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ABSTRACT Quantitative assessment of the abdominal region from CT scans requires the accurate delin-
eation of abdominal organs. Therefore, automatic abdominal image segmentation has been the subject of
intensive research for the past two decades. Recently, deep learning-based methods have resulted in state-
of-the-art performance for the 3D abdominal CT segmentation. However, the complex characterization of
abdominal organs with weak boundaries prevents the deep learning methods from accurate segmentation.
Specifically, the voxels on the boundary of organs are more vulnerable to misprediction due to the
highly-varying intensities. This paper proposes a method for improved abdominal image segmentation by
leveraging organ-boundary prediction as a complementary task. We train 3D encoder-decoder networks to
simultaneously segment the abdominal organs and their boundaries via multi-task learning. We explore two
network topologies based on the extent of weights shared between the two tasks within a unified multi-
task framework. In the first topology, the whole-organ prediction task and the boundary detection task
share all the layers in the network except for the last task-specific layers. The second topology employs
a single shared encoder but two separate task-specific decoders. The effectiveness of utilizing the organs’
boundary information for abdominal multi-organ segmentation is evaluated on two publically available
abdominal CT datasets: Pancreas-CT and the BTCV dataset. The improvements shown in segmentation
results reveal the advantage of the multi-task training that forces the network to pay attention to ambiguous
boundaries of organs. A maximum relative improvement of 3.5% and 3.6% is observed in Mean Dice Score
for Pancreas-CT and BTCV datasets, respectively.

INDEX TERMS Abdominal multi-organ segmentation, fully convolutional neural networks, boundary-
constrained segmentation, multi-task learning.

I. INTRODUCTION
Multi-organ segmentation on abdominal Computed
Tomography (CT) scans is an essential prerequisite for
computer-assisted surgery and organ transplantation [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

Particularly, quantitative assessment of abdominal regions
enables accurate organ dose calculation, required in numer-
ous radiotherapy treatment options. Erroneous delineation
of abdominal organs prevents harnessing the benefits of
radiotherapeutic advancements. In clinical practice, physi-
cians delineate abdominal organs using manual segmentation
tools, which are time-consuming, observer-dependent, and
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FIGURE 1. Exemplary 2D abdominal CT image showing the visual characteristics of organs. (a) 2D abdominal image, (b) Abdominal
organs annotated on CT image: pancreas ( ), spleen ( ), liver ( ), stomach ( ), gallbladder ( ), (c) 3D multi-organ voxel map.

error-prone. With the increased use of imaging facilities and
production of a large number of abdominal CT scans, the uti-
lization of automated, robust, and efficient organ-delineation
tools has become compulsory [2], [3], [4].

Abdominal CT scans often present weak inter-organ
boundaries characterized by regions of similar voxel intensi-
ties. Such appearances are usually caused by the representa-
tion of abdominal soft tissues in a narrow band of Hounsfield
(HU) values. Another factor that enhances the already com-
plex representation of abdominal organs is the existence of
artifacts occurring due to blood flow, respiratory, and car-
diac motion. Accurate delineation of abdominal organs with
unclear boundaries and complex geometrical shapes is one
of the ongoing challenges that hurdles the abdominal-related
clinical diagnosis.

Earlier methods proposed for the abdominal multi-organ
segmentation mainly were based on multi-atlas [5], [6] or
statistical models [7], [8]. Some methods also made use
of handcrafted or learned features to segment abdominal
organs [9], [10]. However, the recent Fully Convolutional
Network (FCN) based approaches have presented better
results due to the improved organ representation learning [2],
[11]. Being able to preserve the image structure and provision
of efficient learning as well as inference, FCN-based meth-
ods are currently considered state-of-the-art for abdominal
multi-organ segmentation [2], [12], [13].

Existing FCN-based methods for abdominal multi-organ
segmentation employ either 2D or 3D convolutional architec-
tures [12], [13]. 2D methods process the CT scans in a slice-
by-slice fashion and predict the organ labels on individual
slices [13]. Despite being memory- and parameter-efficient,
2D methods are unable to make full use of 3D contextual
information [2]. 3D methods make use of rich volumetric
context by processing the whole CT volume and generating
voxel-maps in a single forward propagation pass, leading
to better abdominal CT segmentation performance than 2D
approaches [15], [16].

The existing 3D methods have primarily focused on
designing better architectures for improved abdominal
multi-organ representation learning [2], [12]. However, they
treat all the anatomical parts within a single organ equally

since they solely rely on voxel-level information and do not
specifically focus on improving the segmentation of voxels in
vulnerable regions/parts of organs. As an example, we high-
light some of the important characteristics of abdominal
organs in Fig. 1. From Figures 1a and 1b, it can be noticed
that the adjacent organs haveweak contours which sometimes
touch each other. As an example, observe the low-contrasted
and touching boundaries between stomach ( ) and
pancreas ( ). Moreover, 3D multi-organ visualization in
Fig. 1c shows that the adjacent positioning of organs in the
abdominal cavity aggravates the complex spatial relationship
among the organs.

The boundaries of anatomical regions in medical scans
serve as an important cue for facilitating manual and auto-
mated delineation. Numerous existing deep learning-based
studies leveraged learning of features corresponding to
boundary of regions for improved medical image segmen-
tation via multitask learning paradigm [17], [18], [19],
[20], [21]. In recent years, deep multitask learning paradigm
has been widely used due to its potential to solve multi-
ple tasks in one forward propagation and ability to learn
better representations because of the multiple supervisory
signals [22], [23]. In this paper, we propose to improve the
segmentation of abdominal organs on CT scans by enhancing
the segmentation of boundary of organs. Particularly, we train
the 3D deep learning networks to simultaneously predict
the boundary and the entire region of organs. The inclusion
of boundary information is motivated by the fact that the
voxels on the boundary of organs are more vulnerable to
misprediction because of their ambiguous appearance and
complex relationship with adjacent organs. Specifically, our
work makes the following contributions:
(i) We develop a trainable 3D multi-task learning frame-

work that simultaneously predicts the voxel-labels of
abdominal organs and their corresponding boundaries.
By integrating the boundary features, our proposed
boundary-constrained 3D deep learning framework
focuses on the accurate prediction of the edges of
organs in addition to whole organs.

