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How does the difficulty of a task affect people’s enjoyment and

engagement? Intrinsic motivation and flow theories posit a

‘goldilocks’ optimum where task difficulty matches performer

skill, yet current work is confounded by questionable measure-

ment practices and lacks scalable methods to manipulate

objective difficulty-skill ratios. We developed a two-player

tactical game test suite with an artificial intelligence (AI)-

controlled opponent that uses a variant of the Monte Carlo

Tree Search algorithm to precisely manipulate difficulty-skill

ratios. A pre-registered study (n = 311) showed that our AI pro-

duced targeted difficulty-skill ratios without participants

noticing the manipulation, yet different ratios had no signifi-

cant impact on enjoyment or engagement. This indicates that

difficulty-skill balance does not always affect engagement and

enjoyment, but that games with AI-controlled difficulty provide

a useful paradigm for rigorous future work on this issue.

1. Introduction
The idea that an inverted-U-shaped curve describes the relation

between stimulus and response dates back to the earliest

modern psychological models of human behaviour by Yerkes

and Dodgson [1] and Wundt and his eponymous Wundt curve

[2]. Optimal experience in areas such as interest, taste or music

[2–4] has been found in the ‘golden middle’ of this curve,

© 2023 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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corresponding to a stimulus of moderate magnitude. Across work, education, sports and leisure, the

most popularly known inverted-U model comes from flow [5] and related theories of intrinsic

motivation [6], which propose that tasks with moderate difficulty relative to a person’s skill level are

the most motivating, leading to subjective enjoyment and behavioural engagement. Flow theory in

particular posits a balance of task difficulty and skill as the most important antecedent of optimal

experience or flow in an activity [7]. This model of difficulty-skill balance is widely used in job and

task design at work [8,9], instructional design in education [10], coaching and training in sports

[11,12], and especially game design for entertainment [13,14] and learning [7]. It is directly implemented

in adaptive systems that try to automatically optimize users’ experience and performance, including

adaptive guidance and learning task selection in intelligent tutors [15], task allocation in crowdsourcing

[16,17], and so-called matchmaking [18] and dynamic difficulty adjustment (DDA) systems [19] in games,

which aim to present players with balanced opponents and game challenges.

However, despite the widespread adoption of the difficulty-skill balance model, empirical work on

the subject is far from uniform—studies have repeatedly found limitations, moderators and data

patterns contradicting the model (e.g. [20–22]). More importantly, prior work suffers from significant

methodological issues. First, existing studies use a wide variety of measures and calculations for

difficulty, skill and difficulty-skill balance as independent variables, which the most recent meta-

analysis found simply ‘too heterogeneous to meaningfully aggregate’ [23]. This goes hand in hand

with a similar breadth of dependent variable measures for enjoyment and engagement, spanning

different scales and subscales of flow, intrinsic motivation or unvalidated scales [23]. Such measurement

flexibility opens massive researcher degrees of freedom and makes comparing and aggregating results

hard [24]. Second, the majority of studies (every single one from 28 studies identified in the cited

meta-analysis [23]) measure difficulty, skill and difficulty-skill balance with self-report scales, which

have come under increasing critique especially in media effects research for their systematic biases

and high variance [25]. Third, existing self-report studies operationalize balance either with unvalidated

scales—showcasing a ‘measurement schmeasurement’ attitude [26] that threatens construct and overall

study validity—or with a subscale of the same flow scale which is then used as the dependent variable,

inducing significant spurious correlations [23]. All this ties directly, fourth, into the theoretical flexibility

[27,28] of the difficulty-skill balance construct: to our knowledge, flow and intrinsic motivation research

have yet to produce an unambiguously formalized prediction of what constitutes a ‘balanced’ difficulty-

skill ratio. When pressed, flow researchers [22] point to Csikszentmihalyi & Nakamura’s [29] proposition

that ‘experiences that one believes are in the neighbourhood of a 50/50 balance are experienced as

enjoyable’, but what does ‘50/50’ refer to here? Frequency of success versus failure? Perceived odds? The

referent of ‘50/50’ is not specified by Csikszentmihalyi, and so researchers fall back on self-report

measures that leave it to their participants’ private and varied conceptions and feelings to determine

what counts as ‘balanced.’ Yet such self-report measures always run the risk of tautology or the ‘jangle

fallacy’ [26]: who would logically ever say that a ‘too high’ difficulty is more enjoyable than one that

feels ‘balanced’? Similarly, what if we found a data pattern where engagement or enjoyment peaked at

95% winning odds, or at a 2 on a 7-point perceived difficulty scale? Unless we have some agreed formal

operationalization of balance, it is difficult to make cumulative progress establishing whether there is a

sweet spot ratio that holds across persons and situations, and if so, at which value [28].

