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Generalizability assessment of AI models
across hospitals in a low-middle and high
income country

Jenny Yang 1 , Nguyen Thanh Dung2, Pham Ngoc Thach3,
Nguyen Thanh Phong2, Vu Dinh Phu3, Khiem Dong Phu3, Lam Minh Yen4,
Doan Bui Xuan Thy 4, Andrew A. S. Soltan 1,5,6, Louise Thwaites4,7,9 &
David A. Clifton 1,8,9

The integration of artificial intelligence (AI) into healthcare systemswithin low-
middle income countries (LMICs) has emerged as a central focus for various
initiatives aiming to improvehealthcare access anddelivery quality. In contrast
to high-income countries (HICs), which often possess the resources and
infrastructure to adopt innovative healthcare technologies, LMICs confront
resource limitations such as insufficient funding, outdated infrastructure,
limited digital data, and a shortage of technical expertise. Consequently, many
algorithms initially trained on data from non-LMIC settings are now being
employed in LMIC contexts. However, the effectiveness of these systems in
LMICs can be compromised when the unique local contexts and requirements
are not adequately considered. In this study, we evaluate the feasibility of
utilizing models developed in the United Kingdom (a HIC) within hospitals in
Vietnam (a LMIC). Consequently, we present and discuss practical methodol-
ogies aimed at improving model performance, emphasizing the critical
importance of tailoring solutions to the distinct healthcare systems found in
LMICs. Our findings emphasize the necessity for collaborative initiatives and
solutions that are sensitive to the local context in order to effectively tackle the
healthcare challenges that are unique to these regions.

As the field of artificial intelligence (AI) progresses, the integration of
AI into healthcare systems presents a remarkable opportunity to
revolutionize the delivery of healthcare, foster innovation and dis-
covery, and ultimately enhance patient care and treatment outcomes
on a global level. Nevertheless, whilemany high income countries may
be well-prepared to develop and adopt these innovative technologies,
the implementation of healthcare AI in low-middle income country

(LMIC) settings poses distinctive challenges in comparison to high
income country (HIC) settings.

LMIC hospitals often face resource constraints, such as inade-
quate funding, outdated infrastructure, and shortages of technical
expertise1–3. Additionally, AI algorithms typically relyon large andhigh-
quality datasets for training and validation. However, LMIC hospitals
may have limited access to comprehensive and digitized healthcare
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data2–5. These resource limitations pose significant challenges for the
adoption and implementation of healthcare AI systems, especially
when compared to many HIC hospitals. As such, many algorithms
trainedondata outsideof anLMICcontext (such as those trainedusing
HIC data) are being applied to LMIC settings3,6. However, without
adequate consideration of the unique contexts and requirements of
LMICs, these systems may struggle to achieve generalizability and
widespread effectiveness3,5–7.

Machine learning (ML) generalization refers to amodel’s ability to
accurately apply its learned knowledge from training data to new,
unseen data8. This capability is particularly valuable when models are
deployed in real-world scenarios, where they must perform well on
independent datasets encountered in real-time. In clinical contexts,
two common types of generalizability are temporal generalizability
(applying prospectively within the center where a model was devel-
oped) and external/geographic generalizability (applying a model at
an independent center). In this study, we will focus on external/geo-
graphic generalizability.

While achieving broad generalizability is desirable for scalability,
cost-effectiveness, and applicability to diverse cohorts/environments,
it is often not feasible. Achieving external generalizability is challen-
ging due to population variability (patients at one center may not
represent those in another location)7,9,10, healthcare disparities (varia-
tions in access to healthcare services, quality of care, and healthcare
infrastructure)6,11,12, variations in clinical practice (local guidelines,
healthcare systems, and cultural factors)8–10, and differences in data
availability and interoperability (limited access to comprehensive and
standardized data, variations in data formats, coding systems, and
collection processes)1,3–5,12. These differences are especially apparent
when comparing HIC and LMIC hospitals.

In order to achieve optimal integration and effectiveness of AI
development in LMICs, it is imperative to adopt tailored approaches
and strategies that specifically address the unique contexts of
LMICs3–5,12. With a particular emphasis on biomedical engineering and
AI, we aim to evaluate the feasibility of generalizability, specifically
when deploying amodel that was initially developed in aHIC setting to
an LMIC setting. Our goal is to explore practical solutions that
demonstrate effective performance while also investigating the ways
in which international collaborations can offer optimal support for
these development initiatives.

