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Abstract: Quartz Crystal Microbalances (QCMs) are versatile sensors employed in various fields, from
environmental monitoring to biomedical applications, owing mainly to their very high sensitivity.
However, the assessment of their metrological performance, including the impact of conditioning
circuits, digital processing algorithms, and working conditions, is a complex and novel area of study.
The purpose of this work is to investigate and understand the measurement errors associated with
different QCM measurement techniques, specifically focusing on the influence of conditioning elec-
tronic circuits. Through a tailored and novel experimental setup, two measurement architectures—a
Quartz Crystal Microbalance with dissipation monitoring (QCM-D) system and an oscillator-based
QCM-R system—were compared under the same mechanical load conditions. Through rigorous
experimentation and signal processing techniques, the study elucidated the complexities of accurately
assessing QCM parameters, especially in liquid environments and under large mechanical loads. The
comparison between the two different techniques allows for highlighting the critical aspects of the
measurement techniques. The experimental results were discussed and interpreted based on models
allowing for a deep understanding of the measurement problems encountered with QCM-based
measurement systems. The performance of the different techniques was derived, showing that while
the QCM-D technique exhibited higher accuracy, the QCM-R technique offered greater precision
with a simpler design. This research advances our understanding of QCM-based measurements,
providing insights for designing robust measurement systems adaptable to diverse conditions, thus
enhancing their effectiveness in various applications.

Keywords: quartz crystal microbalance; measurement systems; signal processing

1. Introduction

Quartz Crystal Microbalances (QCMs) represent a versatile class of sensors achieved
by depositing two electrical contacts onto the surfaces of thin piezoelectric crystal. These
sensors have established themselves in numerous applications, spanning from environmen-
tal monitoring for detecting toxic gases to food industry quality control and biomedical
research [1–3].

At the basis of QCMs lies their unique physical properties which make them elec-
tromechanical resonant systems with exceptional quality factors in both the mechanical
(mass–spring–damper) and electrical domains, coupled by piezoelectricity. In practical
terms, QCM measurements function by detecting variations in the crystal natural oscillation
frequency resulting from mass, density, or viscosity alterations of a thin layer of the material
in contact with one of its surfaces. Viscosity alterations can be significant, especially when
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the QCM is utilized to detect target substances that adhere to a functionalization layer
and/or when operating in a liquid environment [4].

These variations ∆ f are typically described by equations like the Sauerbrey equation
for mass changes ∆m

∆ f = −2
f 2
s

A√
µqρq

∆m, (1)

where fs is the fundamental mode resonance frequency of the quartz, A is the area of
the electrodes, µq is the shear modulus, and ρq is the density of the quartz, and by the
Kanazawa–Gordon equation for liquid applications

∆ f = f
3
2

s

√
ηlρl

πµqρq
, (2)

where ηl and ρl are the fluid viscosity and density, respectively.
The combination of these equations describes the QCM resonance frequency shifts in

liquid environments. Other more complex models can be required in case the quartz is
functionalized with viscoelastic films. As noted, the frequency shift is related to the mass
added to the surface of the quartz, but it also depends on the mechanical properties of the
added film and the surrounding fluid [5]. In this context, it is evident how monitoring other
quantities related to the resonant behavior of the quartz can be beneficial, as it provides
additional information about the interaction with the target substance.

This is usually attained by exploiting different measurement techniques, ranging
from impedance analysis [6–10] to simpler and lower-cost ones such as those based on
frequency measurement associated with dissipation monitoring [11–16], or on a variant
of oscillator-based systems, called QCM-R, recently proposed to simultaneously obtain a
measurement of the dissipative behavior of the quartz [17–21].

Frequency and dissipation monitoring, commonly known as Quartz Crystal Microbal-
ance with dissipation monitoring (QCM-D), simultaneously evaluates the resonance fre-
quency and time constant decay of the transient response offered by the QCM to a short
excitation. QCM-R are feedback loops, including an automatic gain control amplifier and a
frequency-selective feedback network embedding the quartz.

Each technique presents its own trade-offs in terms of cost, application specificity,
accuracy, and measurement duration. Importantly, the interaction between measurement
devices and quartz crystals is crucial, as front-end electronics can introduce loading effects,
influencing measurement accuracy [22,23]. In fact, despite the exceptional sensitivity and
resolution offered by quartz electromechanical resonators, they also exhibit significant
sensitivity to front-end electronics loading and parasitic effects. This poses challenges
across various measurement system topologies and methodologies, ultimately impacting
the metrological specifications of QCM-based systems.

