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Abstract  

Deeply weathered crystalline rock aquifer systems consisting of an unconsolidated 

weathered regolith and underlying fractured bedrock underlie 40% of sub-Saharan Africa. 

The vulnerability of this aquifer system to over abstraction and fecal contamination, 

particularly in rapidly urbanising areas, remains poorly understood. Forced-gradient tracer 

tests using chloride were conducted in order to assess ground water flow and storage in a 

deeply weathered, gneissic rock in southeastern Uganda.  Escherichia coliphage ΦX174 was 

also investigated as a possible tracer of viral transport. Analytical solutions to drawdown 

data, selected on the basis of the pressure derivative and flow dimension, indicate a bulk 

hydraulic conductivity of 1.2 m⋅d-1 and a specific yield of 0.23±0.05. Application of a radial 

advective-dispersion model with an exponentially decaying source term to the recovered 

conservative tracer, chloride, indicates a dispersivity of 0.8±0.1 m over a distance of 4.15 m. 

Based on the recovery of the chloride tracer, average linear velocity of ground water is 1.6 

m⋅d-1. The bacteriophage tracer was largely unrecovered; adsorption to the weathered 
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crystalline rock matrix is inferred and promoted by the low pH (5.7) of site ground water and 

the bacteriophage’s relatively high isoelectric point (pI = 6.6). This study presents the first 

field determinations of aquifer storage (specific yield) and dispersivity in weathered 

crystalline rock in sub-Saharan Africa. Despite the limitations of single-site observations, 

these data provide a starting point for assessing the vulnerability of weathered crystalline 

rock to contamination and estimating quantitatively the impact of climate and abstraction on 

ground water levels in this aquifer.   
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Introduction 

Thick regoliths of deeply weathered crystalline rock occur across low-latitude, 

cratonic regions of Africa, Asia and the Americas.  Aquifers which occur in the in situ 

weathered regolith (saprolite) and underlying fissured bedrock (saprock), are the product of 

long-term geomorphic evolution of the landscape that has occurred through tectonically 

controlled cycles of deep weathering and erosion (Taylor and Howard, 1998; 2000).  

Although considerable research in the tropics has focused on the hydrogeological 

characteristics of fissured bedrock (e.g., Houston and Lewis, 1988; Howard et al., 1992; Briz-

Kishore, 1993; Maréchal et al., 2004), comparatively fewer studies have examined ground 

water flow and storage in the weathered regolith despite its importance not only as a source 

of water via shallow wells but also as a source of ground water storage to underlying fracture 

systems (Rushton and Weller, 1985; Taylor and Howard, 2000). 
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The weathered regolith and fissured bedrock form an integrated aquifer system that 

underlies 40% of sub-Saharan Africa (Figure 1). Both aquifers are generally low yielding 

(Bannerman, 1973; Omorinbola, 1984; Owoade, 1993; Chilton and Foster 1995; Taylor and 

Howard 2000) but have a long history of development for low-intensity, handpump 

abstraction. Ground water development has recently intensified in an effort to provide low-

cost, town water supplies throughout sub-Saharan Africa, the most rapidly urbanizing area in 

the world (Clark, 1998). Despite the increased density of sewage disposal facilities and other 

contaminant sources (e.g., refuse dumps) in urban Africa, the susceptibility of boreholes 

drawing ground water from weathered crystalline aquifers to contamination from point-

source pollution remains very poorly understood. Localised contamination of aquifers in 

weathered crystalline rock from fecal sources sewage has been indicated by elevated 

concentrations of nitrate and thermotolerant coliforms in the discharge of handpumped 

wells and springs (e.g., Barrell and Rowland 1979; Malomo et al. 1990; Taylor and Howard 

1995; Gelinas et al., 1996; Nkotagu, 1996; Miret Gaspa, 2004).   