The collaboration between the Oxford University Clinical
Research Unit (OUCRU) in Ho Chi Minh City, Vietnam, The University
of Oxford Institue of Biomedical Engineering in Oxford, England, the
Hospital for Tropical Diseases in Ho Chi Minh, Vietnam, and the
National Hospital for Tropical Diseases in Hanoi, Vietnam, aims to
improve the provision of critical care in LMIC settings. Their primary
objective is to accurately identify patients requiring critical care and
enhance the quality of care they receive, thereby addressing the
unique challenges encountered within LMIC healthcare systems. Thus,
in this study, we evaluate the performance of a United Kingdom (UK)-
based AI system on patients in Vietnam.

Previously, we developed an AI-driven rapid COVID-19 triaging
tool using data across four United Kingdom (UK) National Health
Service (NHS) Trusts8–10,13–15. As such, through our collaboration with
Vietnam-based centers, we aimed to translate the UK-based models to
LMIC settings, specifically at the Hospital for Tropical Diseases (HTD)
in Ho Chi Minh, Vietnam, and the National Hospital for Tropical Dis-
eases (NHTD) in Hanoi, Vietnam.

In the UK, the NHS utilized a green-amber-blue categorization
system, where green indicated patients with no COVID-19 symptoms,
amber indicated patients with potential COVID-19 symptoms, and blue
indicated laboratory-confirmed COVID-19 cases. Through a validation
study conducted at the John Radcliffe Hospital in Oxford, England, we
demonstrated that our AI screening model improved the sensitivity of
lateral flow device (LFD) testing by ~30%, and correctly excluded 58.5%

of negative patients who were initially triaged as COVID-19-suspected
by clinicians14. Furthermore, the AI model provided diagnoses, on
average (median), 16min (26.3%) earlier than LFDs, and 6 h and 52min
(90.2%) earlier than Polymerase Chain Assay (PCR) testing, when the
model predictors were collected using point of care full blood count
analysis. Applying a similar screening tool at the HTD and NHTD in
Vietnam could offer a systematic approach to prioritize and manage
patient care. It would allow for the efficient use of limited resources,
including clinician expertise, ventilators, and beds, ultimately opti-
mizing patient outcomes and ensuring timely access to appropriate
interventions. These benefits are especially valuable in LMIC settings
where resource constraints pose significant challenges to healthcare
delivery16.

Furthermore, building upon the four UK datasets, we have con-
ducted prior research exploring the generalizability of models across
different hospital sites8. Specifically, we investigated how well pre-
existing models developed in one hospital setting performed when
applied to another location. To accomplish this, we introduced three
distinct methods: (1) utilizing the pre-existing model without mod-
ifications, (2) adjusting the decision threshold based on site-specific
data, and (3) fine-tuning the model using site-specific data through
transfer learning. Our findings revealed that transfer learning yielded
the most favorable outcomes, indicating that customizing the model
to each specific site enhances predictive performance compared to
other pre-existing approaches.

Through this COVID-19 case study, we now evaluate the feasibility
of adapting models in hospitals that span diverse socioeconomic
brackets, additionally evaluating corresponding datasets obtained
from two hospitals in Vietnam. In doing so, we aim to expand the
understanding of ML-based methods in identifying COVID-19 cases
across different healthcare settings, thus contributing to the
advancement of diagnostic capabilities in diverse regions. We parti-
cularly focus on transitioning a model from a HIC setting to a LMIC
setting. By leveraging datasets sourced from four UK NHS Trusts and
twohospitals located in Vietnam,we illustrate practicalmethodologies
that can enhance the performance of models. Additionally, we high-
light the importance of collaborative efforts in the development of
resilient AI tools tailored to healthcare systems in LMICs.

Results
COVID-19 prevalences observed at all four UK sites during the data
extraction period ranged from 4.27% to 12.2%. COVID-19 prevalence
was highest in the BH cohort, owing to the evaluation timeline span-
ning the secondUKpandemicwave during January 1, 2021 toMarch 31,
2021 (12.2% vs 5.29% in PUH and 4.27% in UHB; Fisher’s exact test
p <0.0001 for both). Prevalance at the Vietnam sites was significantly
higher (74.7% and 65.4% at HTD and NHTD, respectively, p <0.0001),
as thesewere exclusively infectious disease hospitals, and handling the
most severe cases of COVID-19.