Just as importantly, even if we had a well-validated, standardized self-report scale and formal

prediction for subjectively perceived balance, self-report measures are markedly less useful for

practitioners who wish to set and adapt task difficulty to a sweet spot. An objective behavioural or

outcome measure of balance is far easier and less intrusive to implement than a system that has to

elicit regular self-reports. Consider the fact that while there are plenty of research prototypes of game

DDA systems and intelligent tutors that use affect sensing or self-report as inputs [30,31], we know of

no single reported commercial implementation using anything but behavioural or outcome measures.

Fifth and finally, most of the few studies that manipulate and measure such objective difficulty

[30,32–35] do so by setting and analysing fixed absolute difficulty levels at the cohort level, rather than

relative to individual skill, that is, difficulty-skill ratios, as theory stipulates. Hence, these studies lack

basic construct validity. At best, they rely on the untested assumptions that (i) skill is normally

distributed across their participant sample, and in such a way that (ii) whatever the study sets as

moderate difficulty actually meets the sample’s mean skill. Under these assumed conditions and

random assignment, fixed cohort-level difficulty manipulation would turn varying player skill into

mere additional uncontrolled variance. But any multi-modal or comparatively skewed skill

distribution would violate those assumptions and invalidate derived inferences.
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To our knowledge, only five studies have directly tested relations between an objective, individual-

level skill-difficulty ratio and a fully separate enjoyment or engagement measure, with contradictory

results: one study found an inverted-U relation between enjoyment and balance in self-selected online

Chess matches [36], operationalizing balance as relative material strength: how many standard pawn

unit equivalents a player had more or less on the board than their opponent at the time of

measurement. A follow-up study on digital games [37] manipulated difficulty-skill using a ‘Wizard of

Oz’ technique in which the experimenter stopped the game and measured engagement at particular

score ratios. While it found the same inverted-U pattern, the study suffers from a lack of transparency

and precision, as well as from possible experimenter bias. A large-scale online maths game study, in

contrast, found a linear relation between success rate and behavioural engagement—the easier the

game, the longer people played [38]. A follow-up study [20] could replicate this pattern, but found it

became an inverted-U if and only if players consciously self-selected a difficulty setting, instead of

difficulty being randomly assigned and not revealed. Finally, a study on teaching children to read [39]

operationalized and manipulated difficulty as the proportion of successful trials, but found no

difference in engagement between a 60% success rate and an 80% success rate.

In sum, across fields, the inverted-U model of difficulty-skill balance remains widely used despite or

because of the lack of robust cumulative evidence—evidence that is hard to come by due to a lack of

methods for formally operationalizing and testing objective difficulty-skill ratios at the individual level.

As the few existing studies furnishing the latter show, games offer well-controlled experimental

environments [40] for investigating objective difficulty-skill ratios. In competitive games, (artificial)

opponent strength gives a ready operationalization of objective difficulty, while measures of objective

player skill and skill-difficulty ratios can be derived from player performance in the form of win rates

and game scores against given opponents: assuming a fair, skill-based game, the outcomes of

(repeated) player-opponent matches directly express the ratio of player strength (= skill) to opponent

strength (= difficulty), while match outcomes of varying players against a fixed opponent express

varying player skills and vice versa. This approach is already widely used in multi-player ranking or

matchmaking systems like Elo [41] for Chess or TrueSkill [42] for digital games, which parse past

match data to calculate play strength ratings for players that allow to estimate winning odds for

future matches, and thus to determine and make matches with desired ‘balanced’ winning odds.

However, logistical challenges have held back the experimental use of this approach: ranking

systems like Elo require large datasets of past matches to accurately assess player strength, which

limits the participant pool to those for whom such data exists. Manipulating difficulty by matching

player participants with confederate opponents of a desired strength poses even greater logistical

challenges. Hence previous studies in this vein have relied on either non-experimental analyses of

unmanipulated naturally occurring data [20], or human confederates self-handicapping, which is by

necessity imprecise [37].

One principally scalable form of adjusting difficulty-skill ratios are DDA systems as used in

commercial games. While there are many different approaches to DDA [19], the majority relies on a

function that assesses online player performance with some in-game outcome measure (e.g. position

in a race, frequency of failing a level) and then adjusts game parameters (e.g. strength and number of

opponents) if player performance deviates from a predetermined optimum. Unfortunately, current

commercial DDA systems are usually hard-coded and black-boxed: researchers do not know and

cannot control how the DDA manipulates the game state or what it sets as optimal. In the worst case,

this leads to tautological study designs that operationalize ‘balance’ as ‘using DDA’ (e.g. [30,32]).

To overcome this issue and provide future research with an experimental test suite for rigorous large-

scale experimental studies, we created a competitive, skill-based two-player online game, Explorers vs

Owls (figure 1), using an artificial intelligence (AI) opponent that allowed us to precisely control

difficulty-skill ratios thanks to a DDA technique we created, Monte Carlo Tree Search Outcome

Sensitive Action Selection (MCTS OSAS, see Materials and methods, figure 3) [43,44]. MCTS OSAS

algorithms are based on the MCTS [45–47] algorithm which has proven capable of producing very

strong-playing AI opponents even in games like Go, where it is difficult to measure a players’

performance or the value of a move until the end of the game [48].

