
Phiri et al. BMC Medicine          (2024) 22:419  
https://doi.org/10.1186/s12916-024-03631-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Medicine

Estimating pneumococcal carriage dynamics 
in adults living with HIV in a mature infant 
pneumococcal conjugate vaccine programme 
in Malawi, a modelling study
Joseph Phiri1,2†, Lusako Sibale1,2†, Lukerensia Mlongoti1, Ndaona Mitole1, Alice Kusakala1, Mercy Khwiya1, 
Thokozani Kayembe1, Edwin Lisimba1, Prosperina Kapwata3, Ken Malisita3, Chrispin Chaguza4,5, 
Daniela M. Ferreira2,6, Deus Thindwa1,5*† and Kondwani Jambo1,2,7*† 

Abstract 

Background Adults living with human immunodeficiency virus (ALWHIV) receiving antiretroviral therapy (ART) 
exhibit higher pneumococcal carriage prevalence than adults without HIV (HIV-). To assess factors influencing high 
pneumococcal carriage in ALWHIV, we estimated pneumococcal carriage acquisition and clearance rates in a high 
transmission and disease-burdened setting at least 10 years after introducing infant PCV13 in routine immunisation.

Methods We collected longitudinal nasopharyngeal swabs from individuals aged 18–45 in Blantyre, Malawi. 
The study group included both HIV- individuals and those living with HIV, categorised based on ART duration 
as either exceeding 1 year (ART > 1y) or less than 3 months (ART < 3 m). Samples were collected at baseline and then 
weekly for 16 visits. To detect pneumococcal carriage, we used classical culture microbiology, and to determine pneu-
mococcal serotypes, we used latex agglutination. We modelled trajectories of serotype colonisation using multi-state 
Markov models to capture pneumococcal carriage dynamics, adjusting for age, sex, number of under 5 year old (< 5y) 
children, social economic status (SES), and seasonality.

Results We enrolled 195 adults, 65 adults in each of the study groups. 51.8% were females, 25.6% lived with more 
than one child under 5 years old, and 41.6% lived in low socioeconomic areas. The median age was 33 years (IQR 
25–37 years). The baseline pneumococcal carriage prevalence of all serotypes was 31.3%, with non-PCV13 serotypes 
(NVT) at 26.2% and PCV13 serotypes (VT) at 5.1%. In a multivariate longitudinal analysis, pneumococcal carriage 
acquisition was higher in females than males (hazard ratio [HR], NVT [1.53]; VT [1.96]). It was also higher in low 
than high SES (NVT [1.38]; VT [2.06]), in adults living with 2 + than 1 child < 5y (VT [1.78]), and in ALWHIV on ART > 1y 
than HIV- adults (NVT [1.43]). Moreover, ALWHIV on ART > 1y cleared pneumococci slower than HIV- adults ([0.65]). 
Residual VT 19F and 3 were highly acquired, although NVT remained dominant.
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Conclusions The disproportionately high point prevalence of pneumococcal carriage in ALWHIV on ART > 1y is likely 
due to impaired nasopharyngeal clearance, which results in prolonged carriage. Our findings provide baseline esti-
mates for comparing pneumococcal carriage dynamics after implementing new PCV strategies in ALWHIV.

Keywords Pneumococcal acquisition, Pneumococcal duration, Serotype, Human immunodeficiency virus, 
Modelling, Malawi

Background
Streptococcus pneumoniae (pneumococcus) commonly 
colonises the nasopharynx (NP) of children and adults 
[1]. Pneumococcal colonisation precedes disease, such 
as pneumonia, meningitis, and bacteraemia [1–3], and is 
also prerequisite for transmission [1]. The pneumococ-
cus causes excessively high pneumococcal carriage and 
disease burden in adults living with human immunode-
ficiency virus (ALWHIV) on antiretroviral therapy (ART) 
compared to adults without HIV (HIV-) [4, 5], despite the 
substantial coverage of ART and suppression of viral load 
[6, 7]. Paradoxically, the higher pneumococcal carriage 
prevalence among ALWHIV with longer than shorter 
ART experience remains unexplained in this setting [8].

Pneumococcal conjugate vaccines (PCVs) protect 
against carriage due to specific vaccine-targeted (VT) 
serotypes, thereby interrupting VT transmission and 
reducing VT disease risk [9, 10]. In November 2011, 
Malawi introduced the 13-valency infant PCV (PCV13) 
into the national extended programme on immunisa-
tion (EPI) using a three-primary dose schedule without 
a booster (3 + 0; one dose at 6, 10, and 14 weeks of age) 
[11]. Despite at least 12  years of more than 90% infant 
PCV13 coverage among age-eligible children [12], in 
the absence of a direct PCV vaccination programme for 
ALWHIV [13], there is evidence of residual VT-carriage 
prevalence and VT-invasive pneumococcal disease (VT-
IPD) incidence in children and ALWHIV in Malawi 
[14–17].