Current guidelines for wellhead protection zones (e.g. Schmoll et al., 2006) require 

specific knowledge of aquifer characteristics and, ideally, transport of actual microbial 

pathogens (e.g., enteric viruses) by ground water in deeply weathered aquifers. There is also 

no clear understanding of the impact of more intensive ground water abstraction on ground 

water levels in the aquifer system and, hence, the sustainability of intensive abstraction 

(Taylor et al., 2004a).  Published measurements of several, key hydrogeological properties of 

deeply weathered crystalline rock in Africa such as storage (e.g. specific yield) and 
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dispersivity do not exist. The overall objective of this study is, therefore, to improve 

understanding of ground water flow and contaminant transport in deeply weathered 

crystalline rock.  Two forced-gradient tracer tests were conducted over 5-day intervals in 

March (1999) and August (2000) in order to derive field-based estimates of key aquifer 

characteristics including specific yield and dispersivity, and to assess the transport of 

bacteriophage (ΦX174), a proxy for enteric viruses, relative to a conservative (unreactive) 

tracer. 

 

Tracer Selection 

 

 Chloride was selected as a conservative tracer of solute transport because it is simply 

and reliably analysed in the field, and its unreactive character is well established.  Use of 

chloride also avoided the possibility of significantly affecting the potability of a nearby 

public water-supply borehole. Bacteriophages have been widely applied as a tracer of viral 

transport in ground water (e.g., McKay et al. 1993; Bales et al. 1997; Ryan et al., 1999) 

because they are non-pathogenic (i.e., it is specific to a host bacteria), are relatively easy to 

culture and assay, and exhibit good survival characteristics. The sensitivity of bacteriophages, 

which can be prepared in titres of 108 to 1012  pfu⋅ml-1 and detected in concentrations of 1 

pfu⋅ml-1, is unmatched by most chemical tracers. Added advantages to the use of 

bacteriophage are that culturing and assaying of the virus do not require sophisticated 

microbiological equipment and are inexpensive. In this study, Escherichia coli phage  ΦX174 



 5 

(NCIMB 10382 / ATCC 13706 B6), which is a tail-less, single stranded-DNA bacteriophage 

with an icosahedral head morphology and a diameter of approximately 27 nm, was selected 

as a potential viral tracer because it is comparable in size to enteric viruses. Rotavirus, for 

example, is considered to be the most important cause of severe diarrhoea in African 

children (Cunliffe et al., 1998). The representivity of bacteriophages as tracers of enteric 

virus transport is, however, uncertain (Cronin and Pedley, 2002) and is the subject of active 

research.  

 

Study Site 

 

 The tracer test was conducted on the property of the District and Town Water Offices 

of Iganga in southeastern Uganda (Figure 2).  This area is underlain by Precambrian gneisses 

and granites of the Granitic-gneissic complex which extends throughout much of central and 

northern Uganda.  A prolonged cycle of deep weathering since the Miocene (Taylor and 

Howard 1998) has produced a thick (>20 m) regolith of in situ weathered rock overlying 

bedrock.  The stratigraphy of the weathered mantle at the test site is determined from drill 

cuttings collected during well construction, and shown in terms of graphical logs of 

weathered lithofacies (Figure 3) proposed by Taylor and Howard (1999a).   

 Below topsoil, reddish-brown clay loam (USDA classification) comprising hydrous 

iron and aluminium oxides and kaolinite is succeeded with depth by a coarse-grained 

horizon of angular quartz fragments. This coarse-grained layer is underlain by brown sandy-
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silt and sandy loam in which the frequency of mineral fragments increases with depth.  

Below the water table at ~17 metres below ground level (mbgl), gray and yellowish orange 

loamy sand of bedrock fragments persists to the bedrock surface between 22 and 23mbgl.  

Examining the lithology of weathered profiles similarly derived from gneissic bedrock, 

Taylor and Howard (1999a) observed bimodal particle-size distributions that, in the saturated 

zone, comprise binary clays (smectite, vermiculite) and kaolinite along with sand-sized 

grains of quartz and potassic feldspar relatively resistant to weathering. 