We performed a pre-registered (https://osf.io/f4vkm) randomized between-subject study (n = 311) to

validate our game test suite and test the proposition that difficulty-skill ratios affect engagement and

enjoyment. To rigorously test the latter, we pre-registered two main and two connected hypotheses:

H1: Experiential enjoyment will significantly differ between game conditions with different difficulty-

skill ratios.
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H1a: If H1 is supported, the game condition with the highest closeness of results will have significantly

higher experiential enjoyment than either other condition.

H2: Behavioural engagement will significantly differ between game conditions with different difficulty-

skill ratios.

H2a: If H2 is supported, the game condition with the highest closeness of results will have significantly

higher behavioural engagement than either other condition.

Following [37], we operationalized difficulty-skill ratio as Player Win Margin (PWM), calculated as the

participants’ end-game score minus the opponent AI’s score, where a 0 is a draw, a positive PWM a

player win and a negative PWM a player loss.

(a) (b)

(c) (d )

(e) ( f )

Figure 1. The game Explorers vs Owls is a simple turn-based tactical two-player game. Apart from initial tile placement, the game is

fully transparent and deterministic, making it as dependent on and expressive of player’s tactical skills as Go or Chess. (a) The game

is played on a grid of hexagonal tiles each of which contains 1–3 coins. The winner is the player who collects the most coins. (b) The

human player controls the explorers, the AI player the owls. Both start the game by placing one figure at a time on any tile which

contains one coin. (c) Once all figures have been placed, players take turns. On their turn, the player selects one figure and moves it

in anywhere in a straight line that is not blocked by another figure or a lava tile. (d ) When a player moves a piece, the tile they

moved from turns to lava and their score increases by the number of coins on the tile they move to. (e) If a figure is ever surrounded

by lava, the edges of the board, and/or other figures such that it cannot move, the figure is removed from the board. ( f ) The game

continues until all figures are removed from the board. The winner is the player with the highest score = collected coins.
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To validate our approach, we compared the target skill-difficulty ratios of three different, randomly

assigned conditions (easy, balanced and hard) with their actual end-game scores. Following [29], we

specified difficulty-skill balance (the balanced condition) as an equal relation of player and AI score,

i.e. a target PWM of 0 (draw). We set easy (PWM= 15) and hard conditions (PWM −15) at 50% of the

median player score (30.5) during pilot studies which were supported by player self-reports showing

that participants experienced these as markedly different difficulties. We chose a draw as the

‘balanced’ condition as prior work by Csikszentmihalyi and others had operationalized objective

balanced challenge similarly [36,37]. If an actual optimum PWM exists, we grant that this may sit at a

different point than our balanced condition, or even at a point outside our three conditions. We opted

to use three markedly distinct difficulty-skill ratios to, first, validate the effectiveness of the DDA

technique, and second, test whether different difficulty-skill ratios have any impact on experience and

enjoyment. If both of these conditions are met, then subsequent studies can determine the optimum

difficulty-skill ratio for a positive experience. For validating our approach, we pre-registered the

following hypotheses:

H3: There will be a significant difference in PWMs between conditions.

H3a: if H3 is supported, there is a significant difference between each condition in the direction that the

AI was aiming for.

Finally, as player awareness of DDA has been found to confound enjoyment as it undermines perceived

agency [49], we also measured feelings of agency to check whether our manipulation was noticed.

2. Materials and methods
For this experiment, we developed a simple tactical two-player board game called Explorers vs Owls

(figure 1), modelled on the popular board game Hey That’s My Fish! and other positional games such

as Go. To maximize dependence on isolated tactical skill, the game is fully transparent and

deterministic (apart from the initial random board set-up), meaning player and AI opponent can fully

determine available moves, counter-moves and their immediate consequences, and it is turn-based,

requiring no hand-eye coordination or fast reflexes. We ensured the game remained accessible for our

broad participant pool: players can learn the rules and finish a game in a few minutes, while

gameplay has enough strategic depth to require considerable tactical skill to play well. Individual

game rounds lasted 2–3 min. The tutorial level which teaches the game is shown in figure 1; the

follow-on levels are the same except they are played on a larger 7 × 7 grid and each player has three

pieces rather than one. An online version of the whole study which does not save data can be viewed

at http://joecutting.com/demos/EvOExp1/.