Between all UK and Vietnam cohorts, all matched features had a
significant difference in population median (Kruskal-Wallis,
p < 0.0001). In the case of features exclusive to the UK cohorts, a
significant distinction in population median was observed for all
features, except for mean cell volume, where the populationmedian
appeared to be similar (p = 0.210). Full summary statistics (including
median and interquartile ranges) of vital signs and blood tests for all
patient cohorts are presented in Supplementary Tables 2 and 3,
respectively.

It is important to highlight that, upon a preliminary examination
of the summary statistics of the datasets, we observed the presence of
extreme values in the Vietnam datasets. For instance, the minimum
hemoglobin value was recorded as 11 g/L, which is notably rare, as
values this low are typically considered highly unlikely17–19. Another
instance is observed in the white blood cell count feature, where the
dataset’s maximum value was registered at 300, an exceptionally
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extreme value19. While such levels of deviation theoretically can occur
in cases of hematological malignancy, they remain exceedingly rare
occurrences. In the Vietnam datasets, there were some extreme values
in patients with lymphoma. For our experiments, wemade a deliberate
choice to retain these extreme values in the dataset. This decision was
motivated by our aim to evaluate the performance of models using
real-world data, acknowledging the presence of extreme values and
potential errors (this is further discussed in “Discussion”).

Reduced feature set
We initially employed t-Stochastic Neighbor Embedding (t-SNE) to
generate a low-dimensional representation of all positive COVID-19
cases within each hospital cohort. As depicted in Fig. 1, there are no
immediately discernible indications of site-specific biases or distribu-
tions apparent in the visualization, as evidenced by the absence of
distinct clusters.

Following the training of models on the OUH pre-pandemic and
wave one data, we conducted prospective and/or external validation
on six datasets. As anticipated, when utilizing the reduced dataset
based on the available features in Registry (database for hospitals in
Vietnam, further described in “Methods”), the performance of the
models was ~5–10% lower in terms of AUROC compared to previous
studies using the same training and test cohorts. The AUROC ranges
were as follows: OUH (0.784–0.803), PUH (0.812–0.817), UHB
(0.757–0.776), BH (0.773–0.804), in contrast to the results reported in
prior research8,9,13: OUH (0.866–0.878), PUH (0.857–0.872), UHB
(0.858–0.878), BH (0.880–0.894). The AUROC scores remained rela-
tively consistent across all UK test sets, with a standard deviation (SD)
of 0.017 for theNNmodel.However, theAUROCwas lower for theHTD
and NHTD centers, with an NN AUROC of 0.577 (CI 0.551–0.604) and
0.515 (0.491–0.541), respectively.

Although we optimized the classification threshold for a sensi-
tivity of 0.85, sensitivity scores varied across all test sets, with an SD of
0.090 for the NN model. The highest sensitivities were observed at
HTD, PUH, and NHTD (0.908, 0.835, 0.831 for the NN model, respec-
tively), while the lowest sensitivities were observed at OUH, UHB, and
BH (0.718, 0.690, 0.688 for the NN model, respectively). Even within
the same country, there was a significant range in sensitivity, with
ranges of 0.688–0.835 for UK centers and 0.831-0.908 for Vietnam
centers in the NN model. In the UK test sets, specificity exhibited a
reasonable balancewith sensitivity. However, for the Vietnamdatasets,
specificity was notably poor, with values of 0.139 (0.114–0.167) and
0.159 (0.134–0.185) for NN models at HTD and NHTD, respectively.

Consistent with previous studies, our models achieved high
prevalence-dependent negative predictive value (NPV) scores (>0.944)
on the UK datasets, demonstrating their ability to confidently exclude
COVID-19 cases.

We conducted a subgroup analysis for both correct and incorrect
classifications across COVID-19-negative and COVID-19-positive
groups, focusing on the features used for prediction. This was eval-
uated on the neural network model. Patients with lower white blood
cell counts exhibited higher false negative rates at both HTD and
NHTD. At NHTD, hemoglobin and platelet values also showed notable
differences in distribution regarding false positive and false negative
rates. Detailed prediction distribution plots by class are available in
Section D of the Supplementary Material.

