soil model.
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Fig. 4. Santiago II grounding system: Potential distribution
(x10 kV) on ground surface obtained with a two layer soil model.

evaluate specially when conductivities between layers are
very different.

III. APPLICATION OF THE BEM APPROACH TO A REAL
GROUNDING SYSTEM: EXAMPLES AND DISCUSSION

Our BEM numerical approach has been applied to the
grounding analysis of a real electrical installation: the San-
tiago II substation, close to the city of Santiago de Com-
postela in Spain. This earthing system is formed by a grid
of 534 cylindrical conductors of the same diameter (11.28
mm) buried to a depth of 75 cm, supplemented with 24
ground rods of the same length (4 m) and diameter (15
mm).
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TABLE II
SANTIAGO II GROUNDING SYSTEM: RESULTS OBTAINED FOR
DIFFERENT SOIL MODELS

One layer soil model

Earth resistivity: 60 Qm
Total current: 6.73 kA
Equivalent resistance: 0.149 Q
CPU time (AXP 4000): 7.7 s.

Two layer soil model

Upper layer resistivity: 200 Qm
Lower layer resistivity: 60 Qm
Thickness upper layer: 1.2 m
Total current: 5.61 kA
Equivalent resistance: 0.178
CPU time (AXP 4000): 13.35 min.

The grounding system protects a total area of 38,000 m?.
The studied area is a wider superimposed rectangular zone
of 300x260 m? (i.e., 78,000 m?). The Ground Potential
Rise (GPR) considered in this study is 10 kV. The plan of
the earthing grid (see figure 2) and the general data (see
table I) were obtained from the grounding plans and speci-
fications of the substation provided by the power company.
The characteristics of the numerical model that has been
used in this example can be found in table I.

Table II compares the numerical results (the equivalent
resistance and the total electrical current leaked into the
ground) of the analysis of the Santiago II grounding sys-
tem obtained by using the homogeneous and isotropic soil
model (“one layer soil model”), and the proposed two-layer
soil model.

Figures 3 and 4 show the potential distributions on the
earth surface (when the grounding electrode attains the
GPR voltage) obtained by using the homogeneous and
isotropic soil model and the proposed two-layer soil model.
It is obvious that both potential distributions differ. How-
ever, it is known that noticeably different contour line
drawings do not necessarily correspond to significant dif-
ferences between the plotted results. For this reason, in
figure 5, we compare the potential profiles computed with
the two soil models along two different lines on the ground
surface.

We remark that the analysis of this grounding system
with the two-layer soil model is particularly difficult be-
cause the length of the ground rods (4 m) is higher than
the height of the upper layer (0.75 m). Consequently, a
part of the grid is buried in the upper layer while the other
part is buried in the lower one. In cases like this, the final
implementation of the numerical approach in a computer
aided design system must be done with care, in order to
apply properly the different expressions depending on the
situation of the electrodes [15].

In the presented examples, we show that the results ob-
tained by using a multiple-layer soil model can be notice-
ably different from those obtained by using a single layer
soil model. Accordingly, the computed design parameters
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Fig. 5. Santiago II grounding system: Profiles of potential distrib-
ution on the earth surface along two lines (results obtained by
using a uniform soil model are plotted in dashed style, and those
obtained by using the two-layer soil model are plotted in contin-
uous style).

of the grounding system [1], [2], [20] (such as the equivalent
resistance, the touch voltage, the step voltage, the mesh
voltage, etc.) do significantly vary. Therefore, it could be
advisable to use efficient multi-layer soil formulations —
such as the numerical approach presented in this paper—
to analyze grounding systems as a general rule, in spite of
the increase in the computational effort. In fact, the use
of this kind of advanced models should be mandatory in
cases where the conductivity of the soil changes markedly
with depth.