To manipulate difficulty-skill ratios in Explorers vs Owls, we implemented an AI opponent that

dynamically adjusted difficulty using an MCTS OSAS algorithm developed by one of our team

members [44], which itself is based on the popular MCTS algorithm [45]. Like similar so-called tree

search algorithms, MCTS builds up a branching tree of possible game moves and counter-moves to

some number of n steps into the future, evaluating each game state according to some reward

function (figure 2). To efficiently manage this rapidly expanding search space, MCTS selectively and

probabilistically subsamples branches which promise better outcomes. This efficiency enables the

move tree to be searched many moves ahead, and often to the end of the game. This has proven to

create strong opponents even in games like Go where it is difficult to measure a players’ performance

until the end of the game: the MCTS-based AlphaGo [48] has beaten some of the top human Go players.

Standard MCTS implementations in games are set up to play as strongly as possible—e.g. their

reward function might simply return 1 for an AI win and 0 for an AI loss, and at each turn, choose

the available move with the highest total expected branch reward (figure 3a). By contrast, MCTS

OSAS algorithms use a graded reward function that returns a range of reward values depending on

how close the final game state is to a target game state (figure 3b), which can be set at liberty. In

Explorers vs Owls, players can win or lose to different degrees, expressed in the final score difference

between them and the AI opponent. Thus, our MCTS OSAS target game state took the form of a

target PWM. For our three conditions, we set the balanced condition target PWM to 0 to aim for a

draw. The easy and hard conditions had target PWM of 15 and −15 respectively. Pilot testing showed

that these targets were experienced as markedly different, the median player score during pilots was

30 points, so a win margin of 15 often means that one player scored 50% points more than the other.

(The theoretically possible PWM range spans 162 points in our game, from −81 to 81). We used the

‘True POSAS’ [44] variant of MCTS OSAS which is designed for turn-based games where the human
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player moves first and so has an advantage over the AI opponent. True POSAS reduces this first move

advantage by aiming for a slightly higher target score than specified, which is done by adding the

maximum score per move (3 points) to the target PWM to create a ‘flattened cone’ reward function

shown in figure 3b.

1.0

0.8

0.6

0.4

0.2

0

1.0

hard balanced easy

0.8

0.6

0.4

0.2

0

player win margin (player score–Al score)

–40 –30 –20 –10 0 10 20 30 40

–40 –30 –20 –10 0 10 20 30

standard

re
w

ar
d

re
w

ar
d

(b)

(a)

Figure 3. The MCTS algorithm aims for a final game state with the highest reward value. Figure (a) shows the reward function for

standard MCTS, whereas (b) shows the reward functions used by MCTS OSAS (True POSAS variant) for three different game targets

(hard, balanced and easy). In MTCS OSAS, the reward value is determined by the target ‘PWM’ ( player score – AI score) for each

condition. The balanced condition aims for a PWM of around 0 to create a draw, the easy condition aims for the player to win by 15

points and the hard condition aims for the player to lose by 15 points.

reward function

The Monte Carlo Tree Search Algorithm

(c)(b)(a) (d)

Figure 2. The MCTS algorithm creates a tree of possible game moves and iterates around this tree to select the optimum move.

Each iteration has four steps: (a) selection: start at the root node and move down the tree until a leaf node is reached, using an

‘urgency’ function to choose which child nodes to explore. (b) Expansion: add one random unexplored move node to the leaf node.

(c) Simulation: choose random moves until the game ends and then calculate the reward function for the final game state. (d )

Backpropagation: the result of the reward function is used to amend each previously visited node until the root is reached.

These values then feed into the ‘urgency’ function used in subsequent iterations during the selection step.
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We ran an informal pilot study (n = 29) to ensure the game was easy to understand, fun to

play, featured strategic depth and to determine which differences in PWM players experienced as

markedly different.

2.1. Implementation and performance

The game was written using the Unity game engine in C# and compiled to run as a web page using

WEBGL/WASM technologies. Although faster than JavaScript, this is still considerably slower than

compiling as a native desktop application. As with MCTS algorithms more generally, the MCTS OSAS

AI opponent performs stronger—and thus, achieves target outcomes more accurately—if it has more

computing cycles to decide on its move. The more complete playthroughs of the game (known as

iterations) it can simulate, the more likely it is to meet its target win margin. However, if the system

takes too long to make its move, this would make the game less engaging [50] and could thus

confound results. In our online experiment, participants used their own desktop computers with a

wide range of performance. During game development and pilot testing, we found that 7500

iterations sufficed to give a strong game while taking an acceptable waiting time (mean of less than

2.5 s) on a current mid-range computer. We performed two checks during the experiment to ensure

that all participants experienced similar opponent move times and that variation in AI speed and

strength did not confound results. The first check, at the very start of the experiment, was to test the

speed of the computer by measuring the time it took to perform a computationally demanding task

(creating 100 000 memory objects). Those participants whose computers took too long (greater than

0.17 s) were asked to withdraw from the experiment and not able to progress any further. The second

check was to record the maximum time for any AI move during the whole experiment. If this was

greater than 6 s, then that participant’s data was excluded from the experiment. Note that the

algorithm takes longest to make the first few moves and then speeds up considerably; a maximum

move time of 6 s (on the first move) would mean that the average move time during a game ends up

at around 2.5 s. Visually animating the move the player inputted takes 1–2 s, during which time the

AI already processed its response. Thus, with a total average 2.5 s move time, the average wait time

perceived by the player was less than 1 s.