 The pumping well and injection well were drilled by air-rotary methods using a 

boring diameter of 203 mm.  Both wells partially penetrate the aquifer in the weathered 

overburden.  PVC well screens (ID: 140 mm; slot size: 1.5 mm) and filters of quartz gravel 

(grade: 2 to 6 mm) were installed through 1.5 and 3.0 m intervals of the saturated zone in the 

injection well and pumping well respectively (Figure 3). In each well, backfilling occurred to 

a depth of 2mbgl where a concrete seal and skirting were installed to ground surface.  Well 

development was achieved by air lifting and a step pumping test.  The study site (Figure 1) is 

situated on a topographic divide with drainage occurring along very gentle slopes to the west 

and east of the town centre. Iganga Town experiences a humid climate which is 

characterised by two rainy seasons occurring around April and September each year. Due, in 

part, to low relief and permeable soils that favour infiltration of rainfall, recharge exceeds 

runoff and is roughly in the order of 120 mm⋅a-1 (Taylor and Howard 1999b).    
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Materials and Methods  

 

 Bacteriophage ΦX174 was grown and assayed in Escherichia coli (NCIMB 12416) 

using the plaque-forming-unit technique described by Adams (1959). Phage and host 

bacteria were reconstituted from freeze-dried culture. Innoculation of the host culture with 

reconstituted phage produced a phage titre of 108 to 109 pfu⋅ml-1.  The precise titre was 

determined by serial dilution followed by the phage detection method described by Borrego 

et al. (1987).  Ground water samples collected on site prior to the application of tracers 

confirmed that bacteriophage ΦX174 was absent.  Prior to the application of tracers, a pseudo 

steady-state flow field between the injection and pumping wells was established. Phage and 

aqueous chloride (0.54 kg) were injected directly into the observation well through a 20 m 

length of HDPE tubing (OD:25 mm), perforated (slot diameter: 5 mm) over a 0.5 m interval 

at its base.  The tracers were mixed with the well volume using the emplaced HDPE tubing.  

Physico-chemical measurements and samples for tracer analysis were taken every 2 hours 

over each 5-day test.  Aqueous samples for bacteriophage analysis were collected in sterile 

glass universals, fixed with 1 to 2 ml of chloroform, placed in dark, cold storage (<10°C), and 

analysed within 48 hours. Analysis of chloride in ground water was conducted by 

colorimetry at the Water Resource Management Department in Entebbe.   

 To monitor tracer migration and dispersion from the injection well, samples for 

chloride and phage analysis were obtained directly from the injection well using disposable 

bailers at regular intervals. The inactivation rate of phage ΦX174 in site ground water was 
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determined by inoculating 1L ground water samples with 1mL of a tite of phage ΦX174 (6 x 

108 pfu·ml-1) and storing these samples at 25°C, the in situ temperature of ground water.  

Over a 5-day period, 10 ml samples were then taken from the infected water, fixed with 

chloroform and refrigerated (~4°C) before assaying.  The effect of salinity and hence 

simultaneous application of phage and NaCl tracers on the inactivation rate of phage ΦX174 

were also investigated. 

 

Results and Discussion 

 

hydraulic response to pumping 

 

 For each forced-gradient tracer test, drawdown (s), the derivative of drawdown with 

respect to the natural logarithm of time (ds/d ln t), and flow dimension (n) are plotted versus 

elapsed time on logarithmic axes in Figure 4. The log-log plot of ds/d ln t versus time, also 

known as the “pressure derivative” (Spane and Wurstner, 1993), is a diagnostic tool for 

constant-rate pumping tests that provides insight into the ground water flow conditions such 

as the establishment of radial flow and presence of flow boundaries, that operate during the 

test interval (Walker and Roberts, 2003; Renard, 2005; Tindimugaya, 2007). Analysis of flow 

dimension (n) is based on the generalized radial flow approach of Barker (1988) in which the 

relationship between cross-sectional area of flow (A(r)) and distance (r) from the pumping 
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borehole is governed by equation 1 wherein αn (eq. 2) is the surface area of a unit sphere in n 

dimensions, Γ is the gamma function, and b is the extent (thickness) of the flow zone. 

 

1)( −⋅= n
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The flow dimension (n) defines the rate at which cross-sectional flow area changes with 

respect to distance from the pumping well. Both the pressure derivative and flow dimension 

were used to constrain the range of potential conceptual models of the tested system and, 

hence, analytical solutions to be applied to the drawdown response and transport of applied 

tracers.  

 Brief changes in the pumping regime which occurred during each tracer test are 

detectable in both plots of the drawdown response in Figure 4. In 1999, the pumping rate (Q) 

was increased from 0.8 to 1.0 m3⋅hr-1 after 72 hours. As a result, the applied hydraulic 

gradient between the injection and pumping wells increased slightly from -0.066 to -0.086. 