We conducted an additional sensitivity analysis to address the
uncertainty surrounding the viral status of patients who underwent
rapid antigen testing or where the testing method was unspecified at
NHTD. Utilizing the NN model, which demonstrated superior perfor-
mance, and evaluating solely on the subset of NHTD patients with
confirmed PCR testing, we attained AUROC scores of 0.492

Fig. 1 | t-SNE plot ofUK andVietnamdatasetswith reduced feature set. Plot includes all positive COVID-19 samples inUK and Vietnamdatasets, including thematched/
reduced set of features.
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(0.445–0.548) for the NHTD set. Generally, we observed comparable
results, indicatedbyoverlapping confidence intervals, when compared
to datasets incorporating alternative testing methods. Consequently,
further experiments were conducted using the dataset encompassing
testing methods beyond PCR.

Comprehensive feature set
Upon the inclusion of additional UK features, which were generated
using GATS (further described in “Methods”) for the Vietnam datasets,
it becomes evident that a separate cluster emerges during t-SNE
visualization, represented by the orange data points corresponding to
the OUH wave two cohort in Fig. 2. This observation implies that the
training data can be grouped together based on, and consequently
exhibits bias towards, site-specific features. These features could
encompass factors such as annotation methods, data truncation
techniques, the type ofmeasuring devices utilized, or variances in data
collection and processing tools. It is worth noting that a similar
observation was also made in a prior studies that employed different
stratifications of the same datasets8–10.

Upon utilizing the comprehensive set of features, including the
filling in of missing Registry values using k nearest neighbors (kNN)
and GATS, our models exhibited improvements of up to 10% on the
UK test sets (p < 0.001), as shown in Fig. 3. These improvements
resulted in achieving comparable AUROC scores to those reported
in previous studies that employed the same training and test
cohorts. The ranges of AUROC scores were as follows: OUH
(0.854–0.877), PUH (0.832–0.877), UHB (0.846–0.860), BH
(0.875–0.905), compared to the results reported in previous
studies8,9,13: OUH (0.866–0.878), PUH (0.857–0.872), UHB
(0.858–0.878), BH (0.880–0.894). The AUROC scores remained
relatively consistent across all UK test sets, with the XGB model

exhibiting the best performance, with a standard deviation (SD)
of 0.019. Similar to previous findings, the AUROC scores were
lower at the HTD and NHTD centers. Nonetheless, the NN model
outperformed the XGB and LR models by an approximate margin of
5%, achieving AUROC scores of 0.590 (0.563–0.617) for HTD and
0.522 (0.497–0.544) for NHTD, respectively. This represented an
improvement from the scores of 0.577 (0.551–0.604) (p = 0.033) for
HTD and 0.515 (0.491–0.541) (p = 0.409) for NHTD when using the
reduced datasets. The AUPRC also demonstrated improvement
across all test sites, with a notable improvement of over 25% at BH.

In terms of sensitivity, the scores weremore consistent across the
UK datasets, with a range of 0.779–0.825 and an SD of 0.021 for the
XGB model. Across the Vietnam datasets, sensitivity ranged from
0.610–0.646 for the XGB model and 0.660–0.661 for the NN model,
indicating increased consistency compared to previous experiments.

For the UK test sets, specificity remained reasonably balanced
with sensitivity. In the case of the Vietnam sites, specificity improved
and became slightly more balanced with sensitivity, with values of
0.465 (0.426–0.505) and 0.353 (0.319–0.385) for the NNmodel at HTD
and NHTD, respectively. However, this improvement corresponded to
a decrease in sensitivity.

Consistent with previous studies, our models achieved high
prevalence-dependent NPV scores (>0.951) on the UK datasets,
affirming their capability to confidently exclude COVID-19 cases.

Transfer learning
When we applied transfer learning to adapt models developed in the
UK to the local context of Vietnam, we observed improved classifica-
tion performance at both centers. This improvement was evident in
both the prospective validation on the center used for transfer learn-
ing and the external validation on the other center.

Fig. 2 | t-SNE plot of UK and Vietnam datasets with comprehensive feature set. Plot includes all positive COVID-19 samples in UK and Vietnam datasets, including the
comprehensive set of features, which were generated using the GATS technique.

