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Abstract In the last decade the flux-charge analy-
sis method (FCAM) has been successfully used to
show that continuous-time (CT) memristor circuits
possess for structural reasons first integrals (invariants
ofmotion) and their state space can be foliated in invari-
ant manifolds. Consequently, they display an initial
condition dependent dynamics, extreme multistability
(coexistence of infinitely many attractors) and bifurca-
tions without parameters. Recently, a new discretiza-
tion scheme has been introduced for CT memristor cir-
cuits, guaranteeing that the first integrals are preserved
exactly in the discretization. On this basis, FCAM has
been extended to discrete-time (DT)memristor circuits
showing that they also are characterized by invariant
manifolds and they display extreme multistability and
bifurcations without parameters. This manuscript con-
siders the maps obtained via DT-FCAM for a circuit
with a flux-controlled memristor and a capacitor and it
provides a thorough and rigorous investigation of the
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presence of chaotic dynamics. In particular, parameter
ranges are obtained where the maps have snap-back
repellers at some fixed points, thus implying that they
display chaos in the Marotto and also in the Li–Yorke
sense. Bifurcation diagrams are provided where it is
possible to analytically identify relevant points in corre-
spondence with the appearance of snap-back repellers
and the onset of chaos. The dependence of the bifurca-
tion diagrams and snap-back repellers upon the circuit
initial conditions and the related manifold is also stud-
ied.

Keywords Bifurcation diagram · Bifurcation without
parameters · Discrete-time circuit · First integral ·
Flux-charge analysis method · Invariant manifold · Li–
Yorke chaos · Marotto chaos · Memristor · Snap-back
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1 Introduction

Memristors are passive electronic elements enjoying
the two main features of nonlinearity and memory
[1,2]. It is well known that memristors can greatly
enrich the dynamic behaviors of continuous-time (CT)
analog circuits with respect to the traditional nonlinear
RLC circuits [3–11]. Among many applications, mem-
ristor circuits can be effectively used as sources of com-
plex dynamic behaviors for real-time signal processing
and the solution of combinatorial optimization prob-
lems [12–14]. Due to their memory, memristors also
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make it possible to implement in-memory computing
schemes where the processing and thememorization of
the results are performed by the same devices, as it hap-
pens for biological neurons. In principle this permits
to overcome drawbacks of Von Neumann machines
where the information needs to be continuously moved
between the central processing unit (CPU) andmemory
(e.g., the RAM), that are located at different physical
sites [15–18]. The rich dynamics typically displayed
and the possibility of exploiting in-memory computing
make the use of memristors an enabling technology
that is expected to play an increasingly relevant role in
future electronics systems and neuromorphic brain-like
computers.

Recently, discrete-time (DT) memristor circuits
have received an ever increasing attention. The first
motivation is that discretized versions ofmemristor cir-
cuits can be directly implemented in software on digital
computers or other types of digital signal processors,
such as a reconfigurable hardware emulator on a field
programmable gate array (FPGA) or an application
specific integrated circuit (ASIC) [11,19]. Moreover,
since the availability of analogmemristor devices is still
limited, digitalmemristor emulators play a relevant role
to assess the performances of actual memristor circuits
[20,21]. Most importantly, in addition to emulate the
dynamics of CTmemristor circuits, maps implemented
by DT memristor circuits are of interest in themselves
as a source of complex dynamics for engineering appli-
cations in the field of random number generation [22],
secure communications [23], reservoir computing [24]
and biomedical image encryption [25,26].

Broadly speaking, the literature on the dynamics of
DTmemristor circuits can be subdivided into twomain
topics:

1. Chaos and hyperchaos generated by maps of DT
memristor circuits and techniques to enhance the
complexities of hyperchaotic memristor maps ([23,
27–33] and references therein).

2. Coexistence of different chaotic attractors, initial
condition dependent dynamic behaviors, multista-
bility and extreme multistability for special types
of memristor maps ([29,34–36] and references
therein).

Although there are already relevant contributions,
one limitation is that several dynamical results are
obtained by using numerical means and simulations.
For instance, chaos and hyperchaos are studied mainly

by computing numerically bifurcation diagrams and
Lyapunov exponents of theDTmaps,whilemultistabil-
ity and extreme multistability are studied by using sets
of simulations with different initial conditions. How-
ever, it would be desirable to delve deeper into these
topics and give a more solid foundation to complex
dynamics and extreme multistability of these maps by
means of analytic techniques.

In [2,37,38], a technique has been devised, named
flux-charge analysismethod (FCAM), showing that CT
circuits with ideal memristors possess for structural
reasons first integrals (or invariants of motion). As a
consequence, their state space can be foliated in invari-
antmanifoldswhere a different, initial condition depen-
dent dynamics, is displayed. This gives an analytic
explanation of the presence of infinitely many coex-
isting attractors, also known as extreme multistability,
and the bifurcations without parameters that can be
observed in CTmemristor circuits. Very recently, a new
discretization scheme has been introduced for themem-
ristor guaranteeing that the first integrals of CTmemris-
tor circuits are preserved exactly in the discretization.
In particular, the paper [39] extended FCAM to DT
memristor circuits showing also for such circuits the
existence of invariant manifolds in the state space and
the peculiar phenomena of extreme multistability and
bifurcations without parameters.

The main goal of this manuscript is to use rigor-
ous definitions of chaos and employ analytic methods
to prove chaos in some memristor maps obtained via
the new discretization scheme introduced in [39]. The
first definition of chaos in a scalar difference equation
has been given by Li and Yorke in 1975 [40]. Three
years later, Marotto proposed a generalization to multi-
dimensional difference equations [41]. Marotto’s tech-
nique is based on the concept of a snap-back repeller
at a fixed point as well as on the fundamental property
stating that the existence of a snap-back repeller implies
chaos in the Marotto and also in the Li–Yorke sense.
Here, we consider the maps obtained in [39] for a DT
circuit with a capacitor and a flux-controlled memris-
tor. The maps are second-order in the standard voltage-
current domainwhile they are first-order on each invari-
ant manifold in the flux-charge domain. The main con-
tribution of this paper is a deep analytic investigation of
chaos for the considered DT memristor circuits. Espe-
cially, analytic results are established on the existence
of snap-back repellers for the first-order map on each
invariantmanifold, thus rigorously proving chaos in the
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Marotto andLi–Yorke sense. Bifurcations diagrams are
studied in detail and the dependence of these diagrams
and snap-back repellers upon the invariant manifold
and initial conditions is also addressed.

The structure of the paper is outlined as follows.
Some preliminary results about maps and chaos in the
Marotto sense are given at the end of this section. Then,
Sect. 2 briefly reviews the new memristor discretiza-
tion scheme proposed in [39] and introduces the maps
generated by the considered class of DTmemristor cir-
cuits. Sections 3 and 4 contain the main results in the
manuscript on snap-back repellers and Marotto chaos
for the considered maps. Finally, Sect. 5 discusses the
obtained results while Sect. 6 collects some main con-
cluding remarks.

1.1 Preliminaries

1.1.1 Difference equations

Consider the difference equation (or map)

xk+1 = f (xk), k = 0, 1, 2, . . .

where xk ∈ R
n , f : R

n → R
n and f ∈ C1(Rn).