The purpose of this work is to investigate and understand, through experiments and
modeling, the measurement errors associated with different QCM measurement techniques.
The study focuses primarily on evaluating the metrological performance of QCM-based
measurements, with specific attention to the influence of electronic circuits incorporating
quartz resonators on the overall measurement quality. Through a tailored and novel
experimental design, two custom measurement architectures—a QCM-R system and a
QCM-D system—were compared under the same mechanical load conditions. In detail, the
measurement results obtained by experiments conducted across Newtonian liquids with
varying viscosities were analyzed. To compare the quartz parameters assessed from the
measured signals, accurate digital signal processing techniques were exploited, granting
estimation errors smaller than the errors due to the influence of the conditioning circuits.
Comparative analysis against data from a commercial impedance analyzer provides further
and comprehensive insights, complemented by relevant theoretical models.
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2. The Measurement Problem

In this section, the measurement principle exploited in QCM systems is explained
in detail, with a particular focus on characterizing the properties of Newtonian fluids in
terms of density and viscosity. This aims to facilitate understanding of the experimental
tests used in the last part of this paper to compare the metrological behavior of different
measurement techniques. These specific mechanical loads were chosen because they can
serve as references, given that liquids with varying and known characteristics can be
easily prepared and utilized in repeated measurements. Restricting the discussion to these
mechanical loads does not diminish the generality of the approach. In fact, the results
obtained from the theoretical analysis are generalizable, and similar outcomes can be
achieved even when considering different loads (e.g., incorporating rigid loads).

QCMs are typically made using AT-cut quartz, which behave like shear bulk resonant
electromechanical systems. The electrical behavior of this type of resonators can be de-
scribed, close to the resonance frequency and in the absence of mechanical loads, using the
Butterworth–Van Dyke (BVD) equivalent circuit reported in Figure 1 [24].
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Figure 1. Butterworth–Van Dyke (BVD) equivalent circuit for an unloaded QCM.

The circuit is made up of two parallel branches, one given by the capacitance C0 and
the other given by the series of resistance Rq, capacitance Cq, and inductance Lq. C0 depends
on the dielectric properties and geometry of the quartz, Rq describes the mechanical losses
associated with the movement of the quartz and is called motional resistance, Cq depends
on the elastic behavior of the quartz, and Lq depends on the resonator mass [25]. The
equivalent impedance Zq given by such a circuit is described as a function of frequency
f , as

Zq( f ) =
1

j2π f C0Cq

1 − (2π f )2LqCq + j2π f RqCq

1 − (2π f )2Lq
C0Cq

C0+Cq
+ j2π f R C0Cq

C0+Cq

. (3)

The system thus described is characterized by series and parallel resonances, observ-
able respectively at the fs and fp frequencies given by

fs =
1

2π
√

LqCq
, fp =

1

2π

√
Lq

C0Cq
C0+Cq

. (4)

From (4) it is possible to observe that the series resonance frequency fs only depends
on the mechanical characteristics of the quartz. In the case of AT-cut quartz, fs typically
assumes values around 5 MHz or 10 MHz. Focusing on the mechanical behavior of the
quartz, the motional resistance Rq participates in the definition of the quality factor Q of
the series resonance, according to
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Q =
1

Rq

√
Lq

Cq
. (5)

In the case of AT-cut quartz without mechanical load, Q takes values around 10,000.
When used for the characterization of liquids, at least one of the surfaces of the quartz

is mechanically in contact with a fluid ‘half-space’. If the liquid has the characteristics of a
Newtonian fluid, it is possible to electrically describe it as an impedance Zl , given by

Zl = Rl + j2π f Ll =
(1 + j)t2

µ2
q Ad2

53

√
ωρlηl

2
, (6)

which is connected in series to the mechanical branch of the quartz, as described by the
modified BVD circuit in Figure 2 [5]. In (6) d53 is the 5,3 entry of the piezoelectric charge
coefficient matrix (in collapsed notation).
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Figure 2. Butterworth–Van Dyke (BVD) equivalent circuit for a QCM in contact with a Newtonian
fluid. The blue box highlights the Newtonian fluid impedance, the yellow box highlights the
QCM impedance.

Assuming that the QCM works close to the series resonance frequency fs, from (6) it
can be observed that in the case of Newtonian fluids the resistive component Rl and the
inductive component Ll of the fluid impedance Zl are linked by the relation

Rl = 2π fsLl . (7)

Considering the high value of the series resonance frequency fs for an AT-cut quartz,
from (7) it is observed that the effect induced by the Newtonian fluid on the QCM consists
of a notable increase in the overall resistance offered by the mechanical branch, with small
variations also of the reactive part. Due to this increase in resistance, the quality factor Q of
the quartz decreases drastically in applications in liquid, reaching values below 5000.

Figure 3 compares the impedance of a QCM in air and in liquid. The interaction
with the Newtonian fluid produces a clear lowering of the quartz impedance magnitude
peak, an increase of the value of its minimum, and a shift of the resonance conditions
to lower frequency values compared to the unloaded working conditions. To derive the
density and the viscosity of the fluid, two parameters synthesizing the quartz electric
behavior are measured or assessed; one is related to the dissipative behavior (e.g., Q factor,
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minimum impedance magnitude, or real part of the series branch impedance), the other to
the resonance frequency.
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a QCM immersed in water (orange line).