In 2000, the pumping rate remained fairly constant between 1.7 and 2.0 m3⋅hr-1 throughout 

the test but was interrupted by a temporary cessation of pumping after 21 hours. Apart from 

this interruption, the hydraulic gradient applied over the entire test ranged from -0.089 to -

0.094. 
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The response of the aquifer to pumping during both tests suggests that it is 

unconfined. During the 1999 tracer test (Figure 4a), stabilization of drawdown between 4 

and 24 hours of pumping is followed by a small but steady increase in drawdown. The 

former, indicated by negative deflections in the pressure derivative, reflects the contribution 

of depression storage whereas the latter, supported by a generally constant derivative 

drawdown between 24 and 72 hours, suggests that gravity storage has been exhausted. A 

generally similar pattern is observed during the test of 2000 though the stabilization of 

drawdown indicated by negative deflections in the pressure derivative between 9 and 17 

hours, is less pronounced. An unconfined aquifer response to pumping is consistent with the 

observation that the static water level in each well approximates the depth (17 m below 

ground level) at which water was struck in the aquifer during drilling (Figure 3). 

The establishment of radial-flow conditions during each test is clearly indicated by 

plots of the pressure derivative and flow dimension (Figure 4). A generally consistent 

pressure derivative observed after the first day of pumping in each tracer test (apart from 

temporary disruptions in pumping discussed above), signals radial flow unaffected by 

constant-head or no-flow boundary conditions. Consistent with this inference, mean flow 

dimension closely approximates 2 (i.e. radial flow) after the first day of pumping in both 

1999 (n = 1.8) and 2000 (n = 1.9) (Figure 4).  

Having deduced conditions of radial flow and unconfined aquifer storage at the test 

site, the analytical solutions of Neuman (1975) and Moench (1993) for an unconfined aquifer 

were applied to the drawdown responses in the injection well and closely approximated field 
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observations (e.g. Figure 5). Estimates of hydraulic conductivity (K) for the weathered 

crystalline rock aquifer derived from each solution are identical (1.2 m⋅day-1) and consistent 

with values for this aquifer observed in other areas of Uganda (Taylor and Howard 2000). An 

estimate of 0.23±0.5 for the specific yield (Sy) is derived from the Moench (1993) solution as 

it incorporates a correction for the underestimation of Sy recognized in the Neuman (1975) 

solution.   

 

Solute transport - chloride 

 

The breakthrough curve for the conservative solute tracer, chloride, is plotted versus 

time in Figure 6.  Reported concentrations of the chloride tracer are in excess of a stable, 

background chloride concentration of 39.4 mg⋅l-1. Chloride recovered over the test period 

represents 70% of the mass applied in the injection well. The average linear velocity of 

ground water flow, based on 50% recovery of applied chloride tracer, is 1.6 m⋅day-1. An 

exponential decline in the concentration of chloride in the injection well was observed and 

follows a decay constant of 1.2±0.1 x 10-3 min-1 (Figure 7). Based on deductions from the 

drawdown response (i.e. establishment of radial flow) and tracer concentrations in the 

injection well discussed above, a radial dispersion model for a constant source (Moench and 

Ogata, 1981) was adopted but employed with an exponentially decaying source term. In the 

solution of Moench and Ogata (1981), radial dispersion is described by numerical inversion 

of the Laplace transform.  
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 The radial advective-dispersion model approximates the breakthrough curve for the 

chloride tracer in Figure 6.  The range of possible solutions to the model was constrained by 

site details (well radius, separation distance) and the observed half-life of the chloride tracer 

in the injection well. Estimated dispersivity (α) of 0.8±0.1 m over a distance (x) of 4.15 m is 

at the upper end of the scale-dependent relationship between dispersivity and distance (α ~ 

0.1(x)) observed by Gelhar (1986). The radial dispersion model is, however, sensitive to 

variations in the half-life of the applied chloride tracer in the injection well (t1/2). Decreasing 

t1/2 to 4500 min., outside of the error in the regression of the decay constant (Figure 7, Table 

1), improves the model’s representation of the breakthrough curve (Figure 6) and increases 

estimated dispersivity to 0.94 m.  

