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Abstract: 

Photovoltaics (PVs) provide new opportunities for radial distribution systems (RDSs) 

that feed electric vehicle charging stations (EVCSs). However, the accurate assessment of 

the combined technical impact is problematic because of the uncertainties of 

sources/loads. In previous research, we developed a technique to assess the impact of PV  

generation. This new study presents a general analytical technique (GAT) that evaluates 

the combined impact for an extended time frame. Specifically, the GAT effectively 

assesses the fulfilment of technical requirements for weekly RDS operating variables as 

specified in regulations. As our main objective is to improve the assessment accuracy of 

the EV and PV interaction in RDSs, the weekly assessment was extended to a one-year 
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time period, during which it is possible to capture the total uncertainty. Also, correlation 

of input variables is handled.  

The computational cost of the GAT is lower than that associated with Monte-Carlo 

simulation, which is used to confirm the GAT accuracy. Although the results focus on an 

RDS located in Spain, GAT is applicable to any RDS and is scalable to different 

penetration levels. The numerical results show the impact of different correlated and non-

correlated case studies on the voltage profile, apparent power flow in lines, and real loss. 

Keywords: Distribution system; electric vehicle charging station; photovoltaic power 

system; probabilistic load flow; probability density distribution; uncertainty. 

Nomenclature 

List of symbols 

ii
a  real constants  

C (1)3  multivariable input random variable of the RDS 

COP Copula 

d any given day of the week ( 1,...,7)d =  

d daily distance covered by an EV  

rd  maximum range of an EV  

( )E E'  initial SOC of the battery at the beginning of a recharge cycle, being ( ) the 1d L  

the distance covered by the EV   

E discrete SOC of the battery   

( )
i

fC iC PDF of the continuous univariate random variable iC  

( )*f
iC iC PMF-of-the-discrete-univariate-random-variable

iC   

( )
i

FC iC CDF of the univariate random variable 
i

C  ( ) ( )( ))



−

= i
F f d

iC i C i iC C C  

 

3(1) Bold letters are used to random variables  
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1

i
F −

C   inverse distribution function of the univariate random variable 
i

C   

( )g '
k

'

kt
t PDF of the random variable EV parking duration   

ijG  ( )ijB real (imaginary) part of the element in the bus admittance matrix 

g_βG   global irradiance on a  tilted surface 

' ( )G
k

'

kt
t CDF of the random variable EV parking duration  

gH  ( )
d

H global (diffuse) irradiation 

( )h
kt kt PDF of the random variable charging start time of the  EV battery  

i, j, k  any given number  

( )K C
 cumulant-generating function of random variable C 

d
k  hourly diffuse fraction 

t
K   daily clearness index 

iL (
il ) distance-travelled-of-the-ith-trip-for-an-EV-in-km-(p.u.) 

( )M C
 moment-generating function of random variable C 

m any given month ( 1,...,12)m =  

n any given RDS node  

nn  number of RDS nodes  

cln  any given commercial load node of the RDS  

evn  number of RDS nodes with EV  

fn  number of lines of the RDS  

iln  any given industrial load node of the RDS 

ln  number of RDS nodes with load  

sn  sample size 

kpn  any given RDS node with a representative parking lot  

pvn  number of RDS nodes with a PV unit  

rln   any given residential load node of the RDS  

rvn  random variable number 
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cN  number of 10-min intervals required for full charging process of the EV battery  

evP  discrete charging power level of the EV battery  

ievP  charging power of an th single EVi  

 evP  continuous charging power of the EV battery  

( )g gP Q real (reactive) generation power of a traditional generator 

loss 
P  total real loss in the RDS   

( )l lP Q real (reactive) load power  

pvP  PV power  

tevP  total charging power for a given set of EVs  

q any given10-min interval in a day ( 1,...,144)q =  

r any given number  

f,i - jS  apparent power flow in line connecting node i and j 

kt   charging start time of the EV battery 

'

k
t  EV parking duration in which the  EV battery is charged  

 xt  th 10- min intervalx  

1t    internal time in a full charging process of the EV battery   

2t    time required for a full charging process of the EV battery  

( )
ii CU U univariate uniform distribution (associated with random variable )iC  

iV  voltage magnitude at node i 

iCW  univariate standard normal distribution associated with random variable 
i

C  

x any given number  

X   RDS  state variables (nodal voltage angles and magnitudes) 

T[ , , , , ,..., , ] ; 1,...,j nj n   =1 1 2 2 jX = V V V  

*
X   RDS  output variables (apparent power flows in lines and total real loss in the 

RDS)  * T[ , ,..., , ] ; 1,..., 
k fk n=

1 1 2 2 kf,i - j f,i - j f,i - j lossX = S S S P  

Z  RDS operating variables  * T T[ ] [ , ,..., ] ; 1,..., 2 + +  n fj n n 1= = 1 2 jZ = X  X Z Z Z   
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...
r

i ri i

C
 th -order moment of the random variable r C  

,  GAT

r

1...1
m

nV

, ( ) MCS

r

1...1
m

nV
th order moment of the RDS operating variable  obtained by the -r m

nV

(GAT) MCS   



 r

1...1
m

Vn

 individual relative error of the th order moment of the  RDS operating variable  -r m

nV  

...
r

i ri i

C
 th order cumulant of the random variable -r C   

  number of EVs in a given set  

d
  expected value of the random variabled 

pvξ   PV  cell electrical efficiency  


i jC ,C   correlation coefficient in matrix C

 

 d
  standard deviation of random variable d 

C
 ijth correlation matrix of multivariate random variable C  

i  singleton probability for an th single EVi  

  CDF  of the univariate standard normal distribution 

1 −
  inverse of the univariate standard normal distribution  

  weight  

ij   phase angle of voltage from node i to j 

Subscripts 

ev electric vehicle  

l  load  

n th RDS noden  

cln   th commercial load node of the RDScln   

fn  number of RDS lines  

iln   th industrial load node of the RDSiln   

nn  number of RDS nodes  

kpn   th RDS node with a parking lot
kpn   

rln   th residential load node of the RDSrln   
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pv  photovoltaic  

q th 10-min interval in a dayq  

 xt   th 10-min interval ( ) xx t  

Superscripts 

d th day of the weekd  

m th monthm  

Abbreviations  

CDF   cumulative distribution function  

EVCSs electric vehicles charging stations  

GAT  general analytical technique  

MCS  Monte Carlo simulation  

PDF   probability density function  

PMF   probability mass function  

PLF   probabilistic load flow 

PRLF  probabilistic radial load flow  

PV  photovoltaic  

RDS  radial distribution system  

SOC  state -of -charge  

1. Introduction 

The development of electric vehicles (EVs)  is currently driven by the need to decrease 

reliance on foreign oil supplies and CO2 emissions [1,2]. However, their large-scale use 

involves the massive integration of EVCSs  in traditional RDSs.  This integration involves 

numerous technical challenges [3,4]. One of the most important challenges concerns the 

heterogeneous sources that generate the power for EVCSs.  CO2 emissions can be reduced 

by the inclusion of renewable power in these RDSs  [1,2,4] (e.g. PV  power). Although 

renewable power in RDSs  with EVCSs  makes the generating system more sustainable 

[3,4], the assessment of this interaction is problematic because of the inherent 



 

7 

 

uncertainties associated with the sources/loads involved. Precisely for this reason, this 

issue has not as yet been successfully addressed. Moreover, the uncertainty parameters 

may have a considerable level of correlation. 