A change of infant PCV schedule from 3 + 0 to 2 + 1 
(one primary dose at 6, 10, and booster dose at 36 weeks 
of age) or 2 + 1 + 1 (2 + 1 and one additional booster dose 
at 60 weeks of age) to enhance herd immunity, or direct 
routine PCV vaccination of ALWHIV has been suggested 
as potential vaccine strategies to eliminate persistent VT 
pneumococcal carriage risk and VT disease in ALWHIV 
[18]. Thus, to better assess the impact of a new vaccina-
tion strategy against VT carriage and disease among 
ALWHIV on ART, longitudinal studies are needed 
to generate the evidence base of pneumococcal sero-
type dynamics before the introduction of a new vaccine 
strategy [2, 19]. This may improve our understanding of 
serotypes that are frequently acquired or prolongedly 
carried, determinants of VT and NVT carriage acquisi-
tion and clearance, post-PCV serotype replacement, and 

the choice of vaccine product with the greatest potential 
to further reduce pneumococcal carriage and subsequent 
disease.

Here, we leveraged data from a longitudinal study of 
natural pneumococcal colonisation (Nasomune) among 
ALWHIV on ART and HIV- adults in Blantyre, Malawi, 
to estimate pneumococcal carriage parameters to inform 
transmission dynamic models of alternative vaccine 
strategies in ALWHIV. In particular, we estimated pneu-
mococcal serotype-specific and vaccine-serotype group 
acquisition and clearance rates, as well as associated fac-
tors among ALWHIV using multi-state Markov transi-
tion models.

Methods
Ethics approval
Nasomune study nasopharyngeal (NP) samples were 
obtained from each Malawian adult through written con-
sent. Study ethics approval was granted by the Malawi 
National Health Sciences Research Ethics Commit-
tee (NHSRC) (21/24/2680) and the Liverpool School of 
Tropical Medicine Research Ethics (21–035) in accord-
ance with the Declaration of Helsinki. Written informed 
consent to participate was obtained from all of the par-
ticipants in the study.

Data description
Nasomune study data were collected between 17 Sep-
tember 2021 and 11 December 2023 in Blantyre, Malawi. 
Using a random sampling approach, individuals were 
enrolled from different communities across Blantyre of 
whom 65 were HIV-, 65 ALWHIV with at most 3 months 
ART experience (ART < 3  m), and 65 ALWHIV with at 
least 1  year ART experience (ART > 1y). HIV infection 
status was determined according to the double rapid 
test algorithm in Malawi with an overall sensitivity of 
99.6% and specificity of 100% [20, 21]. Inclusion criteria 
included asymptomatic adults aged 18 to 45  years liv-
ing with at least one child under 5 years old. Adults with 
4  weeks prior use of antibiotics (except cotrimoxazole), 
history of smoking, pregnancy, current respiratory tract 
illness, cancer, and taking immunosuppressive medica-
tions (except ART) were excluded from the study.
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NP swabs were taken during 17 total visits: at base-
line (visit 1) and then weekly during the next 16 visits of 
the study period per protocol, resulting in 3152 total NP 
samples from 195 individuals adjusted for missed visits. 
The swabs were tested for the presence of pneumococci 
using the World Health Organisation (WHO) NP sam-
pling procedure and standard microbiological culture 
[22]. Serotyping of every positive pneumococcal sam-
ple was done using latex agglutination, based on pick-
ing a single colony, to identify serotypes or serogroups 
[23]. Pneumococcal carriage density was measured using 
microbiological culture serial dilutions on gentamicin-
sheep blood sugar agar plate (5  µl gentamicin/ml) and 
results reported as colony forming units per millilitre 
(CFU/ml) [24]. On enrolment and during follow-up, 
clinical and demographic characteristics of the study 
participants were recorded which included antibiotic use 
during follow-up, pneumococcal carriage density, age, 
sex, number of children under 5 years old (< 5y) living in 
the house, socioeconomic status (SES) based on owning 
different functioning items [3], and third-level adminis-
trative unit location where the study participant resided.