 

Viral transport - bacteriophage ΦX174 

 

Phage ΦX174 was detected in the discharge of the pumping well after 6 hours yet, 

overall, the phage tracer was largely unrecovered over the period of the test. Laboratory 

experiments of the inactivation of phage ΦX174 in site ground waters at 25ºC yield a half-life 

of 86 hours (i.e., inactivation rate of 20 to 22% per day or 0.11 log unit per day) that is 

unaffected by the addition of the conservative tracer, NaCl.  Although observed inactivation 

of phage is more rapid than rates recorded in temperate areas (e.g., Bales et al. 1991; McKay 

et al. 1993) due to the higher ground water temperatures that prevail in Uganda, this rate of 

inactivation does not explain the near-absence of detected phage in the pumping-well 
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discharge during the 120-hour tracer test. The movement of a very small proportion of a 

microbial source at velocities (17 m⋅day-1) exceeding average linear ground water flow (1.6 

m⋅day-1) is, however, consistent with observations in other terrain (e.g. Powell et al., 2003) 

and considered to result from statistically extreme sets of microscopic flow velocities 

transporting microorganisms along a selected range of linked ground water pathways (Taylor 

et al., 2004b). A decrease in the concentration of bacteriophage in the injection well was 

observed during the test (Figure 8).  The method of sampling in which bailers are 

periodically inserted into the injection well is, however, complicated by the fact that viruses 

are not ‘true’ solutes so that their population is not uniformly distributed in aqueous 

solutions. The observed reduction in the concentration of bacteriophage in the injection well 

from 8 x 106 to 5 x 104 pfu⋅ml-1 over 120 hours can be explained by the processes of 

inactivation and dilution (Figure 8). 

 Retardation of the bulk of the bacteriophage, relative to chloride, results from the 

competing processes of adsorption and desorption.  These processes depend, in part, upon the 

ionic strength and pH of ground water.  The ionic strength of ground water is a measure of 

the total dissolved ions which can act as ‘salt bridges’ to facilitate adsorption of the virion to 

the aquifer substrate.  The pH of ground water determines the net charge on the surface of 

the virus and, hence, its electrostatic attraction to the aquifer matrix. This dependence of a 

virus’s surface charge on pH arises from the fact that the polypeptide coat of viruses contains 

amino acids with carboxylic and amino end groups whose charge varies continuously with 

pH (Gerba 1984).   Viruses are, therefore, amphoteric, capable of holding positive and 
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negative charge.  When the pH of ground water is below an isoelectric point (pI) in which 

the virion exists in a state of zero net charge, the virion is positively charged (i.e., with 

protonated end groups).  When the pH is above this point, the virion possesses a negative 

surface charge (i.e., with de-protonated end groups).  

 At the test site in southeastern Uganda, the pH of ground water (5.7) was below the 

pI (6.6) of bacteriophage ΦX174 (Dowd et al. 1998) rendering a positive, aggregate charge on 

the surface of the bacteriophage. Observed retardation of the positively charged solute by 

aluminosilicate materials with an abundance of negatively charged sites is sensible. Of 

significance to public health is that virus strains with a similarly high pI are also likely to be 

retarded under the commonly acidic (pH = 5 to 7) conditions of ground water in deeply 

weathered crystalline rock.  The pI and size of enteric viruses, transmitted by water (Moe 

1997), and a series of bacteriophage tracers are summarised in Table 2. Caution must be 

exercised, however, in drawing simple connections between virus transport and pI as the 

complexity of virus transport is such that pI not only varies with the type of virus but also its 

strain (Gerba, 1984). It is also worth noting that desorption of sorbed viruses following a 

pulse of higher pH and lower EC water has been demonstrated experimentally (Ryan and 

Elimelech, 1996; Bales et al. 1997). Field evidence in weathered regoliths is lacking but 

recent high-frequency sampling of a spring discharge in Kampala, Uganda (Miret Gaspa, 

2004) where recharge events coincide with monsoonal rainfall (Taylor and Howard 1999b), 

shows a strong correlation between recharge pulses and gross contamination of ground water 

by thermotolerant (fecal) coliforms (Figure 9). 
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Conclusions 

