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Introduction: Immunogenic cell death (ICD) has emerged as a novel option for

cancer immunotherapy. The key determinants of ICD encompass antigenicity (the

presence of antigens) and adjuvanticity, which involves the release of damage-

associated molecular patterns (DAMPs) and various cytokines and chemokines.

CX3CL1, also known as neurotactin or fractalkine, is a chemokine involved in

cellular signalling and immune cell interactions. CX3CL1 has been denoted as a

“find me” signal that stimulates chemotaxis of immune cells towards dying cells,

facilitating efferocytosis and antigen presentation. However, in the context of ICD,

it is uncertain whether CX3CL1 is an important mediator of the effects of ICD.

Methods: In this study, we investigated the intricate role of CX3CL1 in

immunogenic apoptosis induced by mitoxantrone (MTX) in cancer cells. The

Luminex xMAP technology was used to quantify murine cytokines, chemokines

and growth factors to identify pivotal regulatory cytokines released by murine

fibrosarcoma MCA205 and melanoma B16-F10 cells undergoing ICD. Moreover,

a murine tumour prophylactic vaccination model was employed to analyse the

effect of CX3CL1 on the activation of an adaptive immune response against

MCA205 cells undergoing ICD. Furthermore, thorough analysis of the TCGA-

SKCM public dataset from 98 melanoma patients revealed the role of CX3CL1

and its receptor CX3CR1 in melanoma patients.

Results: Our findings demonstrate enhanced CX3CL1 release from apoptotic

MCA205 and B16-F10 cells (regardless of the cell type) but not if they are

undergoing ferroptosis or accidental necrosis. Moreover, the addition of

recombinant CX3CL1 to non-immunogenic doses of MTX-treated,

apoptotically dying cancer cells in the murine prophylactic tumour vaccination

model induced a robust immunogenic response, effectively increasing the

survival of the mice. Furthermore, analysis of melanoma patient data revealed

enhanced survival rates in individuals exhibiting elevated levels of CD8+ T cells

expressing CX3CR1.
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Conclusion: These data collectively underscore the importance of the release of

CX3CL1 in eliciting an immunogenic response against dying cancer cells and

suggest that CX3CL1 may serve as a key switch in conferring immunogenicity

to apoptosis.
KEYWORDS

immunogenic apoptosis, fractalkine, cytokines, immunogenic cell death,
chemokines, CX3CL1
1 Introduction

Immunogenic cell death (ICD) has emerged as a paradigm-

shifting concept in the field of immunology and cancer

therapeutics. It combines the ability to kill cancer cells and

restore the lost immunological ability to identify and interact

with dying cancer cells. This leads to the stimulation of innate

and adaptive immune responses, and thereby establishment of

long-term immunological memory (1). ICD is an overarching

term that includes cell death modalities such as apoptosis (2),

necroptosis (3–5), and ferroptosis (6–8). It can be induced by

specific stimuli, including oncolytic viruses (9), conventional

chemotherapeutics such as mitoxantrone (MTX) (10), and

physical interventions such as radiotherapy, including heavy ions

(11) or X-rays radiotherapy (12), or photodynamic therapy (13).

Perturbation of endoplasmic reticulum (ER) homeostasis and

activation of ER stress pathways, also known as the unfolded

protein response (14), together with the generation of reactive

oxygen species, are essential components of nearly (15) all

scenarios in which ICD occurs (16–18). For cell death to possess

immunogenic properties also requires both antigenicity and

adjuvanticity (1, 19, 20). Antigenicity refers to the availability of

either tumour-specific antigens, tumour-associated antigens, or

neo-antigens, which enable the specific recognition and killing of

the tumour cells by the immune system. Adjuvanticity involves the

spatio-temporal release of damage-associated molecular patterns

(DAMPs) and pro-inflammatory cytokines/chemokines from the

dying cancer cells. This triggers the recruitment, activation and

maturation of antigen-presenting cells (APCs), such as dendritic

cells, via their respective pattern recognition receptors (PRRs).

Several crucial DAMPs and cytokines have been discovered,

including but not limited to high-mobility group B1, surface-

exposed calreticulin, extracellular secretion of adenosine

triphosphate, annexin A1 and several members of the type 1

interferon family (1, 21). Upon engulfment of dying tumour cells,

APCs undergo activation and maturation characterised by

upregulation of major histocompatibility complex class II

molecules and costimulatory markers, such as CD80 and CD86,

while migrating to the tumour-draining lymph nodes to present

cancer antigens to CD8+ T cells. The activated cytotoxic CD8+ T

lymphocytes then relocate to the tumour site, releasing interferon
02
gamma, promoting eradication of the neoplastic lesion, and

stimulating the formation of a long-lasting immunological

memory against the tumour (1, 22).