2.2. Participants

We recruited participants using the Prolific online recruitment platform. The experiment was completed

by 368 participants. In accordance with our pre-registered criteria, we rejected 51 whose computers took

more than 6 s to make a move, three who failed the attention check and three who took more than 20 min

to perform the experiment. This left 311 participants, 100 in the easy condition, 109 in the balanced

condition and 102 in the hard condition. Ages ranged from 18 to 56 (mean = 30.4). Of these 158 were

female, 151 were male, one non-binary and one preferred not to give a gender. Participants were

allocated to a condition in turn, so the first participant was the easy condition, the second participant

the balanced condition and so on.

2.3. Measures

We measured experiential enjoyment using the intrinsic motivation inventory (IMI) enjoyment subscale

[51], which is the most commonly used [52] validated measure of experiential enjoyment. We measured

behavioural engagement as the percentage of players in each condition that voluntarily chose to play the

game again after they were told that mandated experimental play was over, emulating common

voluntary time on task measures [53]. We measured agency using an established single-item agency

scale [54]. Consent, demographic information and all self-report measures were recorded using online

forms integrated into the game. As described, difficulty-skill ratios were measured as PWMs (PWM) =

player score – AI score. Following a reviewer suggestion, we added a measurement for whether players

improved at the game (PWM improvement), calculated as the difference in PWM between the last and

first full game = PWMlast game – PWMfirst game.

2.4. Procedure

The experiment starts by checking the speed of participants’ computers. Those with slow computers are

asked to withdraw from the experiment and prevented from progressing. The remaining participants are
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blindly assigned to one of the three conditions and complete an informed consent procedure and then

answer some demographic questions. They then complete a short interactive tutorial to teach them

how to play the game. This consists of a game of Explorers vs Owls played on a 4 × 4 board with one

piece per player. For the tutorial, the AI opponent always aims to draw regardless of the condition.

Once the tutorial is finished, participants play two games of Explorers vs Owls on a 7 × 7 board, with

each player having three figures. For both of these games, the AI opponent aims for the PWM

specified by the condition that the player is in. After playing the two games, they complete a single-

question agency assessment followed by the seven-question enjoyment subscale of the IMI

questionnaire. They are then asked if they noticed any bugs or technical issues. Finally, they are told

that they have completed enough games to receive their payment and asked if they want to play

another game or finish the experiment. Choosing either option brings up the Prolific study completion

page in another browser tab, but choosing to play again also allows them to play the main game again.

3. Results

3.1. Validity of approach

Since our study depended on effectively manipulating individual difficulty-skill ratios in the form of

PWM, we first tested whether this manipulation succeeded. A Kruskal–Wallis test showed a

significant difference in PWM between conditions with an extremely large effect size (H2 = 244, p <

0.001, ε
2= 0.786). Pairwise comparisons showed a significant difference ( p < 0.001) between all

conditions, with the easy condition the highest and the hard condition the lowest. The median PWM

for each condition was very close to the target aimed for, and players did not meaningfully improve

their PWM over games, with a median improvement of 1 (out of 162) points for easy, 0 for draw, and

−1 for hard (table 1, figure 4). This supports H3 and H3a. To determine whether players felt they

Table 1. In each of three the conditions, the AI opponent aims for a different target win margin to give a different difficulty-

skill ratio. The outcomes show that the AI opponent succeeded in that, both per game and across games: the differences in

PWMs between a player’s first and last games (PWM improvement) hovered close to zero. Meanwhile, participant agency,

experienced enjoyment and behavioural engagement do not show significant differences between conditions.

condition easy balanced hard

N 100 109 102

target PWMa 15 0 −15

actual game outcomes

actual PWM mean (s.d.)a 22 (11.5) −0.06 (4.32) −12.4 (8.88)

actual PWM Mediana 18 −1 −15

player wins %b 100 12.8 5.9

player draws %b 0 23.9 0

player loses %b 0 63.3 94.1

PWM improvement mean (s.d.) 2.59 (10.94) 0.064 (5.57) 1.33 (10.22)

PWM improvement mediana 1 0 −1

participant experience and behaviour

agency mean (s.d.) 78.7 (18.9) 72.8 (22.7) 71.9 (25.1)

experiential enjoyment (IMI) mean (s.d.) 39.3 (6.93) 38.2 (7.98) 37.5 (9.21)

behavioural engagement (% of players that

chose to play again)b
20.0 29.0 30.0

aFinal game scores (player score minus AI score), where positive values equal player wins and negative player losses; 0 equals a

draw.
bCategorical values which do not have an associated s.d.
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were improving at the game, we calculated the difference in PWM between the last and first game (PWM

improvement). For all conditions, this was very low with a median absolute value of 1 or less.

