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ABSTRACT 

 Methylene blue adsorption on Sargassum muticum, an invasive macroalga in Europe, has been 

investigated using visible absorption spectroscopy. Different pre-treatments, protonation and chemical 

cross-linking with CaCl2 or H2CO, have been tested in order to improve the stability as well as the 

adsorption capacity of the algal biomass. The equilibrium binding has been described in terms of 

Langmuir or Freundlich isotherms depending on the algal pre-treatment; from the maximum 

adsorption capacity values, an estimation of the algal specific surface area was made. Moreover, it 

has been found that adsorption kinetics can be described according to the first order Lagergren model, 

from which the rate constant and the adsorption capacity were determined. Finally, simple empirical 

equations were obtained to evaluate the amount of methylene blue removed at any initial 

concentration and reaction time. The results obtained have shown that this type of material has a high 

adsorption capacity for methylene blue dye, this feature together with the short times needed to reach 

the equilibrium suggest that Sargassum muticum can be used as a low-cost biosorbent in wastewater 

treatments. 

 Keywords: Biosorption, dye adsorption, Sargassum muticum, isotherms, adsorption kinetics. 

 

1 INTRODUCTION 

 Biosorption processes have attached a great importance from an environmental point of view as 

they can be used to remove toxic compounds from industrial wastewaters. Many industries use dyes 

to colour their final products and their discharge into natural waters causes severe problems because 

they are toxic to aquatic life and damage the aesthetic nature of the environment.1 Moreover, these 
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effluents are rather difficult to treat by conventional biological and physical-chemical techniques due to 

the complex structure of the dyes. Therefore, adsorption processes provide an attractive alternative for 

the treatment of coloured waters.2 Activated carbon is the most popular and widely used adsorbent, 

but there are certain problems with its use since it is expensive and its regeneration is difficult. For this 

reason, interest has been recently focused on low-cost materials, ranging from waste products from 

other industries to naturally abundant biomass: sewage sludge and peanut shell,3 silk cotton hull, 

coconut tree saw dust and coir pith,4 moss, banana pith and water hyacinth roots,5 parthenium plant,6 

bacteria and fungi.7 In particular, marine algae are very promising materials to be used as biosorbents 

in wastewater treatment because they represent a cheap source of biosorbent, as they are readily 

available in large quantities, and it has been shown that they display a high metal binding capacity,8 

mainly due to carboxylic and sulfonate groups from the algal polysaccharides. 

 The present work deals with the adsorption of methylene blue, a dye often used to characterize 

the capacity of an adsorbent,9 by Sargassum muticum, an alga which is a pest fouling organism that 

competes with the local fucalean species and may also interfere with the “sea industry”.10 For this 

reason, it would constitute an ideal material to be used as biosorbent. In addition, to the best of our 

knowledge, studies of dye adsorption by algae are not available; therefore, to explore this promising 

field of biosorption is desirable. 

 In order to perform the adsorption experiments, different pre-treatments for the chemical 

modification of the biomass, among them protonation and chemical cross-linking with CaCl2 and 

H2CO, have been tested to improve its stability as well as its adsorption capacity, making it suitable for 

industrial use. The effect of the solution pH on the adsorption capacity of the alga has been examined 

to carry out the adsorption experiments at a suitable value of pH. The equilibrium and kinetics of the 

adsorption process were then evaluated and it was found that both rely on the pre-treatment made to 

the biomass. Therefore, the equilibrium binding has been described in terms of Langmuir or 

Freundlich isotherms, depending on the algal pre-treatment, and kinetic data were fitted according to 

the first order Lagergren model, from which the rate constant of sorption and the equilibrium capacity 

were determined. These two parameters are dependent on the initial dye concentration, and taking 

into account these dependencies, simple empirical equations were derived to evaluate the amount of 

methylene blue removed at any initial concentration and reaction time. 
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2 EXPERIMENTAL 

2.1 Preparation of the adsorbent 

 The adsorbent used was alga Sargassum muticum collected in La Coruña (Galicia, NW Spain). 