In this context we understand the importance of developing reliable measurement
instrumentation, capable of correctly measuring the characteristics of quartz as its working
condition vary. The extreme variability of the impedance offered by the QCM impacts the
metrological performance of measurement devices in different manners depending on the
measurement techniques they implement, producing substantial differences in the results
they provide.

3. Measurement Systems

This section provides a brief introduction to the two front-end circuits employed
in this study implementing the most common measurement techniques. Both front-end
electronics were developed and realized in-house.

3.1. QCM-D

Within the QCM-D system, an excitation voltage with a burst-like pattern is provided
to the quartz electrodes [26–28]. For this study, a sinusoidal burst voltage was utilized,
represented by the equation

Vex(t) = V1 sin(ωext)rect
(

t
TBURST

)
. (8)

Here, V1 symbolizes the signal amplitude, ωex = 2π fex stands for the excitation
angular frequency, where fex denotes the excitation frequency, and TBURST = 2kπ

ωex
delineates

the burst duration, with k ∈ N signifying the number of sine cycles. Careful selection of
ωex and TBURST is made to prevent unwanted excitation of QCM modes while optimizing
signal amplitude. The resultant transient response of the quartz starting when the excitation
vanishes (at t = t0), is captured using low-input impedance (RL) electronics, yielding a
signal described by

Vo(t) = V2 exp
(
− t − t0

τ

)
cos(2π fs(t − t0))u(t − t0). (9)

Here, τ = Q
π fs

denotes the time constant of the mechanical system, and u(t) signifies
the Heaviside step function. A schematic depiction of the implemented front-end circuit is
showcased in Figure 4.
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Taking into account the BVD model illustrated in Figure 1, where the quality factor and
the resonance frequency are expressed by (4) and (5), respectively, a correlation between
the decay time constant and the resistance offered by the quartz is established as follows

τ =
Q

π fs
=

2
√

LqCq

Rq + Rl + RL

√
Lq

Cq
=

2Lq

Rq + Rl + RL
. (10)

For AT-cut quartz with a frequency of 10 MHz, Lq remains approximately constant at
some mH [5], while the motional resistance Rq + Rl accounts for mechanical load effects,
varying from a few Ω in air to hundreds of Ω in liquid. Consequently, the transient response
as described in (9) exhibits a time constant reduced by at least one order of magnitude in
in-liquid measurements. In the circuit configuration employed for this study, RL was set at
10 Ω.

The developed front-end electronic circuit block scheme is depicted in Figure 5; the
excitation is given by a DDS which in this application is an arbitrary waveform generator.
The DDS signal is applied to the rest of the circuit via an amplifier (OPA695, Texas Instru-
ments, Dallas, TX, USA), used to adapt the output impedance of the DDS to the quartz
impedance which can vary from few ohms to several hundred ohms. The multiplexer
adopted to switch the quartz between the excitation and the acquisition front-end is a low
impedance component (MAX393, Analog devices, Wilmington, MA, USA) and the control
signal is driven by a trigger signal recovered from the excitation burst envelope.
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The signal across the load resistance RL is amplified by a variable gain amplifier
(V.G.A.) (VCA824, Texas Instruments) whose gain is set by a digital to analog converter
(DAC) (16 bit) to adapt the amplified signal output dynamic to the one of the acquisition
system. The value of the load resistance RL has been chosen to be negligible with respect
to the quartz RQ + Rl in liquid applications. Common values for the series of RQ + Rl are
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higher than 100 Ω, thus RL has been chosen equal to 10 Ω. The amplifier output signal
VHF, is the signal which has been acquired and exploited in the following discussion to
assess the measurement setup performance.

To adjust the gain of the V.G.A., VHF is mixed by exploiting an AD831 (Analog Devices)
RF mixer with a local oscillator whose frequency is set near the quartz frequency and
subsequently filtered, to obtain a signal in the audiofrequency band. This signal is acquired
by an analog to digital converter (ADC) (16 bit, 1.25 MS/s) and dynamically processed
to recover the peak output of the transient response and to find a suitable value for VC.
Moreover, the acquired signal in the audiofrequency band is also used from the control unit
to perform a coarse frequency estimation to properly adjust the frequency of the excitation
signal, varying the DDS frequency.

3.2. Oscillator-Based Circuit: QCM-R

Within oscillator-based QCM systems, the quartz crystal becomes an integral part
of the feedback loop in an oscillator setup. This paper adopts a circuitry model outlined
in [20], which relies on the Meacham oscillator design as illustrated in Figure 6.
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For this circuit the Barkhausen conditions are:

Av

(
R2

R1 + R2
−

Zq( fo)

R f + Zq( fo)

)
= 1. (11)

Here, fo represents the self-oscillation frequency of the circuit. When the phase lag
of Av is equal to 0◦, the oscillator frequency aligns with the zero-phase frequency of the
quartz itself offering an approximation of the series resonance frequency as described in
(4) [20]. Moreover, by meeting this equation, the value of the motional resistance can be
derived, given the resistances R1, R2 and R f , and measuring Av as Rq + Rl ≈

∣∣Zq( fo)
∣∣.