 

 The hydrogeological characteristics of deeply weathered crystalline rock have been 

estimated, some for the first time, through a forced-gradient tracer test in southeastern 

Uganda where drawdown in the aquifer was monitored in an adjacent piezometer.  The 

establishment of radial flow conditions within an unconfined aquifer during each test is 

demonstrated using plots of derivative drawdown and flow dimension. The unconsolidated 

aquifer at the base of the weathered mantle possesses a hydraulic conductivity of 1.2 m⋅d-1 

and a specific yield of 0.23±0.05.  Application of a radial advective-dispersion model with an 

exponentially decaying source term to the recovered conservative tracer, chloride, indicates 

a dispersivity of 0.8±0.1 m over a distance of 4.15 m. The average linear velocity of ground 

water flow, based on the recovery of the chloride tracer, is 1.6 m⋅d-1.  Bacteriophage ΦX174, 

applied to the injection well as a potential field tracer of viral transport by ground water in 

deeply weathered crystalline rock, is considered to have largely adsorbed to the aquifer  

matrix. Detection of low numbers of the phage tracer in the pumping-well discharge at early 

time during the test is, however, consistent with observations in other hydrogeological 

environments where statistically extreme sets of microscopic flow velocities are considered 

to transport microorganisms along a selected range of linked ground water pathways.   
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Table 1. Estimates of dispersivity (α) from the radial advective-dispersion model of Moench 
and Ogata (1981) with an exponentially decaying source term.  
 

x 

(m) 
rw 

(m) 
t1/2 

(min) 
α 

(m) 
4.15 0.07 5800±500 0.8±0.1 
4.15 0.07 4500 0.94 
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Table 2. pI and diameter of selected enteric viruses and bacteriophages 
 

virus pI 1 d (nm) 2 
astrovirus n.a. 27 
calicivirus n.a. 35 
coxsackievirus 6.1, 4.8 20 - 40 
echovirus 5.1 – 6.4 20 - 40 
hepatitis A n.a. 20 - 40 
poliovirus 3.8 - 8.2 20 - 40 
reovirus 3.9 75 
rotavirus n.a. 70 
MS2 phage 3.9 24 
PRD1 phage 4.2 63 
Qβ phage 5.3 24 
ΦX174 phage 6.6 27 
PM2 phage 7.3 60 
1(Gerba, 1984; Dowd et al., 1998)  
2(Harper, 1993) 
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Figure 1. Distribution of Precambrian crystalline rock in Africa (Key, 1992). 
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Figure 2. Generalised geological map of Uganda with location of the tracer-test site in Iganga 
(inset). 
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Figure 3. Lithological and borehole construction logs for the tracer-test site in Iganga. 
 



 25 

 
 
Figure 4. Log-log plot of observed drawdown in the monitoring (injection) well and its 
smoothed (moving 5-point average) pressure derivative together with the flow dimension 
along the second, linear axis versus elapsed time for the (a) 1999 and (b) 2000 tracer tests. 
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Figure 5. Observed drawdown in the injection well (1999 test) fitted to the Moench (1993) 
solution for an unconfined aquifer. hD and tD are dimensionless drawdown and time 
respectively as defined by Moench (1993). 
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Figure 6. Observed breakthrough curve for the applied chloride tracer fitted by the radial 
advective-dispersion model of Moench and Ogata (1981) but with an exponentially decaying 
source term. 
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Figure 7. Semi-logarithmic plot of the exponential decline in the concentration of the 
applied chloride tracer in the injection well versus time. 
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Figure 8. Semi-logarithmic plot of bacteriophage ΦX174 concentrations in the injection well 
versus time. Decreases in phage ΦX174 concentrations through inactivation, dilution, and 
both inactivation and dilution are indicated. Inactivation is derived from laboratory survival 
experiments whereas dilution rate is derived from chloride data in Figure 7. 
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Figure 9. Changes in the concentrations of nitrate and thermotolerant coliform (fecal) 
bacteria in the discharge of a protected spring in response to rainfall in Kampala (Uganda) 
during the months of July and August, 2004 (Miret Gaspa, 2004). 
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