Algae were washed with generous amounts of distilled water and dried in an oven at 60°C overnight. 

Then, they were ground in an analytical mill IKA A 10 and sieved in the size pore range from 0.5 to 1 

mm. Finally, the biomass was chemically modified by means of different treatments, which were 

carried out as follows. 

Pre-treatment with CaCl2 

 A sample of 2.5 g of dried biomass was treated with 100 mL of 0.2 mol dm-3 CaCl2 solution, 

keeping the solution pH constant at a value of 5.0, because it is the optimum pH value for calcium 

activation of biomass. The mixture was shaken for 24 h on a rotary shaker at 175 rpm and room 

temperature. The biomass was then filtered off followed by washing with deionised water to remove 

the excess of calcium and it was dried in an oven at 60°C for 24 h.11 

Pre-treatment with HCl 

 A constant mass of Sargassum muticum (2.5 g) was treated with 100 mL of 0.1 mol dm-3 HCl 

solution for 3h at room temperature. The biomass was then filtered off followed by washing with 

deionised water and it was dried overnight at 60°C. Then, 400 mL of 0.1 mol dm-3 HCl solution were 

added to the dried biomass and the previous procedure was repeated.12 

Formaldehyde cross-linking 

 2.5 g of dried biomass were added to a mixture of 17 mL 36% formaldehyde and 33 mL of 0.1 

mol dm-3 HCl solution. The mixture was left at room temperature for 1 h under gentle mixing. The 

biomass was then filtered off followed by sequential distilled water, 0.2 mol dm-3 Na2CO3 and final 

distilled water washes. It was dried overnight at 60°C and finally 2 h at 110°C.13 

 Pre-treated biomass was kept in plastic containers refrigerated at 4°C for further use. 

2.2 Dye solution preparation 

 The dye used in this study is methylene blue (C.I. 52015; Panreac, dye content 82%), a cationic 

thiazine whose chemical structure is shown in Fig 1. 

 Stock solutions of methylene blue, without further purification, were prepared by dissolving 

accurately weighed dye in deionised water at a concentration of 1000 mg L-1 and they were diluted 

when necessary. 
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2.3 Dye adsorption experiments 

 In order to carry out the adsorption experiments, a constant mass of alga (0.1 g) was weighed 

into a conical flask and 40 mL of dye solution were added to it. The mixture was shaken at 175 rpm 

and room temperature for 2 h, when the equilibrium was reached. Then, algae were separated by 

decantation and the dye concentration was analysed using a spectrophotometer UV/VIS (Varian Cary 

100 Bio) at λmax 665 nm. The solutions involved were diluted to proper concentrations, to give 

absorbancies in the range 0.1-1, before making the measurements. 

 Firstly, the effect of the solution pH on the adsorption capacity of the alga was examined for 

each treatment, adjusting the pH value between 1 and 10 by the addition of dilute HCl or NaOH. Then, 

the binding capacity of the sorbent was determined varying dye concentration within the range 10-

1000 mg L-1 and adjusting the pH to a value of 5.5. The adsorption capacity of the alga was 

determined from the concentration difference of the solution, at the beginning and at equilibrium: 

 
( )

m1000

CCV
q ei

e

−
=             (1) 

where Ci and Ce are the initial and the equilibrium dye concentrations (mg L-1), V is the volume of 

solution (mL), and m is the mass of algae used (g). 

 Finally, several kinetic experiments were performed as follows: a constant mass of alga (0.125 

g) was weighed and transferred into a thermostated cell at 25.0±0.1°C, 50 mL of dye solution of 

different concentrations (50, 100, 200 and 500 mg L-1) were added to it, and the mixtures were 

shaken. Aliquots were withdrawn at various time intervals for 4 h and the concentration of dye was 

determined as indicated above. The amount of adsorption at time t, qt (mg g-1), was calculated by: 
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where Ct (mg L-1) is the dye concentration at time t. 