It is important to note that in real circuits, even by selecting a large bandwidth amplifier,
the non-zero phase of Av affects the outcomes, even if small. Furthermore, considering
that the resonance frequency of an AT-cut quartz is around 10 MHz, even any parasites
linked to the circuit components can influence the oscillation conditions and, consequently,
the working point of the quartz. In these cases, the quartz impedance must be obtained
starting from the complex version of (11)

Av( f0)

(
Z2( f0)

Z1( f0) + Z2( f0)
−

Zq( fo)

Z f ( f0) + Zq( fo)

)
= 1, (12)

and the estimate of the motional resistance will be given by Rq + Rl ≈ Re
{

Zq( f0)
}

.
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The front-end circuit utilized in this study incorporates a V.G.A. (VCA824, Texas In-
struments). This allows for the adjustment of the gain Av through a feedback loop, ensuring
that the oscillator poles maintain proximity to marginal stability, i.e., it ensures that the
circuit oscillates generating a sine wave, satisfying (12). This strategy facilitates operation
in alignment with the Barkhausen conditions regardless of variations in mechanical load
by adapting the oscillator to the varying impedance of the quartz Zq( fo).

Figure 7 represents the developed front-end electronics block scheme. In particular,
the V.G.A. gain to let the oscillator work in marginal stability is set by the dichotomic
algorithm described in [20]. The algorithm varies the V.G.A. gain Av through the control
voltage VG, exploiting a dichotomic search to find the minimum gain that allows the circuit
to oscillate. As for the QCM-D front-end, the oscillator output signal VHF is mixed (AD831)
with a local oscillator to obtain a signal in the audio frequency range. This signal is acquired
by the control unit by a 16-bit ADC, 1.25 MS/s, and used to perform the dichotomic search.
The V.G.A. control voltage VC is set by the control unit according to the algorithm and fed
to the V.G.A., adopting a 16-bit DAC.
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Figure 7. QCM-R-developed front-end electronics circuit block scheme.

The signal VHF is the one acquired and exploited in the work to assess the performances
of the front-end in the frequency domain, and the V.G.A. control voltage VC is used to
recover the amplifier gain Av, and thus the dissipative components of the quartz impedance.

3.3. Measurement Setup

To assess the metrological performance of the two proposed measurement systems, a
complete experimental setup was implemented. This setup enables, through multiplexing,
the connection of the two front-end circuits (QCM-D and QCM-R) to a QCM hosted in
a static measurement chamber. By employing this configuration, measurements can be
automatically repeated using both techniques without altering the mechanical load (the
working conditions) of the QCM. This ensures that all repeated measurements are carried
out under working conditions as stable as possible. The high frequency signals coming
from the QCM-D V.G.A. and from the QCM-R oscillator output were acquired in time
domain using a Textronix (Beaverton, OR, USA) MSO6 oscilloscope featuring a 12-bit A/D
converter, to be later post-processed in the frequency domain. Sampling was conducted
at a frequency of 125 MHz, with each acquisition window lasting 3 ms. The control
voltage regulating the gain Av of the QCM-R front-end amplifier was acquired using a
16-bit acquisition board from National Instruments. The entire experimental system was
managed through a LabVIEW 21.0 virtual instrument interface. A visual representation of
the implemented experimental setup can be found in Figure 8.

The impedance of the QCM in the measurement chamber, in the presence of the test
solutions was also measured by a commercial impedance analyzer (Wayne Kerr, Bognor
Regis, UK, 6500B) to obtain reference measurements.
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4. Signal Processing and Measured Parameters Extraction

Once the signal has been sampled, starting from the samples, as can be seen from
the literature, two large categories can be considered for carrying out the measurements
and extracting the desired information (analysis in the time domain and analysis in the
frequency domain) [24]. The most efficient way to move to the frequency domain is to use
the Discrete Fourier Transform. The whole signal processing to estimate the parameters
of interest (frequency oscillation and decay time constant) was carried out using the
LabVIEW environment. In this section, the digital processing techniques for estimating the
fundamental parameters from the acquired signals are discussed. These techniques include
the oscillation frequency for QCM-R measurements, as well as the resonance frequency
and the decay time constant for QCM-D measurements. These techniques are described
in consideration of the various measurement circuits setups that were described in the
previous Section. The process of determining the oscillation frequency is the same way for
both measuring circuits, and is based on Discrete Fourier Transform (DFT) [24,25].

Given the nature of the signal in the case of the QCM-D circuit (see Figure 9), before
applying the algorithm for assessing the resonance frequency it is possible to apply some
signal processing to increase signal-to-noise ratio, sensitivity, and frequency resolution. By
its very nature, the signal decays over time but in contrast the noise is stationary. Therefore,
if we carry on the recording data long after the signal has decayed, we will just measure
noise and no signal. The resulting spectrum will therefore have a poor signal-to-noise ratio.
Just adapting the time window length to the duration of the signal, establishing a threshold
to define it based on the noise floor, will certainly improve SNR. Of course, we must not
shorten the acquisition time too much or we will start to miss the information, with would
result in a reduction in SNR. With a damped sine wave, the early parts of the signal are
“more important” as it is here where the signal is the strongest. This effect can be exploited
by deliberately multiplying the signal by a function which starts at 1 and then steadily
tails away to zero. To improve frequency resolution, it is possible to change the sampling
frequency (decimation) or increase the sample points (zero padding).