IV. CONCLUSIONS

A Boundary Element approach for the analysis of substa-
tion earthing systems in layered soils has been presented in
this paper. Taking into account the general characteristics
of this kind of installations, some reasonable assumptions,
and further simplifications allow to reduce the original 2D
BEM approach to a much less computationally expensive
1D version. In fact, several widespread intuitive meth-
ods can be identified as particular cases of this general
approach, while more efficient and accurate formulations
can be derived. On the other hand, computing time can
be reduced under acceptable levels by means of analytical
integration techniques developed by the authors [8]. Thus,
accurate results should be obtained in practical cases with
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a relatively small computational cost. The proposed BEM
technique has been implemented in a Computer Aided De-
sign system developed by the authors for grounding substa-
tion design [22], extending the original capabilities of this
tool (that was initially developed for uniform soil models).

The proposed approach has been applied to a practical
case, and the results obtained by means of both, a sin-
gle and a two-layer soil model, have been compared. As
we have shown, highly accurate results can be obtained by
means of the proposed techniques in the earthing analy-
sis of real problems, and the results obtained by using a
multiple-layer soil model can be noticeably different from
those obtained by using a single layer soil model. There-
fore, it could be advisable, or even mandatory, to use the
multi-layer soil formulation as a general rule, in spite of the
increase in the computational cost.

At the present moment, the study of large installations
with multi-layer soil models still requires an important
computing effort. In fact, single layer models can be used
in real time, while the use of models with a small number
of layers break off the design process (since the computing
time is not contemptible) and the use of models with a high
number of layers is precluded. This is due to the poor rate
of convergence of the underlying series expansions, that
force to evaluate a growing number of additional terms as
the number of layers increases. The authors are develop-
ing new extrapollation techniques in order to accelerate the
rate of convergence of the involved series expansions [15].
Thus, the proposed multi-layer BEM formulations could be
used as real time design tools in a close future.
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APPENDIX I: INTEGRAL KERNELS FOR TWO-LAYER SOIL
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For a two-layer soil model the integral kernels are given
by [13], [15]:
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k11(z1,€) =

i K
) et BT ED

i=1
0o e
+ ; T'(:El, [éaﬂfy? 2iH — fz])
o] Iﬂ‘,i
+ ; T'(:El, [éaﬂfy? _2ZH + éz])
’{i

M8

T e 6 6 2iH &)

s
Il
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- 1+ k& l+r
ki2(z2,€) = r(z2, [éx;fyvéz]) + r(x2, [ﬁx,fyv =)
i (14 KK’
+ ; (@2, [0, &5, 20H 1 E2])

ad (14 KK )
+;r (@, [€0r &y, 20H — £1])°

(11)

if the grounding electrode is completely buried in the upper
layer; and

)= o ey e
2 [sw(,lg; T &
P e Gt E] (12
:
Faal, ) = @) [5:, &6 | [15_ =
Hi, T 3
2 m 5w,£y,ﬁ 3?H+€z])7 (19)

if the grounding electrode is completely buried in the lower
layer. In the above expressions, r(z, [£;,&y,&.]) indicates
the distance from z to & = [¢z, &y, {.] —and to the symmet-
ric points and images of £ with respect to the earth surface
I'r and to the interphase surface between layers—, H is
the thickness of the upper layer, and & is a ratio defined in
terms of the layer conductivities: & = (y1 — ¥2)/(71 + 72)-

APPENDIX II: BOUNDARY ELEMENT NUMERICAL
FORMULATION
A. 2D general approach

The leakage current density o that flows from the elec-
trodes, and the electrode surface I' can be discretized as
follows

N M

o) =>_ Ni(¢)ai,

i=1

(14)

for given sets of “N” trial functions { N;(£)} defined on the
surface T' and “M” 2D boundary elements {I'*}. Then,
integral expression (5) for potential V.(z.) can also be dis-
cretized as