Next, we checked whether players might have noticed our manipulation, resulting in reduced

perceived agency over the game outcome. A Kruskal–Wallis test found no significant difference in

perceived agency between conditions (H2 = 2.94, p = 0.230, ε2= 0.010), suggesting that players did not

notice our manipulation, or if they did, not in a way that differentially affected our conditions (table 1).

3.2. Main effects

Counter to our hypothesis (H1), an ANOVA found that experiential enjoyment did not differ significantly

between the three conditions; F2,308 = 1.29, p = 0.277, h
2
p ¼ 0:008 (table 1, figure 5). A Shapiro–Wilk test

indicated that the enjoyment scores may not be normally distributed (p < 0.001), so we performed a

Kruskal–Wallis test, which also did not find a significant difference; H2 = 1.25, p = 0.534, ε
2= 0.04.

Similarly, counter to H2, we found no significant difference in behavioural engagement between

conditions, as determined by a Chi-square test of independence between conditions in the share of

participants who wished to play the game again: x22,311 ¼ 3:40, p = 0.183 (table 1). As pre-registered,

since H1 and H2 were not supported, we did not conduct post hoc tests whether the balanced

condition featured the highest enjoyment and engagement (H1a, H2a).

We performed exploratory analyses to understand the relationships between enjoyment, engagement

and player score. Binomial logistic regressions found a significant correlation (Z = 4.76, p < 0.001,

McFadden’s r2 = 0.078) between engagement and enjoyment, and another significant correlation

(although with a smaller effect size) between engagement and whether players won or not (Z = 2.10,

p < 0.036, McFadden’s r2 = 0.011). However, there was no significant correlation between enjoyment

and whether players won, lost or drew (Z =−1.63, p = 0.104, McFadden’s r2 = 0.007).1 A further

exploratory analysis suggested by a reviewer found no significant correlations between improvements

60
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easy balanced hard

Figure 4. PWM (player score minus AI score) for the last match played in each condition. In the balanced (target PWM = 0) and

hard (target PWM =−15) conditions, the majority of matches achieved their target. In the easy condition (target PWM = 15), most

matches hit the target of 15, but players were more likely to exceed the target than in the other conditions. Nevertheless, our

system successfully manipulated difficulty-skill ratios on an individual player level.

1We erroneously pre-registered that we would perform a Pearson correlation between engagement and enjoyment, which is not

possible, since engagement is a categorical variable (play again or not). This should have been a binomial logistic regression which

is reported here.
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from first game to last game (PWM improvement) and enjoyment (r = 0.039, p = 0.497) or engagement

(Z =−0.116, p = 0.908, McFadden’s r2 = 0.007).

4. Discussion
Prior work on whether task engagement and enjoyment are optimized when difficulty and skill are in

balance has suffered from lacking theoretical formalization of ‘balance’ as well as questionable

measurement practices. To avoid these issues and advance available methods, we developed a skill-

based online game that uses an MCTS OSAS algorithm to control individual-level difficulty-skill ratios.

Our system was highly effective at affording the target skill-difficulty ratio, expressed in PWMs: the

achieved median PWMs deviated 0 (hard condition), 1 (balanced condition) and, at most, 3 (easy

condition) points from the target PWMs on a scale that spans 162 points (−81 to 81). Hundred per cent

of players in the easy condition won, 94.1% of players in the hard condition lost and 23.9% in the

balanced condition got a draw. Similarly, players did not noticeably improve between games, with the

median PWM improvement from first to last game being 1, 0 and −1 for the easy, balanced and hard

conditions, respectively. This suggests that the AI adapted as desired to any actual player learning

between games, thereby eliminating a (sense of) progress or improvement as a potential confound.

These are excellent results, especially given that our system targeted a PWM corridor for each condition,

which spanned narrow wins and losses for the balanced condition (see Materials and methods).

As Explorers vs Owls is a zero-sum game, there are theoretical limits on the AI opponent’s

performance. When the AI is aiming to lose and the human player consistently makes the worst

possible moves, a drawn game results. Similarly, when the AI is aiming to win and the player

consistently makes optimal moves, this will also result in a draw. In our study, there was no evidence

of these boundary conditions ever being reached. However, in the hard and easy conditions,

deviations drifted toward greater player wins. We believe this is due to the deep forward-planning

horizon Explorers vs Owls affords, together with its encircling mechanic and small board: players

experienced in similar games (e.g. Go) would be able to circle AI opponent figures in or circle off a

large point-scoring territory for their own figures with early moves that would lead to larger PWMs

in the late game. Given enough computing cycles, MCTS OSAS should be principally able to ‘foresee’

such moves and achieve PWMs even closer to the target. Our participants’ hardware and acceptable
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Figure 5. Experiential enjoyment for each condition as measured by the IMI enjoyment questionnaire. While more participants

reported low enjoyment in the balanced and hard conditions than in the easy condition, we see no statistically significant

differences in enjoyment between different difficulty-skill ratios.
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wait time put a pragmatic limit on available computing cycles. Future server-side implementations of the

AI system could easily overcome this issue.