4.1. Oscillation Frequency Measurement

One of the most frequent techniques used to assess sine or damped sine frequency
exploits the frequency domain analysis, which involves the determination of the location
of the frequency of the spectrum maximum [25–28]. The spectrum is estimated using the
Discrete Fourier Transform. The DFT does not calculate the entire spectrum but only N
samples, all distant from each other by a quantity called frequency resolution, ∆ f , which
depends on the sampling frequency and the number of processed points N. Consequently,
the frequency is measured with a rough resolution. With this approach, the evaluation of
the frequency is impacted by an error that depends on the spectral leakage.
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Considering a generic signal, x(t), sampled with a sampling frequency fc, the DFT,
X(k), is evaluated on N time samples, corresponding to N spectrum samples

X(k) =
N−1

∑
n=0

w(n)x(n)e−jkβn , k = 0, 1, . . . , N − 1, (13)

where w(n) are the time samples of the used window function (if a rectangular window is
used w(n) = 1 for each n) [29], whereas x(n) are the samples of the signal. With a sinusoidal
signal, the signal spectrum is constituted by the window spectrum located at the sinusoidal
frequency fx; see Figure 10, where the amplitude spectrum, M, and its DFT samples, M(k),
are reported.

In order to improve the frequency estimation, it is possible to use some kind of
interpolation; in the literature, the most popular types of interpolation algorithms [30–32]
are those that are based on the knowledge of the frequency transform of the time frame
that is utilized to evaluate the signal. The purpose is to evaluate the deviation of the peak
position with respect to the frequency samples of signal spectrum, i.e., frequency bins. This
is illustrated in Figure 10, in which the position of the spectral peak is shown together with
the deviation δ of the peak position from one of the two closest frequency bins [33,34].

To evaluate the resonant frequency of the QCM, the analyzed signal was assumed to
be represented by the following equation:

x(n) = A cos(2π fsnTc + ϕ0)w(nTc), (14)

where fc is the sampling frequency, Tc = 1
fc

is the sampling period, and w(nTc) is the
considered time window of length NTc. The signal model x[n] has been adopted in both
considered cases presented in this work. In fact, in case the signal is a damped sine wave
(as for QCM-D), (14) can be used if the window length is much shorter than the transient
duration (about 5τ).
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Given the signal x(n) in discrete time domain, X(k) represents its Digital Fourier
Transform (DFT), from which the magnitude M(k) can be calculated as M(k) = |X(k)|.
When the magnitude presents a peak value on a tone frequency located at index K, the
frequency fs of the tone can be obtained as fs = (K + δ)∆ f , where ∆ f = fc

N is the DFT

frequency resolution and δ ∈
[
− 1

2 ,+ 1
2

]
is the fractional bin deviation [35–40].

To estimate the fractional bin deviation δ, different interpolation algorithms can be
used, accounting for the selected window function. In detail, given a window function
w[n] in time domain and its spectrum W[k] for a two-point interpolation algorithm [25], it
is possible to define α as

α =
|W(ε − δ)|
|W(−δ)| =

|X(K + ε)|
|X(K)| , (15)

where ε = sign(X(K)− X(K − 1)). When an analytical relationship exists between δ and α,
it is possible to calculate the value of δ using the previous formula; as an example:

δR = ε
α

1 + α
, δH = ε

2α − 1
1 + α

, (16)

where δR is valid in the case of a rectangular window while δH for the Hanning window.
In the case of other windowing functions, δ can be obtained by using approximation
algorithms.
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The interpolation algorithm also allows evaluation of the tone amplitude with higher
accuracy:

AR = M(K)
2πδ

sin(πδ)
, AH = M(K)

2πδ

sin(πδ)
(1 − δ2). (17)

4.2. Decay Time Constant Evaluation

The typical signal acquired from a QCM-D circuit can be assumed to be the damped
sinusoidal signal represented in (9) and shown in Figure 11. In order to evaluate the decay
time constant τ, an exponential fit can be performed on the time sequence of the relative
maxima of the signal in the time domain, Vo(jTc), j =

[
t0
TC

+ k
fsTc

]
, where [·] denotes the

nearest integer. This time sequence is extracted from the acquired signal. To reduce the
errors due to noise and to sampling, different exponential fitting algorithms can be used,
among which the most used are Least Square fitting techniques. These algorithms are
optimum when the superimposed noise has a Gaussian distribution. Other methods like
Least Absolute Residual or Bisquare are preferable when the signal presents numerous
outliers. Compared to the Least Square, these two are more robust.
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The Least Square method is based on the minimization of the residue of the following
equation:

1
N

N−1

∑
j=0

Γ(Vo(j))(h(j)− Vo(j))2, (18)

where N is the length of the data window. The algorithm minimizes the square difference
between the fitted exponential function h(j) and the maxima sequence Vo(j), weighted
using the function Γ of the j-th sample of the sequence.
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5. Experiments and Results

The proposed algorithms were used to analyze the experimental signals obtained
using the measurement system described in Section 3, and to provide estimations of the
QCM parameters.