(ii) Instead of relying on a single network topology,
we explore and compare two network topologies for
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conducting multi-task learning. In the first topology,
the whole encoder-decoder network is shared with
separate task-specific prediction layers at the end for
predicting boundaries and entire organs’ maps. In the
second topology, an encoder is shared with separate
task-specific decoders for decoding the features, jointly
learned by the shared encoder to predict the boundary
and organ probability maps. With an extensive com-
parison, we reveal that integration of boundary fea-
tures invariably improves the multi-organ segmentation
performance, independent of the multi-task network
design.

(iii) We utilize three state-of-the-art 3D encoder-decoder
architectures, i.e., UNet [24], UNet++ [25], and
Attention-UNet [26] as baseline networks for evaluat-
ing the effect of incorporating boundary information.
We modifiy each baseline architecture according to our
proposed multi-task topologies. We demonstrate sig-
nificant performance improvements with a negligible
increase in trainable parameters.

(iv) We validate the performance of baseline and counter-
part boundary-constrained models on two publically
available datasets (Pancreas-CT [27] and BTCV [28])
using Dice Score, Average Hausdorff Distance, Recall,
and Precision. Furthermore, we conduct additional
experiments to evaluate the improvement in the seg-
mentation of regions around the boundaries. The results
show that the boundary-constrained networks learn fea-
ture representations that focus on the accurate organs
segmentation and the challenging parts around the bor-
der of the organs. All source codes are publically avail-
able on https://github.com/samra-irshad/3d-boundary-
constrained-networks.

The rest of the article is organized as follows. In Section II,
we review the existing methods for abdominal multi-organ
segmentation. Section III describes our framework for incor-
porating the boundary information into the 3D fully con-
volutional networks, including the multi-task loss function
and the details of boundary-constrained network topologies.
Next, we describe the dataset specifications and implementa-
tion details in Section IV. We then present the experimental
results, comparisons with existing single-task approaches,
and in-depth performance analysis of boundary-constrained
models in section V. Finally, we discuss the important high-
lights and some directions for future work in Section VI and
present the conclusion in Section VII.

II. RELATED WORK
Segmentation of anatomical structures from abdominal scans
is a prerequisite for various high-level CT-based clinical
applications. Existing automated state-of-the-art tools for
abdominal image segmentation aremostly based on fully con-
volutional network-based methods. In this section, we first
briefly review the fully convolutional network-based meth-
ods for abdominal multi-organ segmentation (section II-A).
We conclude this section with a discussion onmulti-task deep

neural networks being employed for complementary bound-
ary learning task to improve medical image segmentation
(section II-B).

A. FULLY CONVOLUTIONAL NETWORKS FOR ABDOMINAL
MULTI-ORGAN SEGMENTATION
In recent years, Fully Convolution Network (FCN) and its
variants (e.g., UNet [14]) have become a common choice
for medical image segmentation. This dominancy can be
attributed to their ability to learn effective task representations
and efficient inference. UNet has an encoder-decoder style
architecture and consists of skip connections, joining the
encoding and decoding layers on the same level. Despite
being trained from scratch, UNet demonstrated state-of-the-
art performance for various medical image segmentation
tasks [34], [35]. Built on top of UNet, several other modified
architectureswere subsequently proposed, e.g., UNet++ [25],
Attention-UNet [26], etc.

Roth et al. [15] proposed a cascaded architecture based on
two 3D UNets where the first UNet is trained to separate the
abdominal area from the background, and the latter utilized
the output from the first UNet to simultaneously segment
the abdominal organs. Peng et al. [33] delineated abdom-
inal organs using 3D UNet with residual-learning based
units (ResNets) to calculate patient-specific CT organ dose.
In another study [2], abdominal organs are segmented using a
3D FCN with dilated convolutions based densely connected
units. Heinrich et al. [11] leveraged 3D deformable convo-
lutions to spatially adapt the receptive field for abdominal
multi-organ segmentation. In [37], abdominal scans were
segmented using a 3D deeply supervised patch-based UNet
with grid-based attention gates to encourage the network to
focus on useful salient features propagated through the skip
connections. Some existing methods have employed post-
processing steps, including level-sets [3] and graph-cut [4]
to refine initial segmentation maps obtained from 3D deep
convolutional networks.

Through the efforts mentioned above, the existing
3D methods have mostly emphasized developing better deep
learning architectures and did not attempt to improve the
segmentation of challenging parts of abdominal organs, e.g.,
voxels that belong to the contour of organs and regions within
the vicinity of organ-contour. The fuzzy appearance of the
boundary of organs and low contrast between the adjacent
abdominal structures makes the voxels belonging to these
regions more susceptible to wrong label prediction.

B. BOUNDARY-CONSTRAINED MEDICAL IMAGE
SEGMENTATION
Several existing deep learning-based medical image segmen-
tation methods have utilized the boundary information of
regions of interest to overcome the misprediction of boundary
pixels [17], [18], [19], [38]. In these methods, the networks
are trained in a multi-task learning fashion to simultane-
ously predict the probability maps of entire organs and their
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FIGURE 2. Multi-task topologies of 3D boundary-constrained network. (a) Multi-task topology with shared encoder-decoder network and
task-specific prediction layers, and (b) Multi-task topology with shared encoder and task-specific decoders.

corresponding boundaries. Most of these methods have
resorted to the hard-parameter sharing technique, where a
single network contains shared and task-specific parameters
and is jointly trained to solve multiple tasks.