Continuous‑time time‑homogeneous multi‑state Markov 
models
We adapted a previously published Markov modelling 
framework to fit three variants of continuous-time time-
homogeneous multi-state Markov models to individual-
level trajectories of pneumococcal colonisation during the 
study period, assuming a susceptible-infected-susceptible 
(SIS) model structure [25]. The first model estimated total 
carriage dynamics regardless of specific serotypes and vac-
cine serotype category, the second model was expanded to 
capture VT and NVT carriage dynamics separately, and 
the last model was further expanded to also assess indi-
vidual serotype carriage dynamics. Since multiple serotype 
carriage was not tested in this study due to use of latex 
agglutination serotyping method, we assumed that at any 
time-point t , an individual can only carry a single dominant 
serotype and be in a colonised state carrying pneumococ-
cus (model 1) or separately VT and NVT (model 2) or any 
individual serotype (model 3) abbreviated as Ig , or be in a 
uncolonised state ( S ) where g is the subscript for a carriage 
state. Thus, the transition intensities between { S and Ig } can 
be described by transition matrices Q1 for model 1 ( g = 2) , 
Q2 for model 2 ( g = 2,3) , or Q3 for model 3 with 16 indi-
vidual serotypes ( g = 2,3, 4, . . . , 17 ) (Additional file  1: 
Fig. S1). To ensure model convergence due to limited data 
points, model 3 was limited to capture 16 carriage states, 
each corresponding to serotype 15A/B/C/F, 7A/B/C, 3, 
11A/B/C/D/F, 23A/B, 17A/F, 19F, 10A/B/C/F, 20, 6C, 19A, 
9A/L/N, 6A, combined identified VT (1, 4, 9  V, 14, 18C, 

23F), combined identified NVT (22A/F, 33A/B/C/D/F, 
18A/B/C/F, 12A/B/F, 19B/C, 8, and 6D), and unidentified 
NVT.

Our models describe acquisition and clearance rates of 
overall carriage, VT and NVT carriage or serotype-specific 
carriage from S to Ig and from Ig to S , captured by transi-
tion matrix entries δ1,g and δg ,1 , respectively. The effects 
( β ) of a vector of clinical and demographic characteristics 
( zi ) of i th individual on acquisition and clearance rates are 
only estimated in model 1 and model 2 and not in model 3 
due to limited data points. Thus, β is modelled using haz-
ard rates [26], e.g. δmn(zi(t)) = δ

(0)
mnexp(β

T
mnzi(t)) over all 

transitions ( T  ) where m, n = {1,2, 3} refer to being in state 
n at time t > 0 given that the previous state was m . Since 
acquisition of pneumococci is not observed for individu-
als already carrying pneumococci at baseline, we assume 
that their baseline rates of acquisition are similar to steady 
state rates over the study period. Our model also assumes 
that the future colonisation state is independent of its his-
tory beyond the current state [26]. We assume that the 
time spent in each state is exponentially distributed [25], 
thus pneumococcal carriage duration is estimated as the 
inverse of clearance, allowing precise estimation of pneu-
mococcal carriage episode. To obtain acquisition probabili-
ties, the matrix P is computed through matrix exponential, 
P(t) = exp(Q(t)) , over a constant Q through the study 
period. To adjust for potential changes in pneumococcal 
carriage intensities over time due to seasonality, we include 
in model 1 and model 2 a binary term for hot-wet and cool-
dry seasons representing a typical divide of Malawi’s cli-
mate over months of November–April and May–October 
[8], respectively (Additional file 1: Fig. S1).

Likelihood estimation
To fit the Markov model, the likelihood is constructed as 
the product of probabilities of transition between observed 
states, over all individuals i and observation times j , assum-
ing that sampling times are ignorable, e.g. the fact that 
a particular observation is made at a certain time does 
not implicitly give information about the value of that 
observation.
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where each Li,j is the entry of the transition probability 
matrix P(t) at s

(

i, j
)

 row and s
(

i, j + 1
)

 column evalu-
ated at time t = t(i,j+1) − t(i,j) . The likelihood L(Q) is 
maximised under a log scale to compute estimates of δmn 
using Bound Optimisation By Quadratic Approximation 
(BOBYQA) algorithm implemented by msm R package 
[26, 27].