The signals were acquired during a measurement campaign in which Newtonian
liquids with different characteristics were analyzed by exploiting the two QCM-based
measurement techniques (QCM-D and QCM-R). Moreover, the impedance of the QCM in
the measurement chamber and loaded by these liquids was measured by an impedance
analyzer. During the tests in the laboratory environment, the temperature variations
remained within 1 ◦C.

Newtonian liquids with different characteristics were prepared starting from ultrapure
water (ρl = 1000 kg/m3, ηl = 0.89 mPa·s at 25 ◦C) and adding different quantities of anhy-
drous glucose, obtaining glucose concentrations in the range (0–43% w/w). Note that glu-
cose solutions with concentration equal to 40% w/w have ρl = 852 kg/m3 ηl = 5.40 mPa·s
at 20 ◦C [35].

Multiple measurements (at least 10) were carried out at each concentration, multiplex-
ing the QCM-D circuit and the QCM-R circuit as described in Section 3, and then acquiring
the impedance spectrum with the spectrum analyzer.

The acquired signals were subsequently analyzed following the procedures outlined
in Section 4. Specifically, an initial study was used to tune the processing techniques by
determining the duration of the time window used for analysis, disregarding any spurious
transient signal components. Some tests were carried out to set up the algorithm parameters,
e.g., the window length and type. The data presented hereafter are those obtained adopting
the Hanning window, which showed the lowest standard deviation on repeated evaluation
among the considered windows for all the analyzed signals.

Moreover, for the QCM-D signals, the decay time constant was evaluated by applying
(18), where the analyzed window length is adapted to the transient duration by removing
samples under the threshold of 50 mV (estimated as the noise floor).

At first, the proposed signal processing [30] was applied to QCM signals obtained
with ultrapure water (170 µL) over 20 repeated measurements. Then, 6 test solutions corre-
sponding to different mechanical loads were prepared by subsequently adding anhydrous
glucose to the ultrapure water in doses of 5 µL (2.8% v/v 1.8% w/w) up to 30 µL (10%
w/w 15% v/v). Sequential measurements on the as-prepared solutions were performed
with both considered techniques, and 20 repetitions were completed. In Table 1 the mean
values of the extracted parameters and the standard deviations are summarized. In the
case of the QCM-D circuit, the mean decay and the standard deviations in the decay time
are also reported.

Table 1. QCM-R and QCM-D systems repeatability. The mean values µ f , µτ and the standard
deviations σf , στ of the resonance frequency and decay time constant, respectively, are reported.

Gluc [µL] µf [Hz]
QCM-R σf [Hz] µf [Hz]

QCM-D σf [Hz] µτ [µs] στ [µs]

0 9,993,267.1 1.8 9,995,707.4 3.4 72.53 0.22
5 9,993,042.4 4.2 9,995,563.9 3.5 66.06 0.62

10 9,992,961.2 2.6 9,995,526.4 5.0 64.49 0.33
15 9,992,770.2 2.4 9,995,408.8 5.9 60.93 0.38
20 9,992,586.0 2.9 9,995,321.4 7.6 57.07 0.44
25 9,992,403.5 2.1 9,995,197.4 7.2 53.38 0.56
30 9,992,133.4 4.7 9,995,109.4 8.7 50.27 0.67

The proposed techniques allow for obtaining resolutions of few hertz (some ppms), as
far as the frequency estimation is concerned and lower than 1 µs for the time constant in
all the measurement conditions. Therefore, they can be applied for analyzing the errors
deriving from the conditioning electronics.
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5.1. Comparison among Different Techniques

The preceding analysis underscores the capability of the proposed method to deliver
measurements of identical parameters, conducted on identical test solutions within very
short time intervals. These measurements exhibit sufficient accuracy and repeatability to
facilitate a thorough comparison of the two measurement techniques, highlighting the
specific errors associated with the load on the front-end circuit.

Central to the comparison are the estimated QCM series resonance frequency fs
(defined in (4)) and motional resistance Rq. While resonance frequency estimates are
obtained directly from the signal processing methods outlined in Section 4, deriving
the motional resistance necessitates some further steps. For QCM-R measurements, the
motional resistance was obtained by indirectly measuring the oscillator amplifier gain Av
from the acquired AGC control voltage utilizing (12). Notably, the standard deviation
of motional resistance measurements was found to be less than 1 Ω. Conversely, for the
QCM-D-based measurements, motional resistance was derived from decay time constant
using (10).

