Metadata, citation and similar papers at core.ac.uk

Hydrological Summary for the United Kingdom

General

April was a warm and, despite some wetter interludes, relatively dry month in most areas of the UK. Parts of the west received above average rainfall following an unsettled final week, but notably low rainfall and runoff accumulations continued to develop in northern and western regions following the dry winter and early spring. Overall reservoir stocks increased in Northern Ireland, but declined elsewhere. Stocks for England \& Wales fell below average (albeit marginally) for the first time in two years; however, stocks are significantly below the seasonal average in some of the largest northern and western reservoirs - in the Northern Command Zone group, the $2^{\text {nd }}$ lowest for early May in a 22 -year series (although considerably higher than in the benchmark drought year of 1984). In lowland England, the outlook generally remains favourable, with runoff accumulations in the normal range. Whilst a relatively steep seasonal recession in aquifer levels is evident, levels were in the normal range in a majority of boreholes. High rainfall during much of 2007 and 2008 is providing a continuing water resources benefit, but this year's dry spring, together with the outlook for a warm, dry summer (see page 3), implies the need for alertness to the possibility of drought conditions developing in some regions. In northern and western areas, where late-spring reservoir replenishment often moderates the seasonal decline, May rainfall could be highly influential in determining the outlook for the summer.

Rainfall

April was a very warm month, with stable sunny spells interrupted by some unsettled periods. The month started with a run of dry weather in most parts of the UK, followed by showery and thundery interludes around mid-month. In the last week, frontal systems brought very unsettled wetter weather to most areas, particularly in the west. An intense, slow-moving low pressure area brought heavy rain to west Cornwall on the $25^{\text {th }}$; over 50 mm was recorded overnight on the Isles of Scilly, but radar data suggests event totals could have been substantially higher (and punctuated by periods of exceptional intensity) on the Cornish coast. Overall April rainfall totals were below average in many parts of the UK, although there was an exaggeration of the normal west-east rainfall gradient. Anglian region received less than 40% of its April average, and less than 25% in coastal areas; in contrast, South West received $>120 \%$, and $>200 \%$ in west Cornwall. Northern Ireland registered its $11^{\text {th }}$ wettest April since 1914. The low April rainfall continued a sequence of dry months; February - April rainfall accumulations are well below average for most regions, notably so in northern England, Wales and the Midlands. Following a broadly similar pattern, the 6 -month period from November to April has been dry in most regions, with only the far north of Scotland reporting a wetter-thanaverage accumulation. England and Wales recorded its $3^{\text {rd }}$ lowest rainfall since 1975/76 over this timeframe.

River flows

River flows continued to decrease in the majority of catchments, in response to the prolonged dry weather. Wetter interludes triggered some spates which, interspersed with dry spells, resulted in an exceptional range of flows in some responsive catchments. In the far west of Cornwall, the intense rainfall on the $25^{\text {th }}$ brought flash flooding; widespread damage occurred in St. Ives, and three fatalities were reported after a car was trapped in a flash flood near Zennor. Correspondingly, the Kenwyn registered notably high April runoff. Elsewhere, April runoff was below average across most of upland England \& Wales, by a substantial margin in many catchments. Below average
flows were also reported from responsive catchments in south east England (e.g. the Colne), whereas runoff was in the normal range in most permeable catchments. Notably low runoff accumulations continued to develop in southern Scotland, Wales and upland areas of England. New minimum February - April runoff totals were registered in some catchments in northwest England and Wales (including the Dee at Manley Hall, in a record starting in 1929). In these areas, and in Northern Ireland, very low runoff totals have been a feature of many of the last six months. In contrast, across much of lowland England, accumulations over the winter/early spring period were generally in the normal range, in part due to groundwater support following the wet summer/autumn of 2008.

Groundwater

The lowest April rainfall broadly co-incided with major outcrop areas, and some areas of the eastern Chalk were particularly dry. Consequently, soils continued to dry out and, by month end, Soil Moisture Deficits (SMDs) exceeded the average across most of England and eastern Scotland, with substantial deficits in some eastern areas. The deficits were considerably lower (and less spatially extensive) than the SMDs recorded after the dry April in 2003, which presaged a summer drought. Seasonal recessions continued to develop in most Chalk boreholes and, with the exception of some boreholes in the south and west of the aquifer, groundwater levels in the Chalk were generally still within the normal range. Similarly, in other aquifer units, levels were largely typical for the time of year, with the occasional borehole registering below average levels (e.g. at Ampney Crucis in the Jurassic Limestone). Newbridge, in the Permo-Triassic of south west Scotland, registered a new April minimum, albeit in a short record (from 1993). In contrast, notably high levels were observed in the slowly-responding Nuttalls Farm borehole in Shropshire. Overall, the status of groundwater resources is typical of the late spring, but a warm, dry summer, with associated high SMDs, may delay the onset of the seasonal recovery in the autumn.