The iterates of a point x0 under f are defined as
x0 = f 0(x0), x1 = f 1(x0) = f (x0), xk = f k(x0) =
f ( f k−1(x0)), k = 2, 3, . . . , i.e., f k is the k-fold com-
position of f with itself.

For any y ∈ R
n we let F−1(y) = {x ∈ R

n : f (x) =
y}. Wemay have F−1(y) = ∅. When f is not injective,
it may also happen that F−1(y) is multi-valued, i.e., it
hasmore thanone element. Eachpoint in F−1(y) is said
to be a backward iterate (or pre-image) of y through f .
In a similar way we can define F−k(y) for k ≥ 2.

A periodic point of period q of f is a point xp which
maps back to itself under q iterates of the map, i.e.,
f q(xp) = xp and f k(xp) �= xp for any0 < k < q. The
collection { f k(xp)}qk=1 is said to be a q-cycle. When
q = 1 a periodic point x̄ is said to be a fixed point of
the map and it satisfies f (x̄) = x̄ .

A set Q ⊂ R
p is positively invariant if f (Q) ⊂ Q.

In this case, for any x0 ∈ Q, we have f k(x0) ∈ Q, k =
1, 2, . . . . If we have f (Q) = Q, then Q is invariant
and any pre-image of y ∈ Q also belongs to Q.

1.1.2 Snap-back repellers

The definition of a snap-back repeller according to
Marotto is given in [41]. After publication of that paper,
it was found that the original definition of a snap-back
repeller was not adequate to prove chaos. In [42], this
problem has been solved by introducing a slightly dif-
ferent definition that is given below.

Definition 1 A fixed point z ∈ R
n of the map f is said

to be a snap-back repeller if:

(i) there exists r > 0 such that all eigenvalues of
(Df (x))�Df (x) are greater than 1 when x ∈
Br (z) = {x ∈ R

n : ‖x − z‖ ≤ r}, where ‖ · ‖
is the Euclidean-norm and Df (·) is the Jacobian
of f ;

(ii) there exist a point z0 ∈ Br (z), z0 �= z, and a posi-
tive integer m such that f m(z0) = z and the deter-
minant det(Df m(z0)) �= 0.

If there is a snap-back repeller of the map, then the
map is chaotic in the sense of Marotto, according to the
next definition.

Definition 2 [41] The map f is chaotic in the sense
of Marotto if:

(a) There exists a positive integer N such that, for
each integer q ≥ N , f has a periodic point of period
q;

(b) there exists a scrambled set of f , namely, an
uncountable set S containing no periodic points of f
such that:

(b1) f (S) ⊂ S;
(b2) for any x, y ∈ S, x �= y, we have

lim sup
k→∞

‖ f k(x) − f k(y)‖ > 0;

(b3) for any x ∈ S and any periodic point xp of f
we have

lim sup
k→∞

‖ f k(x) − f k(xp)‖ > 0;

(b4) there exists an uncountable subset S0 of S such
that for any x, y ∈ S0 we have
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Fig. 1 Continuous-time memristor-capacitor circuit (CT-MCC)

lim inf
k→∞ ‖ f k(x) − f k(y)‖ = 0.

It is known that if f is chaotic in the sense of
Marotto, then it is also chaotic in the sense of Li–Yorke
[42].

Finally, we remark that for a scalar map, i.e., n =
1, the definition of a snap-back repeller simplifies as
follows.

Definition 3 Let n = 1. A fixed point z ∈ R of the
map f is said to be a snap-back repeller if:

(i) there exists r > 0 such that | f ′(x)| > 1 when
x ∈ Br (z) = {x ∈ R : |x − z| ≤ r};

(ii) there exist a point z0 ∈ Br (z), z0 �= z, and
a positive integer m such that f m(z0) = z and
( f m)′(z0) �= 0.

2 Discrete-time memristor-capacitor circuit

Consider the continuous-time (CT)memristor-capacitor
circuit (MCC) in Fig. 1with an ideal capacitorC and an
ideal flux-controlled memristor M . We wish to study
a DT version of the circuit, named DT-MCC, via the
DT-FCAM introduced in [39]. That method is based on
using a special discretization scheme for the memristor
that preserves exactly the first integrals of theCT-MCC,
and then analyzing the obtained DT circuit both in the
voltage-current domain (VCD) andflux-charge domain
(FCD). Next, we briefly recall some basic facts about
DT-FCAM and apply the method to obtain the maps
describing the dynamics of the DT-MCC.

Let v (resp., i) be the voltage (resp., current) of a
two-terminal electric element. Define the flux ϕ(t) =∫ t
−∞ v(t)dt and charge q(t) = ∫ t

−∞ i(t)dt . For t ≥ 0,
also define the incremental flux ϕ0(t) = ϕ(t)−ϕ(0) =∫ t
0 v(t)dt and incremental charge q0(t) = q(t) −
q(0) = ∫ t

0 i(t)dt [37]. Given the sampling instants
tk = kh, k = 0, 1, 2, . . . , where h > 0 is the step
size, the corresponding discrete electric quantities are
vk = v(tk), ik = i(tk), ϕk = ϕ(tk), qk = q(tk),
ϕ0
k = ϕ0(tk) and q0k = q0(tk).
LetC be a linear capacitor satisfying qC = CvC , or,

iC = C v̇C . By applying forward Euler rule we obtain
in the VCD the first-order map

iC,k = C
vC,k+1 − vC,k

h
. (1)

In the FCD, in terms of incremental flux and charge, C
obeys the first-order map

q0C,k = C
ϕ0
C,k+1 − ϕ0

C,k

h
− CvC,0 (2)

where vC,0 = vC (0).
Consider now a flux-controlled memristor M satis-

fying qM = q̂(ϕM ). By differentiating in time, we have

{
iM = q̇M = q̂ ′(ϕM )vM
ϕ̇M = vM .

(3)

The quantity q̂ ′(ϕM ) has dimension of Ohm−1 and is
named memductance. Note that a memristor satisfies
a state-dependent Ohm’s law where the the memduc-
tance is not a constant as in a traditional resistor, but
rather it is a function of the memristor state ϕM (t) =∫ t
−∞ vM (σ )dσ and hence it takes into account the full
history of the voltage applied to the memristor [2].

In [39], a new discretization scheme of (3) has been
introduced in theVCD as follows. By applying forward
Euler rule to iM = q̇M we have iM,k = (qM,k+1 −
qM,k)/h = (q̂(ϕM,k+1) − q̂(ϕM,k))/h. This yields

{
iM,k = 1

h (q̂(ϕM,k+1) − q̂(ϕM,k))

ϕM,k+1 = ϕM,k + hvM,k .
(4)
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Fig. 2 Discrete-time memristor-capacitor circuit (DT-MCC)

In the FCDwe simply obtain the first-order algebraic
map

q0M,k = q̂(ϕ0
M,k + ϕM,0) − q̂(ϕM,0) (5)

where ϕM,0 = ϕM (0).

2.1 Analysis in the VCD

Consider the DT-MCC circuit of Fig. 2 in the VCD.
Current and voltage Kirchhoff laws yield iC,k + iM,k =
0 and vC,k = vM,k , respectively. Using (1) and the
discretization scheme for M given in (4), we obtain

C
vC,k+1 − vC,k

h
+ q̂(ϕM,k+1) − q̂(ϕM,k)

h
= 0.