Additionally, the discussion that will follow in this Section will also encompass a
comparison among the QCM parameters obtained from the QCM-D and QCM-R systems
and those derived from QCM impedance spectra for each tested solution.

Although series resonance and motional resistance cannot be directly extracted from
impedance spectra [5], it is known that the series resonance frequency of a QCM lies
between the frequency of the impedance spectrum minimum and the impedance at the first
phase zero. Similarly, the motional resistance is situated between the minimum impedance
magnitude and the magnitude of impedance at the frequency of the frequency of the first
phase zero. These findings are presented in the subsequent figures.

Summarizing, in all the Figures reported hereafter, the markers represent experimental
results. The measurements were performed on the different solutions, then the measured
signals both from QCM-R and QCM-D were acquired and post-processed, to obtain the
two parameters of interest: estimation of the resonance frequency and of the motional
resistance. Regarding the data experimentally obtained exploiting the impedance analyzer
(providing the reference parameters), these were post-processed as well, in order to extract
the 0◦ phase frequency and impedance module from the impedance spectra, as well as the
minimum impedance module frequency.

Figure 12 reveals that all the employed techniques yielded consistent estimates of
resonance frequency and motional resistance (markers). As expected, these estimates
exhibited a trend of increasing resistance and decreasing frequency as the concentration of
test solutions increased. However, there was also noticeable divergence in the estimates
among the different techniques, with the extent of divergence escalating with the increase
of the mechanical load on the quartz.

To better understand the causes of these differences between measurements, in the
next subsection we compare the experimental results with the expected theoretical behavior
of the different measurement techniques as the density of a Newtonian fluid applied to the
QCM increases., to assess the errors. The theoretical behavior was obtained by modeling
a QCM, inserted in the different specified circuits when operating with loads given by
different Newtonian fluids. To this end the QCM behavior will be modeled through BVD
circuit inserted in the specific front-end circuit to account for electrical loading, and the used
solutions through a Newtonian fluid behavior (offering a specific mechanical load as per (6)).
Therefore, we used electrical models (circuit), mechanical models (solutions) and finally
coupled electromechanical models (quartz). Each of these models were tuned to account for
the experimental conditions in order exactly match and explain the experimental results.
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5.2. Experiments Validation by Theoretical Models

As anticipated in Section 2, the electrical behavior of an unloaded QCM can be de-
scribed through the Butterworth–Van Dyke equivalent circuit, represented in Figure 1,
given by the parallel of a capacitance C0 with the series of a resistance Rq, of an induc-
tance Lq, and a capacitance Cq, which corresponds to the equivalent impedance described
by (3). Assuming placing a surface of the QCM in contact with a Newtonian fluid, the
Butterworth–Van Dyke circuit is modified as in Figure 2, i.e., by adding a resistance Rl and
an inductance Ll in the series branch, whose values depend on the density and viscosity of
the fluid according to (6) and are connected to each other according to (7).

The previously described experiments can be referred to this theoretical model. Specif-
ically, the behavior of the QCM in air can be modeled via the Butterworth–Van Dyke
equivalent circuit in its original form, since the density and viscosity of air are negligible,
and the mechanical behavior of quartz is not affected. On the other hand, the behavior
of the QCM when one of its surfaces is in contact with water, or with water and glucose
solutions, must be modeled through the Butterwort-Van Dyke equivalent circuit in its
modified form, since water and water/glucose solutions, have characteristics comparable
to those of the Newtonian fluids described by (6) and (7).

Consequently, the experimental measurements proposed in Figure 12 and discussed
in the previous subsection can be related to the theoretical model of Section 2 by initially
establishing the values of the components of the Butterworth–Van Dyke equivalent circuit of
the quartz used for the measurements, and subsequently applying a theoretical Newtonian
liquid on it via the modified Butterworth–Van Dyke circuit, evaluated for arbitrary values
of Rl and Ll selected according to (6) and (7).

For this purpose, we started by evaluating the parameters of the Butterworth–Van
Dyke model of the quartz used for the measurements in the absence of mechanical load.
This evaluation was carried out by applying the fitting model described in [5] on the
impedance of the QCM in air, acquired through the Wayne Kerr 6500B impedance analyzer.
Referring to the BVD model in Figure 1, we established a motional resistance Rq equal to
9 Ω, an inertial inductance Lq equal to 6.6 mH, an elastic capacitance Cq equal to 38.5 fF,
and a parallel capacitance C0 equal to 9.3 pF.

Subsequently, we applied a theoretical Newtonian fluid to the QCM, adding to the
motional resistance Rq a further resistance Rl , the value of which was increased from 0 to
400 Ω. Following the properties of Newtonian fluids, according to the value of Rl , we also
added to the inertial inductance Lq an inductance Ll , defined according to (7) considering
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the series resonance frequency equal to the value measured in air ( fs = 9.997640 MHz). For
each load scenario thus considered, we subsequently calculated the overall impedance
offered by the QCM immersed in the Newtonian fluid according to the model reported
in Figure 2, evaluating the trend of the frequency and the real part of the impedance in
resonance, zero phase, and minimum impedance conditions.