Rainfall accumulations and return period estimates

Area	Rainfall	$\begin{gathered} \text { Apr } \\ 2009 \end{gathered}$	Feb 09	- Apr 09	Nov 08	- Apr 09	Aug 08	- Apr 09	May 08 -	r 09
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 45 \\ & 74 \end{aligned}$	$\begin{array}{r} 137 \\ 69 \end{array}$	5-10	381 80	5-10	$\begin{aligned} & 716 \\ & 100 \end{aligned}$	<2	$\begin{aligned} & 949 \\ & 105 \end{aligned}$	2-5
North West	mm	52	143		458		983		1259	
	\%	72	58	10-20	74	5-15	101	2-5	103	2-5
Northumbrian	mm	38	125		327		712		953	
	\%	66	66	5-10	74	5-15	105	2-5	110	2-5
Severn Trent	mm	42	111		313		600		796	
	\%	75	64	5-10	80	$5-10$	101	2-5	104	2-5
Yorkshire	mm	37	114		310		620		845	
	\%	63	61	10-20	72	10-20	95	2-5	101	2-5
Anglian	mm	18	103		259		460		625	
	\%	39	79	2-5	88	2-5	101	2-5	104	2-5
Thames	mm	34	126		323		525		743	
	\%	67	82	2-5	91	2-5	97	2-5	106	2-5
Southern	mm	40	153		399		617		809	
	\%	76	90	2-5	95	2-5	98	2-5	103	2-5
Wessex	mm	42	153		395		672		923	
	\%	79	80	2-5	86	2-5	99	2-5	108	2-5
South West	mm	84	223		556		963		1300	
	\%	120	82	2-5	82	2-5	99	2-5	109	2-5
Welsh	mm	74	173		549		1097		1398	
	\%	89	59	10-20	75	10-20	100	<2	104	2-5
Scotland	mm	81	305		756		1255		1496	
	\%	100	97	2-5	97	2-5	104	2-5	102	2-5
Highland	mm	87	426		1028		1564		1791	
	\%	93	112	2-5	108	2-5	109	5-10	103	2-5
North East	mm	42	205		462		783		977	
	\%	61	93	2-5	88	2-5	97	2-5	95	2-5
Tay	mm	69	224		578		999		1216	
	\%	102	80	2-5	84	2-5	96	2-5	94	2-5
Forth	mm	49	166		428		900		1126	
	\%	80	69	5-10	72	10-20	98	2-5	98	2-5
Tweed	mm	40	155		398		850		1113	
	\%	66	73	5-10	78	$5-10$	108	2-5	111	5-10
Solway	mm	88	228		663		1281		1563	
	\%	11.	76	2-5	89	2-5	109	5-10	109	5-10
Clyde	mm	121	333		852		1463		1759	
	\%	136	91	2-5	92	2-5	101	2-5	100	<2
Northern Ireland	mm	109	207		500		966		1182	
	\%	164	87	2-5	88	5-10	110	5-10	108	2-5

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and derived following the method described in: Tabony, R. C. 1977, The variability of long duration rainfall over Great Britain. Met Office Scientific Paper no. 37. The estimates reflect climatic variability since 1913 and assume a stable climate. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. All monthly rainfall totals since September 2008 are provisional.

Rainfall... Rainfall...

February - April 2009

MORECS Soil Moisture Deficits *

November 2008 - April 2009

Met Office Spring / Summer

 2009 forecast
Met Office

Forecast for the Spring 2009:
issued 23 April 2009
Temperature
UK temperatures for the rest of spring are likely to be either near or above average.

Rainfall

UK precipitation is likely to be average or below average.
Forecast for the Summer 2009:
issued 30 April 2009
Temperature
For the UK and much of Europe temperatures are likely to be above average.

Rainfall

For the UK and much of northern Europe rainfall is likely to be near or below average. A repeat of the wet summers of 2007 and 2008 is unlikely.
Average or below-average rainfall is also likely over eastern Europe.

Updates and reviews of the forecast
The summer forecast will be updated by 11 a.m. on 28 May 2009.

For further details please visit:
http://www.metoffice.gov.uk/science/creating/monthsahead/seasonal/2009/summer.html

River flow . . . River flow

Based on ranking of the monthly flow*

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to May 2008 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

	River	\%lta	Rank		River	\%lta	Rank		River	\%lta	Rank
a)	Forth	62	3/28	a)	Teifi	51	=1/49	b)	S Tyne	74	4/47
	Tweed (Boleside)	57	4/49		Dee (Manley Hall)	46	1/72		Yscir	67	2/36
	Tyne (Bywell)	61	5/52		Ribble	38	1/49		Luss	73	2/30
	Dove	61	3/48		Lune	50	1/49		Faughan	80	5/33
	Severn	49	7/88		Eden	59	4/42		Bush	83	4/35
	Wye	55	6/73		Annacloy	72	$3 / 30$		Lagan	64	2/36
	Cynon	53	3/51								
						6		lta $=$ long term average Rank $1=$ lowest on record			

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels April / May 2009

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Well House Inn West Woodyates

Level Date Apr. av.