CX3C chemokine ligand 1 (CX3CL1), originally named

neurotactin (23) and later fractalkine (24), is a chemokine

intricately involved in cell signalling and in immune cell

recruitment and activation (25). CX3CL1 can exist as a

membrane-bound variant (mCX3CL1) serving as an adhesion

protein for cells expressing the CX3CL1 receptor (CX3CR1),

including various immune cell types such as NK cells, monocytes,

dendritic cells, granulocytes, and CD3+ T cells (24, 26, 27).

Conversely, the soluble form of CX3CL1 (sCX3CL1), which is

released upon proteolytic cleavage of mCX3CL1, predominantly

exerts a potent chemoattractant function (24, 25, 27–30).

Importantly, CX3CL1 has been identified as a “find me” signal

that attracts immune cells towards dying cells, facilitating

efferocytosis (31–35). However, in the context of ICD, it remains

uncertain whether CX3CL1 is an important mediator of the effect of

ICD or, due to its potential pro-tumourigenic features (36–42),

might act as a “keep out” signal, hindering efferocytosis and the

initiation of an effective ICD immune cycle (43, 44).

In this study, we assessed the secretion of CX3CL1 from MTX-

treated murine fibrosarcoma MC205 and melanoma B16-F10 cells

undergoing immunogenic apoptosis (i.e., apoptotic cell death

exhibiting ICD characteristics (10, 45)), and explored its potential

as a mediator of anti-tumour immunity during ICD. Our results

demonstrate that CX3CL1 is released specifically during apoptotic

cell death regardless of the cell type. Furthermore, the addition of 1

ng or 10 ng of recombinant CX3CL1 (rCX3CL1) to a non-

immunogenic dose of dying/dead cancer cells for prophylactic

vaccination of mice significantly increased the tumour-free

survival of mice and restored immunogenicity of dying cancer

cells. In addition, analysis of publicly available human database

(The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-

SKCM)) containing data from 98 melanoma patients revealed a

correlation between high levels of CX3CR1 expression and higher

overall survival probability. Moreover, CX3CR1 was predominantly

associated with increased presence of CD8+ T cells, and a high level

of CX3CR1 expression was correlated with increased expression of

CD8+ T cell signature. These findings identify CX3CL1 as an

effective mediator of an adaptive immune response during
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immunogenic apoptosis and position it as a promising therapeutic

adjuvant in ICD-based treatment.
2 Materials and methods

2.1 Cell lines and cell culture

Murine fibrosarcoma MCA205 cells were cultured in Roswell

Park Memorial Institute (RPMI) 1640 (Gibco, 21875–034)

supplemented with heat-inactivated foetal bovine serum (FBS,

Thermo Fisher Scientific, 10%, 10270–106), penicillin (100 U/

mL), and streptomycin (Gibco, 100 µg/L, 15140–122). B16-F10

murine melanoma cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM) (Gibco, 10938–025) supplemented with

10% FBS, 1% L-glutamine (Gibco, 25030–024), 1% sodium pyruvate

(Gibco, 11360–039) and 1% penicillin/streptomycin. All cells were

maintained under constant conditions of 37°C, 5% CO2, and a

humidified atmosphere in a cell culture incubator. The medium was

changed every two days, and detaching and splitting of cells were

done using trypsin-EDTA (0.05%) (Gibco, 25300–054).
2.2 Cell death assay by flow cytometry