Chen et al. [17] segmented the glands and their corre-
sponding boundaries via multi-task training. By training the
model to learn the co-representations, the model achieved
better gland segmentation performance than the single-task
models. In [39], boundary and distance maps were used for
improved polyp and optic disk segmentation, respectively.
Tan et al. [18] proposed a multi-task medical image segmen-
tation network consisting of a single encoder and separate
dedicated arms for decoding regions and boundaries. The
study was evaluated on numerous applications, includingMR
femur and CT kidney segmentation. Lee et al. [38] proposed a
framework that predicts boundary keypoint maps and makes
use of adversarial loss for improved boundary preserving in
medical image segmentation.

Given the challenge presented by voxels on the organs’
boundaries and the evidence in the literature that focusing
on boundaries is beneficial for performance, we integrate
the organs boundary prediction as an auxiliary task into
the training of state-of-the-art 3D medical image segmenta-
tion networks. Since the design choice of network topology
impacts the learning process, we explore two multi-task net-
work designs and analyze their performance. The boundary
co-training resulted in improved performance on abdominal
CT segmentation tasks compared to the several state-of-the-
art 3D fully convolutional baseline architectures.

III. PROPOSED METHOD
In this section, we first describe the boundary-constrained
loss for training the 3D encoder-decoder network to simul-
taneously predict the boundaries and entire abdominal organ
regions via multi-task learning (Section III-A), followed by
an exhibition of our proposed multi-task network topologies
(Section III-B). After that, we discuss the architecture of
the 3D networks that we have as baselines in our work
(Section III-C). Finally, we present the architectural
design of the counterpart 3D boundary-constrained models
(Section III-D).

A. BOUNDARY-CONSTRAINED LOSS
Consider a 3D encoder-decoder network trained to predict the
voxel labels of the abdominal CT scan with W × H × Z
dimensions, where W , H , and Z denote the length, width,
and depth of the scan, respectively. Such a network takes an
abdominal multi-organ CT scan as an input and outputs a
labelled voxel map of the same size as the input. To utilize
the boundary information of abdominal organs for improved
representation learning, we train the network to predict the
3D organ-semantic masks and 3D organ-boundaries in one
forward propagation pass. We formulate this problem using
a multi-task learning paradigm where multiple tasks are
learned jointly using shared and task-specific representa-
tions. The loss L for this multi-task learning problem is a
weighted combination of per-task losses, organ segmentation
loss LRS and organ boundary detection loss LBD. We use
multi-class dice loss [40] for evaluating the performance of
the multi-organ segmentation task, given as

LRS =

C−1∑
c=0

2 (ŷi,c × yi,c)

ŷ2i,c + y2i,c
(1)

where, ŷi,c and yi,c denote the 3D multi-organ probability
map and ground-truth mask, respectively, of the ith abdominal
CT scan. C denotes the number of organ classes.

ŷi = p̂(xi; θs) (2)

p̂(xi; θs) =

N−1∑
n=0

p̂(xi,n; θs)

=

W−1∑
w=0

H−1∑
h=0

Z−1∑
z=0

p̂(xi,w,h,z; θs) (3)

where p̂(xi,n) represents the label probability of nth voxel in
ith scan and N refers to the total number of voxels in a scan.
To evaluate the model’s performance in predicting the

boundaries, we use binary cross-entropy loss (shown in (4)).
Binary cross-entropy loss for predicting 3D boundaries is
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given as

LBD = −

N−1∑
n=0

ei,n log(êi,n) + (1 − ei,n) log(1 − êi,n)

= −

W−1∑
w=0

H−1∑
h=0

Z−1∑
z=0

p(xi,w,h,z; θs) log(p̂(xi,w,h,z; θs))

+ (1 − p(xi,w,h,z; θs)) log(1 − p̂(xi,w,h,z; θs)) (4)

êi and ei represent the edge probability map and the corre-
sponding ground-truth. p̂(xi,w,h,z) represents the edge proba-
bility of the nth voxel in ith scan. θs represents the weights of
the entire deep multi-task encoder-decoder network.

The combined total loss L is minimized with respect to the
parameters θs, as shown in (5). Thus our goal is to evaluate
if a network can learn more robust features and subsequently
produce improved organ segmentations by being trained to
explicitly recognize the boundaries.

L(θs) =

M∑
i=1

LRS + λ

M∑
i=1

LBD (5)

M and λ represents the total number of CT scans in the
training set and the weight assigned to the edge detection loss
in (5), respectively.

We hypothesize that the additional boundary loss (LBD)
would impose a larger penalty on erroneous contour
voxels, and it subsequently pushes the optimization of the
segmentation network towards the solutions with more accu-
rate boundaries. Thus, one would potentialize the abil-
ity of a boundary-constrained network to extract features
that account for the semantic abdominal organ regions and
boundaries.

B. BOUNDARY-CONSTRAINED NETWORK TOPOLOGIES
Multi-task learning is generally formulated via hard-parameter
sharing and soft-parameter sharing. In the hard-parameter
sharing paradigm, multiple tasks share a subset of jointly
optimized parameters, whereas task-specific parameters are
optimized separately. In soft-parameter sharing, each task
is parameterized using its own set of parameters which are
jointly regularized using constraints [41]. In practice, hard-
parameter sharing approaches incur much less parameter and
computational cost. In our work, we formulate the multi-task
learning problem via hard-parameter sharing to train the
encoder-decoder network to do multiple tasks, i.e., organ seg-
mentation and boundary detection. For deep neural networks,
the hard-parameter sharing approach is realized by sharing
some network layers between the tasks while keeping some
layers task-specific.

We explore two different network topologies to conduct
multi-task training, as shown in Figures 2a and 2b. The
motivation to explore multiple topologies is to investigate the
impact of sharing the larger and smaller number of parameters
in the network between the two tasks. We explain these
multi-task topologies below.