 20.06 16/04 46.63 01/05 82.08 29/04 $25.72 \quad 17 / 04 \quad 25.67$ $136.52 \quad 29 / 04 \quad 137.54$ 98.02 27/04 97.12 $84.83 \quad 30 / 04 \quad 88.43$Borehole
Chilgrove House Killyglen (NI) New Red Lion Ampney Crucis Newbridge Skirwith Swan House

Level	Date	Apr. av.	Borehole	Level	Date	Apr av.
48.87	$30 / 04$	52.25	Brick House Farm	13.43	$23 / 04$	13.34
114.86	$30 / 04$	114.92	Llanfair DC	80.09	$15 / 04$	80.06
15.76	$30 / 04$	16.34	Heathlanes	62.49	$09 / 04$	62.04
100.46	$29 / 04$	101.71	Weeford Flats	90.40	$14 / 04$	89.86
9.92	$01 / 05$	10.56	Bussels No.7a	24.27	$16 / 04$	24.16
130.94	$30 / 04$	130.65	Alstonfield	183.94	$07 / 04$	193.33
85.72	$20 / 04$	85.67	Levels in metres above Ordnance Datum			

Groundwater . . .Groundwater

Groundwater levels - April 2009

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes:
i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are received quarterly.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2009	Apr	May	May Anom.	Min May	Year* of min	$\begin{gathered} 2008 \\ \text { May } \end{gathered}$	$\begin{array}{r} \text { Diff } \\ 09-08 \end{array}$
North West	N Command Zone	- 124929	87	85	80	-9	74	2003	91	-11
	Vyrnwy	55146	92	94	85	-8	70	1996	99	-14
Northumbrian	Teesdale	- 87936	91	96	95	4	74	2003	97	-2
	Kielder	(199175)	(90)	(90)	(90)	-1	(85)	1990	(93)	-3
Severn Trent	Clywedog	44922	87	95	97	0	85	1988	100	-3
	Derwent Valley	39525	94	95	84	-9	54	1996	99	-15
Yorkshire	Washburn	22035	95	93	86	-4	76	1996	96	-10
	Bradford supply	41407	97	94	85	-6	60	1996	96	-11
Anglian	Grafham	(55490)	(94)	(95)	(95)	1	(73)	1997	(96)	-I
	Rutland	(116580)	(91)	(93)	(90)	-2	(72)	1997	(93)	-3
Thames	London	- 202828	95	97	98	4	86	1990	90	8
	Farmoor	13822	86	100	95	-2	81	2000	96	-I
Southern	Bewl	28170	88	92	90	0	63	1990	98	-8
	Ardingly	4685	100	100	100	0	98	2005	100	0
Wessex	Clatworthy	5364	100	98	84	-9	81	1990	94	-10
	BristolWW	- (38666)	(98)	(97)	(92)	-1	(85)	2005	(96)	-4
South West	Colliford	28540	100	100	100	15	56	1997	91	9
	Roadford	34500	97	95	92	7	41	1996	93	-1
	Wimbleball	21320	100	100	96	2	79	1992	99	-3
	Stithians	5205	100	96	96	6	65	1992	88	8
Welsh	Celyn and Brenig	- 131155	99	100	99	2	75	1996	100	-1
	Brianne	62140	96	97	95	-2	86	1997	100	-5
	Big Five	69762	93	95	89	-4	85	1997	96	-7
	Elan Valley	99106	97	98	94	-3	87	2003	99	-5
Scotland(E)	Edinburgh/Mid Lothian	97639	99	100	98	5	62	1998	99	-1
	East Lothian	- 10206	99	99	100	2	89	1992	100	0
Scotland(W)	Loch Katrine	- 111363	89	98	93	1	83	2001	90	3
	Daer	22412	99	99	97	1	89	2003	97	0
	Loch Thom	- 11840	94	96	96	1	88	2003	91	5
Northern	Total ${ }^{+}$	- 61600	93	87	92	5	77	2007	83	9
Ireland	Silent Valley	- 20634	91	82	84	2	58	2000	82	2
0 figures in parentheses relate to gross storage		- denotes reservoir groups		+excludes Lough Neagh			*last occurrence			

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2008 period except for West of Scotland and Northern Ireland where data commence in the mid-1990's. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision). Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
The monthly rainfall figures are provided by the Met Office (National Climate Information Centre) and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

For further details please contact:
The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB

Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491838800
Fax: 01491692424
E-mail: nrfa@ceh.ac.uk
Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.
(i) Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
(ii) Land and Property Services data. © Crown copyright and database right, S\&LA 145.
(iii) Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © NERC (CEH) 2009 unless otherwise stated and may not be reproduced without permission.