Many probabilistic studies have analysed the potentially negative technical impacts of 

EVCSs  on RDSs  such as the following: (i) transformer and cable thermal loading [5-

10];678910(ii) stability and node voltage profile [5,8,11-17];121314151617(iii) power line losses [5,10,15]; 

(iv) system power demand [9,14-18192021]; (v) system reliability and costs [22-2324]; (vi) 

harmonics and unbalance [10]. Similar probabilistic work analysed how PV  units 

produced various adverse technical impacts on RDSs  [20,25-262728].  

Until now, the negative technical impacts of EVCSs  or PV  units have been minimized 

by demanding interconnection requirements (EVCS  [4] and PV  [29]), which are based 

on probabilistic assessments for worst-case scenarios, i.e. peak load or any other 

representative snapshot (e.g. PV  units [30-3132]). These probabilistic assessments limited to 

one or only a few snapshots provide the statistical characterization (PDF-and-CDF) for 

each snapshot or time interval; however, they do not reflect the aggregated statistical 

behaviour over a longer time period [33].  

An accurate assessment of the technical impact of EVCSs and PV units on RDSs 

should include the investigation of all possible inputs. This is only possible if an 

aggregated approach of multiple snapshots is used. In fact, the current statistical 

characterization of time-variant variables in regulation [34,35] for RDSs is performed 

from the aggregation of actual stochastic values in each time subinterval of a given time 

frame (usually 10-min intervals(2)4over a one-week time period). This provides a single 

 

42  The thermal effects of overload are related to the 10-min load level. 
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statistical index [36] that is compared with a regulation limit (e.g. node voltage [34], cable 

thermal limit(3)).5  

A review of the literature [5-28] indicates that the accurate assessment of the EVCS 

and PV impact has still not been performed from a probabilistic perspective. Thus, major 

shortcomings found include: (i) a time interval that is not adjusted to the 10-mins required 

in regulations [34,35] (e.g. 1 min [11], 0.5 h [17], 1 h [5-6789,12-1314,16,17-26,28]);1819202122232425(ii) a 

time frame restricted to a low number of hours/days, which leads to an inaccurate 

assessment (e.g. 1 h [25,26], 3 h [11], 1 day [5,8,9,11,13-1415161819,21-22231724,28], 2 days [6,7], 7 

days[20], and 25 days [12]); (iii) assessment of technical impacts without considering their 

probability of occurrence as stated regulations [34,35]; in other words, the probability 

distribution of RDS  operating variables was not calculated (usually averaged values [6-

19,21,22,24]); (iv) the correlation of the input variables is rarely considered [17,20,25,27]; 

(v) the statistical behaviour aggregated in longer time frames has not been investigated, 

especially when this is the most important shortcoming to be surmounted. 789101113141516181920222324 

Various methods of probabilistic load flow (PLF) have been presented in literature to 

evaluate the impact of the input uncertainties in power systems. Of these methods, the 

most frequently used are: (i) MCS  [5-6789,11-18,22];121314151617(ii) Latin hypercube sampling [25]; 

(iii) analytical techniques (e.g. fast Fourier transform and cumulants method combined 

with series expansion [26,27]); and (iv) point estimate methods [16]. The first two are 

relatively computationally expensive and time-consuming, when compared with the other 

two. In previous research [27], we developed an analytical technique for RDSs  that was 

computationally more effective than the mainstream MCS  [37], and which was just as 

accurate. Firstly, linear models were defined to handle the nonlinearities of the power 

 

53 Specific standard for each cable. 
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system with a lower computational burden. Then, convolution techniques [38-3940] were 

implemented to obtain the statistical information of RDS operating variables. Finally, 

Cornish-Fisher expansion [41,42] estimated their statistical characterization. However, 

this research was specifically conceived for RDSs  with correlated PV units and loads. 

Furthermore, it was only able to evaluate the technical impact for one 10-min interval and 

did not take into account longer time simulations.  

This new study further develops the research in [27] and presents an innovative GAT  

that provides the accurate assessment of the combined technical impact of EVCSs  and 

PV  units on RDSs . As main goal, the method in GAT pursues to overcome each of the 

shortcomings previously highlighted. Thus, GAT carries out this impact assessment in a 

time frame that covers a one-year period, with a weekly assessment on a 10-min basis 

each month of the year. In this way, GAT is able to accurately capture the effects of the 

daily/weekly/monthly variability of input random variables. Besides, GAT takes account 

of correlation of input variables and provides probability distributions for RDS operating 

variables. In short, new contributions with respect to previous research in [27] and 

technical literature are the following: (i) an improved probabilistic model of the EV  

charging load at home and the development of this probabilistic model for parking lots; 

(ii) an innovative GAT  that manages stochastic time series of the node and EV charging 

load as well as the PV  generation for a one-year period with an affordable computational 

burden; and (iii) the comparison of different case studies where the interaction of 

renewable power (specifically PV ) with EVCSs  in RDSs  affords a better understanding 

of its single or combined technical impact.  

The rest of the paper is organized as follows: Section 2 presents the statistical 

background; Section 3 describes the probabilistic models; Section 4 presents the 

correlation of input variables; Section 5 outlines the GAT  used to evaluate the weekly 
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operating variables in RDSs  throughout the entire year; Section 6 describes the proposed 

test system; Section 7 presents the simulation results; and finally, Section 8 gives the 

conclusions that can be derived from this study. Additionally, the appendices clarify 

technical details. 

2. Statistical background: moments and cumulants 

For a better understanding of the proposed GAT, this section provides a short 

introduction to probability theory, which also justifies the use of moments and cumulants. 

For more details, references [38,43] can be consulted. 

The moments of a random variable are a set of descriptive constants of its probability 

distribution which are useful for measuring its properties and, in certain circumstances, for 

specifying it [38,42,43]. However, they are not the only set of constants for the purpose, or 

even the best set. Another series of constants, the so-called cumulants, have properties 

which are more useful from the theoretical standpoint. 

Let C be a random variable, whose components are , ,..., ,
rv1 2 nC C C  with PDF ( )fC C , or 

PMF ( )*fC C . Then, the moment of order one, two, and so on about the origin are defined as 

[38,42,43]: 

21

...

...

=E ;          =E ;          =E ...    

                -continuous case-                         -discrete case-

= ... ...

  




−

    
    



r

i ji i r

i i j i r

r

i r

i

i ii i i

i i i i i

r
i i

i i

C C C C C

C C

C C C

C ( ) ( )... *

1 1

;          = ... ...
  

= =−

  
r

i r

r 1 r

i r

r
i i

i i

i i

f d C C f
C C C

C C C

 (1) 

Superscripts denote components and not powers. These indices need not take on 

distinct values and there may, of course, be more than rvn  indices, implying repetitions. 

Thus, e.g., i ii i
C

 is the mean square of 
ii

C  and j j ji i i
C

 is the mean cube of
jiC , the 

ji -th 

component of C.  
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In probability, it is convenient the use of the moment-generating function because it 

encodes the moments of a distribution in its MacLaurin expansion. This characteristic 

function , ( ),M C
 associated to a random variable C is defined as: 

( ) E   =  M e C

C  (2) 

 The MacLaurin expansion is as follows: 

( ) 1 + /2!+ /3!+ /4! ...,i j i j k i j k li

i i j i j k i j k l

i i i i i i i i ii

i i i i i i i i i iM               = + +
C C C C C  (3) 

which can be assumed convergent for all   sufficiently small. The moments are just the 

partial derivatives of ( )M C
 evaluated at 0 = . 

The moments of a given component of C gives information regarding the shape of the 

marginal distribution of that component. The cross moments measure anisotropy. 