Cells were stimulated with 2 µM mitoxantrone (MTX) (Sigma

Aldrich, M6545) or 2.5 µM RAS-selective lethal 3 (RSL3) (Sigma

Aldrich, SML2234) for 24 h. The cells were washed in Annexin-V

binding buffer (10 mMHEPES, pH 7.4, 0.14 mMNaCl, and 2.5 mM

CaCl2), followed by staining with Sytox Blue Nucleic Acid Stain

(Molecular Probes, S11348, 2.5 mM), Annexin-V (AnV), and Alexa

Fluor 488 conjugate (Molecular Probes, A13201). The cells were run

on a Becton Dickinson (BD) LSRII flow cytometer, and the data

were analysed by using FlowJo software (V.10.0.8). Flow cytometry

experiments were performed at the Core Flow Cytometry (BOF/

COR/2022/001) at Ghent University.
2.3 Multiplex analysis of cytokines

Supernatants of treated cells was analysed using the Luminex

xMAP technology. The multiplexing analysis was performed using

the Luminex™ 200 system (Luminex, Austin, TX, USA) by Eve

Technologies Corp (Calgary, Alberta). The samples were

simultaneously measured using Eve Technologies’ Mouse Cytokine

Discovery Assay® (MD44). The assay was run according to the

manufacturer’s protocol. Assay sensitivities of these markers range

from 0.3–30.6 pg/mL. Individual analyte sensitivity values are

available in the Millipore Sigma MILLIPLEX® MAP protocol.
2.4 Mice

The in vivo experiments were performed on immune-

competent C57BL/6J mice (7–9 weeks old) (Janvier Labs, France).

The mice were housed in specific pathogen-free conditions. All in
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vivo experiments were conducted according to the guidelines of the

local Ethics Committee of Ghent University at the Core ARTH

Animal Facilities at Ghent University (Belgium).

2.4.1 Prophylactic tumour vaccination
mice model

To confirm the role of CX3CL1 in immunogenic apoptosis, a

non-immunogenic dose of MTX-treated MCA205 cells was used in

the prophylactic tumour vaccination mouse model. MCA205

cancer cells were seeded at a density of 2 x 106 cells per flask and

induced to undergo cell death with 2 µM MTX for 24 h. After

incubation overnight, 2.5 x 105 MTX-treated MCA205 cells (non-

immunogenic dose) or 5 x 105 dying cancer cells were collected in

PBS (200 µL per mouse, Gibco, 14190–144). Cell death analysis was

performed using flow cytometry (See 2.2). The cells were injected

subcutaneously (s.c.) in the left flank of C57BL/6J mice. After seven

days, the mice were challenged with 105 viable/untreated MCA205

cells in the opposite (right) flank, and tumour growth on both sides

was measured with a digital calliper.

By using a non-immunogenic dose, the recovery of

immunogenicity by CX3CL1 was investigated further. MCA205

cancer cells were seeded at a density of 2 x 106 cells per flask and

induced to undergo apoptosis with 2 µM MTX for 24 h. After

incubation overnight, 2.5 x 105 dying cancer cells (non-immunogenic

dose) were collected and mixed with different doses (0, 1, 10 or 100 ng)

of recombinant murine CX3CL1 (R&D system, 472-FF/CF) in PBS at a

volume of 200 µL per mouse. Cell death analysis was performed using

flow cytometry (See 2.2). The cells were s.c. injected in the left flank of

C57BL/6J mice. Mice injected only with PBS or only recombinant

murine CX3CL1 (1 ng, 10 ng or 100 ng) served as negative controls.

Seven days post-immunisation, the mice were challenged as described

above. Tumour growth was monitored with the digital calliper once

every two days for up to 21 days after challenge. When a tumour

became too big (> 1,500 mm3) or an open necrotic lesion developed,

the mouse was euthanised by cervical dislocation.

2.4.2 Therapeutic tumour mice model
5 x 105 MCA205 cells were injected s.c. in the right flank of

C57BL/6J mice. After 7 days, when the tumour had reached about

20–45 mm3, the mice were treated intraperitoneally (i.p.) with 100

µL of 5.2 mg/kg MTX in PBS. 12 h and 24 h after treatment, the

mice were injected intratumourally with 1 or 10 ng CX3CL1 in 10

µL of PBS or, for the control mice, with PBS only. This was repeated

on day 14. The efficacy of therapy was analysed by monitoring

tumour growth with a digital calliper once every two days for up to

29 days after tumour cell injection. When a tumour became too big

(> 1,500 mm3) or became an open necrotic lesion, the mouse was

euthanised by cervical dislocation.
2.5 Public dataset

RNA-sequencing (RNA-seq) data and corresponding patient

clinical information of the TCGA-SKCM project were downloaded

from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/).

Patients with no reported vital status (alive or dead), with recurrent
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tumour, or with an unknown survival time were excluded. The

TCGA-SKCM dataset comprises 98 patients with a primary

tumour, of whom 28 have a vital status of ‘Dead’ and 70 have a

vital status of ‘Alive’. For analysis, we used STAR-count files

containing the number of mapped reads (counts) for each gene.

The non-protein-coding genes were filtered out, leaving 19,938

genes. The expression count data were normalised by transcripts

per million (TPM) and then transformed to log2 values.