1) TASK-SPECIFIC OUTPUT LAYERS (TSOL)
The first multi-task topology that we explore is formulated
by appending two separate prediction layers for predicting
the boundaries and semantic organ masks. This topology
employs an encoder-decoder network whose weights are
shared between the tasks, except for the last output layers,
as shown in Fig. 2a. Technically, it encourages the use of
compact and tightly shared feature representations. As evi-
dent, this configuration has negligibly fewer more parameters
than the single-task network. We denote this configuration
as TSOL.

2) TASK-SPECIFIC DECODERS (TSD)
In second mutli-task topology, we modify the 3D encoder-
decoder model to have a single shared encoder but two sep-
arate decoding arms for predicting the semantic regions and
boundaries. The sibling-decoding arms upsample the region
and boundary maps separately. This type of formulation
ensures sparse representation sharing amongst the two tasks
since decoders have been parameterized separately, as shown
in Fig. 2b. The presence of two synthesis paths results in
having significantly more parameters than its counterpart
single-task network. We refer to this configuration as TSD.

FIGURE 3. 3D UNet-MTL-TSOL: Multi-task learning based 3D UNet with
task-specific output layers for simultaneously predicting the organs and
their boundaries.

C. 3D BASELINE MODELS
We use UNet [24], UNet++ [25] and Attention-UNet
(Att-UNet) [26] as our baseline models. We illustrate
these models in Supplementary material (see
Figures 15, 16 and 17). These architectures are based on
encoder-decoder design and extended to segment 3D volumes
by replacing the 2D convolutions, pooling, and upsampling
with 3D counterparts. Each baseline model processes a 3D
input scan with dimensions W × H × Z and outputs a
predicted organ-label map of the same size as input. The
encoder of the model contains five convolutional blocks with
pooling layers, and the decoder comprises four upsampling
layers. Each convolutional block in the encoder consists of
two convolutional layers with 3 × 3 × 3 filters, followed
by batch normalization and Exponential Linear Unit (ELU)
activation [42]. We use padded convolutions to keep the
output dimensions of convolutional layers the same as the
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FIGURE 4. 3D UNet-MTL-TSD: Multi-task learning based 3D UNet with
task-specific decoders for simultaneously predicting the organs and their
boundaries.

FIGURE 5. 3D UNet++-MTL-TSOL: Multi-task learning based 3D UNet++

with task-specific layers for simultaneously predicting the organs and
their boundaries.

input dimensions. A 2×2×2 max pooling layer with a stride
of two in each dimension is sandwiched between every two
convolutional blocks for feature maps’ downsampling. The
bilinear interpolation layers are used in the decoder to upsam-
ple the extracted feature maps in each dimension. The feature
maps in the decoder are concatenated with the equal-sized
representations learned in the encoder via skip connections.
The concatenated feature maps are then transformed using
convolutional blocks, similar to those used in the encoder.
The last 1 × 1 × 1 convolutional layer maps the feature
channels to the class labels, followed by a softmax activation.
The resolution of the smallest feature map is 9× 9× 9 and

the minimum and maximum feature count at the first and
last encoding stage is 16 and 256, respectively. Note that
the original UNet++ model is trained with deep supervi-
sion driven by output layers of UNet with varying depths;

FIGURE 6. 3D UNet++-MTL-TSD: Multi-task learning based 3D UNet++

with task-specific decoders for simultaneously predicting the organs and
their boundaries.

however, we train UNet++ without deep supervision to con-
strain the computational expense.

FIGURE 7. 3D Att-UNet-MTL-TSOL: Multi-task learning based 3D Att-UNet
with task-specific prediction layers for simultaneously predicting the
organs and their boundaries.

D. 3D BOUNDARY-CONTRAINED MODELS
To utilize the boundary information of the organs, we train the
baseline models (given in Section III-C) to predict the organ
boundaries alongwith organs.We propose twomulti-task net-
work topologies (shown in Fig. 2) for integrating the bound-
ary information and for that, we modify each baseline model,
i.e., 3D UNet, 3D UNet++, and 3D Att-UNet, according to
two multi-task learning-based topologies.

To modify the baseline models according to the first
multi-task topology (TSOL) (shown in Fig. 2a), we append
a separate head at the end to predict boundaries along with
the organs. We refer to these models as UNet-MTL-TSOL,
UNet++-MTL-TSOL, and Att-UNet-MTL-TSOL, as shown
in Figures 3 5, and 7, respectively. To modify the baseline
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FIGURE 8. 3D Att-UNet-MTL-TSD: Multi-task learning based 3D Att-UNet
with task-specific decoders for simultaneously predicting the organs and
their boundaries.

models according to the second boundary-constrained multi-
task topology (TSD) (shown in Fig. 2b), we modify the
baseline models (3D UNet, 3D UNet++, and 3D Att-UNet)
to have separate decoding paths followed by prediction
layers for predicting boundaries and organs. We refer to
the models modified according to this topology as UNet-
MTL-TSD, UNet++-MTL-TSD, and Att-UNet-MTL-TSD
and show them in Figures 4, 6, and 8, respectively. Note
from Fig. 6, we only use the skip connections between
the encoder with the greatest depth and boundary-decoder
instead of utilizing featuremaps extracted by nested-UNets of
all depths. This design choice is made to constrain the number
of parameters in UNet++-MTL-TSD. Furthermore, observe
from Fig. 8, we do not employ the attentionmechanismwhile
decoding the boundary-features in Att-UNet-MTL-TSD.

IV. EXPERIMENTAL DETAILS
This section first describes the datasets used to validate our
study and the pre-processing we perform on the datasets
(Section IV-A), followed by implementation details
(Section IV-B). Finally, we conclude this section by
discussing the metrics used to evaluate baseline and
boundary-constrained models (Section IV-C).