A second concern with our method is that participants might have noticed our difficulty manipulation,

undermining their sense of agency, which could confound results. However, participants in all conditions

reported high levels of agency over their gameplay, with no significant differences between conditions.

In sum, our test game suite and general approach of using AI-controlled opponents show promise as

a scalable, unobtrusive method for manipulating and studying objective difficulty-skill ratios. While

MCTS algorithms have proven particularly apt for tactical, turn-based games like our test game, there

are already working implementations of MCTS OSAS for real-time action games [44]. Extending and

validating our approach for such and other game genres is one avenue for future work, also to

establish the generalizability of our findings. Another present limitation is that our system can control

and capture difficulty-skill ratios, but not independent absolute player skill or opponent difficulty

measures. We have already demonstrated that such measures can be derived from MCTS OSAS play

data using Elo-like approaches [43], but implementing and validating this for experimental research

remains future work.

Contrary to hypotheses derived from flow and intrinsic motivation theories, we found no significant

difference in enjoyment or engagement between conditions with markedly different objective difficulty-

skill ratios, and with that, also no inverted-U pattern apexing at some difficulty-skill balance. Our results

also contradict two prior large-scale online studies [20,38] that found linear rather than inverted-U

relations between objective difficulty-skill ratio and behavioural engagement; that said, exploratory

analyses found a (small) correlation between behavioural engagement (choosing to play again) and

player wins, which broadly fits a linear relation where easier games equal more engagement.

How do we explain these different results? As the replication crisis has shown, even effects

considered well-supported by dozens of experimental studies can fail to replicate or shrink in effect

size when put to rigorous replication tests [55]. Of course, no single study, even if pre-registered and

adequately powered, can invalidate a whole body of work. But our results fit with the small relation

between balance and intrinsic motivation found in previous meta-analysis (z = 0.24) [23], and other

prior work finding that difficulty-skill balance explains little of the overall observed variance in

subjective experience [22]. Assuming our null finding is true, previous results supporting an inverted-

U relation may have been artefacts of small sample sizes, unconscious or conscious uses of researcher

degrees of freedom, tautological independent and dependent self-report measures (which make up the

majority of current work [23]), or an inability to afford targeted skill-difficulty ratios.

A second explanation is unexplored moderators or boundary conditions. Studies observing an

inverted-U [37], linear [20,38] or no (e.g. our study) relation may each have found true effects that,

however, do not generalize beyond their particular population, context or task.

Our study did not include a control condition without any DDA. The consistently high reported

enjoyment and fact that players did not notice the DDA manipulation could thus be attributed to

DDA use as such, regardless of targeted outcome. What ‘matters’ in the long run (over extended play)

is difficulty that follows the player’s learning curve. This is possible, but outside the scope of our

study, as players only played two full matches in sequence, probably not allowing for such sequential

effects to show (or moderate results). Future studies could investigate the effects of removing DDA by

fixing it on a target play strength rather than outcome over extended matches, which raises the

interesting open question of what play strength(s) would be ecologically valid operationalizations of

default difficulty.

Another possibility is that all three DDA conditions were within the ‘optimal zone’ and so increased

enjoyment or engagement equally—i.e. the difficult and easy manipulations were too subtle. Against that

stand our pilot studies showing that players did notice the differences in play strength, and that 94.1% of

players lost in the hard condition and all won in the easy condition; so it seems unlikely that these should

have no impact on experience and behaviour, if their relation with difficulty-skill balance indeed forms a

graded curve, not a step function. Still, more extreme conditions could be tested.

An additional proposed moderator is awareness and deliberate choice of a particular task difficulty,

which one study found to turn a linear into an inverted-U relation [20]. Relatedly, DDA has also been

found to be more effective if players are unaware of it [35,36], though there is also evidence that

awareness of DDA could have the opposite effect [49]. Either way, the consistent and consistently

high levels of reported player agency across conditions suggest that differences in awareness between

conditions did not moderate our results.

A final related possible moderator is gaming identity and values: particularly male ‘gamer’

communities put value on ‘real’ games being difficult and thus, meritocratic tests of skill [56,57]. This
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valorization is not necessarily shared by the wider population from which we drew our participants, as is

demonstrated by the broad popularity of so-called casual games [58]. In previous studies, self-selecting

‘gamer’ (or sports athlete) populations might self-report to prefer what they believe to be ‘balanced’ or

even ‘hard’ challenges as a result of their particular values and taste, and/or to signal and affirm their

gamer (or athlete) identity.