2.5.1 Survival analysis
Survival analysis of patients from the public dataset was

performed in Python using the lifelines v0.27.4 package. For each

specific gene, patients were divided into two groups based on

median expression level (high or low). Overall survival was

estimated using the Kaplan–Meier method. Log-rank test

(Mantel-Cox) was used to compare the statistical differences

between groups, and a p-value < 0.05 was considered statistically

significant. Where survival curves intersected, a weighted log-rank

test (Fleming-Harrington test) was additionally used for evaluation.

Depending on the values of parameters p and q, this test can

determine early (p > q) or late (p < q) differences in survival. For p =

q = 0, the test reduces to the unweighted log-rank test.

2.5.2 Estimation of tumour-infiltrating cells
The immunedeconv v2.0.4 (46) R package was used to analyse

the abundance of immunocyte infiltration from bulk gene

expression data. This package evaluates cell proportions using

algorithms such as EPIC (47), TIMER (48), quanTIseq (49),

MCP-counter (50) and xCell (51).
2.6 Statistical analysis

Statistics for the public dataset were calculated in Python

using the scipy v.1.9.3 package. As the data were often not

normally distributed according to the Shapiro–Wilk test, a

nonparametric Mann-Whitney U test was used to evaluate the

differences between two groups. P-values < 0.05 were considered

statistically significant.

Statistical analysis with one-way or two-way Analysis of

Variance (ANOVA) and graphs were plotted in GraphPad Prism

(V.8.0.1). Kaplan-Meier survival curves showing the timelines of

tumour development were analysed by log-rank Mantel-Cox test.

Differences between groups were considered significant if the

corresponding p-value was < 0.05.
3 Results

3.1 CX3CL1 release is associated with
immunogenic apoptosis

Different types of cell death modalities (i.e., apoptosis,

ferroptosis and accidental necrosis) were induced in both murine

fibrosarcoma (MCA205) (Figures 1A, B) and melanoma (B16-F10)
Frontiers in Immunology 04
cells (Figures 1D, E). MCA205 and B16-F10 are commonly used cell

lines in ICD studies (6, 13, 45, 52). Immunogenic apoptosis was

induced with MTX for 24 h (10, 45), ferroptosis (non-

immunogenic) was induced with RSL3 (6), and accidental

necrosis of low immunogenicity was induced with three freeze/

thaw (F/T) cycles (6, 13, 53, 54). The used cell death inducers have

already been extensively described and defined (6, 10, 13, 45, 53,

54). Treatment for 24 h with RSL3 or F/T cells were used as negative

controls because they do not induce the characteristics of ICD (6).

Cell death rates, quantified by AnV and Sytox blue staining, were

comparable with previously published data (6), i.e. approximately

20% for MTX (Figures 1A, D). Sytox Blue positivity refers to cell

membrane permeabilisation and, together with positive AnV

staining, detects a late phase of cell death, while single AnV

positivity occurs at an early phase of cell death (6). Since B16

cells are resistant to RSL3 (55, 56), it was not used for B16.