Article https://doi.org/10.1038/s41467-024-52618-6

Nature Communications |         (2024) 15:8270 4

www.nature.com/naturecommunications


When using the reduced feature set for training, we found that
AUROC improved from0.577 (0.551–0.604) to0.707 (0.654–0.756) for
HTD (p = 0.001) and from 0.515 (0.491–0.541) to 0.653 (0.627–0.677)
for NHTD (p <0.001), when pre-trained on a subset of the HTD data.
Pre-training models using a subset of the NHTD data also yielded
improvements, albeit slightly lower, achieving AUROCs of 0.656
(0.599–0.712) (p <0.001) for HTD and 0.650 (0.623-0.675) for
NHTD (p < 0.001).

AUPRC scores also showed improvements across all centers, with
particularly notable improvements of 7–15% at NHTD. In terms of
sensitivity, we observed improved performance with less variation
across the two hospitals, with a difference of less than 2%.

Sensitivity significantly improved compared to applying ready-
made models without transfer learning (improved between 0.10
and 0.20 across both sites, p <0.001). Specificity did not exhibit
any improvement at HTD (range 0.386–0.418 compared to 0.465
(0.426–0.505) without transfer learning), however appeared to show
slight improvement at NHTD (range 0.328–0.422 compared to 0.353
(0.319–0.385) without transfer learning).

When we repeated the transfer learning experiments using the
comprehensive feature set, including the filling in of missing Registry
values using kNN and GATS, we observed further improvements of
1–3% in both AUROC and AUPRC across all iterations (0.113 < p < 0.180,
compared to models trained without GATS). However, there was no
clear pattern in the improvement of sensitivity and specificity.

In order to assess the value of transfer learning, we conducted a
comparison with the alternative approach of developing a model
locally in Vietnam, starting from scratch and using only the available
data from within the country.

When training a model locally at HTD, using the features avail-
able in Registry, we observed improvements in AUROC compared to
using a UK-basedmodel trained at OUH. The AUROC improved from
0.577 (0.551–0.604) to 0.664 (0.613–0.716) during prospective
validation at HTD (p = 0.032), and from 0.515 (0.491–0.541) to 0.639
(0.615–0.663) during external validation at NHTD (p < 0.001). Simi-
larly, when trained locally at NHTD, the AUROC improved to 0.608
(0.585–0.634) during external validation at HTD (p < 0.001) and
0.662 (0.604–0.717) during prospective validation at NHTD
(p < 0.001). AUPRC also showed improvements, particularly at
NHTD, with enhancements of up to 16%. These improvements are
shown in Figs. 4 and 5.

In terms of sensitivity, there was improved performance with less
variation across the two hospitals, with a difference of less than 2%.

Models trained at HTD exhibited higher sensitivity (ranging from
0.849 to 0.868) compared to those trained at NHTD (ranging from
0.760 to 0.786), but this was accompanied by a trade-off in specificity,
with the model trained at NHTD demonstrating superior specificity
(ranging from 0.378 to 0.455) compared to the model trained at HTD
(ranging from 0.305 to 0.369).

When compared to transfer learning, the locally-trained models
(trained solely on the data available at the site) exhibited slightly lower
performance. Using the same features for model development
(reduced feature set available in HTD and NHTD hospital systems), the
transfer learning model (finetuned at HTD) achieved an AUROC of
0.707 (0.654–0.756)when tested atHTD,while theHTD locally-trained
model achieved an AUROC of 0.664 (0.613–0.716) (p = 0.01). When
evaluating on NHTD data, the transfer learning model (finetuned at
HTD) achieved an AUROC of 0.653 (0.627–0.677), while the HTD
locally-trained model achieved an AUROC of 0.639 (0.615–0.663).
Similarly, when models were trained locally or finetuned (via transfer
learning) at NHTD, the transfer learning model achieved an AUROC of
0.656 (0.599–0.712) during HTD testing, whereas the NHTD locally-
trained model achieved an AUROC of 0.608 (0.585–0.634). However,
when testing on NHTD, both models achieved similar scores, with a
slightly higher AUROC of 0.662 (0.604–0.717) for the NHTD locally-
trained model compared to 0.650 (0.623–0.675) for the transfer
learning model (p =0.458).