Finally, we evaluated the overall phase shift of the oscillator due to the amplifier and
the parasitic components, setting it at around -29◦. Considering this result, we applied
(12) to the quartz impedances calculated for the different load scenarios, evaluating the
oscillation frequency and the corresponding real part of the QCM impedance expected as
the viscosity of the fluid increases.

Figure 13 shows the results of this analysis of the expected behavior of the QCM
(solid lines), offering a comparison with the experimental results obtained starting from
the previously described measurement campaign (markers). Specifically, the curves in the
figure indicate the behavior of the QCM when the density and viscosity of the Newtonian
fluid varies according to the theoretical model. The blue curve shows the expected variation
according to the theoretical model of the series resonance frequency and of the real part of
the impedance evaluated at that frequency. The orange curve shows the expected variation
according to the theoretical model of the frequency in minimum impedance conditions
and of the real part of the impedance evaluated at that frequency. The yellow curve
shows the expected variation according to the theoretical model of the frequency in zero
phase conditions of the impedance and of the real part of the impedance evaluated at that
frequency. The purple curve shows the expected variation according to the theoretical
model of the frequency in conditions of oscillation of the Meacham oscillator and of the
real part of the impedance evaluated at that frequency. The behavior expected based on the
theoretical model is overlapped with the data coming from the experimental measurements,
which are instead represented through markers. In particular, the blue markers are the
average frequencies and resistances measured by the QCM-D device, the orange and yellow
markers are the average frequencies and resistances measured by the impedance analyzer,
and the purple markers are the frequencies and resistances averages measured through the
QCM-R device.
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and the expected behavior for a QCM immersed in a Newtonian fluid with increasing viscosity
(lines—blue: resonance condition, purple: oscillator, orange: minimum impedance condition, yellow:
zero phase condition).
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According to what is shown in the figure, a perfect overlap between expected theoreti-
cal behavior and experimental data is appreciated, confirming the correspondence between
the behavior of the tested devices with the corresponding theoretical models. This explains
the measurement errors with systematic effects related to the specific measurement applied,
i.e., to the specific front-end circuit. Additionally, it can be observed that the QCM-D tech-
nique appears to be much more accurate than the QCM-R technique, as the measurement
of the oscillation frequency and the decay time constant of the QCM-D transient allow for
obtaining the behavior of quartz in resonance conditions with a very good approximation.
On the other hand, the frequency and resistance measurements provided by the QCM-R
technique suffer from the phase shift introduced by the amplifier and parasitic components,
leading the quartz to operate in conditions that move further and further away from reso-
nance as the viscosity of the fluid increases. However, it is also necessary to consider the
results reported in Table 1, which show that the QCM-R technique compensates for the
lower accuracy with greater precision compared to the QCM-D technique. This advantage
is also supported by a lower complexity in the oscillator-based instrumentation design
compared to a QCM-D front-end with comparable performance. The QCM-R, in a stand-
alone instrument, can be followed simply by a digital frequency-meter, and the gain of the
amplifier is a low-frequency signal that can be acquired by simple hardware to derive the
motional resistance. Instead, the transient response of a QCM-D must be amplified with
low noise wide band amplifiers, acquired (A/D converted) and post-processed.

6. Conclusions

This paper thoroughly investigated the metrological performance of QCM-based
measurements, focusing specifically on the influence of electronic circuits incorporating
quartz resonators on measurement quality. By comparing two custom measurement
architectures—a QCM-D system and an oscillator-based QCM-R system—the study shed
light on the complexities involved in accurately measuring QCM parameters under varying
mechanical loads.

The research provided comprehensive insights into the behavior of QCMs in different
environments, particularly in liquids, where the presence of Newtonian fluids significantly
impacts the resonance frequency and motional resistance of the quartz. Through meticulous
experimentation and signal processing techniques, the study elucidated the challenges and
issues of accurately measuring QCM parameters, highlighting the importance of reliable
measurement instrumentation capable of adapting to changing conditions.

The comparison among different measurement techniques revealed consistent esti-
mates of resonance frequency and motional resistance across various mechanical loads.
However, divergence in measurements became apparent with increasing load, underscoring
the complexities inherent in QCM-based measurements, particularly in liquid environments.

Furthermore, the study conducted an in-depth analysis comparing experimental re-
sults with theoretical models, demonstrating a high degree of correspondence, and reaffirm-
ing the reliability of the tested devices. Notably, while the QCM-D technique demonstrated
higher accuracy in capturing quartz behavior, the QCM-R technique exhibited greater
precision, albeit with lower accuracy, and offered a simpler design.

Overall, this research advances our understanding of QCM-based measurements and
provides valuable insights for designing robust measurement systems capable of accurate
and reliable performance across diverse applications and environmental conditions. Further
exploration in this field holds promise for enhancing the capabilities and effectiveness of
QCM sensors in various industries and scientific endeavors.
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