Therefore, DT-MCC obeys in the VCD the second-
order map

{
vC,k+1 = vC,k + 1

C (−q̂(ϕM,k + hvC,k) + q̂(ϕM,k))

ϕM,k+1 = ϕM,k + hvC,k

(6)

in the state variables vC,k, ϕM,k . The initial conditions
for the state variables in the VCD are vC,0 and ϕM,0.

It is easy to see that (6) admits integrals of motion.
Define the function of the state variables

w(vC , ϕM ) = CvC + q̂(ϕM ).

Considering that ϕM,k+1 = ϕM,k+hvC,k and rearrang-
ing terms of the first equation in (4), we obtain

CvC,k+1 + q̂(ϕM,k+1) = CvC,k + q̂(ϕM,k).

This means that w(vC,k+1, ϕM,k+1) = w(vC,k, ϕM,k),

i.e.,w is a first integral for the DT-MCC circuit and this
is true for any choice of the step size h. Moreover, the
first integral coincides with that of the CT-MCC circuit
[37].

Consider the subsets of the state space

M(Q0) =
{
(vC , ϕM ) ∈ R

2 :
w(vC , ϕM ) = CvC + q̂(ϕM ); w(vC (t0),

ϕM (t0)) = CvC,0 + q̂(ϕM,0)
.= Q0

}
(7)

where t0 is the initial instant. Each subset is a one-
dimensional invariant manifold for the dynamics of (6)
and it is uniquely defined by themanifold index Q0 that
depends upon the initial conditions for the state vari-
ables in the VCD. Actually, any iterate of (6) starting
in M(Q0) is constrained to evolve in M(Q0) for any
k > 0.

Remark 1 It is of importance to stress that the newdis-
cretization scheme (4) differs from the typical scheme
adopted in the literature and given by [23,28,29,33]

{
iM,k = q̂ ′(ϕM,k)vM,k

ϕM,k+1 = ϕM,k + hvM,k .
(8)

It can be easily checked that if the scheme (8) is
adopted, then the obtained DT-MCC circuit no longer
possesses a first integral, no matter how small the step
size h is. See [39] for more details.

2.2 Analysis in the FCD

Due to the existence of a first integral, the dynamics
of (6) on each invariant manifold is expected to be of
lower order, i.e., first order. Next, according to DT-
FCAM, we analyze the DT-MCC circuit of Fig. 3 in
the FCD to determine the dynamics on an invariant
manifold. FromKirchhoff charge and flux laws [39] we
have q0C,k + q0M,k = 0 and ϕ0

C,k = ϕ0
M,k , respectively.

Using (2) and (5), we obtain the first-order map in the
state variable ϕ0

C,k

ϕ0
C,k+1 = ϕ0

C,k − h

C
q̂(ϕ0

C,k + ϕM,0) + h

C
Q0 (9)

where Q0 is the manifold index given in (7).
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Fig. 3 DT-MCC in the FCD

This shows that there are ∞1 different first-order
maps, in one-to-one correspondencewith themanifolds
M(Q0). It is worth to note that each map differs from
the others due to the additive term hQ0 depending on
the manifold index Q0, i.e., on the initial conditions for
the state variables in the VCD.

2.3 First-order maps in the FCD

Assume henceforth that the memristor M has the cubic
nonlinearity

qM = q̂(ϕM ) = −aϕM + bϕ3
M

where a, b > 0. Since q̂ is not monotone increasing,
M is a locally active flux-controlledmemristor [2]. The
map (9) can be rewritten as xk+1 = (1+ha)xk−hbx3k +
hQ0, or

x → f (x) = (1 + ha)x − hbx3 + hQ0. (10)

To simplify the analysis and exposition, wewill con-
sider henceforth, unless stated otherwise, the typical
values a = b = 1. By further assuming C = 1 and
letting x(t) = ϕM (t), we obtain the map

x → f (x) = (1 + h)x − hx3 + hQ0. (11)

This map depends upon two parameters, i.e., the step
size h and the manifold index Q0. Therefore, for the
map we can envisage two conceptually different types
of bifurcations, namely, bifurcations due to varying the
step size h for a fixed Q0 (i.e., a fixed manifold) and

bifurcations due to varying the initial conditions in the
VCD, and hence Q0, for fixed h and circuit parameters,
the latter bifurcations beingnamedbifurcationswithout
parameters [2].

Next, we first study the dynamics of map (11) on
manifold M(0), and then on manifolds M(Q0) with
Q0 �= 0, when parameter h is varied. Moreover, we
study the dynamics for fixed h when parameter Q0 is
varied. The main goal is to find in any case parameter
ranges where the existence of snap-back repellers at
some fixed point of the map can be proved.

3 Snap-back repellers when Q0 = 0

Consider first the case Q0 = 0. Then, the map (11) on
manifold M(Q0 = 0) simplifies to

x → f (x) = (1 + h)x − hx3 (12)

and it depends upon a single parameter h > 0 (the
step size). Figure 4 shows f for different values of
h. Let M(h) (resp., −M(h)) be the maximum (resp.,
minimum) of f in [0,+∞) (resp., (−∞, 0]). We have

M(h) = 2

3

(1 + h)3/2

(3h)1/2
. (13)

First of all, let us find for any h > 0 an invariant
interval for themap (12) where an interesting dynamics
occurs. To this end,we resort to the followinggeometric
procedure. Consider the second iterate f 2 and solve
f 2(x) = x , i.e., look for 2-periodic points of the map.
Consider the largest solution α(h) of f 2(x) = x , i.e.,
the largest 2-periodic point.

Proposition 1 The following hold.
(i) For any h > 0 we have α(h) > 1, moreover,

( f 2)′(α(h)) > 1, i.e., the 2-cycle α(h) → −α(h) →
α(h) is unstable.

(ii) If

α(h) ≥ M(h) (14)

then

Ih
.= [−α(h), α(h)]
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Fig. 4 Behavior of f when h = 1 (blue), h = 1.5 (red), h = 2
(green) and h = 2.5 (orange). For any h there are three fixed
points −1, 0, 1 marked with green points. (Color figure online)

is an invariant interval for the map (12), i.e., f (Ih) =
Ih.

Proof (i) Consider Fig. 5 showing f and f 2. We have
f 2(1) = 1 and f 2(

√
1 + 1/h) = f (

√
1 + 1/h) = 0.

Moreover, for x large, f 2 increases monotonically up
to +∞ with a slope ( f 2)′(x) that also tends to +∞
as x → +∞. It follows that f 2 intersects y = x at a
pointα(h) > 1. Let us now show that ( f 2)′(α(h)) > 1.
Function f 2 vanishes not only at

√
1 + 1/h but also at

point x̃ >
√
1 + 1/h such that f (x̃) = −√

1 + 1/h.
Considering that f (x) is cubic and odd, we have that
| f ′(x)| is increasing for any |x | > ((1 + h)/(3h))1/2

and, similarly, |( f 2)′(x)| is increasing for any |x | >

x̂ such that | f (x̂)| = ((1 + h)/(3h))1/2. Taking into
account that

0 <

√
1 + h

3h
<

√
1 + 1/h < x̂ < x̃ < α(h)

to prove that ( f 2)′(α(h)) > 1 it suffices to prove that
( f 2)′(x̃) > 1. We have ( f 2)′(x̃) = f ′( f (x̃)) f ′(x̃) =
f ′(−√

1 + 1/h) f ′(x̃) ≥ (
f ′(

√
1 + 1/h)

)2 and con-
sequently f ′(−√

1 + 1/h) = −2(h+1). Since h > 0,
f ′(−√

1 + 1/h) ≤ −2, thus ( f 2)′(x̃) ≥ 4 > 1. This
completes the proof.