3 RESULTS AND DISCUSSION 

3.1 Equilibrium of sorption 

 As it is shown in Fig 2, the uptake was unaffected in the pH range of 4-10 and for pH values 

below 2, sorption of methylene blue was less favourable. However, the adsorption capacity for 

protonated alga, which is the most pH dependent, at the lower pH is still about 45 mg g-1. For the 

adsorption of Cd2+ on Sargassum muticum,14 the algal affinity for the metal is explained by an 

exchange between the metal ions in solution and protons initially present in the biomass; the 
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relevance of the negative charge in the algal system has been carefully discussed by Rey-Castro et 

al15 in a detailed study about the acid-base behaviour of Sargassum muticum biomass directly, and 

also in connection with the protonation of the most important component of the alga: the alginic acid.16 

In the case of methylene blue, a pure electrostatic interaction between the negative charge of the alga 

and the positive charge of the dye cannot be considered the unique mechanism of adsorption. A 

different type of interaction should account for the adsorption process as an important amount of dye 

is adsorbed at low pH values, for which the alga is completely protonated; moreover, the increase in 

the adsorption capacity occurs two pH units below the algal pKa, which is 3.85 for a degree of 

dissociation of 0.5.14 These facts suggest the existence of hydrophobic interactions which have been 

reported by different authors to contribute to the description of the interaction of methylene blue with 

different kind of surfaces.17-20 

 The equilibrium binding was described in terms of Langmuir and Freundlich isotherms.21,22 The 

Langmuir theory assumes that sorption takes place at specific sites within the adsorbent, which means 

that once a dye molecule occupies a site, no further adsorption can take place at that site. Therefore, 

at equilibrium, a saturation point is reached beyond which no further adsorption can occur and the 

saturation monolayer can be then represented by the following expression: 

 
e

emax
e

bC1

bCq
q

+
=             (3) 

where qmax is the maximum amount of adsorption, b is the affinity constant and Ce is the solution 

concentration at equilibrium. 

 The Freundlich model assumes that the sorption takes place on heterogeneous surfaces and 

adsorption capacity depends on the concentration of methylene blue at equilibrium according to the 

exponential expression: 

 ( )β=
ee

bCq              (4) 

where β is a heterogeneity factor. 

 Equation (4) can be linearised as follows: 

 
ee Clogblogqlog β+β=            (5) 

 So, the plot of logqe against logCe of eqn (5) should give a linear relationship, from which β and 

b can be determined from the slope and the intercept respectively. 

 In the case of Langmuir isotherm, there are two possibilities for the linearisation, each one 



 6

giving different outcomes, besides, these transformations implicitly alter the error structure of data. In 

view of these considerations, a non-linear fit of experimental data to eqn (3) was done for the sorption 

of methylene blue on Sargassum muticum treated with CaCl2 and HCl. Figure 3 shows these fits and 

the linear fit in the inset; adsorption parameters calculated from the non-linear plots are given in Table 

1. On the other hand, data for H2CO treatment show a better compliance with the Freundlich isotherm 

(Fig 4). Parameters b and β calculated from the linear fit of experimental data are given in Table 1. 

 Table 2 compares methylene blue sorption using different sorbents and reveals the large 

adsorption capacity of Sargassum muticum, suggesting that this invasive alga in Europe could be 

used as a quite effective biosorbent for removing cationic dyes as methylene blue. 

3.2 Determination of the specific surface area 

 Moreover, from the maximum adsorption capacity values (Table 1), it is possible to determine 

the specific surface area of Sargassum muticum biomass according to the following expression23 

 20mm
s 10

MW

NAX
S −×=  

where: Ss= specific surface area of the adsorbent (m2/g); 

 Xm= monolayer capacity (g solute/g solid); 

 N= Avogadro’s constant (=6.02x1023); 

 Am=ionic cross-sectional area of solute ((D)2); 

 MW= molecular weight of the solute. 