The cumulants of a distribution are a set of constants that provide an alternative to the 

moments to its characterization [43]. Unlike the moments, these cumulants are not directly 

ascertainable by summatory or integrative processes -as in (1)-. To find them it is thus 

necessary either to find the moments and employ relationship formulas [38,42,43] or to 

derive them from the cumulant-generating function that is defined as: 

( ) log ( )K M =C C
 (4) 

which has an expansion: 

( ) 1 + /2!+ /3!+ /4! ...,i j i j k i j k li

i i j i j k i j k l

i i i i i i i i ii

i i i i i i i i i iK               = + +
C C C C C  (5) 

The cumulants in the expansion, denoted by ,ii
C ,i ji i

C

i j ki i i
C

and so on, are just the partial 

derivatives of ( )K C
 evaluated at 0 = .  

Roughly speaking, mixed cumulants have an interpretation in terms of dependence or 

independence: univariate cumulants have a simple interpretation in terms of the shape of 

the marginal distribution. The first cumulant is the mean or expected value, the second 
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cumulant is the variance, and the third cumulant is a measure of asymmetry. Mixed 

cumulants could be interpreted in terms of the shape of the joint distribution. Besides, 

when random variables can be partitioned into different independent blocks, then all 

mixed cumulants involving indices from different blocks are zero. 

The proposed GAT (see Section 5), in a first stage is used to concisely model and 

characterize input random variables as well perform load-flows in an RDS to determine its 

output random variables. This is accomplished by applying linearized load-flow equations, 

and finally reconstructing distributions through the use of approximations. For calculation 

purposes, the GAT must know the moments and cumulants of the random variables. 

Nonetheless, the GAT works better with cumulants than moments for the following 

reasons [38]:  

• Most statistical calculations with cumulants are simpler than calculations with 

moments. This is the case when determining the cumulants of output variables from 

the cumulants of input variables subject to linear transformation [38] (Appendix C). 

• The Cornish-Fisher expansion used for approximations to the distributions is best 

expressed with cumulants. 

• When approximate normality is involved, higher-order cumulants can usually be 

neglected but not higher-order moments. 

3. Probabilistic models 

3.1. PV power model 

The probabilistic PV  power model in [27] is specified for 10-min intervals. Thus, the 

meteorological random variables involved for each nth RDS node ( ),pvn= 1,...,n  mth 

month, and xth 10-min interval ( )xt are the global and diffuse irradiation ( ,   ).
x x

m m

g,n,t d,n,tH H  
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Global irradiation 
x

m

g,n,tH  is obtained from the variable, daily clearness index 
m

t,nK [26,27], 

whereas diffuse irradiation 
x

m

d,n,tH  is obtained from the variable, hourly diffuse fraction

m

d,nk  [26,27]. Both irradiations are used to build the new random variable, global irradiance 

on a -tilted surface for each nth RDS node, mth month, and xth 10-min interval

( )  xt  x

m

g_ ,n,tG . Subsequently, the PV  random power  x

m

pv,n,tP for each xth 10-min interval

( ),  xt mth month, and nth RDS  node ( )pvn = 1,...,n  is obtained from the global irradiance 

on a -tilted surface and the PV cell electrical efficiency
x

m

pv,n,tξ , which depends on the 

global irradiance. The variables  x

m

pv,n,tP form the vector
x

m

pv,tP T(= [ , ,..., ] ).   x x pv x

m m m

pv,1,t pv,2,t pv,n ,tP P P  

The cumulant method [38] (Appendix C) is applied to obtain the cumulants of the 

random variable  x

m

pv,n,tP  from those of
m

t,nK  and .m

d,nk  Then, series expansion [26,27] 

provides the statistical characterization (PDF, CDF) of the PV random power .
x

m

pv,tP  

3.2. Load model 

Currently, certain distribution network operators are involved in the massive 

deployment of smart meters in RDSs  to measure the electrical load. Accordingly, the 

stochastic load model in this research is directly based on smart meter measurements over 

a period of several years, i.e. historical data [26,27]. This makes it possible to statistically 

characterize (PDF, CDF)  a typical load profile, real and reactive load power,

T(  [=( ,..., ) ],
l, t  l, 1,t  l, n ,t  x x xl

d,m d,m d,m
P P P

T [=( ,..., ) ])
l, t  l, 1,t  l, n ,t  x x l x

d,m d,m d,m
Q Q Q  for each xth 10-min interval ( ), xt dth 

day of the week, mth month, and nth RDS  node ( )ln= 1,...,n . This approach makes it 

possible to build an actual load profile (see [26,27]) by extracting all of the exogenous 
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information, namely atypical data (e.g. official holiday, important events, etc.) and 

weather data. 

3.3. Model of EV charging load 

3.3.1. Modelling of the stochastic nature of EV charging load 

Three random variables are required to determine the charging demand of a single EV  

at any instant: (i) the charging start time ( ) kt [18,19]; (ii) the initial state-of-charge (SOC)  

of the battery (E) [18,19]; and (iii) parking duration in which the EV battery is charged 

'( ).
k

t  Moreover, this charging demand depends on the EV  battery charging characteristics, 

which may vary, depending on battery type and charging mode [44]. Nowadays, most EVs 

on the market use lithium-ion batteries [45]. Their generic charging profile and related 

battery SOC  are shown in Fig. 1 [18,46]. 

 

Fig. 1. Generic charging profile and SOC of a lithium-ion EV battery. 

Table 1 shows the typical duration values of the charging process for an EV  with a 

typical battery pack of 25-kWh for the four EV  battery charging modes in [47]. 
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Table 1 

 Parameters of EV battery charging profile. 

 

 

 

The initial SOC of an EV  battery depends on the use of the EV  and can be regarded to 

be a random variable, depending on the distance travelled. Usually, the random variable 

distance d is represented by a lognormal type distribution [6,17-1819] with zero probability 

of occurrence for all negative distances. The PDF  is given by: 

2

2

(ln )

21
( ; , ) ;      0 

2
f e



 
 

−
−

= 


d

d

d

d d d

d

d d
d

 (6) 

The random variable, initial SOC of EV  battery E, at the beginning of a recharge 

cycle can be expressed by: 

1 ;      0 r

r

d
d

= − 
d

E d <  (7) 

Considering (6) and (7), the PDF  for the random variable E is: 

2

2

[ln(1- )+ln - ]
-

21
( ; , )= ;      0< <1

(1- ) 2

rd

f e



 
 

d

d

E

E d d

d

E E
E

 (8) 

To assist calculations, the continuous charging power  evP shown in Fig. 1 is discretized 

into predefined 10-min intervals. The corresponding discrete charging power level
jevP for 

the jth 10-min interval (associated with time  jt ) can thus be expressed by: 

1
1

1
( ) ;      1  

j

j
j

t

ev ev c
t

j j

P P t dt j N
t t −



−

=  
−    (9) 

Mode #1 #2 #3 and #4 

Continuous charging 

power (  evP ) 3.5 kW 6.6 kW 40 kW 

t1  [a] 6.3 h 3.6 h 0.50 h 

t2  [a] 8 h 4 h 0.75 h 

Nc [b] 48 24 5 [b] 

[a] Times according to Fig. 1; [b] Rounded upwards because charging time is a decimal 
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Based on the discrete charging power level ,
jevP  it is possible to obtain the 

corresponding discrete SOC of the battery 
jE  before charging starts at each 10-min 

interval (Fig. 1). Thus, when an EV  battery with a SOC jE  is charged at time  ( ),j xt t= its 

charging power is .
jevP  If the charging process starts at an earlier time  x kt −

of  , ( ),jt k x

then at time  kt , the SOC is 
j-(x-k)E  and the charging power level is

( )
.

j x kevP
− −

 The charging 

power 
jevP at any xth 10-min interval (associated with time )xt  could be caused not only by 

the charging process starting at time  xt with a SOC jE  but also by those starting at any 

earlier time  ( )x kt k x−   with a lower SOC j-(x-k)E . 