A. DESCRIPTION OF DATASETS AND DATA
PREPROCESSING
We utilize two publically available abdominal CT datasets
(Pancreas-CT and BTCV) to evaluate baseline and boundary-
constrained models. Abdominal scans in Pancreas-CT were
acquired at the National Institutes of Health Clinical Center
from pre-nephrectomy healthy kidney donors and subjects
with neither major abdominal pathologies nor pancreatic can-
cer lesions [27]. The BTCV dataset consists of abdominal

scans acquired at the Vanderbilt University Medical Center
frommetastatic liver cancer patients or post-operative ventral
hernia patients [31].

1) PANCREAS-CT DATASET (TCIA-43)
The pancreas-CT dataset [27], [43] comprised 82 abdominal
contrast-enhanced 3D CT scans and was initially provided
with manually drawn contours of the pancreas [43], [44].
Recently, 43 scans from this dataset have been re-annotated
to include the segmentation of the liver, duodenum, stomach,
esophagus, spleen, gallbladder, and left kidney [45]. There-
fore, we use only 43 scans that have been re-annotated to
incorporate labels for multiple organs. We randomly divide
the available 43 studies into 28, 5, and 10 for training, vali-
dation, and test, respectively.

2) BTCV DATASET
BTCV was released [28], [31] as a part of a challenge held in
conjunction withMICCAI 2015. The challenge compared the
abdominal organs’ segmentation algorithms on 3D CT scans.
Our work focuses on the segmentation of eight organs from
the BTCV dataset, i.e., liver, duodenum, stomach, esophagus,
spleen, gallbladder, left kidney, and pancreas.

For the BTCV dataset, we utilize the bounding box coor-
dinates given with the dataset for cropping the region-of-
interest for both the CT scans and ground-truth labels [45].
Like the Pancreas-CT dataset, the cropped region-of-interest
is then resampled to a common dimension of 144 × 144 ×

144 voxels. Finally, we randomly divide the available 47 stud-
ies into 32, 5, and 10 for training, validation, and test,
respectively.

We pre-process both the datasets in the same way as pro-
posed by [45]. This pre-processing involves cropping a tight
bounding box using the bounding box coordinates provided
with the dataset [45] and then resampling to a common
dimension of 144 × 144 × 144 voxels. This pre-processing
step results in irregular voxel spacing [11]. We applied
affine random transformations to augment the data but did
not observe a significant difference in segmentation perfor-
mance on the validation set. Therefore, we did not use any
data augmentation. We used the same dataset splits for all
the experiments. To analyze the occurrence of each organ
in the dataset, we present the organs’ occupancy ratio in
Figures 9 and 10.

B. IMPLEMENTATION DETAILS
All experiments are conducted using Pytorch [46] on two
Nvidia Tesla P100, accessed through the HPC platform.1

We train all the baseline networks with a mini-batch of
size 4, except for 3D UNet++, which is trained with one
batch size. These choices have been made according to
available GPU memory. All baseline (single-task) networks
are trained using multi-class dice loss as expressed in
Equations (1)–(3). For acquiring multi-class dice loss, the

1https://supercomputing.swin.edu.au/
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FIGURE 9. Organ occupancy ratio for Pancreas-ct dataset.

FIGURE 10. Organ occupancy ratio for BTCV dataset.

3D predicted organ-segmentation maps are compared with
3D organ ground-truth maps. All the networks (baseline
and boundary-constrained) are optimized via Adam opti-
mizer [47]. The learning rate is initially set to 0.001, decaying
by a factor of 0.9 after every epoch. To assess the effect of
changing values of training hyperparameters on validation
segmentation performance, we conduct experiments to guide
us in selecting the optimal settings for baseline models. The
results for these experiments are given in Tables 5 and 6 in
Supplementary section. We monitor the mean dice score on
the validation set during training and utilize the model for
testing that results in the highest dice coefficient on the
validation set.

We use a combination of multi-class dice loss and binary
cross-entropy loss, as illustrated in Equation 5 for training
boundary-constrained models. 3D organ-boundary predic-
tions are compared with the 3D boundary ground-truths to
obtain the binary cross-entropy loss. Since the datasets do
not contain the boundary annotations of organs, we acquire
the ground-truth boundaries by first eroding the multi-
organ ground-truth labels and then taking the differ-
ence from the original ground-truth map. This process
gives us boundary annotations of organs. For UNet-MTL-
TSOL, UNet-MTL-TSD, Att-UNet-MTL-TSOL and Att-
UNet-MTL-TSD, we use a batch of size two, whereas, for

UNet++-MTL-TSOL and UNet++-MTL-TSD, we use a sin-
gle batch size. These choices are made according to the
available GPU memory. Note that the boundary predictions
are only used in the training stage. During the validation
stage, we only consider the organ predictions.

We conduct a grid search (on the range from 0 to 2 with
a step of 0.5) to find the optimal value of λ (responsi-
ble for balancing the boundary detection loss). The exact
value of λ selected to balance the boundary loss for each
boundary-constrained model are given in Tables 7 and 8 in
Supplementary material. These tables also present the stan-
dard deviation between validation dice scores when different
values of λ are used.

C. EVALUATION METRICS
We compare the predicted segmentation masks with the
ground-truths to evaluate the segmentation performance of
baseline and boundary-constrained models on test set. To do
that, we utilize Dice Score, Recall, Precision, and Average
Hausdorff Distance as metrics for assessing the quality of
predicted segmentation masks. These metrics are calculated
for each organ individually and then an average is taken
across all subjects. All metrics are calculated by taking a
mean of the 5 runs.

V. RESULTS AND ANALYSIS
This section demonstrates the experimental results obtained
from boundary-constrained abdominal segmentation models
and compares them against the performance given by baseline
models. For the sake of brevity, we denote the baseline and
boundary-constrained models with the abbreviations below
(shown in bold).

(a) 3D UNet: 3D UNet shown in Fig. 15 in Supplementary
material.

(b) 3D UNet-MTL-TSOL: Boundary constrained 3D
UNet with task specific output layers shown in Fig. 3.