 The methylene blue molecular cross section, Am, is difficult to assess. In the concentration 

range used in this work, there is an equilibrium between the monomeric and the dimeric forms of 

methylene blue in the bulk solution.24 On the other hand, when cationic dyes are placed in solutions 

containing anionic polyelectrolytes they may be adsorbed as induced aggregates.25 Assuming that the 

dimer is formed by monomer units lying flat on the surface,26 it would occupy double area than the 

monomer and the specific surface area should be the same independently of the aggregation. 

However, if the monomer units are joined in a sandwich structure, with the principal molecular axes 

parallel,24 the specific surface area would be a half of that calculated assuming the adsorption of the 

monomer. A different value should be obtained if it is considered that methylene blue adsorbed 

molecules are perpendicular to the surface, as has been reported for adsorption on clays.27 

 Different values for the methylene blue cross section have been given in the literature, Hang 
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and Brindley, in a study on the adsorption of methylene blue by clay minerals,26 considered that the 

projected areas of the molecule remain between 55 and 130 (D)2, depending on the methylene blue 

orientation. He and Tebo,28 use a value of 55 (D)2, previously employed with clay minerals, in the 

determination of surface area of spores of the Marine Bacillus sp. Strain SG-1. Results shown in Table 

1 were obtained using a value of 108 (D)2 for the ionic cross-sectional area of methylene blue, which 

was proposed by van den Hul and Lyklema29 in a critical study on the determination of specific surface 

areas by different methods. It is noticeable that these values are much higher than that found using 

the B.E.T. method (2.86 m2/g). The reason for this discrepancy may be a different sorption mechanism 

for nitrogen and dye molecules since in the water-wet state, the alga is swollen and there is a water-

filled porous structure. 

3.3 Kinetics of the sorption process 

 As far as kinetics are concerned, it was found that the necessary contact time to reach the 

equilibrium depends on the initial dye concentration and the adsorption capacity increases with the 

initial dye concentration in all cases. 

 In order to elucidate the mechanism of the adsorption process several models were tested. A 

simple kinetic analysis is the first order Lagergren equation30 in the form: 

 ( )
te1

t qqk
dt

dq
−=             (6) 

 Integrating this equation for the boundary conditions qt=0 at t=0 and qt=t at t=t gives: 

 ( ) tkqlnqqln 1ete −=−            (7) 

which is the integrated rate law for a first order reaction. Where qe and qt are the sorption capacity at 

equilibrium and at time t, respectively (mg g-1) and k1 is the equilibrium rate constant of pseudo-first 

order sorption (min-1). 

 Equation (7) can be expressed as follows: 

 ( )t1k
et

e1qq −=             (8) 

 In addition, a pseudo-second order equation31-33 based on adsorption equilibrium capacity, was 

tested: 

 ( )2
te2 qqk

dt

dq
−=             (9) 

 After integration, applying boundary conditions qt=0 at t=0 and qt=t at t=t the eqn (9) becomes: 
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which is the integrated rate law for a pseudo-second order reaction. Where qe and qt are the sorption 

capacity at equilibrium and at time t, respectively (mg g-1), and k2 is the rate constant of pseudo-

second order sorption (g mg-1min-1). 

 Equation (10) can be rearranged to obtain a linear form: 

 t
q

1

qk

1

q

t

e
2
e2t

+=             (11) 

 If pseudo-second order kinetics are applicable, the plot of t/qt against t of eqn (11) should give a 

linear relationship, from which qe and k2 can be determined from the slope and the intercept 

respectively. 