Generally speaking, the random variables, charging start time ,kt and initial battery 

SOC E are independent [18,19]. Consequently, the singleton probability 
i that random 

variable ,  
i x

d,m

ev ,n,tP the charging power of an ith single EV  at any dth day of the week, mth 

month, xth 10-min interval ( )xt , and nth RDS  node ( )evn=1,...,n will operate at 

charging power level 
jevP can be expressed as: 

, ,

, , ,

1

'

( ) ( ) ( ) ;

1  44;   ; - ;  

'
k

m '
kt ,n

× 1-G (t )
=

 = 
 

   = 

   

 

   -       

x j

x
d m d m

i n t ev n

k

c

P f h

N x x k j x j

kE j-(x-k) t k

k x k

E t

t t t

 (10) 

 The term
,

1- ( )m

n
G '

k

'

kt
t  represents the probability that the vehicle is still in the parking lot 

and is being charged though the charging event began at an earlier time.  

From (1) and (10), the moment of order r of the random variable 
,i x

d,m

ev n,tP can be 

obtained by: 
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, ,

, , , ,

1 1 1

... ... ( ) ( )  
 

= = =

=    =   
r c

j j x j j x j
i

r r
N

1...1 d m r d m

ev ev i t n ev ev i t n ev

j j j

P P P P Pd,m
ev ,n,tx

P
 (11) 

However, when the number of EVs increases (random variables), according to the 

Central Limit Theorem, the distribution of the sum of these random variables tends to a 

normal distribution with rth-order moments, regardless of the original probability 

distribution. Thus, for a set  of EVs with the same battery-charging profile, the non-

crossed r-order moment of a normal random variable representing the total charging 

power
x

d,m

tev,n,tP  is: 

,

, ,

1 1

( )


   
= =

=  = 
r rc

j x j
i

N
1...1 r d m 1...1

ev i t n ev

i j

P Pd,m d,m
tev,n,t ev ,n,tx x

P P
 (12) 

3.3.2. Charging demand of a single EV in households 

Much research has focused on the coordinated charging of EVs [18]. Typically, the 

conclusion is that the electricity tariff structure determines the most economical start time 

for EV  battery charging.  

3.3.3. Parking patterns 

 Three random variables are used to stochastically model a realistic parking pattern that 

defines vehicle arrival at the parking lot (start of the charging process), parking duration in 

which the EV  battery is charged, and finally, the distance travelled at its arrival. A 

representative case approach is followed since even though there are detailed vehicle 

mobility models [48], they usually do not include any mobility/parking pattern 

information. 

To assess the stochastic behaviour of a large number of vehicles that can stop at a 

parking lot, it is assumed that all vehicles travel from a starting point (i.e. home or parking 

garage) with a given initial SOC and that the route finishes at the same point. This route 
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usually has three sequences (trips) and two stops, one of which is a long stop at a parking 

lot to recharge [11,14,65]. This stop may be at the end of the first or second trip. The first 

trip always begins at home (distance travelled ,  km);1L  the second trip is between the 

first and second stop ( ,  km);2L  and the third trip finishes at the end point ( ,  km).3L

Vehicles could arrive at the parking lot at the end of the first or second trip. The route 

assumption continues to be the same but with the added consideration that the first two 

trip lengths are random variables (  and )1 2l l with normal distributions, and the PDFs are

( ) ( ),  f f
1 2l 1 l 2l l  (Fig. 2). The first trip length ( )1l  ranges from 0 to 1 p.u. of the entire 

daily driving distance d. Therefore, this length  (km)1L is a new random variable which is 

given by: 

= 1 1L d l   (13) 

Consequently, the random variable, initial SOC of EV  battery arriving at parking lot 

,E'  is: 

1 ; 0      r rd d= −    1 1E' d l d l  (14) 

The second trip length ( )2l  ranges from 0 to 1 p.u. of the rest of the travel (1- )1l . 

Consequently, the PDF of the second trip length is depends on the first trip. The length of 

the third trip is no longer a variable when the first two parts are determined ( =1- - ).3l 1 2l l  

Any correlation can be inferred between the random variables, total and partial length 

travelled. Therefore (14) can be linearized [49] in order to apply the cumulant method [38] 

(Appendix C), which can be used to obtain the cumulants [43] (statistical information) of 

the new random variable E' .  
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Fig. 2. PDF for the first and second trip length of an EV. 

A binary variable is used to locate the long parking stop at the end of the first or second 

trip. When two sequences are involved, a new random variable, aggregated length (i.e. 

linear combination of two independent random variables) must be accounted for.  

Since certain municipal/private parking lots have smart meters that record whether 

vehicles are entering or exiting, it was possible to calculate the number of incoming and 

outgoing vehicles for the entire day. This gave a statistical characterization of vehicle 

arrival (incoming vehicles) at the parking lot, based on measurements obtained over 

various years with smart meters. Accordingly, the PDF  of the vehicle arrival model 

,

, ( )
pk

d m

nh
kt kt was modelled as a Gaussian random variable at each th

kpn  representative 

parking lot, which changes each dth day of the week, mth month, and kth 10-min interval 

( ).kt  Similarly, the PDF CDF)(  of the random variable ,'

k
t  parking duration at each th

kpn

representative parking and the mth month 
,

( )
p

k

m

n
g '

k

'

kt
t

,
( ( ) )

p
k

m

n
G '

k

'
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4. Characterization of the correlation among input variables 

RDS input variables may or may not be correlated with each other. Generally speaking, 

correlation is stated through the correlation coefficient matrix C
. The ijth element of C

 

is the correlation coefficient6


i jC ,C

(4):50 

( )( )ECov ( ) i j
i j

C C 


   

 − −
 =

i j

i j

i j i j

C C

C ,C

C C C C

C ,C
=  (15) 

For the RDS nodes, the load correlation due to cyclic-human activities is reasonable 

[51]. PV powers are also correlated because of common factors such as weather conditions 

[52]. 

When the individual random variables of interest have different marginal distributions, 

a multivariate joint distribution function can be created using a copula function [53,54], 

which represents the correlation structure between variables. A copula is a function that 

joins univariate distribution functions to form multivariate distribution functions. Thus, 

the random variables ,iC ( 1,..., ),rvi n=  with CDFs ( ) ,
i

FC iC  are joined by copula COP if 

their joint distribution function , ,...,COPF F=
1 1 nrv

C C C  can be expressed as: 

1 1 1

, ,...,( , ,..., ) [ ( ), ( ),..., ( )]COPF F F F F− − −=
rv 1 2 n 1 2 n rvrv rv

1 2 n C C C C 1 C 2 C nC C C U U U  (16) 

4.1.1. Generation of correlated input samples using a Copula function 

The method used to generate correlated inputs is based on the generation of 

multivariate correlated random numbers [53,54]. These numbers are used to numerically 

obtain both the non-crossed and crossed moments/cumulants required in the-GAT, and 

 

46  The rank correlation measures the monotonic relationship between the variables for non-normal marginal; it should be used as a 

more accurate measurement of correlation [50]. 
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also to run the MCS process that checks the results of the GAT. Summarising, the 

methodology in [53,54] is composed of the following steps: 

Step 1)  Transform random variables 
iC to uniform variables using their CDFs:  

( )
i i iF=C CU C  (17) 

Step 2) Transform uniform variables 
iCU  to normal variables using an inverse standard 

normal distribution (Nataf transformation):  

1( )
i i

 −=C CW U  (18) 

Step 3)  Estimate the correlation matrix 
CW

of 
CW  from the known correlation matrix 

C
 of input vector C [55-565758]. The Gauss-Hermite quadrature in [59] can be used 

for this purpose.  