(c) 3D UNet-MTL-TSD: Boundary constrained 3D UNet
with task specific decoders shown in Fig. 4.

(d) 3D UNet++: 3D UNet++ shown in Fig. 16 in Supple-
mentary material.

(e) 3D UNet++-MTL-TSOL: Boundary constrained
3D UNet++ with task specific output layers shown
in Fig. 5.

(f) 3D UNet++-MTL-TSD: Boundary constrained 3D
UNet++ with task specific decoders shown in Fig. 6.

(g) 3D Att-UNet: 3D Att-UNet shown in Fig. 17 in Sup-
plementary material.

(h) 3D Att-UNet-MTL-TSOL: Boundary constrained 3D
Att-UNet with task specific output layers shown
in Fig. 7.

(i) 3D Att-UNet-MTL-TSD: Boundary constrained 3D
Att-UNet with task specific decoders shown in Fig. 8.

A. QUANTITATIVE RESULTS
Table 1 summarizes the segmentation results for the
Pancreas-CT and BTCV datasets. We report the mean Dice
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TABLE 1. Quantitative comparison between baseline and boundary-contrained models for abdominal multi-organ segmentation: Mean values ± Std. Dev.
of Dice Score, Avg. HD, Recall, and Precision are shown. Results in BOLD indicate the best results corresponding to each baseline.

TABLE 2. Comparison of parameter-cost and computational time.

Score, mean Average Hausdorff Distance (Avg. HD) in mm,
mean Recall, andmean Precision computed by comparing the
predicted segmentation against the ground-truth. These mea-
sures are calculated on test sets of each dataset. Table 1 shows
that the boundary-constrained models achieve improved
multi-organ segmentation on the abdominal CT scans. Firstly,
the mean Dice scores are improved by 1.8% (UNet vs.
UNet-MTL-TSOL) and 3.5% (Att-UNet vs. Att-UNet-MTL-
TSOL), for Pancreas-CT dataset. The corresponding values
of mean dice scores for BTCV dataset are improved by 3.1%
(UNet vs. UNet-MTL-TSD), 3.6% (UNet++ vs. UNet++-
MTL-TSOL), and 3.5% (Att-UNet vs. Att-UNet-MTL-TSD).
The improved overlap between predicted segmentations and
manually annotated masks can be attributed to the enhanced
semantic representations learned by boundary-constrained
models.

Secondly, we observe that boundary-constrained mod-
els achieve a lower Avg. HDs for all the datasets than
those obtained from baseline models as shown in Table 1.
For example, after adding boundary information, the Avg.
HD values of UNet, UNet++, and Att-UNet are decreased
by 11.5%, 14.5%, and 18.4%, respectively, for the Pancreas-
CT dataset. Likewise, a decrease of 15.4%, 16.2%, and 30%,
respectively, is seen for the BTCV dataset. Furthermore,
we notice that the Avg. HD is still lower for the cases where
boundary-constrained models obtained lower or equivalent
mean Dice score, e.g., UNet++-MTL-TSOL vs. UNet++ and
UNet++-MTL-TSD vs. UNet++, for Pancreas-CT results.
This indicates that even for the equivalent dice overlap, the

performance of the boundary-constrained models in accu-
rately predicting the boundaries is improved.

Thirdly, our boundary-constrained models achieve higher
values of mean Recall and mean Precision for all the
models and datasets except for UNet++ corresponding to
the Pancreas-CT dataset, as shown in Table 1. The uti-
lization of boundary information has caused a decrease in
false-negative rates and false-positive rates. Specifically, the
mean recall is increased by 1.3% (UNet vs. UNet-MTL-
TSOL) and 4.3% (Att-UNet vs. Att-UNet-MTL-TSOL) for
Pancreas-CT dataset. For BTCV dataset, an increase of
1.3% (UNet vs. UNet-MTL-TSOL), 3.7% (UNet++-MTL-
TSOL vs. UNet++), and 1.9% (Att-UNet vs. Att-UNet-MTL-
TSOL) is observed in Mean Recalls. Finally, we see a max-
imum improvement of 1.9% and 4.3% in values of mean
Precision for Pancreas-CT and BTCV datasets, respectively.
The improvment in mean Recalls and mean Precisions show
the capability of boundary-constrained models in addressing
the issues of under-segmentation and over-segmentation.

Finally, we also observe that there does not exist a clear
relation between the parameter-complexity of the model
(number of parameters it has) and its performance. For exam-
ple, the baseline UNet++ has greatest number of parameters,
yet it perform worse than UNet and Att-UNet.

B. COMPUTATIONAL COMPLEXITY AND ARCHITECTURAL
ANALYSIS
Table 2 reports parameter count (in million M) and each
method’s time to segment a single CT abdominal volume in
the test phase. We also highlight the increase in parameter
count (given in brackets) compared with the baseline model.
Among the single-task baseline models, UNet++ is most
parameter-extensive with 6.87× 106 parameters. The param-
eter count of boundary-constrained models with TSOL topol-
ogy have only 17 parameters more than the baseline mod-
els; however, these models showed significantly considerable
improvements in the segmentation of abdominal organs. The
shared encoder and decoder in the TSOL design enable the
small parameter count while capacitating the segmentation
algorithm to learn the masks and boundaries using separate
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TABLE 3. Organ-wise Mean Dice scores ± Std. Dev. obtained from baseline and best performing boundary-constrained models: Bold shows the highest
value corresponding to each baseline.

TABLE 4. Organ-wise Mean Avg. HDs ± Std. Dev. obtained from baseline and best performing boundary-constrained models: Bold shows the highest
value corresponding to each baseline.

task-specific output layers. Observing the second multi-task
topology TSD, our model requires approximately 2.4Mmore
parameters than the baseline.