 The experimental data were fitted to first order and pseudo-second order equations. It was 

found that the adsorption of methylene blue on Sargassum treated with CaCl2 follows first order 

kinetics while those for HCl and H2CO treatments show a better compliance with the pseudo-second 

order equation. However, the equilibrium adsorption capacity values obtained from this equation are 

not reasonable which suggests that the sorption process is not a pseudo-second order process. The 

kinetic parameters were calculated by fitting the experimental data to eqn (8) using the non-linear 

Marquardt algorithm. A non-linear fit was chosen as it has the advantage of providing a value for qe, 

which has to be fixed in case of using eqn (7). The values obtained are listed in Table 3 together with 

the correlation coefficients. The equilibrium adsorption capacity increases with an increase in the initial 

concentration of methylene blue while the rate constant decreases. 

 The corresponding linear plots of the values of qe and k against Ci (initial dye concentration) 

were regressed to obtain empirical expressions for these values in terms of Ci. The best fits were 

found with the following expressions: 

 
ie dCq =              (12) 

 b
i

aCk =              (13) 

 The parameters calculated from these plots are summarised in Table 4 for each treatment of 

the biomass. 

 Substituting the expressions above in eqn (8), the rate law for a first order reaction and the 

relationship between qt, Ci and t can be represented as: 
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iit
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 This equation can be used to determine in advance the amount of methylene blue removed at 

any initial concentration and reaction time. The plots of qt vs. t are shown in Figs 5, 6 and 7, where 

symbols represent experimental data and lines are the modelled results according to eqn (14), whose 

parameters are given in table 4. It is noticeable that experimental data show a good compliance with 

the proposed equation. 

 

4 CONCLUSIONS 

 In this paper the adsorption behaviour of methylene blue on Sargassum muticum has been 

evaluated. The equilibrium binding has been described in terms of Langmuir and Freundlich 

isotherms, depending on the biomass pre-treatment. It is remarkable that the percentage of methylene 

blue removed is up to 90%, which is higher than that found for other biosorbents and it could be even 

compared with activated carbon (99.8% uptake).34 Biosorption kinetics have been described by means 

of the first order Lagergren equation, from which the corresponding kinetics parameters were 

obtained. These results have led to simple empirical equations, which are very useful to derive the 

amount of methylene blue removed at any initial concentration and reaction time. It is noteworthy that 

the equilibrium was achieved, depending on the algal pre-treatment, in 30-60 min, which is similar to 

values found by other authors for methylene blue sorption on different biosorbents and, in the case of 

the H2CO pre-treated alga, it can be compared with the optimum contact time determined for activated 

carbon (35 min).34 

 Therefore, this work shows that the invasive alga in Europe, Sargassum muticum, constitutes a 

promising material to be used as biosorbent which could compete with commercial biosorbents 

because of its low cost, ready availability and high adsorption capacity. In the future, it could be 

applied in wastewater treatments, especially of textile effluents. 
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Table 1. Results of methylene blue adsorption isotherm analysis and specific surface areas of the 

biomass. 

Biomass pre-treatment qmax (mg g-1 ) b (mg-1L) β r2 Ss (m2/g) 

CaCl2 

(Langmuir model) 

237±12 0.06±0.01 ___ 0.9987 412a-206b 

HCl 

(Langmuir model) 

279±4 0.025±0.001 ___ 0.9985 485a-242.5b 

H2CO 

(Freundlich model) 

___ 2.51±0.02 0.997±0.005 0.9999 ___ 

a Monomers lying flat on the algal surface. 

b Dimers with the methylene blue molecules joined in a sandwich structure. 

 

Table 2. Maximum adsorption capacity of methylene blue on various biosorbents at optimum pH 

values and room temperature. 

Sorbent Sorption capacity (mg g-1) Reference 

Activated carbon 373.9 Dogan et al. 35 

Sargassum muticum seaweed 279.2 Present work 

Cotton waste 240 McKay et al. 36 

Hydrilla verticillata 198.0 Low et al. 37 

Moss 185.0 Low et al. 5 

Perlite 162.3 Dogan et al. 35 

Spirodela polyrrhiza (duckweed) 144.93 Waranusantigul et al. 38 

Water hyacinth root 128.9 Low et al. 5 

Hexane-extracted spent bleaching earth 120.5 Lee et al. 39 

Carbonized spent bleaching earth 94.5 Lee et al. 39 

Date pits 80.3 Banat et al. 40 

Zeolite 53.1 Dogan et al. 35 
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Table 3. Kinetic parameters obtained from the first order equation for the sorption of methylene blue 

on Sargassum muticum. 