Step 4) Generation of
sn correlated random input samples from a multivariate standard 

normal distribution 
CW with a given correlation matrix 

CW
, forming the arrays 

,
.pv l sn n n

W
+


1C  Each element can be written as .W

1,ijC  

Step 5) Transform the generated values W
1,ijC

 back to the uniform domain 
1CU  by 

applying the standard normal CDF as follows [58]:  

( )W=
1,i 1,iC C

U   (19) 

Step 6) Transform the generated uniform values back to the original domain 1,iC by 

applying the inverse of the respective CDF:  

1( )F −=
i 1,i1,i C CC U  (20) 
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5. General analytical technique (GAT) to evaluate the weekly operating variables in 

RDSs during one year  

Fig. 3 shows a flowchart of the GAT , which is explained in the following sections. 

The GAT calculates the worst weekly statistical characterization (PDF, CDF) of the RDS  

operating variables on a 10-min basis throughout the whole year. The-GAT is designed as 

a two-stage process. 

In the first stage, the GAT determines the statistical characterization (PDF,-CDF) of 

RDS operating variables throughout the whole year by means of a loop. This loop is 

repeated 12,096 times, which corresponds to an assessment based on 10-min intervals for 

seven days of each month. In each iteration, moments and cumulants of RSD input 

variables for a specific 10-min interval are determined. Subsequently, a probabilistic radial 

load flow (PRLF)  together with the Cornish-Fisher expansion is performed for this 

interval.  

In the second stage, the-GAT uses an aggregating method to determine weekly 

statistical characterizations for each month, based on the finite mixture distribution [60]. A 

subsequent inspection during all of the months reveals the worst weekly behaviour for 

each RDS  operating variable. 

5.1. Stage 1: annual assessment 

The main input data are the RDS  data, annual data of random variable d, allocation 

data of EVs to nodes, and for each node, if relevant, the following: (i) monthly data of 

global and diffuse irradiation as well as the monthly PDF  of random variable ;'

k
t  (ii) 

daily PDF  of random variable ;kt  (iii) historical load data for each xth 10-min interval. 
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5.1.1. Determining of moments/cumulants of RSD input variables 

A. Statistical distributions (PDF or PMF and CDF) of input variables. 

 (i) PDF/CDF of PV power at nodes with PV:  

 The monthly data of global and diffuse irradiation make it possible to build the 

PV  power PDF CDF/  throughout the year, according to Section 3.1.  

(ii) PDF/CDF of load power at nodes with load:  

 The load power PDF CDF/ throughout the year is built according to Section 

3.2. 

(iii) PMF/CDF of charging power at nodes with EVs:  

 From the allocation of EVs to different node types, the input data of random 

variables ,  ,  ,'

k k
d  t t  make it possible to build the charging power PMF CDF/ at 

nodes with EVs throughout the year, according to Section 3.3.  

B. Treatment of the correlation of the random inputs  

 Correlated input samples of PV powers and node loads are generated using a copula 

function (see Section 4.1.1.).  

C. Moments and cumulants of RSD input variables. 

 For correlated case studies, the above correlated samples are used to numerically obtain 

the non-crossed and crossed moments/cumulants up to the seventh order (see Section 2). 

However, distributions directly determine the moments/cumulants of the EV load power. 

For uncorrelated case studies, the distributions determine the moments/cumulants for all 

the variables.  

5.1.2. Probabilistic radial load flow (PRLF) 

The main idea of the PRLF  in [27] is to use approximate formulas for calculating the 

cumulants of the RDS  operating variables for each xth 10-min interval ( ),xt  dth 
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representative day of a week, and mth month of the year ( ,..., ) 


r r

1...1 1...1
d,m d,m
1, t 2 n +n +1, tx n xf

Z Z
based on the 

cumulants of the input variables. Input cumulants include those of PV powers
...

( ),
r

i ri i
m
pv, tx

P
 

node loads ,

...
( )

r

i r
d m

i i

l, tx
P / Q

 and EV charging loads ,

...( )
r

d m

i

1 1

, tx
P

ev /tev

. The RDS operating variables 
x

d,m

 tZ

, , , T(= [ , ,..., ] )d m d m d m

x x n f1, t 2, t 2 n +n +1Z Z Z  include the system states 
x

d,m

tX  (voltage angle and magnitude 

at the 
nn  nodes) and the system outputs *

x

d,m

tX  (apparent power flows in the 
fn  lines 

together with RDS total real loss). 

The PRLF firstly involves the linear approximation of load-flow equations in order to 

get a computational efficiency as basic advantage of the proposed GAT. The detailed load-

flow formulation is given in Appendix A. The method used for the linear approximation of 

load-flow equations is provided in Appendix B. 

The cumulant method [38] (Appendix C) is then used to determine the cumulants of the 

RDS operating variables. Firstly, it is applied to the linearized equations (B.7) to 

determine the cumulants of system states X from the cumulants of input variables C. This 

is done by solving this linear system of equations for each order of the cumulants of the 

input variables. Likewise, the cumulants of system outputs *
X are obtained from 

cumulants of X by applying the cumulant method to (B.8). 

5.1.3. Cornish-Fisher expansion 

 Once the cumulants of the distributions of RDS operating variables are known, it is 

possible to reconstruct their PDFs  and CDFs  by using the Cornish-Fisher expansion 

[41,42] i.e., ( ,..., ),f f


d,m d,m
2 n +n +1,  t1,  t n f xx

Z Z
( ,..., )F F


d,m d,m

2 n +n +1,  t1,  t n f xx
Z Z

. PDFs  and CDFs  are stored for 

future handling by the finite mixture distribution. 
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5.2. Stage 2: weekly statistical characterization by means of finite mixture distribution 

When the time period that is studied (one week of each month) coincides with multiple 

10-min intervals, an aggregation procedure can be applied to find the resulting distribution 

for this studied time period. The resulting distribution is usually obtained by the mixture 

[60] of the 10-min interval distributions included in the studied period. The finite mixture 

distribution [60] is a useful way of describing heterogeneity in the distribution of a 

random variable Z, drawn from more than one parent population 
pZ of different features. 

Thus, the value of the final outcome is randomly selected from the underlying values, each 

of which has a certain probability of selection. Given a finite set d q  of distributions for 

the jth random variable at the mth month, ( ,...,
x+1 x+q

1,m 1,m

j, t j, tZ Z ,..., ),
x+1 x+q

d,m d,m

j, t j, tZ Z  coming from 

the d (seven) days and q (144) 10-min intervals in a day, with PDFs  ( ,...,f f1,m 1,m
j, t j, tx+1 x+q

Z Z

,..., ),f fd,m d,m
j, t j, tx+1 x+q

Z Z
 or the corresponding CDFs  ( ,...,F F1,m 1,m

j, t j, tx+1 x+q
Z Z

,..., ),F Fd,m d,m
j, t j, tx+1 x+q

Z Z
 and 

weights ( ,...,1 1

1 q  ,..., ),d d

1 q   such that 0,d

q   ( 1,...,7;  1,...,144)d q= =  and 

7 144

1 1

1,d

q

d q


= =

=  

the mixture distribution of the jth resulting random variable for the seven days (weekly 

distribution) of each mth month m

j 
Z  can be represented by either the density function

,  ,f m
j Z

 or the distribution function ,  ,F m
j Z

 as a sum: 

 

7 144

1 1

7 144

1 1

;      1,..., 2 + +1 

;      1,..., 2 + +1 

d

q n f

d q

d

q n f

d q

f f j n n

F F j n n





= =

= =

= = 

= = 





m d,m
j j, tx+q

m d,m
j j, tx+q

Z Z

Z Z

                       (21) 
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 Fig. 3. Flowchart of the GAT to evaluate the worst behaviour of weekly operating 

variables in RDSs throughout the year. 