Supernatants were collected from the dying murine fibrosarcoma

MCA205 and melanoma B16-F10 cells, as well as from viable cells

as a control, and analysed for cytokine secretion using the Luminex

xMAP technology from Eve Technologies. CX3CL1 was associated

only with MTX-treatment (i.e., immunogenic apoptosis) despite the

limited membrane permeabilisation (Figures 1C, F). This release

from both cancer cell types excludes the possibility of effects specific

to a particular cancer cell type. During late ferroptosis in MCA205

cells, CX3CL1 levels remained unaltered compared to the viable

control, whereas during accidental necrosis, the levels of CX3CL1

even diminished in both MCA205 and B16-F10 cells. These data

suggest a strong association of CX3CL1 secretion with the specific

induction of immunogenic apoptosis but not with the other cell

death modalities.
3.2 CX3CL1 reverts non-immunogenic
apoptosis to ICD

To investigate the importance of CX3CL1 secretion in

immunogenic apoptosis, the tumour prophylactic vaccination

mouse model was used (Figures 2A, C). Mice were vaccinated

with MTX-treated MCA205 cells in one flank and one week later

challenged in the opposite flank with viable cancer cells of the same

cancer type. For this experiment, a non-immunogenic low-dose of

MTX-treated MCA205 cells was used for vaccination (Figures 2A,

B). Vaccination of mice with 5 x 105 MTX-treated MCA205 cells

protected approximately 70% of the mice against tumour challenge,

whereas the half-dose of 2.5 x 105 cells protected only 20% of the

mice (Figure 2B). Therefore, this so-called non-immunogenic dose

of 2.5 x 105 cells was used in the following experiments. Doses of 1

ng, 10 ng or 100 ng of murine rCX3CL1 were added to the non-

immunogenic dose of MTX-treated cancer cells to analyse whether

the addition of CX3CL1 can enhance the immunogenicity of dying

cancer cells (Figure 2C). Indeed, addition of 1 ng or 10 ng of

rCX3CL1 effectively increased tumour-free survival (p = 0.0084) in

mice from 10% (non-immunogenic MCA205 MTX only) to 50%,

demonstrating restored immunogenicity (Figure 2D). Interestingly,

the addition of a dose of 100 ng rCX3CL1 to the MTX-treated

cancer cells did not increase tumour-free survival and vaccination
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with rCX3CL1 alone (i.e., without MTX-treated cancer cells) did

not exhibit any effect (Supplementary Figure S1). These data

indicate the importance of CX3CL1 secretion in establishing an

effective immune response during immunogenic apoptosis,

although this occurs only for an appropriate dose. Of note, the

therapeutic effect of CX3CL1 during MTX treatment in MCA205

tumour-bearing mice decreased the tumour size but this decrease

was not statistically significant (Supplementary Figure S2).
3.3 CX3CR1 is associated with increased
CD8+ T cells and increased patient survival

To understand the relevance of CX3CL1 in human patients, a

cohort of 98 SKCM patients was thoroughly screened utilising the

publicly available TCGA dataset. We found that the presence of

the receptor of CX3CL1, CX3CR1, was associated with a

significantly higher five-year survival of melanoma patients (log-

rank Mantel-Cox test, p = 0.04) (Figure 3A). Additionally, a late-

weighted Fleming-Harrington test also showed a significant

difference in survival (p=4.85e-03). Moreover, CX3CR1 was

mainly associated with CD8+ cytotoxic T cells (Figure 3B).

Finally, a high expression level of CX3CR1 in melanoma

patients was correlated with increased abundance of cytotoxic
Frontiers in Immunology 05
CD8+ T-cells (Figure 3C). Taken together, the increase of CX3CL1

results in mobilisation and recruitment of CX3CR1-positive cells.

A heightened abundance of CX3CR1 in melanoma patients,

particularly associated with increased presence of CD8+ T cells,

was correlated with increased overall survival probability among

the individuals with melanoma.
4 Discussion

We examined the secretion of CX3CL1 from MTX-treated

cancer cells undergoing immunogenic apoptosis and its potential

role as a mediator of anti-tumour immunity during ICD. In our

study, CX3CL1 was released exclusively during apoptotic cell death

induced by MTX in murine fibrosarcoma MCA205 and melanoma

B16-F10 cells. Moreover, in prophylactic vaccination of mice, the

addition of 1 ng or 10 ng of rCX3CL1 to non-immunogenic doses of

dying/dead cancer cells significantly enhanced tumour-free survival

and restored immunogenicity of the dying cancer cells.

Furthermore, analysis of the TCGA-SKCM database of data from

98 melanoma patients revealed a significant correlation between

increased CX3CR1 expression and the patients’ improved overall

survival probability. In addition, CX3CR1 was predominantly

associated with increased abundance of CD8+ T cells, with high
A B C

D E F

FIGURE 1

CX3CL1 release is associated with immunogenic apoptosis. (A, D) Cell death measured by flow cytometry of MCA205 cells (A) and B16-F10 cells (D)
treated with 2 mM or 8 mM MTX (MCA205 and B16-F10 respectively), 2.5 mM RSL3, or three cycles of F/T. Quantification was done by AnV and Sytox
Blue staining. The values are the means ± SEM and represent three independent experiments. (B, E) Representative dot plots of the cell death
measurement shown in (A, D). (C, F) The concentration (pg/mL) of CX3CL1 measured in the supernatants of dying cells using Luminex xMAP
technology. The values are the means ± SEM and represent three independent experiments. Statistical significance was calculated by one-way
ANOVA followed by Tukey’s multiple comparisons test: **p < 0.01, ****p < 0.0001. MTX, mitoxantrone; RSL3, RAS-lethal selective 3; F/T, freeze/
thaw; AnV, Annexin-V; Sytox, Sytox Blue.
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A