Results
Participant and sample description
At baseline, 65 individuals were enrolled in each group 
of HIV-, ALWHIV on ART < 3  m, and ALWHIV on 
ART > 1y, totalling 195 participants of whom 5.1% and 
26.2% carried VT and NVT, respectively. One hundred 
and one adults (51.8%) were females, 25.6% lived with 
at least two children < 5y, and 41.6% were in low SES. 
The median participant age was 33 (interquartile range 
[IQR]: 25–37, range: 18–45), and pneumococcal car-
riage density was 10,720  CFU/ml (IQR: 1005–82,075). 
We estimated carriage prevalence by dividing the num-
ber of positive samples by the number of swabs taken per 
visit, HIV status and/or ART group. The baseline preva-
lence of pneumococcal NVT and VT carriage was gen-
erally higher for ALWHIV on ART > 1y (33.8% and 7.7%) 
compared to ALWHIV on ART < 3  m (24.6% and 3.1%) 
or HIV- adults (20.0% and 4.6%). Likewise, the base-
line median pneumococcal carriage density was higher 
for ALWHIV on ART > 1y (13,400  CFU/ml; IQR: 520–
67,838) compared to ALWHIV on ART < 3 m (9548 CFU/
ml; IQR 2387–247,900) or HIV- adults (8208  CFU/ml, 
IQR: 1884–149,494) (Table 1).

During the follow-up visits, NVT carriage prevalence 
was mostly highest in ALWHIV on ART > 1y (range: 
7.2–13.2%) than in ALWHIV on ART < 3 m (5.9–11.6%) 
or HIV- adults (2.1–7.3%), whereas VT carriage preva-
lence remained similar in the three groups at 0.5–2.7%. 
For aggregated samples across all visits, NVT carriage 
prevalence remained higher in ALWHIV on ART > 1y 
(10.6%, 95% confidence intervals [CI]: 9.6–11.8) than 
ALWHIV on ART < 3 m (9.1%, 95% CI: 8.2–10.2) or HIV- 
adults (5.8%, 95% CI: 5.0–6.7). Among NVT carriers, the 
median carriage density was higher among ALWHIV on 
ART > 1y than HIV- adults. In contrast, the median car-
riage density was higher among ALWHIV on ART < 3 m 
than ALWHIV on ART > 1y carrying either VT or NVT. 
In addition, NVT samples from ALWHIV on ART > 1y 
dominated among those who lived with at least two chil-
dren < 5y (35.5%), who were 18–33  years (33.3%), from 
low SES (38.7%), and did not use antibiotics (34.5%). 

L(Q) =
∏

i,j

Li,j =
∏

i,j

ps(i,j)s(i,j+1)

(

t(i,j+1) − t(i,j)

)

,
Conversely, NVT samples from ALWHIV on ART < 3 m 
were highest among females (33.6%) (Fig. 1).

Pneumococcal carriage acquisition dynamics
The probability that NVT carriage would next be 
acquired in a non-carrier was generally higher than 
VT carriage (82.9%, 95% CI: 78.3–86.7% vs 17.1%, 95% 
CI: 13.4–21.7%). Thus, among ALWHIV on ART > 1y, 
ALWHIV on ART < 3 m, and HIV-, we respectively esti-
mated the annual acquisition episodes of 5.9 (95% CI: 
4.3–7.9), 6.0 (95% CI: 4.4–7.9), and 5.0 (95% CI: 3.8–6.8) 
for overall carriage, 6.2 (95% CI: 4.4–8.2), 6.0 (95% CI: 
4.1–8.4), and 5.0 (95% CI: 3.5–6.9) for NVT carriage, and 
0.69 (95% CI: 0.31–1.57), 0.42 (95% CI: 0.19–1.01), and 
0.78 (95% CI: 0.40–1.70) for VT carriage.

In a multivariate analysis, the pneumococcal acquisi-
tion rate was higher among females vs males of overall 
carriage (hazard ratio [HR]: 1.64, 95% CI: 1.262–2.12), 
NVT (HR: 1.53, 95% CI: 1.17–2.01), and VT (HR: 1.96, 
95% CI: 1.11–3.49), among low vs high SES of overall 
carriage (HR: 1.47, 95% CI: 1.12–1.94), NVT (HR: 1.38, 
95% CI: 1.03–1.83), and VT (HR: 2.06, 95% CI: 1.13–
3.77), among adult living with 2 + vs 1 child < 5y of VT 
(HR: 1.78, 95% CI: 1.05–3.01), and among ALWHIV on 
ART > 1y than HIV- of NVT (HR: 1.43, 95% CI: 1.01–
2.02) (Fig. 2, Table 2, Additional file 1: Table S1). Cut off 
for age groups is based on the median age of 33  years 
old VT: serotypes targeted by 13-valency pneumococcal 
conjugate vaccine (PCV13) NVT: serotypes not targeted 
by PCV13 ART: antiretroviral therapy HIV-: adults liv-
ing without human immunodeficiency virus ALWHIV: 
adults living with human immunodeficiency virus