(ii) Let us consider as inFig. 5 a typical situationwith
a 2-cycle α(h) → −α(h) → α(h) and α(h) ≥ M(h).

1

1

2

2

0

0

−1

−1

−2

−2

0.5

−0.5

1.5

−1.5

M(h)

−M(h)

−α(h) α(h)J− J+

Fig. 5 Behavior of f (solid, black) and f 2 (dashed, black)
when h = 1.28. It is seen that f 2(x) = x has a solution
α(h) = 1.601 > 1. The interval Ih = [−α(h), α(h)] is invariant,
i.e., f (Ih) = Ih . Note the unstable 2-cycle α(h) → −α(h) →
α(h) (red) and the intervals J+ = [0,√1 + 1/h] such that
f (

√
1 + 1/h) = 0 (cyan) and J− = [−√

1 + 1/h, 0] such that
f (−√

1 + 1/h) = 0 (orange). (Color figure online)

1

1

2

2

2.5

2.5

3

3.5

4

0
0

0.5

0.5

1.5

1.5
h

M
(h
),

α
(h
)

Fig. 6 Behavior of M(h) (red) and α(h) (blue) as a function of
h. We have α(h) ≥ M(h) provided 0 < h ≤ 2. (Color figure
online)

Clearly, we have f (Ih) = Ih and so the interval Ih is
invariant for (12). ��

Figure 6 shows the behavior of α(h) and M(h) as
a function of h. It is seen that α(h) ≥ M(h) for any
0 < h ≤ 2. This is the range of h guaranteeing that
Ih = [−α(h), α(h)] is an invariant interval for f . Due
to Proposition 1 and its proof, for any 0 < h ≤ 2,
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iterates of (12) starting in Ih stay in Ih and are bounded.
Instead, those starting outside Ih may be unbounded.
Actually, α(h) is the largest 2-periodic point and the
corresponding 2-cycle is unstable, i.e., bounded and
unbounded iterates are delimited by the largest unstable
cycle. If α(h) < M(h), then f (Ih) �⊂ Ih and iterates
starting in Ih may exit Ih and grow unboundedly.

Consider now the map f : Ih → Ih for 0 < h ≤ 2.
Solving f (x) = x we obtain that for any h there are
three fixed points 0, 1,−1, that belong to the interior of
Ih (cf. Fig. 5). We have f ′(x) = 1 + h − 3hx2. Then,
f ′(0) = 1 + h > 1, i.e., the fixed point 0 is unstable
for any h > 0, moreover f ′(1) = f ′(−1) = 1 − 2h,
i.e., the fixed points 1 and −1 are stable for 0 < h < 1
and unstable for h > 1. We also have f ′(1) = −1
and f ′(−1) = −1 when h = 1, hence the two fixed
points 1 and −1 undergo a flip bifurcation at h = 1 in
correspondence to the stability loss. By means of the
procedure in [39] we can check that the flip bifurcation
is supercritical, hence for h slightly larger than 1 there
is a stable 2-cycle encircling the unstable fixed point 1
and another one encircling −1.

Figure 7 shows thebifurcationdiagramof f obtained
by varying h and starting with an initial condition close
to the fixed point 1 (black branch) and the symmetric
diagram obtained starting close to the fixed point −1
(red branch). The diagram shows, as predicted, a super-
critical flip bifurcation at h = 1 originating a stable
2-cycle. This cycle undergoes a second flip bifurcation
at h = 1.236 with the birth of a stable 4-cycle. Then, a
typical cascade of period-doubling bifurcations occurs
originating a complex attractor. Analogous consider-
ations hold for the red branch. Figure 8 shows some
attractors obtained for specific values of parameter h.

Next, we look for snap-back repellers at the unstable
fixed point 0 for h > 0 and also at snap-back repellers at
the unstable fixed points 1 and−1 for any h ∈ (1, 2]. To
address this issue, we find it useful to identify some rel-
evant points in the bifurcation diagram of Fig. 7. Func-
tion f vanishes at points 0 and ±√

1 + 1/h. Firstly,
consider the equation M(h) = √

1 + 1/h or

f (M(h)) = f (
√
1 + 1/h) = 0.

Taking into account (13), we can recast such equation
as

2

3

(1 + h)5/2

(3h)1/2

[

1 − 4

27
(1 + h)2

]

= 0

1

1 2

0
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h

x

P ∗
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P ∗
−

P ∗
0

h∗ h∗
0

Fig. 7 Bifurcation diagram of themap (12) (Q0 = 0). The black
(resp. red) branch is obtained by starting iterates close to 1 (resp.,
−1). The value h∗ = 1.362 corresponds to the point P∗+ (resp.,
P∗−) where two relevant sub-branches of the black (resp., red)
diagram merge with each other. There is a snap-back repeller at
the fixed points 1 and −1 when h > h∗. The value h∗

0 = 1.598
corresponds instead to the point P∗

0 where the black and red
diagram merge. There is a snap-back repeller at the fixed point
0 when h > h∗

0. (Color figure online)
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Fig. 8 Forward iterates of map (12) for different values of h.
a 2-cycle for h = 1.2; b 4-cycle for h = 1.28; c single-scroll
attractor encircling the fixed point 1 for h = 1.5 and d double-
scroll attractor encircling the fixed points 1 and −1 for h = 1.6.
(Color figure online)

whose solution in the interval h ∈ (1, 2] is

h∗
0 = 3

2

√
3 − 1 � 1.598
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Fig. 9 Curve f 2(M(h)) as a function of h for map (12) (blue)
in the interval 1 < h ≤ 2. The curve assumes the value 1 at
h∗ = 1.362. (Color figure online)

and it corresponds to the point P∗
0 in the bifurcation

diagram. It is seen that if h < h∗
0, then the intervals

J+ = [0,√1 + 1/h] and J− = [−√
1 + 1/h, 0] are

positively invariant, i.e., f (J+) ⊂ J+ and f (J−) ⊂
J−. Therefore, the iterates starting in J+ always stay
in J+ and do not intersect J− and conversely. This cor-
responds to the fact that the black and red branches do
not intersect for h < h∗

0. Instead, when h > h∗
0 the

intervals J+ and J− are no longer positively invariant
and iterates may switch between these two intervals.
For h > h∗

0 there is indeed a drastic change in the
dynamics since the black and red branches of the dia-
gram merge, namely, the scroll around the fixed point
1 merges with that around the fixed point −1 and they
give birth to a double-scroll attractor encircling both
fixed points 1 and −1 (Fig. 8).

Let us now consider the equation

f 2(M(h)) = 1.

As it canbe seen fromFig. 9, this equationhas a solution
h∗ = 1.362 in the interval 1 < h ≤ 2. The value h∗
corresponds to the point we denoted by P∗+ (resp., P∗−)
in the bifurcation diagram of Fig. 7 where two relevant
subbranches of the black (resp., red) branchmergewith
each other.