B
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D

FIGURE 2

CX3CL1 reverts non-immunogenic apoptosis to ICD. (A) Schematic representation of the tumour prophylactic vaccination mouse model. On day 0,
mice were vaccinated in the left flank with either 5 x 105 or 2.5 x 105 MTX-treated MCA205 cells. On day 7, the mice were challenged in the opposite
flank with 105 viable cancer cells of the same type and tumour growth was monitored with a digital calliper. (B) Kaplan-Meier curve of the progression
of tumour development over time. The reduction of dose of MTX-treated MCA205 cells from 5 x 105 cells to 2.5 x 105 cells significantly decreased
tumour-free survival from 70% to 20%. The statistical differences were calculated by a log-rank (Mantel-Cox) test. Survival curves comparison:
**p < 0.01. (C) Schematic representation of the tumour prophylactic vaccination mouse model. On day 0, mice were vaccinated in the left flank with
either PBS, 2.5 x 105 MTX-treated MCA205 cells alone or 2.5 x 105 MTX-treated cells in combination with different doses of recombinant CX3CL1
(1 ng, 10 ng or 100 ng). On day 7, mice were challenged in the opposite flank with 105 viable cancer cells of the same type and afterwards tumour
growth was followed with a digital calliper. (D) Kaplan-Meier curve of the progression of tumour development over time. The addition of 1 ng or 10 ng
of rCX3CL1 to MTX-treated MCA205 cells significantly increased tumour-free survival from 10% (MCA205 MTX alone) to 50%. Interestingly, 100 ng of
rCX3CL1 had no significant effect on tumour-free survival. The statistical differences were calculated by a log-rank (Mantel-Cox) test. Survival curves
comparison: *p < 0.05, **p < 0.01, ***p < 0.001. ICD, immunogenic cell death; MTX, mitoxantrone; PBS, phosphate-buffered saline; rCX3CL1,
recombinant CX3CL1.
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CX3CR1 expression levels correlating with increased CD8+ T

cell signature.

Cytokines and chemokines are recognised as crucial regulators

in cancer development, cell dynamics within the tumour

microenvironment, and intercellular signalling processes. These

molecular mediators are also an integral part of ICD, acting as

signals for cellular recruitment (“find me” and “eat me” signals), as

well as for immune evasion (“keep out” and “don’t eat me” signals)

(1). The concept of ICD has gained significant attention as a novel

immunotherapeutic strategy and is characterised by the release of

DAMPs and pro-inflammatory cytokines/chemokines that can be

detected by APCs via their corresponding PRRs (21). This drives the

recruitment of APCs to the tumour site, facilitates recognition,

engulfment, and subsequent processing and presentation of tumour

antigens by APCs, and provides guidance for cytotoxic

lymphocytes. CX3CL1 has been described as an important

chemokine that can be implicated in the context of cancer,

although controversies persist regarding the properties and

activities of this chemokine due to its pro- and anti-cancer

characteristics (25). But what is the role of CX3CL1 during ICD,

in particular during immunogenic apoptosis?

In our experimental findings, we demonstrated that CX3CL1

was only detected in the supernatants of MTX-treated

immunogenic apoptotic fibrosarcoma MCA205 and melanoma

B16-F10 cells, and to a significantly lesser extent in the

supernatants of viable cancer cells, RSL3-treated non-

immunogenic late ferroptotic (6) cancer cells and non-
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immunogenic F/T accidentally necrotic cancer cells (Figures 1C,