6. Test system description 

6.1. RSD, node load, and PV data 

This study uses the ENDE 100 RDS,  see [32] (Fig. 4). The choice of this RDS  is the 

result of the analysis of multiple RDSs  to capture the effects of their diversity [32]. This 

permits the specification of feeder parameters (e.g. feeder length, number of customers, 
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area supplied, etc.), which could explain the occurrence of technical problems (voltage 

and thermal) due to distributed generation. This representative RDS  has 100 nodes, 99 

lines, and 24 laterals located in the region of Andalusia (Spain). Its total area is over 375.3 

km2. The farthest nodes (0-97) are at a distance of 34.2 kms from each other. The RDS  

load is proportional (0.0059%) to that in Spain. It contains a mix of residential (55.4%), 

commercial (17.4%) and industrial (27.2%) customers. The mix selected is explained by 

the fact that the EV charging load is more likely to be spatially clustered in residential 

areas than in commercial or industrial centres [8].  

The allocation and sizing of PV  units in the ENDE 100 RDS [32] are shown in Fig. 4 

(i.e. 13 PV  units with a 9.52% PV  penetration). These are the result of a multi-objective 

optimization approach previously formulated by the authors in [31,32].  

 

Fig. 4. Single-phase diagram of the ENDE 100 RDS with two parking lots. 

Specific data of global and diffuse irradiation [61], according to the specific 

geolocation of each nth RDS  node, were used to build the random variables hourly 

diffuse fraction and daily clearness index. For correlated case studies, the spatial PV 
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dependence structure was modelled from a spatial PV correlation study in the area 

surrounding the ENDE-100-RDS (at nodes 18, 19, 64, 86, and 96).  This permitted the 

estimation of the correlation coefficients 
pv,i ,10-min pv, j,10-min

P ,P  by extrapolating the actual 

distance between-PV units: 

                                                                                   Nodes

                      87    88   89     90    91   92    93    94    95    96    97   98    99
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90
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9

    1     0.951  0.917  0.894  0.860  0.815  0.769  0.724  0.701  0.633  0.610  0.894  0.871
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 Data for real and reactive load profiles were collected at each node in 10-min intervals 

by using smart meters over a five-year time period. For correlated case studies, the load 

correlation matrix [62,63] was obtained from synchronous 10-min measurements.  

6.2. EV data 

Based on the expected daily driving distance by private/company/fleet vehicles in 

Spain [64,65], the annual mean and standard deviation of the random variable distance d 

considered were equal to 35 and 9.6 km, respectively (70 and 19.2 km / 58.5 and 16.4 

km). Furthermore, 7.5% were assumed to be company vehicles and 1.95% fleet vehicles 

[64,66].  

Previous research either considered a single type of EV  in the analysis or used several 

types (e.g. cars, vans, and sports utility vehicles [8,67]) with assumed market-share 

percentages and battery capacities. For simplicity, this study only considered one type. 

Thus, all EVs were assumed to have a typical battery pack of 25-kWh and an all-electric 

range of up to 128.7 km (80 mi), i.e. its typical maximum distance dr.  
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The number of EVs distributed at each RDS  node depended on the node type: (i) 

residential load node ( );rln  (ii) commercial and industrial load node ( , ).cl iln n  In the first 

node type, this number was based on the average Spanish household power demand 

(approximately 0.897 kW/year [64,68]) and the average number of vehicles per household 

(1.87 in 2014 in Spain [64]). These two statistics made it possible to approximately 

calculate the number of EVs in residential area nodes from the annual average active 

power of each node. The number of EVs was added to the residential area nodes. In the 

commercial and industrial area, two parking lots were located at node #27 ( )
1

pn  and 

#98 ( )
2

pn  (see Fig. 4). The resulting number of EVs was proportional (0.0057%) to the 

number of EVs in Spain. 

As observed in EV  technology roadmap studies [67], there is a high level of 

uncertainty regarding how fast this technology will penetrate the market. If penetration is 

moderate, the EPRI [69] states that by 2020, 30% of the total number of vehicles will be 

EVs. This research was thus based on a 30%-penetration level. 

The modelling of the charging start time in households, i.e., PDF  for each thrln  

residential load node ,

, ( )
rl

d m

nh
kt kt was roughly bell-shaped. Accordingly, the resulting normal 

distributions for the Spanish pattern had a mean in the interval 0:00-1:30 a.m. and a 

standard deviation of 4.1-6.2 h depending on that of the dth day and mth month of the year 

[18,64,66]. On the other hand, the PDF of the random variable, parking duration at home 

,
( )

rl

m

n
g '

k

'

kt
t was also determined from data for Spain [64,66].  

To model vehicle arrival at parking lots, two municipal parking lots located in the 

ENDE 100 RDS  area were selected. They are representative of two parking lot types in 

Spain [65]: (i) p1 was located in a commercial area (325 parking spaces, turnover rate of 
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5.6); (ii) p2 was located in an industrial area (275 parking spaces, turnover rate of 1.8). 

Survey data for vehicle arrival were collected at each parking lot in 10-min intervals by 

using smart meters over a four-year time period. As an example, the mean PDF  value of 

the vehicle arrival model for a representative April Monday ( )
pk

1,4

,nh
kt k

t  is shown in Figs. 5a 

and 5b. The PDF  of the random variable, parking duration ( )
pk

4

,n
g '

k

'

kt
t , is also shown. 

 

 

Fig. 5. Parking survey results on a representative April Monday: (a) Parking lot in a 

commercial area; (b) Parking lot in an industrial area. 
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The arrival patterns in Figs. 5a and 5b were clearly different as a consequence of 

driving habits. In Fig. 5a, vehicle arrival was fairly stable during the morning and early 

afternoon, whereas in Fig. 5b, most of the arrivals occurred in the early morning with a 

lower peak in the early afternoon. Another important difference was the parking duration. 

In Fig. 5a, most parking had a duration of less than 1 hour (65%); only 7% of parking was 

over 4 hours. Parking duration was longer in Fig. 5b (44% of parking was over 8 hours). 

This indicated that many employees park here all day. 

7. Results 

The proposed GAT  was implemented in MATLAB and tested in the ENDE 100 RDS . 

The results focused on node voltage 97 (the most critical node for voltage regulation), 

apparent power flow in the line 0-1 (the most stressed line), and the total real loss. 

Apparent power flow was normalized by the maximum capacity in the line and the total 

real loss by the mean annual slack apparent power.  

Since our main objective was to improve the assessment accuracy of the EVCSs  and 

PV  interaction in RDSs  within the context of different customers and correlation of the 

input variables, various case studies were assessed. More specifically, seven case studies 

without correlation were studied: (i) #1 base case (without EVs,  without PV); (ii) #2  

(without EVs,  with PV); (iii) #3  (with EVs,  without PV);  (iv) #4  (with EVs  and PV);  

(v) #5  (with EVs  at residential load nodes, without PV);  (vi) #6  (with EVs  at 

industrial load nodes, without PV);  (vii) #7 (with EVs at commercial load nodes, without 

PV). Furthermore, for the sake of completeness and because of space limitations, three 

case studies with the correlation of input variables were evaluated: (i)-#8-(#2-with 

correlation);-(ii)-#9-(#3-with correlation);-(iii)-#10-(#4-with correlation). 
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7.1. Proposed GAT versus MCS 

The reference method for assessing the accuracy of the analytical techniques is the 

mainstream MCS [27]. In MCS pseudo-random samples are produced from the stochastic 

input variable model underlying probability distributions. These samples are then 

propagated by means of the deterministic system model, which is used in our research to 

solve a deterministic load flow, with a view to obtaining samples for the output variables 

of interest. After a certain number of deterministic simulations, the probability distribution 

of stochastic outputs is directly calculated on the basis of the deterministic samples 

obtained for each simulation. It should be underlined that the number of simulations 

needed to obtain an accurate result is independent of system size [70]. Nonetheless, for an 

accurate representation, many simulations (approximately 10,000 [27]) must be 

considered. The basic computational part of MCS is deterministic, and there is no need to 

simplify the non-linear mathematical models to ensure applicability.  