The special values h∗
0 and h∗ thus singled out have

an important meaning, as it is shown in the next result.

Theorem 1 For any h ∈ (h∗
0 = 1.598, 2] the first-

order map (12) has a snap-back repeller at the fixed

point 0. Moreover, for any h ∈ (h∗ = 1.362, 2] the
same map has a snap-back repeller at the fixed points
1 and −1.

Proof Snap back repeller at fixed point 0. Suppose h >

h∗
0 = 1.598, in which case f ′(0) > 1 and the fixed

point 0 is unstable. We wish to verify the existence of
a snap-back repeller at 0 by means of Definition 3. To
this end, first we need an estimate of the neighborhood
Br (0) = {x : |x | ≤ r} of 0 where f ′(x) > 1 for
any x ∈ Br (0). It turns out that a suitable choice is
r < 1/

√
3, for instance, r = 0.577.

Next, we have to find (if it exists) a point z0 ∈ Br (0),
z0 �= 0, and a positive integer m such that f m(z0) = 0
and ( f m)′(z0) �= 0. To accomplish this task, as it
is discussed next, it is convenient to study the pre-
images F−m(0) of the fixed point 0. By construc-
tion we have f (Ih) = Ih . Since f is not injective,
in general there is more than one pre-image F−1(y)
of a point y ∈ Ih . Indeed, it is seen that there are
from 1 to 3 pre-images of y ∈ Ih . We will con-
sider this strategy to construct in a unique way a
sequence of pre-images f −1(0), f −2(0), . . . , f −k(0),
k = 3, 4, . . . , of the fixed point 0, all of which
belong to Ih . The pre-image f −1(0) is chosen as
the smallest (negative) solution of f (x) = 0. Since
h > h∗

0 = 1.598, we have−M(h) < f −1(0) and there
are 3 pre-image candidates for f −2(0). In this case,
we will choose the intermediate (central) pre-image
(cf. Fig. 10). Note that −xM ≤ f −2(0) < 0, where
−xM = argminx∈−(∞,0]( f ) = −√

(1 + h)/(3 h). If
f −2(0) ∈ Br (0) the proof is completed with m = 2.
Otherwise, we choose the central pre-image also for
f −3(0), and we will prove that f −3(0) ∈ Br (0).
Indeed, first note that x − f (x) = hx(x2 − 1) ≥
0 for any x ∈ (−1, 0), thus implying that −1 <

−xM < f −2(0) ≤ f −3(0) < 0. Also, consider
the quantity Δ f ( f −2(0)) = f −2(0) − f ( f −2(0)) =
h f −2(0)(( f −2(0))2 − 1), which describes the size of
the step f −3(0) − f −2(0). It can be checked that
this is an increasing function whenever f −2(0) ∈
(−xM, 1/

√
3), while it decreases when f −2(0) ∈

(1/
√
3, 0). Since we have assumed f −2(0) /∈ Br (0),

we have −xM ≤ f −2(0) ≤ −1/
√
3, so we can write

the following inequality

f −3(0) = f −2(0) + Δ f ( f −2(0)) ≥ −xM + Δ f (−xM)

=
√
1 + h

3h

(
2h − 4

3

)

.
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Fig. 10 Backward iterates f −1(0), f −2(0) and f −3(0) of map
(12) when h = 1.4 > h∗

0. Also shown is Br (0) (rose). (Color
figure online)

Since h > h∗
0 = 1.598, we obtain 0 > f −3(0) >

−0.19 > −1/
√
3, i.e., f −3(0) ∈ Br (0). Since no

selected pre-image coincides with −xM, then

( f 3)′(z0) =
3∏

k=1

f ′( f −k(0)) �= 0.

As an illustration, Fig. 11 shows the values of back-
wards iterates f −1(0), f −2(0) and f −3(0) as a func-
tion of h. It can be checked that, for any h ∈ (h∗

0, 2],
we have z0 = f −3(0) ∈ Br (0)\{1}, z0 �= 0, i.e., 0 is
mapped back to a point in Br (0) in m = 3 backward
iterates. This concludes the first part of the proof.

Snap back repeller at fixed points 1 and −1. Next,
we study snap-back repellers at the fixed point 1 but
for symmetry reasons the obtained results also hold for
the fixed point −1. Suppose h > h∗ = 1.362, in which
case f ′(1) < −1 and the fixed point 1 is unstable.
Consider the definition of a snap-back repeller for fixed
point 1 (Definition 3). First, we need an estimate of the
neighborhood Br (1) = {x : |x − 1| ≤ r} of 1 where
f ′(x) < −1 for any x ∈ Br (1). It can be shown that a
suitable choice is

r = r(h) = 1 −
√
h + 2

3h
.
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2
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h
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|f
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Fig. 11 Behavior as a function of h of backward iterates
| f −1(0)| (blue), | f −2(0)| (red) and | f −3(0)| (green) of map
(12). The dashed black line represents the value r = 1/

√
3.

(Color figure online)

Since

r ′(h) = 2

3

1
√

h+2
3h h2

> 0

it follows that r(h) is an increasing function of h assum-
ing values between 0 (h = 1) and 0.18 (h = 2).

Next, we have to find (if it exists) a point z0 ∈ Br (1),
z0 �= 1, and a positive integer m such that f m(z0) = 1
and ( f m)′(z0) �= 0. Let us study the pre-images
F−m(1) of the fixed point 1.Wewill consider this strat-
egy to construct in a unique way a sequence of inverse
images f −1(1), f −2(1), . . . , f −k(1), k = 3, 4, . . . ,
of the fixed point 1, all of which belong to Ih . The
pre-image f −1(1) is chosen as the largest solution of
f (x) = 1 except for the fixed point 1, i.e., f −1(1) =
sup{F−1(1)\{1}}. Thereafter, f −n(1) is chosen as the
largest positive solution of f (x) = f −(n−1)(1), i.e., we
have f −n(1) = sup F−(n−1)(1), for n = 2, 3, . . . , see
Fig. 12 for an illustration. Now, suppose we are able
to find m such that z0 = f −m(1) ∈ Br (1), z0 �= 1
and also f ′( f −k(1)) �= 0, k = 1, . . . ,m. Then, z0 is
the point we are looking for in the definition of a snap-
back repeller. In fact, we have f m(z0) = 1 and also
( f m)′(z0) = ∏m

k=1 f ′( f −k(1)) �= 0.
Figure 13 shows the values of the backwards iter-

ates f −2(1) up to f −5(1) as a function of h. It is seen
that, for any h ∈ (h∗, 2], we have z0 = f −5(1) ∈
Br (1)\{1}, z0 �= 0, i.e., z0 is mapped back to a point
in Br (1) in five backward iterates. Moreover, it can be
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Fig. 12 Backward iterates f −1(1), f −2(1), f −3(1), f −4(1) of
map (12)when h = 1.4 > h∗. Also shown is Br (1) (rose). (Color
figure online)
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Fig. 13 Behavior as a function of h of r(h) (black) and backward
iterates | f −2(1) − 1| (red), | f −3(1) − 1| (green), | f −4(1) − 1|
(orange) and | f −5(1) − 1| (violet) of map (12). (Color figure
online)

checked that f ′( f −k)(1) �= 0, k = 1, 2, . . . , 5.1 This
concludes the proof. ��

1 Actually, Fig. 13 shows that for larger values of h we need a
lower number of backward iterates. For instance, when h = 1.5
we have f −4(1) ∈ Br (1), when h = 1.7 the iterate f −3 ∈ Br (1)
and when h = 1.9 we have f −2(1) ∈ Br (1).