N

‘/Yc(xc) = Z VYCZ (xc) (o

i=1

Vx. € E;; (¢c=1,C); (15)

being

M
(xC) = Z ‘/Yc?(xc)7

Vi(ze) =

C

N;(§) dT'. (16)

kbc sz
4y //el“a

Therefore, for a given set of “N” test functions {w;(x)}
defined on I, variational form (7) is reduced to the follow-
ing system of linear equations

N
Z[Rji] o;=v;, j=1,...,N,

(17)
i=1
being the elements of the coefficients matrix
= Z Z Rﬂ ’
B= 1 a=1
= koo (X, €)N; (€)dT*dIP,
ﬂ Ay, //Xerﬁ / ferabb( JNi(&)

(18)

and the right-hand-side terms

M
vj = ZV]@, l/f = // swj(x)dI‘ﬁ. (19)
B=1 XGF‘

We remark that the solution to system (17) is the key
to solve the problem, since it provides the values of the
unknowns o; (i = 1,...,N), that can be used to compute
the potential at any point €. in the earth (and, of course,
on its surface), by means of expression (15), as much as the
equivalent resistance R.q of the grounding system by using
expressions (14) and (2) [8], [20].

However, the statement of linear system (17) requires
the discretization of a 2D domain (the whole surface I"
of the grounding electrodes), which involves a large num-
ber of degrees of freedom in practical cases. Besides, the
matrix (17) is full and the computation of its coeflicients
(18) requires to perform double integration on 2D domains.
On the other hand, the integral kernel ky,(x, &) at (18) is
given by series which computation in real problems implies
a considerably high number of evaluations of its terms. For
all these reasons, it is necessary to introduce some addi-
tional hypotheses in the mathematical model of this gen-
eral boundary element formulation in order to decrease the
computational cost.

B. 1D approzximated approach

Taking into account the real geometry of grounding sys-
tems in practical cases, we can introduce an assumption
that is widely used in most of theoretical developments in
grounding analysis: the hypothesis of circumferential uni-
formity in the grid conductors. Thus, the leakage current
density o is assumed constant around the cross section of
the cylindrical electrode [1], [2], [8], [6], [20]. In this way,
being L the axial lines of the conductors, Ethe orthogonal
projection (over the axis of an electrode) of a generic point
£ on the electrode surface T, ¢(E) the electrode diameter,
P(E) the circumferential perimeter of the cross section of
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the bar at Z, and 3(2) the approximated leakage current
density at point £ (¢ is assumed constant around the cross
section), expression (5) results in

~

Ve(z.)

L (o83 aL.
écL
V. € E.;; (c=1,C);

- 47y
(20)

where Ebc(zc,g) is the circumferential integral of kernel
kpe(zc, &) around the cross section of the electrode at €
(the orthogonal projection of € over the axis):

kbc(307€) - /&'ep(g) kbc(z07€)dp~ (21)

On the other hand, since the leakage current density is
not really uniform around the cross section, boundary con-
dition V3(x) = 1, Vx € T' can not be strictly satisfied and
variational form (7) will not hold anymore. Therefore, the
class of test functions must be restricted to those with cir-
cumferential uniformity, that is w(x) = @W(x) Vx € P(X);
thus, variational form (7) results in

|1 S )
™ [47% f., ot f)a(ﬁ)dL] L -

™ /yceL d(x)w(x)dL,

(22)

which must verify for all members w(¥) of a suitable class

of test functions defined on L. The integral kernel ks ()A(,Z)
is given by

= -~

Ko (X )=/ .
XEP(X)

In contrast to the potential expression (5) and to the in-
tegral equation (7), expression (20) and integral equation
(22) require the discretization of a simpler domain: the
axial lines L of the grounding electrodes. Thus, the ap-
proximated leakage current density o and the axial lines L
can be discretized as follows

dpP.  (23)

k ,€)dP
/EGP@ whed)

5 =Y N®z., L=|JL" (24)
i=1 a=1

for given sets of “n” trial functions {ﬁl@} defined on L,
and “m” 1D boundary elements {L*}. In the same way, we
can obtain a discretized form of potential expression (20):