The first stage of the proposed GAT includes three error sources compared to the MCS 

for each 10-min interval. These error sources were the following: (i) the use of a higher or 

lower number of cumulants to characterize the input variables, i.e., more orders of 

cumulants or fewer; (ii) the application of the linear approximation of the non-linear load-

flow equations; (iii) the use of a shorter or longer Cornish-Fisher expansion with more 

cumulants or fewer. Although more cumulants produce better results in (i) and (iii), 

practically speaking, numerical cumulants higher than the fifth-order are rarely required 

[27]. In our study, the seventh order was the upper limit. 

The second stage of the GAT is the same as that of the MCS because it works with the 

PDFs and CDFs obtained and stored for each 10-min interval. Therefore, it does not add 

another error source. 
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The proposed GAT and MCS can only be compared on the basis of their results. The 

accuracy assessment of our GAT, compared with MCS, took into account the three 

previously mentioned error sources. This accuracy of the GAT was carried out by means of 

the individual relative error of the first seven moments for each RDS  operating variable. In 

particular, this error in the voltage magnitude at any nth RDS node and mth month is given 

by [17]: 

, , 

, 

100



 





 −

=

GAT MCS

MCS

r r

r r
1...1

1...1 1...1

1...1

m m
n n

mVn m
n

V V

V

  (22) 

The values in Table 2 show the high accuracy level of the GAT  for the expected 

values and standard deviations of the most critical node (node 97) under the assumption of 

several case studies. The higher moments were nearly accurate. Only the largest error 

during the 12 months is shown. 

Table 2 

 Maximum individual relative error throughout the months corresponding to the weekly 

evaluation for the first seven central moments of the 97-node voltage magnitude. 

 

Table 3 shows the computation time, which highlights the improvement achieved by 

the more efficient GAT  in relation to the MCS . The computer used was an HP Intel® 

Pentium® dual CPU with 1.60 GHz and 2 GB RAM. The MCS  was found to be 

computationally expensive, and not viable for the required annual assessment. It should be 

highlighted that the GAT covers a one-year period, with a weekly assessment on a 10-min 

basis for each month. This means that 12,096 intervals were evaluated in the first stage of 

the GAT. The MCS evaluated the same number of intervals but each interval comprised 

10,000 trials, i.e., 1.209e8 deterministic simulations. 

Case studies / 

Error (%) 
1


mV
97

 11


mV
97

 111


mV
97

 1111


mV
97

 11111


mV
97

 111111


mV
97

 1111111


mV
97

 

#8 0.140 0.438 0.627 0.704 0.664 0.520 0.553 

#9 0.171 0.545 0.782 0.849 0.730 0.682 0.693 

#10 0.193 0.606 0.853 0.973 0.796 0.739 0.771 
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Table 3 

 Computation times for accurate annual assessment. 

 

However, the proposed GAT has certain disadvantages with regard to MCS. It requires 

extra effort because of programming tasks such as: (i) the computation of the moments 

and subsequently of the cumulants of input variables; (ii) the computation of the PFDs and 

CDFs of RDS operating variables by means of the Cornish-Fisher expansion. 

7.2. Assessment of the daily technical impact 

As a representative example of a particular day and month, Fig. 6 shows the PDFs  of 

the 10-min voltage of node 97 during a July Monday 1,7

97, 10 -minV at case study #10. This 

represents 144 PDFs  for a 24-h duration. It was found that PV  support did not help to 

increase the lowest voltage occurring around midnight. This was because the EV  charging 

demand of residential customers was distributed intensively overnight (from 12:30 to 5:30 

a.m.) and also because its node load peak was distributed around 10:00 p.m. In contrast, 

around 3:00 p.m., the node voltage PDFs  reached their maximum value because of PV  

support and medium load conditions as well as the medium EV  charging demand at 

parking lots. 

 
Fig. 6. PDFs of the 10-min voltage magnitude of node 97 during a representative July Monday at 

case study #10.  

Case studies  #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Computation 

time 

GAT (h) 0.03 0.88 0.98 1.29 1.21 1.11 1.10 0.97 1.08 1.43 

MCS 

(day) 
1.29 38.45 41.78 47.52 46.59 44.56 46.04 39.60 43.11 48.01 
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7.3. Assessment of the weekly technical impact throughout the year 

Figs. 7 and 8 show the comparative assessments of the weekly technical impact of 

EVCSs  and PV  interaction on the ENDE 100 RDS  in January, with minimum PV  

power, when voltages reached their lowest values, and also in July with maximum PV  

power.  

7.3.1. Impact on node voltage magnitudes 

Fig. 7 compares PDFs  in January for the 10-min voltage of node 97 under correlated 

and uncorrelated case studies. In regards to a single PV  impact (#2), the incorrect 

adjustment of the PV  output/load profile was observed in the voltage enhancement with 

PV  units. The voltage was only enhanced during hours with medium voltage levels but 

not for the worst voltage levels (i.e. approximately 0.95 p.u. in the evening).  

Regarding the impact of EVs, the worst case study was #5 (residential customers with 

EVs), where the impact was highest. A new peak load resulting in lower voltage occurred 

in the residential area when the smart strategy in [18] was applied. This was the result of 

the higher percentage of residential customers in the customer mix of the RDS  analysed, 

together with the smart load strategy which concentrated the EV  charging demand in a 

shorter period, as compared to the long period when EVs in parking lots were charging (#6 

and #7).  

The impact of the EV  charging demand on industrial and commercial area is shown at 

case studies #6 and #7, respectively. More specifically, the parking lot in the industrial 

area had a higher impact (#6) than the parking lot in the commercial area (#7). This was 

because the industrial parking lot was located at a feeder end, closer to the monitored node 

and represented a higher load percentage. As discussed earlier, the addition of the 
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charging load from parking lots was comfortably absorbed by the RDS  without an 

increase in the peak demand or an important variation in the voltage distribution at node 97.  

The PV-and-EV-interaction (#4) increased the dispersion of the PDF as each one 

introduced a new uncertainty.  

 

Fig. 7. PDFs for the 10-min voltage magnitude of node 97, corresponding to weekly evaluation 

in January in different case studies. 

The correlation of inputs (#8,9,10) led to lower voltage dispersions compared to those 

for uncorrelated case studies (#2,3,4), increasing the probability of medium voltage levels. 

When input variables were uncorrelated, each one introduced a new uncertainty, which 

increased the dispersion of the resulting PDF.  

When January and July were compared (Fig. 8a), the single effect of PV  power on the 

resulting CDF was highest in July. In contrast, the single effect of EVCSs  on the CDF  

was lowest in July.  

As can be observed in Fig. 8a, with the 30%-penetration level set, the voltage 

constraints in [34] were almost met. In July, the lower dispersion of the resulting CDF  

under the combined effect made the violation of voltage constraints less probable. In fact, 

for the worst node (node 97) and month (January, 1), the probability of exceeding limits 
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was less than 7.12%. In July, this probability was less than 0.96%. As a conclusion, the 

GAT  provided the worst case study and index distributions. 