Third is the question of construct validity of our study. While we tested the general relation between

objective difficulty-skill ratios and enjoyment and engagement proposed by several theories, the

arguably most directly relevant theory is flow theory, which consistently emphasizes that difficulty-

skill balance is a subjective perception: ‘subjective challenges and subjective skills, not objective ones, [...]

influence the quality of a person’s experience’ [31]. However, Csikszentmihalyi later posited a similar

relation for objective difficulty-skill balance and flow, and presented as evidence objective difficulty-

skill ratios as support for flow theory [37]. It indeed seems highly implausible that subjective and

objective difficulty-skill ratios should be completely disjunct, especially under frequent extended

performance feedback as found in gameplay, which would inform and correct subjective balance

assessment and expectations. If they were strongly disjunct, this would be important if bad news for

DDA and intelligent tutoring systems. A more differentiated construct validity critique of our study is

that later versions of flow theory propose that flow (and with it, enjoyment) only manifest under

balanced high skill and high difficulty [31], which we did not ensure. Again, other intrinsic motivation

theories [6] subscribing to the inverted-U model do not set out this necessary condition, and

Csikszentmihalyi himself co-conducted studies that expressly forfeited controlling for high skill and

difficulty [37]. But we concur that future replications of our study could do so.

Fourth, we see two possible limitations of the present study that could have produced a false negative

finding. The first is that our game may have been paradoxically too enjoyable for reasons other than

difficulty-skill balance. Current gaming motivation and experience models generally recognize

multiple sources of enjoyment and engagement beyond flow or competence need satisfaction [59,60],

which are usually causally linked to difficulty-skill balance [23]. Specifically, there is emerging

evidence and argument that curiosity, stoked by e.g. uncertain or novel experiences, could explain

variance in enjoyment and engagement typically ascribed to competence or flow [20]. Now we

intentionally designed Explorers vs Owls to be as ecologically valid and fun as possible; the game

offers gameplay not commonly found in other casual online games, and gameplay was comparatively

short (mean time around 7 min). Thus, the game’s novelty may have been so strong as to produce

ceiling effects in reported enjoyment and engagement, overshadowing any additional real differences

produced by our difficulty-skill ratio manipulation, even though we used a pilot study to ensure our

manipulation was clearly noticeable. This is particularly possible given our Prolific sample

probably included many professional online study participants who were used to less engaging

experimental tasks. While this explanation is worthy of follow-on studies, if true, it would also

suggest that difficulty-skill balance is a less relevant factor for task experience and motivation than

previously thought.

The second possible confound of our online sample is that participants were paid to play our game

and may have participated in it as a form of (low-waged) work. This may have produced careless

responding (which we tried to control for with attention checks), but also different responses to

difficulty, with participants satisficing their way through the perceived-mandatory game task with

minimum effort and involvement. That does not quite fit the high reported enjoyment and

approximately 26% of participants across conditions choosing to play again even after they were told

the paid task was over, but it remains an important general validity threat of paid studies on

gameplay. Future studies could seek to replicate our findings with a more naturistic play environment.

Given that we found that difficulty-skill ratios (operationalized as game outcomes) on their own do

not impact enjoyment or engagement, what factors are likely to create these positive experiences in

gameplay and other tasks with ‘balanced’ challenge? One possible explanation already mentioned is

other motivational mechanisms not directly tied to challenge, such as curiosity [20]: directly

‘balancing’ task difficulty against growing player skill indirectly produces diverse and novel

challenges. Another explanation is that people are intrinsically motivated by and experience

enjoyment not over absolute success, failure or challenge, but relative improvement or progress over

time—a sense of learning progress [61,62]. Recent theoretical work suggests that intrinsic motivation

models focusing on improvement (like empowerment maximization or uncertainty reduction) offer

more coherent accounts of the appeal of balanced challenge than currently dominant models like flow

or self-determination theory [63]. While our exploratory analyses found no correlations between PWM

improvement and enjoyment or engagement, our AI successfully adapted to any possible player skill
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improvement, as seen in the near-zero objective PWM improvements between first and last game. Thus,

our manipulation successfully suppressed potential objective and perceived improvement, and with that,

could have obscured possible true effects. Future work could test this improvement hypothesis by using

our system to artificially induce different rates of improvement.

5. Conclusion
The idea that the balance of difficulty and skill in a task affects our enjoyment and engagement holds intuitive

appeal. By way of flow theory and other theories of intrinsic motivation, it has deeply influenced how we

think about and organize many domains of our life, such as education, sports, work and entertainment.

Yet despite decades of research, rigorous studies probing whether and where an objective ‘sweet spot’ of

balance exists have been sparse and hard to conduct. Our study not only suggests that difficulty-skill

balance may not affect engagement and enjoyment as much or directly as previously thought. It also

reinforces evidence that digital games provide a controlled and ecologically valid environment to

investigate social science questions like skill-difficulty balance. Contemporary game AI techniques like

MCTS OSAS allow us to unobtrusively control and vary participants’ individual experimental experience

within those environments with a rigour and scale unavailable with previous techniques.
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