Pneumococcal carriage duration dynamics
The average overall carriage duration was slightly higher 
among ALWHIV on ART > 1y (17.9 days, 95% CI: 13.7–
23.6) compared to ALWHIV on ART < 3  m (15.2  days, 
95% CI: 11.2–20.4) or HIV- adults (12.2  days, 95% CI: 
9.2–16.1). In a stratified analysis, the average carriage 
duration was comparable between VT (9.4 days, 95% CI: 
5.5–16.0) and NVT (9.9  days, 95% CI: 7.3–13.6) HIV- 
carriers. However, it was lower for NVT (13.2 days, 95% 
CI: 9.7–18.1) than VT (17.9  days, 95% CI: 9.3–35.7) in 
ALWHIV on ART < 3  m carriers, and higher for NVT 
(15.4  days, 95% CI: 11.7–20.4) than VT (11.9  days, 95% 
CI: 6.4–22.0) in ALWHIV on ART > 1y carriers.

In a multivariate analysis, pneumococcal carriage clear-
ance was slower among ALWHIV on ART > 1y compared 
to HIV- adults for overall carriage (hazard ratio [HR]: 
0.68, 95% CI: 0.50–0.92) and NVT carriage (HR: 0.65, 
95% CI: 0.47–0.90), and comparable between ALWHIV 
on ART < 3 months and HIV- adults for overall carriage 
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(0.80, 95% CI: 0.59–1.10) and NVT (0.76, 95% CI: 0.54–
1.05) (Fig. 2, Table 2, Additional file 1: Table S2).

Pneumococcal serotype‑specific carriage dynamics
In all adults, the sampling frequency of identified pneu-
mococcal serotypes ranged from n = 1 (0.01%) for sero-
type 14 to n = 55 (5.7%) for serogroup 15 or serotype 

7A/B/C, with n = 410 (42.5%) of NVT with unknown 
serotype (uNVT), e.g. NVT not assigned a specific sero-
type, being the largest samples. The overall serotype car-
riage dynamics without stratifying by HIV status showed 
that serotypes 3 (0.14%, 95% CI: 0.09–0.23) and 19F 
(0.16%, 95% CI: 0.10–0.26) among PCV13 serotypes, and 
serogroup 15 (0.18%, 95% CI: 0.12–0.27), serogroup 11 

Table 1 Baseline characteristics of adults without HIV (HIV-), adults living with HIV (ALWHIV) on ART < 3 months (m), and ALWHIV 
on ART > 1 year (y), who were recruited during in a pneumococcal nasopharyngeal swabbing study in Blantyre, Malawi, between 
September 2021 and December 2023

VT: refers to a group of serotypes targeted by 13-valency pneumococcal conjugate vaccine (PCV13)

NVT: refers to a group of serotypes not targeted by PCV13

IQR: interquartile range with first and third quartile

CFU/ml: colony forming unit per millilitre

ART: antiretroviral therapy

Cut off for age groups is based on overall median age of 33 years old

Cut off for pneumococcal density groups is based on overall median carriage density of 10,720 CFU/ml

Description All participants HIV‑ adults ALWHIV on ART < 3 m ALWHIV on ART > 1y

195, n (%) N = 65, n (%) N = 65, n (%) N = 65, n (%)

Pneumococcal serotype group

 Non-carriers 134 (68.6) 49 (75.4) 47 (72.3) 38 (58.5)

 Non-vaccine-serotypes (NVT) 51 (26.2) 13 (20.0) 16 (24.6) 22 (33.8)

 Vaccine-serotypes (VT) 10 (5.1) 3 (4.6) 2 (3.1) 5 (7.7)

Sex

 Male 94 (48.2) 34 (52.3) 27 (41.5) 33 (50.8)

 Female 101 (51.8) 31 (47.7) 38 (58.5) 32 (49.2)

Age group (years)

 Median age (IQR) 33 (25–37) 33 (26–38) 34 (25–37) 34 (25–37)

 18–33 years 99 (50.8) 35 (53.8) 32 (49.2) 32 (49.2)

 34–44 years 96 (49.2) 30 (46.2) 33 (50.8) 33 (50.8)

Number of children in the house

 One child 145 (74.4) 51 (78.5) 47 (72.3) 47 (72.3)

 Two or more children 50 (25.6) 14 (21.5) 18 (27.7) 18 (27.7)

Pneumococcal density groups

 Median pneumococcal density (IQR) (CFU/ml) 10,720 (1005–82,075) 8208 (1884–149,494) 9548 (2387–247,900) 13,400 (520–67,838)

 Low 33 (54.1) 9 (56.3) 10 (55.6) 14 (51.9)

 High 28 (45.9) 7 (43.8) 8 (44.4) 13 (48.1)

Social economic status

 Low 79 (41.6) 22 (35.5) 47 (74.6) 42 (64.6)