Furthermore, we can see (from Table 2) that the boundary-
constrained models take more time to segment a single vol-
ume at the inference stage. This behavior can be associated
with the extended parameter size of boundary-constrained
models since they are trained to predict a 3D boundary of
organs in addition to region masks.

Analyzing the relationship between the multi-task net-
work design and the segmentation performance from Table 1,
we note there is not a single/fixed topology that led to
the maximum improvement. For example, the TSD showed
maximum improvement in mean DC and Avg HD corre-
sponding to the Pancreas-CT dataset. Hd over the baseline
UNet. However, when the performance of Att-UNet is com-
pared with boundary-constrained models, we notice that the
TSOL demonstrated the best results. This reveals that the
multi-task network configuration that offers the best results
varies depending on each baseline architecture. All in all,
we found that integration of boundary information improved

the multi-organ segmentation, independent of the network
topology.

C. ASSESMENT OF ORGAN-WISE SEGMENTATION
PERFORMANCE
To assess which specific organs benefitted greatly from incor-
porating boundary information for the segmentation task,
we examine the mean Dice scores and mean Avg. HDs
achieved by baseline, and best performing boundary con-
strained models (from Table 1) for each abdominal organ.
We compute the Dice scores and Average Hausdorff dis-
tances for each organ individually and then average across
all subjects. From Table 3, we can see both baseline and
boundary-constrained models have yielded the highest mean
Dice scores for liver ( ), spleen ( ), and kidney ( ) and
lowest for duodenum ( ). However, boundary-based models
have led to the maximum relative improvement for the gall-
bladder ( ), pancreas ( ), and duodenum ( ). From Table 4,
we observe that the boundary-constrained models have sig-
nificantly improved the mean Avg. HD distances for the
spleen ( ), kidney ( ), and gallbladder ( ). Finally, relating
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the increase in dice overlap to the organ occurrence (shown
in Figures 9 and 10), we observe that the most significant
improvement has occurred for the underweighted classes.
In contrast, the boundary distances are maximally decreased
for both small (e.g., gallbladder ( ) and large structures like
spleen ( ). Furthermore, the boundary-constrained models
led to lower standard deviations of the mean Dice scores and
Avg. HDs across different subjects which show the robustness
of proposed models.

FIGURE 11. Trimap regions along boundary of organs shown on 2D
abdominal images. (a) Original abdominal image, (b) Organ label-maps
corresponding to 2D image, (c) Trimap region of 5 voxel width around
boundaries of organs shown in gray color, and (d) Trimap region of
7 voxel width shown in gray color.

D. SEGMENTATION PERFORMANCE ALONG BOUNDARY
OF ORGANS
Unclear boundaries of organs and low inter-organ contrast
prevent accurate segmentation of challenging regions around
the organ boundaries on abdominal CT scans. To assess if the
incorporation of boundary information has improved the seg-
mentation of voxels within the close vicinity of organ bound-
aries, we evaluate the quality of predicted voxel-labels within
these regions and compare them against the ones acquired
via baseline methods. To do this, we generate trimaps [48],
[49] with different voxel-bands surrounding the boundaries
of organs. Trimap is a narrow region along the boundary of
an object which is utilized to evaluate the quality of segmenta-
tion within a specific distance from the object’s contour. First,
we generate trimap regions around the boundary of organs for
predicted and ground-truth segmentations, and then, we com-
pare the 3D trimaps by computing mean Dice scores between
them. We show the exemplary trimap regions on 2D abdom-
inal axial slices in Figure 11. For the sake of compendious
presentation, we have computed the trimap Dice scores only
for TSOL network topology. Figure 12 shows the mean
Dice score plotted against the number of voxels the trimap
contains. The top row shows trimap plots for the Pancreas-
CT dataset, whereas the bottom row shows the trimap plots
for the BTCV dataset. Our proposed boundary-constrained
models consistently perform better than the baseline models
in predicting the semantic labels within the vicinity of organ-
boundaries, except for one case, i.e., (3D UNet++ vs 3D
UNet++-MTL-TSOL).

E. QUALITATIVE RESULTS
Figure 13 shows semantic segmentation predictions on
a single 2D axial slice of the 3D scans. The first and
second row correspond to segmentation results from the

FIGURE 12. Evaluation of boundary segmentation via trimaps. In each
subfigure, we have plotted the dice scores (y-axis) obtained by comparing
the predicted and groundtruth segmentations in trimap regions with
varying number of voxels (x-axis). The dice scores for both the baseline
( ) and boundary-constrained counterparts ( ) are plotted.
Top row of (a-c) corresponds to trimap segmentation comparison for
Pancreas-CT dataset and bottom row corresponds to BTCV dataset.

Pancreas-CT dataset whereas, the third and fourth row corre-
sponds to results from the BTCV dataset. Each column (from
left to right) illustrates the original abdominal 2D images
(Figure 13a), ground-truth masks (Figure 13b), baseline
model (UNet and Att-UNet) segmentations (Figure 13c),
and segmentations acquired from the boundary-constrained
counterparts (UNet-MTL-TSD and Att-UNet-MTL-TSOL)
in (Figure 13d). We observe that the baseline models led
to under-segmentations and over-segmentations, indicated in
white boxes in Figure 13c. Furthermore, the segmentations
generated by single-task baseline models show isolated and
biologically implausible organs’ parts. Moreover, comparing
with the corresponding boundary-constrained segmentations
(Figure 13d), the incorporation of boundary information has
prevented the issue ofmispredictions near boundary of organs
and led to generation of biologically plausible segmentations.
Figure 14 presents the 3D segmentations generated by base-
line (UNet) and boundary-constrained model (UNet-MTL-
TSD) along with the ground-truths from the Pancreas-CT
(first row) and BTCV dataset (second row). Notice that the
boundary-constrained segmentations (third column) are more
similar to the ground-truth masks (first column) as compared
to the baseline segmentations (second column). These qual-
itative results show the improvements induced by the use of
organs borders in training the 3D fully convolutional models
for abdominal organs segmentation.