Overall, the best performing models were those using transfer
learning (especially with the comprehensive dataset), achieving an
AUROC range of 0.663–0.727 across all iterations.

Although the subset of HTD and NHTDdata used in testing varied
slightly among different methods (either the complete dataset or 60%
of the data was employed for testing), sensitivity analysis yielded
AUROC scores of 0.577 (0.551–0.604) and 0.562 (0.509–0.616) for the
full and partial (prospective) HTD data variations, respectively. Simi-
larly, during the senstivity analysis of NHTD, AUROC scores of 0.515
(0.491–0.541) and 0.489 (0.428–0.549) were obtained for the full and
partial (prospective) variations, respectively. While the utilization of
full test sets seemed to enhance the apparent accuracy of the models,
the comparable results, as indicated by overlapping confidence
intervals, underscored the stability of the models across both the
complete test sets and their respective subsets.

Discussion
Using ready-made HIC models (UK models) in LMIC settings (Vietnam
hospitals) without customization resulted in the lowest predictive

Fig. 3 | COVID-19 diagnosis performance across logistic regression, XGBoost,
and neural network models trained on the UK data. Results are presented as
AUROC for the reduced feature set and the comprehensive feature set (GATS-

filled), with * representing the comprehensive dataset. Error bars are shown as 95%
confidence intervals (CIs), which are computed using 1000 bootstrapped samples
drawn from each test set. Source data are provided as a Source Data file.
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performance and the highest variability in AUROC/AUPRC and sensi-
tivity/specificity. Thisfinding alignswith a previous study8 that focused
on external validation of COVID-19 prediction models within the UK.
Additional research has similarly indicated that model performance
declined when models trained on data from contexts different from
the implementation settingwere employed, including transitions from
HIC to LMIC settings3,6. Thus, these outcomes were anticipated, as
diverse hospital settings can significantly differ in terms of unobserved

factors, protocols, and cohort distributions, posing challenges to
model generalization. Despite potential similarities in human patho-
physiology for specific outcomes, neural networks heavily rely on the
specific datasets and patient cohorts used during training8–10. There-
fore, considering the unique attributes of each setting is crucial for
achieving optimal model performance. In particular, the datasets
analyzed in this study exhibited variations in patient demographics,
genotypic/phenotypic characteristics, and other determinants of

Fig. 5 | COVID-19 diagnosis AUPRCperformance atHTDandNHTDusing neural
network models which were ready-made (the UK-based models) and models
which were fine-tuned using transfer learning.Models trained and tested locally
atHTD andNHTDare represented by the horizontal purple and yellowdotted lines,
respectively. Results are presented for the reduced feature set and the

comprehensive feature set (GATS-filled), with * representing the comprehensive
dataset. Error bars are shownas95%confidence intervals (CIs),which are computed
using 1000 bootstrapped samples drawn from each test set. Source data are pro-
vided as a Source Data file. TL Transfer Learning.

Fig. 4 | COVID-19diagnosisAUROCperformanceatHTDandNHTDusingneural
network models which were ready-made (the UK-based models) and models
which were fine-tuned using transfer learning.Models trained and tested locally
atHTD andNHTDare represented by the horizontal purple and yellowdotted lines,
respectively. Results are presented for the reduced feature set and the

comprehensive feature set (GATS-filled), with * representing the comprehensive
dataset. Error bars are shownas95%confidence intervals (CIs),which are computed
using 1000 bootstrapped samples drawn from each test set. Source data are pro-
vided as a Source Data file. TL transfer learning.
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health, such as environmental, social, and cultural factors. For exam-
ple, the HTD and NHTD datasets were primarily composed of South-
east Asian (Vietnamese) patients, which may have influenced the
models’ generalization capabilities (as opposed to the UK datasets,
which had a majority of patients from a white demographic). Fur-
thermore, as we conducted error analysis on subgroups related to
classification features, it is imperative for future research to extend this
analysis to demographic subgroups. This would enhance our com-
prehension of how various groups might experience differential
impacts from a machine learning algorithm (we did not have these
features fully available in the datasets, and thus were not able to per-
form these analyses).