 High 111 (58.4) 40 (64.5) 16 (25.4) 23 (35.4)

 Absolute CD4 count, cells/mm3 (median, confi-
dence intervals [95% CI])

456 (415,561) 541 (511, 621)

Categorised CD4 count

 ≤ 250 cells/mm3 15 (23) 5 (7.7)

 > 250 cells/mm3 50 (77) 60 (92.3)

Viral load (HIV copies/ml)

 < 1000 8 (12.3) 1 (1.5)

 < 40 13 (20.0) 4 (6.2)

 ≥ 1000 12 (18.5) 4 (6.2)

 Not detected 32 (49.2) 56 (86.1)
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(0.18%, 95% CI: 0.12–0.28) and 23A/B (0.17%, 95% CI: 
0.10–0.26) among non-PCV13 serotypes generally had 
high daily acquisition probability compared to other sero-
types or serogroups. On the other hand, serotypes 19A 
(17.4 days, 95% CI: 7.3–43.1), 3 (13.3 days, 95% CI: 8.6–
20.5) and 6A (12.9 days, 95% CI: 5.3–30.5) among PCV13 
serotypes, and 7A/B/C (17.8  days, 95% CI: 11.4–28.9), 
serogroup 15 (15.8  days, 95% CI: 9.6–25.7), and 17A/F 
(15.0  days, 95% CI: 8.7–26.8) among non-PCV13 sero-
type were carried the longest. Co-colonisation of pneu-
mococcal serotypes or serogroup (colonisation chains) 
was more frequent among NVT (e.g. between NVT with 
known serotypes [kNVT] and uNVT) than between VT 
and NVT, with the highest colonisation chains estimated 
between uNVT and serogroup 15 or kNVT (Fig. 3, Addi-
tional file 1: Table S3).

Discussion
We have used multi-state Markov models to disentangle 
pneumococcal serotype carriage dynamics in ALWHIV 
and HIV- adults in a mature infant PCV13 programme 
in Malawi. We estimate substantial acquisitions of VT 
and NVT carriage in females and those living under 
low socioeconomic status. High VT acquisitions among 
adults living with at least two children < 5y in the house 
and NVT acquisitions among ALWHIV on ART > 1y 
are also estimated. On the other hand, prolonged dura-
tions of NVT carriage are estimated among ALWHIV 
on ART > 1y. Residual PCV13 serotypes 19F and 3 are 
highly acquired, whereas 19A, 3, and 6A are prolongedly 
carried, although non-PCV13 serotypes remain domi-
nant in circulation among adults. Our findings unravel 
pneumococcal carriage dynamics among ALWHIV and 
provide baseline estimates for assessing future pneumo-
coccal vaccine impact in ALWHIV. These results suggest 
that a PCV strategy in ALWHIV with expanded serotype 

Fig. 1 Participant demographic and epidemiologic characteristics of follow-up samples stratified by vaccine-serotype (VT) and non-VT (NVT) 
carriage and potential risk factors. a The prevalence of pneumococcal carriage in all samples at each sampling visit stratified by serotype group 
and human immunodeficiency virus (HIV) status, with an insert showing pneumococcal carriage prevalence of samples aggregated across all visits. 
b Distribution of pneumococcal carriage density in HIV- adults, adults living with HIV (ALWHIV) on antiretroviral therapy (ART) at most 3 months 
and at least 1 year. The share of all pneumococcal carriage stratified by serotype group and HIV/ART status among c adults living with 1 child 
or at least 2 children < 5y, d males or females, e 18–33 years or 34–44 years, f low or high social economic status, and g antibiotic use. h The map 
shows Blantyre district with circular points on the map indicating the residential location of the adults from whom the nasopharyngeal samples 
were collected during the study. The size of the circular point is proportion to the number of samples collected in adults from that location. Overall, 
the map indicates that samples were mostly collected within the high-density informal settlements of urban Blantyre
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coverage may be warranted to tackle the remaining pre-
ventable burden of pneumococcal carriage and subse-
quent disease in ALWHIV.

Pneumococcal carriage prevalence has previously been 
reported to be higher among ALWHIV on ART com-
pared to those not on ART in rural Malawi [8]. Our study 
shows a similar higher prevalence of pneumococcal car-
riage in ALWHIV on ART > 1y than those on ART < 3 m 
or HIV- adults. Follow-up studies are required to inves-
tigate the biological factors for the increased pneumo-
coccal prevalence in individuals who have been on ART 
for an extended period compared to those who recently 
started treatment. We further show that this elevated 
carriage in ALWHIV on ART > 1y is likely influenced by 
frequent acquisitions and prolonged carriage duration of 
NVT serotypes.