4 Snap-back repellers when Q0 �= 0

Consider now the case where Q0 �= 0. Since Q0 is
fixed, the map (11), which is rewritten below for con-
venience

x → f (x) = (1 + h)x − hx3 + hQ0 (15)

depends once more upon a single parameter h > 0 (the
step size). Figure 14 shows f for different values of h.
Note that f is no longer symmetric with respect to the
origin. Let M+(h) = M(h) + hQ0 (resp., M−(h) =
−M(h) + hQ0), where M(h) is given in (13), be the
maximum (resp., minimum) of f in [0,+∞) (resp.,
(−∞, 0]).

To a large extent we can follow a treatment analo-
gous to the case Q0 = 0 to find snap-back repellers
at fixed points. However, there are some remarkable
differences that are discussed next. The fixed points
are the solutions of −x + x3 = Q0. Depending upon
Q0, there may exist one, two or three different fixed
points. Henceforth, we consider the most interesting
case where there are three fixed points x̄− < x̄0 < x̄+.
The range of Q0 where there are three fixed points can
be analytically derived by exploiting the Cardan dis-
criminant, obtaining

Q0 ∈
(

−2
√
3

9
,
2
√
3

9

)

� (−0.3849, 0.3849) . (16)

It is seen that in the Q0 range (16) the fixed point
x̄0 ∈ (−1/

√
3, 1/

√
3) and it is unstable. Moreover,

x̄+ ∈ (1/
√
3,+∞) and it is stable if

x̄+ ∈ (1/
√
3,

√
(2 + h)/3h)

and unstable if

x̄+ ∈ (
√

(2 + h)/3h,+∞).

We have a flip bifurcation at x̄+ = √
(2 + h)/3h. Sim-

ilarly, x̄− ∈ (−∞,−1/
√
3) and it is stable if

x̄− ∈ (−√
(2 + h)/3h,−1/

√
3)

and unstable whenever we have

x̄− ∈ (−∞,−√
(2 + h)/3h).
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Fig. 14 Behavior of f for the map (15) when h = 1 (blue), h =
1.5 (red), h = 2 (green) and h = 2.5 (orange) and Q0 = 0.15.
The three fixed points x̄−, x̄0 and x̄+ are marked by green points.
(Color figure online)

We have a flip bifurcation at x− = −√
(2 + h)/3h.

We can find an invariant interval for (15) via a
straightforward generalization of the procedure for
Q0 = 0. Let α+(h) (resp., α−(h)) be the maximal
(resp., minimal) solution of f 2(x) = x .

Proposition 2 The following hold.
(i) For any h > 0 we have α+(h) > x̄+, and

α−(h) < x̄−. Moreover, ( f 2)′(α+(h)) > 1, i.e., the
2-cycle α+(h) → α−(h) → α+(h) is unstable.

(ii) If

α+(h) ≥ M+(h), α−(h) ≤ M−(h) (17)

then

Ih
.= [α−(h), α+(h)]

is an invariant interval for the map (15), i.e., f (Ih) =
Ih.

Proof The proof is similar to that of Proposition 1 and
is omitted for brevity. ��

It turns out that condition (17) is satisfied, hence
the interval Ih is invariant for the map (15), for any
h ∈ (0, hmax(Q0)], where hmax(Q0) is the curve shown
in black in Fig. 15.
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+
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0.15
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Fig. 15 Curve hmax(Q0) (black) delimiting the region in the
plane (h, Q0)where Ih is invariant for the map (15). Also shown
are the four curves h j

−(Q0) (green), h
j
+(Q0) (violet), h∗+(Q0)

(red) and h∗−(Q0) (blue), that delimit regions in the plane (h, Q0)

where there exist snap-back repellers at the fixed point x̄−,
denoted by −1, x̄0, denoted by 0 and x̄+, denoted by 1. The hor-
izontal dashed lines correspond to the special cases Q0 = 0.05
and Q0 = 0.15. (Color figure online)

In analogy to what has been done before, let us
identify for any Q0 some relevant values of h in the
bifurcation diagram. First, consider the curve h j

−(Q0)

(resp., h j
+(Q0)), obtained by solving the equation

f (M+(h)) = x̄0 (resp., f (M−(h)) = x̄0). More-
over, consider the curve h∗+(Q0) obtained by solving
f 2(M+(h)) = x̄+ and the curve h∗−(Q0) found by
solving f 2(M−(h)) = x̄−. The curves are shown in
Fig. 15. On this basis, we can identify regions in the
parameter plane (h, Q0) where snap-back repellers at
the fixed points x̄−, x̄0 and x̄+ can be found (see Fig.
15). For example, in the region denoted with 0, 1, there
is a snap-back repeller at x̄0 and x̄+. Next, we explain
in more detail the obtained results by analyzing the two
special cases Q0 = 0.05 and Q0 = 0.15. An analo-
gous treatment can be repeated for any other value of
Q0.

4.1 Snap-back repellers when Q0 = 0.05

Suppose that Q0 = 0.05.We have x̄− = −0.974, x̄0 =
−0.050 and x̄+ = 1.024. The fixed point x̄0 is unstable,
whereas x̄+ (resp., x̄−) is stable for h < 0.931 (resp.,
h < 1.083) and unstable for h > 0.931 (resp., h >

1.083). Point x̄+ (resp., x̄−) undergoes a supercritical

123



Snap-back repellers and chaos

Fig. 16 Bifurcation diagram of the map (15) when Q0 = 0.05.
The black (resp. red) branch is obtained by starting close to x̄+ =
1.024 (resp., to x̄− = −0.974). The value h j

− = 1.495 (resp.,

h j
+ = 1.726) corresponds to the point P j

− (resp., P j
+) where there

is a negative (resp., positive) jump from the black (resp., red)
branch of the diagram to the red (resp., black) branch. There is
a snap-back repeller at x̄0 when h > h j

−. The value h∗+ = 1.269
(resp., h∗− = 1.474) corresponds to the point P∗+ (resp., P∗−).
There is a snap-back repeller at x̄+ (resp., x̄−) when h > h∗+ =
1.269 (resp., h > h∗− = 1.474). (Color figure online)

flip bifurcation at h = 0.931 (resp., h = 1.083). Note
that we have an asymmetric situation where x̄+ loses
stability before x̄− as h increases.