Ve(ze) = Zn:f/cz (xc), Gi, Voo € Ee; (c=1,C); (25)
i=1
being
‘7% () = é ‘70‘;‘ (xc),
Vote) = o fp, Fle O R@ar. o

Therefore, for a suitable selection of “n” test functions
{w;(x)} defined on L, variational form (22) is reduced to
the following system of linear equations

Z |:ﬁ;{| El = A], ] = 1, N, (27)
i=1
being the elements of the coefficients matrix
Ris=>_ > Ry
fB=1a=1
R [ a®f Fw®FE e,
/ 47y XeLs e
(28)
and the right-hand-side terms
=Y Her[ s@BEA. ()
B=1 XeLe

As in linear system (17), the coefficients matrix of sys-
tem (27) is full. Nevertheless, we can assure an important
reduction of the overall computational cost by using this
1D approach, because the dimension of the system and the
number of terms (28) and (29) that must be computed are
significantly smaller than in the previous 2D formulation.
In spite of that, the computing requirements are still exces-
sive for practical purposes —mainly because of the need to
evaluate the circumferential integrals on the perimeter of
the electrodes that are involved in kernels (21) and (23)—
and further simplifications must be introduced.

B.1 Integration of terms

The integrand functions in expressions (21) and (23) are
kernels that can be written in the general form [13]:

kbc(xcag) = Z r(/lp& (30)

where the 1; are weighting coefficients defined in terms
of a parameter k that only depends on the conductivities
of the ground layers, and r(z.,&,(€)) is the euclidean dis-
tance between the points z. and §;, being &, the point &
on the electrode surface (§,(§) = €) and being &, (I # 0)
the images of € with respect to the earth surface and to
the interphases between layers'. Thus, the inner integral
kernel (21) can be written as

o0

) R 1
kbc(xcag) = Zwl(m) [/é‘ep(Z) m dP

=0

(31)

In general, we Eeed to compute potential at points x.
which distance to €, is much larger than the diameter of the
conductor. Thus, if the circumferential integrals involved
in (31) are expressed in terms of the angular position of

1For the case of the two-layer soil model, these kernels are given by
expressions (10), (11), (12), (13)



IEEE TRANSACTIONS ON POWER DELIVERY, VOL. XX, NO. Y, MONTH 2001 9

along the perimeter of the cross section of the cylindrical
conductor [8], and the resulting elliptic integrals are sush-
stituted by means of a simple approximation, we obtain

-~ o~ o~ -~

Ebc(xcag) ~T ¢(£) kbc(xc7£) (32)
being
~ S k)
kc C7€ - = =__>
@) = 2 )
—~ ~ 2 ¢
e &) = |l - &P+ S (@)

We can approximate the inner integral kernel (23) in a
similar way [8], [20], giving

-~

koo (X, €) =~ 7% $(€) $(X) koo (X, €) (34)
being
= AA — ik
k €)= =
w8 g?x,sl @)’
~ 2
FR.6) = \/|x &+ ”*‘“ FTOLIT (35

However, the evaluation of the integrals involved in (28)
and (26) with approximations (34), (35), (32) and (33) by
means of standard numerical quadratures is very costly due
to the ill-conditioning of the integrands [8]. Explicit for-
mulae have been derived by the authors to compute ex-
pressions (26) and (28) for constant, linear and parabolic
leakage current elements[8], [20] in the case of the homo-
geneous and isotropic soil models. The cost of the inte-
gration process is now increased because the integral ker-
nels are given by series like (33) or (35). Fortunately, the
terms in these series are identical to the ones corresponding
to homogeneous and isotropic soil models, and the above
mentioned analytical techniques can be applied. These an-
alytical integration techniques represent a significant im-
provement in the grounding analysis field, since the drastic
reduction in computing time allows to obtain high accurate
results for earthing systems of medium/large sizes, in real
time and using low cost personal computers [9], [22].
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