Antibiotic use is sometimes associated with individual 
carriage reduction [28], but its role was not assessed in 
this study due to limited data points on antibiotic uptake. 
Nonetheless, the baseline and follow-up density of pneu-
mococcal carriage remained comparable between HIV 
groups. Thus, it remains unclear whether the slow NVT 
clearance is linked to reported cotrimoxazole or penicil-
lin-resistant pneumococci among ALWHIV in this set-
ting [29]. If indeed the reported drugs select for resistant 
NVT, it may suggest that colonisation of resistant NVT 
pneumococci in ALWHIV may be inefficiently cleared at 

the mucosal level, leading to prolonged duration of pneu-
mococcal carriage. However, causal links of prolonged 
pneumococcal carriage among ALWHIV need further 
investigation from laboratory measures.

Children < 5y remain the major reservoir of pneumo-
coccal carriage transmission in the era of PCV13 in this 
setting and elsewhere [15, 16, 25, 30]. Since female adults 
are more likely to interact with younger children due to 
cultural and parental roles, social mixing is highly inten-
sive between children and females compared to male 
adults in this setting [31], likely resulting in higher car-
riage acquisition risk in females than males consistent 
with our findings in this study. Furthermore, household 
spread of pneumococcus is usually influenced by higher 
household density [25, 32, 33], and having more younger 
children in the house who are a major reservoir of pneu-
mococcal carriage transmission increases the risk of 
pneumococcal carriage acquisition [3]. Similarly, higher 
pneumococcal carriage acquisitions in low than high SES 
households, as shown here and in previous studies in 
this setting [3], is likely related to poor living conditions, 
including poor ventilation and overcrowding. However, 
fine-scale household pneumococcal carriage dynamics, 
including quantifying the contribution of different house-
hold members to pneumococcal carriage transmission, 
remain a gap to be addressed in this setting.

Fig. 2 Pneumococcal carriage acquisition probability and duration by serotype group and human immunodeficiency virus (HIV) infection status 
among potential risk groups. Daily pneumococcal carriage acquisition probability for a overall carriage, and carriage stratified by vaccine-serotype 
group and HIV status among b all participants, c females or males, d adults aged 18–33 or 34–44 years old (y), e adults living with 1 child 
or at least 2 children in the house, and f adults in low or high social economic status (SES). Pneumococcal carriage duration in days for g overall 
carriage, and carriage stratified by vaccine-serotype group and HIV status among h all participants, i females or males, and j adults aged 18–33 
or 34–44 years old (y)
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Serotype-specific pneumococcal carriage acquisition 
and clearance estimates reported in our study have impli-
cations for the choice of PCV strategy in ALWHIV in this 
setting. PCV13 serotypes still in circulation underscore 
inadequate herd immunity from the infant PCV13 pro-
gramme [15, 16] and suggest that ALWHIV remains at 
high risk of preventable pneumococcal carriage and sub-
sequent disease [17]. Thus, providing direct PCV protec-
tion to ALWHIV or indirect protection by switching to 
a new infant PCV schedule that substantially improves 
herd immunity among ALWHIV is urgently needed 
[18]. The high presence of NVT implies that ALWHIV 

have the additional risk of pneumococcal disease that 
may not be prevented by PCV13, necessitating the need 
for assessing the impact of a newer infant or ALWHIV 
PCV products with expanded serotype coverage. Of note, 
serotypes 1 and 5 cause most pneumococcal invasive dis-
ease in children in this setting [34], yet were not isolated 
in adults in this study reflecting that serotypes circulat-
ing in carriage do not usually match those in disease as 
reported by others [35]. Moreover, the extent to which 
serotypes circulation in adults influence those in chil-
dren and vice versa remains to be quantified. Thus, the 
choice of a PCV strategy partly needs to account for the 

Table 2 The effect of each considered risk factor on pneumococcal acquisition and clearance rates estimated from the Markov 
model using data from a longitudinal nasopharyngeal swabbing study conducted in Blantyre, Malawi, between September 2021 and 
December 2023

SES Social economic status is based on possession index, calculated as a sum of positive responses for household ownership of each of one of 15 different functioning 
items: watch, radio, bank account, iron (charcoal), sewing machine (electric), mobile phone, CD player, fan (electric), bednet, mattress, bed, bicycle, motorcycle, car, 
and television
a HR refers to hazard ratio of the incidence or clearance rates
b Statistically significant at 95% confidence intervals (95% CI)