The bifurcation diagram for Q0 = 0.15 and 0 <

h < hmax(Q0 = 0.05) = 1.85 is shown in Fig. 16.
Once more there are two main branches, one obtained
starting close to x̄+ (black) and one obtained starting
close to x̄− (red). Now, the two branches are asym-
metric since f is no longer symmetric as in the case
Q0 = 0. One main difference with respect to the case
Q0 = 0 is that at h j

− = 1.495 (cf. Fig. 15), we observe
a negative jump from the black toward the red branch.
This can be explained as follows. Consider the intervals
J+ and J− shown in Fig. 17.We have that f (J+) ⊂ J+,
i.e., J+ is positively invariant, up to h j

− = 1.495, while

for h > h j
− wehave f (J+) �⊂ J+ and iterations starting

in J+ reach a sufficiently large amplitude and they can
switch down to J−. Similarly, J− is positively invariant
up to h j

+ = 1.726, while for h > h j
+ iterations star-

ing in J− can switch up to J+. Therefore, in the range
h j

− < h < h j
+ the iterations starting close to x̄+ get

stuck into the attraction basin of the complex attractor
corresponding to the red branch. For larger values of
h, i.e., h > h j

+, also the oscillations starting close to

1

1

2

2

0

0

−1

−1
−2
−2

0.5

−0.5

1.5

−1.5

x

f
(x
) J− J+

Fig. 17 Behavior of f for the map (15) when h = 1.4 and
intervals J− = [−1.295, x0 = −0.0501] and J+ = [x0 =
−0.0501, 1.324]. (Color figure online)
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Fig. 18 Behavior as a function of h of backward iterates
| f −1(x̄0) − x̄0| (blue), | f −2(x̄0) − x̄0| (red) and | f −3(x̄0) − x̄0|
(green) of map (15) when Q0 = 0.05. The dashed black line
represents the value r0 = |1/√3 − |x̄0|| = 0.526. (Color figure
online)

x̄− reach a sufficiently large amplitude to merge with
those starting close to x+. This gives rise to a double
scroll attractor encircling both fixed points x̄− and x̄+.

Now, we look for snap-back repellers at the fixed
points x̄−, x̄0 and x̄+. First, consider x̄0. Let r0 be
such that f ′(x) > 1 in Br0(x̄0). We have that r0 =
|1/√3−|x̄0|| � 0.526 is a constant independent of h, as
shown in Fig. 18. The same figure shows the backward
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Fig. 19 Behavior as a function of h of r+(h) (black) and back-
ward iterates | f −2(x̄+) − x̄+| (red), | f −3(x̄+) − x̄+| (green),
| f −4(x̄+) − x̄+| (orange) and | f −5(x̄+) − x̄+| (violet) of map
(15) when Q0 = 0.05. (Color figure online)
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Fig. 20 Behavior as a function of h of r−(h) (black) and back-
ward iterates | f −2(x̄−) − x̄−| (red), | f −3(x̄−) − x̄−| (green),
| f −4(x̄−) − x̄−| (orange) and | f −5(x̄−) − x̄−| (violet) of map
(15) when Q0 = 0.05. (Color figure online)

iterates f −1(x̄0), f −2(x̄0) and f −3(x̄0) as a function
of h. These are constructed with a procedure analogous
to that used for the fixed point 0 in the case Q0 = 0.
It is seen that for any h > h j

−, f −3(x̄0) ∈ Br0(x̄0),
hence for these values of h the map (15) has a snap-
back repeller at x̄0 (cf. Fig. 15).

Now, consider the fixed point x̄+ (resp., x̄−) and
let r+ be such that f ′(x) < −1 in Br+(x̄+) (resp.,
in Br−(x̄−)). Figure 19 (resp., Fig. 20) shows r+(h)

(resp., r−(h)) and the iterates f −2(x̄+), . . . , f −5(x̄+)

(resp., f −2(x̄−), . . . , f −5(x̄−)) as a function of h. We
conclude that, for any h > h∗+ = 1.269 (resp., h >

Fig. 21 Bifurcation diagramof (15)when Q0 = 0.15. The black
(resp. red) branch is obtained by starting close to x̄+ = 1.068
(resp., to x̄− = −0.914). The value h j

− = 1.340 corresponds

to the point P j
− where there is a negative jump from the black

branch of the diagram to the red branch. A snap-back repeller at
x̄0 is present when h > h j

−. The value h∗+ = 1.126 (resp., h∗− =
1.801) corresponds to the point P∗+ (resp., P∗−). There is a snap-
back repeller at x̄+ (resp., x̄−) when h > h∗+ (resp., h > h∗−). The
vertical straight line at hmax(Q0) = 1.611 delimits the region
where all iterates starting in Ih are bounded (h < hmax(Q0)) from
the region where iterates starting in Ih may grow unboundedly
(h > hmax(Q0)). (Color figure online)

h∗− = 1.474), we have f −5(x̄+) ∈ Br+(x̄+) (resp.,
f −5(x̄−) ∈ Br−(x̄−)), hence for these values of h the
map (15) has a snap-back repeller at x̄+ (resp., x̄−).
Again, see Fig. 15.

4.2 Snap-back repellers when Q0 = 0.15

Suppose that Q0 = 0.15. We have x̄− = −0.914,
x̄0 = −0.154 and x̄+ = 1.068. The fixed point x̄0 is
unstable, whereas x̄+ (resp., x̄−) is stable for h < 0.825
(resp., h < 1.323) and unstable for h > 1.323 (resp.
h > 0.825). The fixed point x̄+ (resp., x̄−) undergoes
a supercritical flip bifurcation at h = 0.825 (resp., h =
1.323). Again, we have an asymmetric situation where
x̄+ loses stability before x̄− as h increases.

The bifurcation diagram for Q0 = 0.15 is shown
in Fig. 21. Once more there are two main asymmetric
branches, one obtained starting close to x̄+ (black) and
one obtained starting close to x̄− (red). At h j

− = 1.340
(cf. Fig. 15), we observe a negative jump from the
black toward the red branch, which can be explained
arguing as in the case Q0 = 0.05. Notice that we
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have hmax(Q0 = 0.15) = 1.611, while the bifurca-
tion diagram is shown up to h = 1.9 > hmax(Q0).
Actually, when h < hmax(Q0), Ih is invariant and
iterations starting in Ih are bounded. Instead, when
hmax(Q0) < h < 1.9, Ih is no longer positively
invariant and some iterations starting in Ih may grow
unboundedly.Nevertheless,wehave foundnumerically
that iterations starting close to x̄− are bounded also
when hmax(Q0) < h < 1.9, as it can be seen in the
portion of the red branch corresponding to these values
of h.

It has been checked that for Q0 = 0.15 is a snap-
back repeller at x̄0 when h > h j

− = 1.340. Moreover,
there is a snap-back repeller at x̄+ (resp., x̄−) when
h > h∗+ = 1.126 (resp., h > h∗− = 1.801) (details are
omitted).

5 Discussion

In this section, we provide some remarks on the results
obtained for the maps of DT-MCC.

1. We have seen in Sect. 2 that, due to the existence
of a first integral, the state space of a DT-MCC in the
VCD can be foliated in invariant manifolds and on each
manifold the dynamics in the FCD is described by a
first-order map depending upon the manifold index Q0

or, equivalently, upon the initial conditions in the VCD.
Then, in Sects. 3 and 4 it has been shown that for any
Q0 ∈ (−0.3849, 0.3849) there are ranges of parameter
h (cf. Fig. 15) where DT-MCC has snap-back repellers
and therefore it displays chaos in theMarotto and also in
the Li–Yorke sense when DT-MCC evolves in the cor-
responding manifold. Moreover, changing Q0 and the
manifold implies changes in the bifurcation diagrams
and the generated chaos as detailed in the particular
cases Q0 = 0.05 and Q0 = 0.15. We stress that all
these infinitely many different chaotic behaviors coex-
ist for the same set of circuit parameters of DT-MCC,
i.e., DT-MCC displays extreme multistability.