F). This indicates the exclusivity of CX3CL1 release during

immunogenic apoptosis, suggesting its potential role in mediating

immunogenicity of cancer cells undergoing apoptotic ICD. The

receptor for CX3CL1, CX3CR1, is expressed on various immune

cells, including NK cells, monocytes, dendritic cells, granulocytes,

and CD3+ T cells, stimulating their adhesion, retention, and

transendothelial migration to sites characterised by strong

inflammatory reactions (24, 57). It has been shown that sCX3CL1

also serves as a potent chemoattractant for these CX3CR1-

expressing immune cells, enabling their chemotaxis towards the

cancer niche and activation of their anti-cancer functions (24, 30,

58–61). Moreover, CX3CL1 expression is crucial for dendritic cell

migration, maturation, and adhesion to T cells (58), while the

presence of CX3CL1 on mature dendritic cells also activates resting

NK cells (62). Hence, the release of CX3CL1 by the MTX-induced

dying cancer cells (Figures 1C, F) may establish a gradient directed

towards the tumour, presumably augmenting CX3CR1+ immune

cell migration along the gradient and activation of an anti-tumour

immune cycle. Nevertheless, it is important to note that the

upregulation of CX3CR1 expression may be associated with

increased expression of this protein on the tumour cells, which

may result in metastasis when the cancer cells enter the bloodstream

and bind CX3CR1 on endothelial cells (25). However, due to the

elevated concentration of CX3CL1, cancer cells expressing CX3CR1

might also be retained within the tumour and become the target of

immune cells.
A B

C

FIGURE 3

CX3CR1 is associated with increased CD8+ T cells and increased patient survival probability. (A) The association between CX3CR1 expression and
overall survival (OS) in the TCGA-SKCM dataset. OS curves were generated by setting median expression as cut-off. (B) Statistical analysis of cell
infiltration stratified based on CX3CR1 expression in the TCGA-SKCM dataset. Cellular deconvolution was performed by five algorithms (EPIC, TIMER,
quanTIseq, MCP-counter and xCell). The orange square means that the abundance of cells is significantly greater in patients with a high expression
level of the receptor than in those with a low expression level. A grey square means that cell proportion does not differ statistically between groups,
ns – not significant. A dash means that the method does not determine the proportions of the corresponding cells. Mann-Whitney U test, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Boxplots of CD8+ T-cell signature expression stratified according to CX3CR1 expression in the TCGA-
SKCM dataset. High (coral) and low (cyan) expression level groups were generated by setting median expression as cut-off. Mann-Whitney U test, *p
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, not significant.
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Furthermore, we demonstrated that the addition of CX3CL1 to

a non-immunogenic dose of MTX-treated dying cancer cells is

sufficient to elicit an immunogenic response in a tumour

prophylactic mouse model, thereby revealing CX3CL1 as a power

switch of immunogenic apoptosis induced by MTX (Figure 2D).

Since it has been shown that CX3CL1 enhances efferocytosis of

apoptotic thymocytes (34), it is conceivable that the presence of

CX3CL1 in the prophylactic vaccine may lead to increased

recruitment of phagocytes and clearance of dying cancer cells,

consequently culminating in an overall improved anti-tumour

immunity. However, the presence of CX3CL1 can also be

associated with tolerogenic apoptosis (63). This underscores the

nuanced and context-dependent role of CX3CL1 during cell death,

where different factors intricately interact to determine the ultimate

outcome. During immunogenic apoptosis, the secretion of other

DAMPs fosters the anti-tumour effect, whereas during tolerogenic

apoptosis DAMPs release is minimal, thus constraining the

activation of an adaptive immune response. Therefore, it will be

interesting to determine the differences in CX3CL1 secretion

between tolerogenic apoptosis and immunogenic apoptosis, as the

quantity of CX3CL1 secretion might be the key to shifting

tolerogenic cell death towards an immunogenic form. In addition,

it is important to note that prophylactic vaccination of mice with

CX3CL1 alone (i.e., without any MTX-treated cancer cells) had no

effect on the tumour-free survival of the mice (Supplementary

Figure S1), logically due to the absence of any antigens

(antigenicity) or other DAMPs (adjuvanticity) during vaccination.

Remarkably, our findings from the tumour prophylactic

vaccination experiments (Figure 2D) demonstrate that only lower

doses (1 ng or 10 ng) of CX3CL1 exhibit an enhanced anti-tumour

effect of ICD, whereas use of a high dose (100 ng) leads to almost

complete absence of the anti-tumour effect (Figure 2D). This

observation might indicate that the inherently inflammatory

nature of CX3CL1 could contribute to hyperinflammation at

higher doses, potentially promoting a pro-tumourigenic

environment. Moreover, lack of sufficient DAMPs (due to a non-

immunogenic dose of MTX-treated cancer cells) and excessive

influx of immune cells (30, 58, 59) (due to a high CX3CL1 dose)

might diminish activation of infiltrating immune cells, leading to an

immunosuppressive phenotype and thus loss of the anti-tumour

effect in the presence of a high dose of CX3CL1. Although gene

therapy involving the transfer of CX3CL1 to cancer cells was

demonstrated to induce a robust anti-cancer effect (64–66), we

did not see a significant reduction in tumour size following co-

treatment with CX3CL1 and MTX in the therapeutic mouse model

(Supplementary Figure S2). It is conceivable that the supplementary

CX3CL1 introduced alongside the already secreted CX3CL1 by the

MTX-treated tumour cells resulted in an excessively high

concentration of CX3CL1, which ceases to elicit an additive effect.

Of interest, analysis of RNA-seq data and corresponding patient

clinical information of the TCGA-SKCM of 98 melanoma patients

demonstrated a positive correlation between increased CX3CR1

levels and increased overall survival probability in the melanoma

patients, along with a discernible CD8+ T cell signature (Figure 3).