Description HR (95% CI)a HR (95% CI)a HR (95% CI)a

 Total carriage VT carriage NVT carriage

Daily pneumococcal carriage acquisition
 HIV/ART status

  HIV- Reference Reference Reference

  ALWHIV ART < 3 months 1.33 (0.95–1.86) 0.62 (0.30–1.25) 1.35 (0.94–1.92)

  ALWHIV ART > 1 year 1.34 (0.97–1.87) 1.03 (0.52–2.01) 1.43 (1.01–2.02)b

 Sex

  Male Reference Reference Reference

  Female 1.64 (1.262–2.12)* 1.96 (1.11– 3.49)* 1.53 (1.17–2.01)b

 Age group

  18–33 years Reference Reference Reference

  34–44 years 0.86 (0.66–1.12) 1.13 (0.65–1.97) 0.79 (0.60–1.04)

 Number of under 5y children in the house

  One child Reference Reference Reference

  Two or more children 1.06 (0.81–1.38) 1.78 (1.05–3.01)* 1.10 (0.84–1.45)

 Social economic status (SES)

  High Reference Reference Reference

  Low 1.47 (1.12–1.94)* 2.06 (1.13–3.77)* 1.38 (1.03–1.83)b

Daily pneumococcal carriage clearance
 HIV/ART status

  HIV- Reference Reference Reference

  ALWHIV ART < 3 months 0.80 (0.59–1.10) 0.53 (0.25–1.10) 0.76 (0.54–1.05)

  ALWHIV ART > 1 year 0.68 (0.50–0.92)* 0.79 (0.41–1.50) 0.65 (0.47–0.90)b

 Sex

  Male Reference Reference Reference

  Female 0.97 (0.75–1.24) 0.93 (0.54–1.60) 0.94 (0.72–1.23)

 Age group

  18–33 years Reference Reference Reference

  34–44 years 1.05 (0.82–1.35) 1.30 (0.72–2.35) 1.00 (0.77–1.29)
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complex interaction between at risk age groups, PCV 
serotype coverage, and the distribution in serotype car-
riage and disease in this setting [36].

Our study did not explicitly account for simultaneous 
carriage of multiple serotypes because latex agglutina-
tion was used for serotyping a single bacterial colony 
[29]. Absence of multiple serotype detection may have 
biased downward on acquisition rates by missing 

acquisition events of new serotype while detecting 
resident serotype and carriage duration by failing to 
detect serotype when another dominant serotype is 
present [2]. Another limitation of this study is the lack 
of serotyping data for all the NVT serotypes. Follow-up 
studies should use molecular assays or whole-genome 
sequencing approaches to reliably detect the carriage 
of multiple serotypes within an individual [37]. Insuf-
ficient data points propelled us to combine the carriage 

Fig. 3 Pneumococcal serotype-specific carriage dynamics in considered serotypes with relative high sampling frequency. a Prevalence of each 
serotype in all samples, with ‘uNVT’ representing unknown non-PCV13 serotypes because they were not included in the serotyping assay which 
could only identify up to 23 serotypes including all VT. Insert in a is the carriage prevalence of each serotype or serogroup with a relatively high 
sample frequency, where ‘kVT’ represents known PCV13 serotypes with very low sample frequency (1, 4, 9 V, 14, 18C, and 23F), and ‘kNVT’ represents 
non-PCV13 serotypes with known serotypes with very low sample frequency (22A/F, serogroup 33 and 18, 12A/B/F, 19B/C, 8, and 6D). b Network 
diagram showing the acquisition of a serotype replacing a specific serotype in a colonisation chain. The size of the edges reflects the pairs 
of serotype transition events in the colonisation chain that occur more likely than expected, and the node represents the serotype or serotype 
group or vaccine-serotype group. c Daily pneumococcal carriage acquisition probability under a log scale and d daily average pneumococcal 
serotype carriage duration
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of some serotypes targeted or not targeted by PCV13 
to estimate serotype dynamics. Although the baseline 
samples for PCV13 and non-PCV13 serotypes were 
relatively small, carriage dynamics at baseline were 
informed by stable rates estimated during the study 
follow-up where samples were relatively large. The dis-
tribution of serotypes in healthy carriers is needed to 
evaluate PCV impact on invasive disease [19], and our 
study provides baseline estimates of serotype distribu-
tion, acquisition, and clearance at vaccine-serotype 
group and serotype-specific levels, for assessing future 
PCV impact in ALWHIV.

Conclusions
The disproportionately high pneumococcal carriage 
prevalence in ALWHIV on ART > 1y is mostly due to 
high acquisition and prolonged duration of NVT. Our 
study provides baseline estimates of pneumococcal sero-
type dynamics for comparison when new PCV strategies 
are implemented directly in ALWHIV or indirectly in 
infants.
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