VI. DISCUSSION
Accurate segmentation of abdominal organs from CT scans
is required for numerous advanced clinical procedures such
as computer-assisted surgery and organ transplantation. The
low-contrasted appearance and weak edges of abdominal
organs in CT scans adversely affect the accurate segmenta-
tion. In this paper, we propose to leverage boundary informa-
tion of organs as an additional cue for improved 3D abdom-
inal multi-organ segmentation. The boundary-constrained
encoder-decoder network simultaneously learns to delineate
the semantic abdominal regions and detect the boundaries of
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FIGURE 13. Qualitative results for multi-organ segmentation between baseline and boundary-constrained models are shown.
Rows 1-2 correspond to results for the Pancreas-CT dataset, whereas Rows 3-4 show results for the BTCV dataset. Columns 1-2
show the original image and the corresponding ground-truth mask overlayed on the 2D image, i.e., spleen ( ), left kidney ( ),
gallbladder ( ), liver ( ), stomach ( ), and duodenum ( ). Columns 3-4 illustrate the segmentation results related to baseline
UNet and UNet-MTL-TSOL counterparts. White boxes indicate the segmented regions improved by incorporation of boundary
information.

organs. This multi-task learning model exploits the statistics
from more than one ground-truth source and subsequently
retains features shared between the tasks. The boundary anno-
tations of abdominal organs can be easily generated from the
ground-truth masks and provide cost-free additional knowl-
edge about the organs.

As reported by quantitative results in Table 1, the proposed
boundary-constrained 3D encoder-decoder models achieve
improved multi-organ segmentation across the majority of
the baselines (3D UNet, 3D UNet++, and 3D Att-UNet)
and datasets (Pancreas-CT and BTCV). We have shown that
the significant improvement in segmentation performance
evaluated via Dice Score, Avg. HD, Recall, and Precision is
caused by the improved segmentation of organs’ boundaries
and regions surrounding boundaries. Furthermore, significant
improvements with a negligible increase in parameter count
(0.0002% -TSOL topology) reveal the benefit of regulariz-
ing the existing encoder-decoder segmentation models using
boundary information.

The reduction in Avg. HD for both datasets across all
baselines depicts the advantage of informing the model about
the vulnerable regions of the organ. The dramatic decrease in
Avg. HD, ranging from 18% to 30%, shows that the model
learned feature combinations that were expressive about the
entire appearance of organs. We believe that training the

models with auxiliary knowledge encourages learning more
generalizable and discriminative features. Notably, the addi-
tional experiments that we have conducted to precisely assess
the improvements in segmentation of regions in the vicinity
of organ-boundaries further verify the superiority of training
the segmentation model with complementary boundary infor-
mation (shown in Figure 14c).

Since there may exist several different configura-
tions through which a fully convolutional architecture
can be designed under a multi-task learning paradigm,
we explore two network topologies based on the extent of
parameter-sharing between the tasks. Through our extensive
comparison, we notice that an overly-shared multi-task net-
work (TSOL) performs on par with the network designed
to have an increased number of task-specific layers (TSD)
(Table 1). This indicates that models with many parameters
do not necessarily correspond to higher performance. Most
importantly, we also found that incorporation of boundary
information improved the multi-organ segmentation per-
formance, regardless of the network topology. One of the
critical challenges in designing 3D multi-task deep learning
models is determining which layers should be shared while
keeping the computational expense reasonable. In the future,
we aim to investigate other network topologies for training
the encoder-decoder model in a multi-task learning fashion.
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FIGURE 14. Visualization of 3D segmentation predictions using
Pancreas-CT and BTCV dataset. First column corresponds to abdominal
groundtruth annotations, i.e., spleen ( ), pancreas ( ), left kidney ( ),
gallbladder ( ), esophagus ( ), liver ( ), stomach ( ), and
duodenum ( ), whereas second and third column corresponds to volume
labels predicted by UNet and UNet-MTL-TSD.

Another valuable extension of our work is to develop a
mechanism/policy that can automatically dictate the sharing
pattern of network layers between the two tasks.

As reported in Tables 3 and 4, the improvement in the
segmentation performance of organs rarely occurring in the
dataset reveals the efficacy of boundary-regularized mod-
els in compensating for their rare presence. The qualitative
results shown in Figures 13 and 14 verify the positive impact
of making the model aware of organ-boundaries during train-
ing. The ability of our model to simultaneously learn the
improved representations of multiple organs is indicated by
the qualitative examples in Figures 13 and 14, where the
boundary-constrain has reduced the occurrence of over- and
under-segmented organs.

VII. CONCLUSION
In this paper, we leverage organ boundary information
for an improved 3D abdominal multi-organ segmenta-
tion by addressing the challenge of unclear boundaries in
low-contrasted CT scans. We demonstrate that boundary
information can be seamlessly introduced in the training
of 3D encoder-decoder models through different multi-task
configurations. The experimental results show the boundary-
constrained multi-organ segmentation outperforms the ones
obtained from several FCN-based baseline models, including
3D UNet, 3D UNet++, 3D Attention-UNet. Furthermore,
we found that the multi-task topology that shows maximum
improvement is not fixed and varies depending on the base-
line architecture. This insight shows that the optimal uti-
lization of auxiliary information cannot always be harvested
through a single deep multi-task design but instead requires
the exploration of different multi-task topologies. Our find-
ings also reveal that leveraging organs boundary features
improves the segmentation of underweighted organs like
the gallbladder, pancreas, and duodenum with a negligible
parameter-overhead. Additionally, the experimental results
disclose that the boundary-constrained models improve the
labelling of weak sub-parts of organs in the vicinity of bound-
aries. We believe the proposed 3D boundary-constrained

models would be valuable for enhancing abdominal organ
segmentation and utilizing those segmentations in relevant
clinical applications.
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