7.3.2. Impact on apparent power flow in lines 

Fig. 8b reveals that the PV  units (#2)  led to a shift in the distribution of the 10-min 

apparent power flow in the line 0-1 towards lower load levels compared to the base case 

(#1).  The opposite outcome was observed because of EVCSs  (#3). Thus, the congestion 

level in the line reached a high level. The combined effect (#4)  increased the dispersion 

of the PDF  from each single dispersion. PV  and EVCS  interaction could mitigate 

certain overcurrent problems. 

 Because of correlation between inputs (#10-vs.-#4), the synchronisation (the 

simultaneous increase and decrease) of different power injections was stronger. This 

caused the probabilities of the low power output section and high power output section of 

all correlated power injections to become larger. This led to an increase in the power flow 

variability, which had to be accounted for in the system design. Furthermore, there was 

also a slight increase in the expected value of the distribution. 

7.3.3. Impact on total real loss 

Fig. 8c shows the weekly comparison of the PDFs  of total 10-min real loss in January 

and July. As expected, the ENDE 100 RDS  was more likely to operate at lower real loss 

conditions with the interaction of PV  and EVCSs  (#4)  as compared to the single impact 

of EVCSs (#3). Moreover, the resulting distribution approached a flattened distribution. It 

should be highlighted that although the single effect of PV  power or EVCSs  was quite 

different in January and July, the combined effect originated PDFs  of total real loss that 

were fairly similar in both months. The dispersion of the resulting-PDF increased in 

correlated case study (#10) vs. uncorrelated case study (#10). Nonetheless, its distribution 

became more symmetrical (skewness was closer to zero). 
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Fig. 8. Weekly evaluation in January/July in different case studies: (a) CDFs for the 10-min 

voltage of node 97; (b) PDFs of 10-min apparent power flow in line 0-1; (c) PDFs of total 10-min 

real loss in the ENDE 100 RDS. 
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8. Conclusion 

This paper has presented an innovative GAT , which was tested on an operating ENDE 

100 RDS  [32]. This new technique effectively assessed the stochastic behaviour of the 

overall system with loads (node and EV) and PV generation during a one-year period 

under correlated and uncorrelated case studies. Assessment for the whole year was 

performed for 10-min intervals to conveniently capture the total uncertainty and determine 

the improvement of the RDS  operating variables. Thanks to this new GAT, the 

computational burden of the assessment was affordable. 

This assessment took into account the typical parameters required for modelling the 

EV  charging load at home/parking lots as well as the node load and PV  generation 

throughout a one-year period. Models of node load, PV  power, and EVCS  load at home 

and parking lots were built. Statistical data were obtained from a representative RDS  in 

Spain. This study demonstrated that the combined impact of PV  and EVCS  on an RDS  

considerably differed from the individual impact of PV  or EVCSs  and that generally it 

improved. Thus, although the variability of the analysed RDS  operating variables 

increased, this burden was compensated by a lower probability that such outputs would be 

closer to regulatory limits. The results also indicated that the correlation between inputs 

had a major impact on the-RDS operating variables, mainly on power flow and-RDS total 

real loss.  

Appendix A. Detailed load-flow formulation 

The exact equations of the non-linear load-flow for a power system with PV generation 

and-EV charging loads can be mathematically described by [71]: 
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Power systems are innately uncertain systems. Accordingly, the main goal of the PLF is 

to determine the system states 
T

1,...,( [ , , , , ,..., , ] ; )
nj j n   =1 1 2 2 jX = V V V and then, the system 

outputs
* T

1,..., ( [ , ,..., , ] ; ), 
k fk n=1 1 2 2 kf,i - j f,i - j f,i - j lossX = S S S P as a function of the input random 

variables 
T (= [ ] ).

l l ev / tev i
pv C P  P  Q  P  Therefore, (A.1) can be written in a general form:  

( )PLFg=C X  (A.2) 

The system outputs could be expressed as: 

* ( )PLFh=X X  (A.3) 

The algorithm in [72] is used here to solve the deterministic load flow in (A.1) since the 

Newton-Raphson algorithm causes some convergence problems in-RDSs. This algorithm 

provides the expected values of system states X
   from the expected input values C

. 

Appendix B. Linear approximation of load-flow equations 

The linear approximation of the load-flow equations (A.1) or (A.2) is used to obtain the 

system states X as a linear combination (weighted sum) of system inputs C. The 

linearization process is made around the solution point of the deterministic load flow in 

[72], namely, the expected values of the system state X
.  

To illustrate this technique, let A and B be two random variables which, at some stage 

of the computations, are multiplied to give a third random variable ( ).= Y A B  If the 

deviations of A and B around their expected values ( , ) A B   , they are A and B , 

respectively. The following can thus assumed: 

  +   + A BA A;    B B  (B.1) 

When second-order terms are neglected ( ), A B the following expression is obtained: 

-         +  + =  + B A A B B A A BY A B A B  (B.2) 
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This approximation is accurate for cases where the dispersion of the random variables 

is limited around the mean value. When this is not the case, the variable data will be 

transformed less accurately. 

This technique can be applied to voltage magnitudes and angles in (A.1). For the 

product of voltage magnitudes is as follows: 

2 2

 

   2

n j n j

n n

n j V j V n V V

n V j V

V V V V

V V

   

 

 + −

 −
 (B.3) 

For angles
nj , Maclaurin’s series are firstly used in sin and cos functions, and then the 

linear approximation is applied [70]: 

3 3
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2 2

;       ;              ( . .  1 /2)
6 6

1 ;          1
2 2

nj nj

nj nj nj nj nj nj nj

nj nj

nj nj nj nj

sin a b e g a

cos c d

 
    

 
 

 − → − = + = +

 − → − = +

njδ

 (B.4) 

 Therefore, it can be assumed that: 

2       ( . .  2 ( 1 /3))
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n j nj njn j nj nj nj nj nj n nj j nj V V

n j nj nj nj nj nj n nj j

V V sin a b c V d V e g a

V V a b c V d V

      
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 (B.5) 

When these approximations are substituted in (A.1), the following ca be obtained: 
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



 (B.6) 

Coefficients ,  ,  ,  ,  ,  ,  , and nj nj nj nj nj nj nj nje e f f g g h h         are computed from-RDS parameters 

and the expected values of the system states X
 [70]. Therefore, (B.6), once linearized, is 

expressed as:  

( )PLFg=C X  (B.7) 

Likewise, the linear approximation of (A.3) is expressed as [70]: 



 

42 

 

* ( )PLFh=X X  (B.8) 

Appendix C. Cumulant method 

This appendix aims to examine how the cumulant arrays ,ii
C ,i ji i

C

i j ki i i
C

,… of a random 

variable C change when we make a simple transformation from the original variables 

, ,...,
rv1 2 nC C C to new a variable Z. Let Z be a random variable that is a linear combination 

of C given by: 

1

rv

i

i

n

i

i

= a
=

 ii
Z C   (C.1) 

Applying the cumulant method [38], for example, the third-order cumulant of the 

variable Z can be expressed as a function of the cumulants of the variable C as: 

1 1 1

rv rv rv

i j k

i j k

i j k

n n n
i i i111

i i i

i i i

a a a 
= = =

= Z C   (C.2) 

The cumulant method thus replaces the convolution of the random variables by the 

linear combination of their cumulants. In general, the r-order cumulant could be obtained 

as [38]: 

......

1 1

... ...

rr
rv rv

i r

i r

i r

r r
n n

i i1 1

i i

i i

a a 
= =
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