CX3CR1 has been reported to be associated with CD8+ T cells that

respond to PD1 therapy while resisting cell death during
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chemotherapy (67). Moreover, CX3CR1-deficient mice injected

with melanoma cells had increased tumour burden, cachexia, and

defective anti-tumour responses (68). It has also been shown that an

increase in CX3CL1 expression in the tumour is linked to improved

prognosis of many cancer patients with breast carcinoma (69),

colorectal cancer (70, 71) or lung adenocarcinoma (72), among

other cancers (70–75).

In summary, our study indicates that CX3CL1 serves as a potent

mediator of immunogenicity during immunogenic apoptosis

induced by MTX. CX3CL1 is released by immunogenic apoptotic

cancer cells regardless of the cancer cell type. Moreover, the

addition of CX3CL1 to non-immunogenic doses of MTX-treated

dying cancer cells in mouse prophylactic tumour vaccination

models resulted in the activation of an adaptive immune response

and effectively lengthened survival. In addition, an increase in

CX3CR1 expression was correlated with increased overall survival

probability of melanoma patients and increased CD8+ T cell

signature. Our data provide a rationale for exploiting CX3CL1 as

a future adjuvant to render therapy-induced cell death

immunogenic. The addition of CX3CL1 to other treatments could

affect their immunogenicity, unleashing their full immunogenic

potential during cell death in anti-cancer therapy. However, to

achieve an overall favourable immunogenic outcome, accurate

dosing of CX3CL1 might be of paramount importance.
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37. Tardáguila M, Mira E, Garcıá-Cabezas MA, Feijoo AM, Quintela-Fandino M,
Azcoitia I, et al. CX3CL1 promotes breast cancer via transactivation of the EGF
pathway. Cancer Res. (2013) 73:4461–73. doi: 10.1158/0008-5472.CAN-12-3828

38. Wang H, Cai J, Du S, Guo Z, Xin B, Wang J, et al. Fractalkine/CX3CR1 induces
apoptosis resistance and proliferation through the activation of the AKT/NF-kB
cascade in pancreatic cancer cells. Cell Biochem Funct. (2017) 35:315–26.
doi: 10.1002/cbf.3278

39. Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances
prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. (2018)
53:1544–56. doi: 10.3892/ijo

40. Gurler Main H, Xie J, Muralidhar GG, Elfituri O, Xu H, Kajdacsy-Balla AA, et al.
Emergent role of the fractalkine axis in dissemination of peritoneal metastasis from
epithelial ovarian carcinoma. Oncogene. (2017) 36:3025–36. doi: 10.1038/onc.2016.456
Frontiers in Immunology 10
41. Liu JF, Tsao YT, Hou CH. Fractalkine/CX3CL1 induced intercellular adhesion
molecule-1-dependent tumor metastasis through the CX3CR1/PI3K/Akt/NF-kB
pathway in human osteosarcoma. Oncotarget. (2016) 8:54136–48. doi: 10.18632/
oncotarget.11250

42. Liang Y, Yi L, Liu P, Jiang L, Wang H, Hu A, et al. CX3CL1 involves in breast
cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer. (2018)
9:3603–12. doi: 10.7150/jca.26497

43. Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, et al.
Cytokines in immunogenic cell death: Applications for cancer immunotherapy.
Cytokine. (2017) 97:123–32. doi: 10.1016/j.cyto.2017.05.024

44. Tajbakhsh A, Yousefi F, Abedi SM, Rezaee M, Savardashtaki A, Teng Y, et al. The
cross-talk between soluble “Find me” and “Keep out” signals as an initial step in
regulating efferocytosis. J Cell Physiol. (2022) 237:3113–26. doi: 10.1002/jcp.30770

45. Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E,
et al. Screening of novel immunogenic cell death inducers within the NCI Mechanistic
Diversity Set. OncoImmunology. (2014) 3:e28473. doi: 10.4161/onci.28473

46. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH, et al.
Comprehensive evaluation of transcriptome-based cell-type quantification methods for
immuno-oncology. Bioinformatics. (2019) 35:i436–45. doi: 10.1093/bioinformatics/
btz363

47. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous
enumeration of cancer and immune cell types from bulk tumor gene expression data.
eLife. (2017) 6:e26476. doi: 10.7554/eLife.26476.049

48. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol.
(2016) 17:174. doi: 10.1186/s13059-016-1028-7

49. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34.
doi: 10.1186/s13073-019-0638-6

50. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5

51. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1

52. Ramon J, Engelen Y, De Keersmaecker H, Goemaere I, Punj D, Mejıá Morales J,
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