2. In Sects. 3 and 4 we analyzed snap-back repellers
of the map (10) in the special, yet typical case where
the parameters of the memristor nonlinearity qM =
q̂(ϕM ) = −aϕM + bϕ3

M are chosen as a = b = 1.
Actually, an analogous treatment and similar results are
obtained if we consider any locally-active memristor
with a, b > 0. As an example, if we choose another
typical set of values, i.e., a = 1 and b = 1/3, we obtain
for snap-back repellers the scenario shown inFig. 22 for
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Fig. 22 Curve hmax(Q0) (black) delimiting the region in the
plane (h, Q0) where Ih is invariant for the map (10) with a =
1, b = 1/3. Also shown are the four curves h j

−(Q0) (green),

h j
+(Q0) (violet), h∗+(Q0) (red) and h∗−(Q0) (blue), that delimit

regions in the plane (h, Q0)where there exist snap-back repellers
at the fixed point x̄−, denoted by −1, x̄0, denoted by 0, and x̄+,
denoted by 1. (Color figure online)

map (10), which is qualitatively similar to that of Fig.
15. Finally, Fig. 23 shows the bifurcation diagramof the
same map when Q0 = 0. This diagram is remarkably
similar to that obtained in the case a = b = 1 (cf. Fig.
7). Note that the horizontal segments for h ≤ 1 in the
two diagrams are different. This is because the fixed
points ±√

a/b of the map (9) for Q0 = 0 depend upon
parameter b. On the contrary, the values h∗ = 1.362
and h∗

0 = 1.598 in the diagrams coincide. This follows
from the fact that, as it is shown in the Appendix, we
have

h∗(a, b) = 1

a
h∗(1, 1); h∗

0(a, b) = 1

a
h∗
0(1, 1)

where (Sect. 3)

h∗(1, 1) = 1.362; h∗
0(1, 1) = 3

2

√
3 − 1 � 1.598.

3. Let us consider the DT-MCCmap (11) in the spe-
cial case where Q0 = 0 and h = 2, i.e.,

x → f (x) = 3x − 2x3. (18)

The graph of f is shown in Fig. 24a. We can subdivide
the interval Ih = [−α(h), α(h)] = [−1.414, 1.414] in
three subintervals
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Fig. 23 Bifurcation diagram of the map (10) when a = 1, b =
1/3 and Q0 = 0. The black (resp. red) branch is obtained by
starting iterates close to 1 (resp., −1). The value h∗ = 1.362
corresponds to the point P∗+ (resp., P∗−) where two relevant sub-
branches of the black (resp., red) diagrammerge with each other.
There is a snap-back repeller at the fixed points 1 and −1 when
h > h∗. The value h∗

0 = 1.598 corresponds instead to the point
P∗
0 where the black and red diagrammerge. There is a snap-back

repeller at the fixed point 0 when h > h∗
0. (Color figure online)

Ja = [−α(h),
√

(1 + h)/3h] = [−1.414,−0.707],

Jb = [−√
(1 + h)/3h,

√
(1 + h)/3h]

= [−0.707, 0.707]

and

Jc = [√(1 + h)/3h, α(h)] = [0.707, 1.414],

such that Ih = Ja ∪ Jb ∪ Jc, each restriction Ja →
f (Ja), Jb → f (Jb) and Jc → f (Jc) is a homeomor-
phism and moreover f (Ja) = f (Jb) = f (Jc) = Ih .
If we consider f 2, then its graph in each subinterval
reproduces that of f on Ih (Fig. 24b). In a similar
way we can construct the graphs of successive iter-
ates f 3, f 4, . . . , f n , see, e.g., Fig. 24c, d for the graph
of f 3 and f 4. It can be checked that there are 9 inter-
sections of f 2 with the line y = x so that, excluding
fixed points, there are three 2-period cycles. Moreover,
there are 27 intersections of f 3 with y = x and then,
excluding fixed points, there are eight 3-period cycles
(Fig. 24c), while there are 81 intersections of f 4 with
y = x and so, excluding fixed points and 2-period
cycles, there are eighteen 4-period cycles (Fig. 24d).
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Fig. 24 Case Q0 = 0 and h = 2. Graph of a f ; b f 2; c f 3 and
d f 4. (Color figure online)

Arguing in a similar way for f n we can conclude that
there are n-period cycles for any positive integer n > 4.
On one hand this is accordance with the existence of
snap back repellers for themap (18). On the other hand,
it is also in agreement with Li–Yorke theorem [40] and
Sharkovskii theorem [43], according to which the exis-
tence of a 3-period cycle implies the existence of n-
period cycles for any n ≥ 2.

6 Conclusion

The paper has considered a class of DT memristor cir-
cuits that possess invariants of motion and display an
initial condition dependent dynamics showing extreme
multistability and bifurcationswithout parameters. The
paper used analytic tools for a thorough and rigorous
investigation of chaos in this class of DT memristor
circuits. In particular, parameter ranges are identified
where the DT circuits have snap-back repellers at fixed
points and they display chaos in the Marotto and also
in the Li–Yorke sense. Bifurcations diagrams are pro-
vided and relevant points on these diagrams identifying
the birth of snap-back repellers and the onset of chaos
are highlighted. The paper has also studied how the
bifurcation diagrams and snap-back repellers depend
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upon the specific manifold and the circuit initial con-
ditions. We believe the techniques here described are
potentially useful to study chaos also in other classes
of DT memristor circuits. This will be the subject of
future work on this topic.
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Appendix

Consider the case Q0 = 0, a, b > 0. The values of
h∗
0(a, b) and h∗(a, b) are obtained by solving the equa-

tions

f (M(h∗
0(a, b)) = x0 (19)

and

f 2(M(h∗(a, b)) = x+ (20)

respectively, where x0 = 0, x+ = √
a/b, are the fixed

points of (10), while

M(h) = g0(ah)xz (21)

where g0(ah) = (2/(3
√

(3)))(1 + ah) and the value
xz = √

(1 + ah)/(hb) is such that f (xz) = 0. This
yields that (19) is indeed equivalent to M(h∗

0(a, b)) =
xz and thus, taking into account (21), it boils down to

2

3
√
3
(1 + ah∗

0(a, b)) = 1

which implies

h∗
0(a, b) = 1

a

(
3
√
3

2
− 1

)

= 1

a
h∗
0(1, 1).

Now, considering (21), after some straightforward
manipulation, we have

f (M(h∗(a, b))) = g1(ah
∗(a, b))xz

where g1 is a function of ah. Following the same rea-
soning, we have that there exists a suitable function
g2(ah) such that

f 2(M(h∗(a, b))) = g2(ah
∗(a, b))xz .

Then, (20) boils down to

g2(ah
∗(a, b))xz = x+

which can be recast into

g2(ah
∗(a, b))

√
1 + ah∗(a, b)

ah∗(a, b)
= 1.

Let z̃ = ah∗(a, b) be a solution of such equation. Since
z̃ is a constant independent of a and b, we then have

h∗(a, b) = 1

a
z̃ = 1

a
h∗(1, 1).
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