 [MB](mg L-1) MB removed % qe(mg g1 ) k1(min-1) r2 

 50 97.4 19.2±0.2 0.106±0.004 0.9968 

Sargassum muticum 100 96.4 39.1±0.2 0.075±0.001 0.9995 

treated with CaCl2 200 94.2 78.8±0.5 0.067±0.001 0.9994 

 500 90.0 197±6 0.041±0.003 0.9948 

 50 98.2 15.9±0.9 0.08±0.01 0.9290 

Sargassum muticum 100 97.4 27±1 0.07±0.01 0.9620 

treated with HCl 200 94.9 71±2 0.054±0.004 0.9935 

 500 92.9 131±5 0.044±0.004 0.9924 

 50 98.0 19.4±0.4 0.32±0.05 0.9715 

Sargassum muticum 100 97.0 37±1 0.14±0.02 0.9678 

treated with H2CO 200 95.1 79±2 0.10±0.01 0.9830 

 500 92.5 196±2 0.113±0.004 0.9979 

 

Table 4. Parameters calculated from equations (12-13) and the corresponding rate law for each 

treatment of the biomass. 

Pre-treatment Equation parameters  Rate law 

 

CaCl2 

 

( ) ie C0006.03938.0q ±=  

( ) ( )05.038.0
i

C1.05.0k ±−±=  

 

1r 2 =  

9703.0r 2 =

 

( )[ ]tC5.0exp1C3938.0q 38.0
iit
−−−=

 

 

HCl 

 

 

( ) ie C02.028.0q ±=  

( ) ( )02.027.0
i

C03.023.0k ±−±=  

 

9724.0r 2 =

9845.0r 2 =

 

( )[ ]tC23.0exp1C28.0q 27.0
iit
−−−=

 

H2CO 

 

 

( ) ie C002.0392.0q ±=  

( ) ( )03.045.0
i

C2.05.1k ±−±=  

 

9998.0r 2 =

7416.0r 2 =

 

( )[ ]tC5.1exp1C392.0q 45.0
iit
−−−=  
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FIGURE CAPTIONS 

 

Figure 1. Chemical structure of methylene blue dye. 

 

Figure 2. Effect of pH on sorption of methylene blue by Sargassum muticum with different treatments. 

 

Figure 3. Langmuir isotherms for the sorption of methylene blue by Sargassum muticum treated with 

CaCl2 and HCl. Symbols represent experimental points; lines are modelled results according to 

equation (3). 

 

Figure 4. Freundlich isotherm for the sorption of methylene blue by Sargassum muticum treated with 

H2CO. Symbols represent experimental points; the solid line corresponds to the modelled results 

according to equation (4). 

 

Figure 5. Kinetics for methylene blue uptake by Sargassum muticum treated with CaCl2 at different 

initial dye concentrations: 50 mg L-1 (□), 100 mg L-1 (o), 200 mg L-1 (Î), and 500 mg L-1 (Ï). Symbols 

represent experimental points; lines are modelled results according to equation (14). 

 

Figure 6. Kinetics for methylene blue uptake by protonated Sargassum muticum at different initial dye 

concentrations: 50 mg L-1 (□), 100 mg L-1 (o), 200 mg L-1 (Î), and 500 mg L-1 (Ï). Symbols represent 

experimental points; lines are modelled results according to equation (14). 

 

Figure 7. Kinetics for methylene blue uptake by Sargassum muticum treated with H2CO at different 

initial dye concentrations: 50 mg L-1 (□), 100 mg L-1 (o), 200 mg L-1 (Î), and 500 mg L-1 (Ï). Symbols 

represent experimental points; lines are modelled results according to equation (14). 
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