In our research, we consistently observed superior performance
of the neural network model when applied to the Vietnam datasets.
Nonetheless, it’s important to recognize the tendency of neural net-
works to overfit. Despite employing a straightforward network archi-
tecture with only one hidden layer, the risk of overfitting increases
when training data is limited, potentially resulting in poor general-
ization. Hence, it remains crucial to assess simpler models like Logistic
Regression (LR) and XGBoost as benchmarks, as demonstrated in our
analysis.

We found that transfer learning performed the best in terms of
COVID-19 diagnosis and generalizability across both the UK and Viet-
nam hospital sites. This method becomes particularly valuable for
LMIC hospitals that often encounter difficulties in gathering an ade-
quate amount of data or resources to train machine learning models
effectively20. By leveraging transfer learning, LMIC hospitals can har-
ness collaborative efforts with HIC centers, benefiting from their
expertise and resources while adapting the models to local contexts
with limited data availability. This approach allows for the develop-
ment of tailored models using smaller datasets, addressing the chal-
lenges faced by LMIC hospitals.

It is important to highlight that the development of site-specific
models (models trained on data from the local context) also yielded
strong performance, ranking as the second-best approach. In the case
of HTD andNHTD, when subjected to prospective validation at the site
where the model was originally developed, the models demonstrated
superior performance compared to external validation conducted at a
different site. This observation aligns with expectations since datasets
from external sites can possess distinct underlying data distributions
and statistical characteristics, influencing the generalizability and
performance of the models5,6,8. While models trained at a central
location (such as a HIC like the UK), may offer certain advantages like
data availability, efficiency, and scalability, there is significant merit in
the development of AImodels that arefinely tuned to the intricacies of
their particular operational environment and the specific context of
their deployment. This is particularly critical when considering LMIC
settings, as AI models trained exclusively on HIC data may introduce
biases into AI outputs, potentially resulting in subpar performance5,
which we’ve demonstrated in our experiments.

When using GATS, we found that models exhibited further
improvements at HTD and NHTD during transfer learning and
external validation using the UK-based models. Therefore, data
generation methods, such as GATS, provide promising solutions for
tackling missing data challenges in LMIC hospitals. Utilizing this
technique enables the generation of complete datasets, which in
turn facilitates effective model training. The selection of features to
be added can be guided by those that have proven to be effective in
models developed in HIC settings. However, it is important to
acknowledge that despite using kNN to match patients based on
similar features, some bias still persists as missing values are being
filled using UK datasets, which have their own distinct distributions
(recall the t-SNE representation, where the UK features were clus-
tered together). This may explain why even though GATS slightly
improved apparent accuracy during transfer learning, results were

not found to be significant between transfer learning with and
without GATS. However, results obtained when evaluating UK
models (without any transfer learning step) were found to have
significant improvement with the addition of GATS. Hence, careful
consideration and scrutiny are necessary to account for any poten-
tial bias introduced during the data generation process.

Furthermore, it is important to recognize thatwhileHICs typically
possess extensive collections of health data, many LMICs face limita-
tions in data availability, particularly regarding the volume and quality
of data accessible electronically and the asynchronous, varied nature
of information. These factors can make it challenging to train AI
models5,21. Therefore, in the context of LMICs, where datasets may be
smaller and data accessibility issues persist, it is advisable to consider
additional computational techniques such as GATS to better leverage
and optimize the utilization of available data resources, and ultimately
improve the effectiveness and generalizability of HIC-trained models
in LMIC settings.

Regarding data quality, we also detected the presence of outliers
within the Vietnam datasets, such as the minimum recorded hemo-
globin value of 11 g/L. This particular value would typically be con-
sidered highly improbable17,18. The existence of such outliers could be
attributed to a unit conversion error, where values were erroneously
shifted by a factor of 10 (some locations utilize g/dL instead of g/L), or
they may be the result of data entry errors. Since we aimed to work
with real data, ourmodel incorporates such instances of incorrect data
entry and outliers. In the case of extreme values for white blood cell
count, there were some extreme values found in patients with lym-
phoma in the HTD and NHTD datasets. In certain scenarios, outliers
like thesemay contain unique information that can enhance a model’s
ability to generalize effectively, rendering themodelsmore robust and
less susceptible to noise. The decision of whether to retain extreme
values in a dataset or not depends on the context and the problem
under consideration. Extreme values can indeed offer valuable infor-
mation, but it is important to handle them appropriately to prevent
any adverse impact on model performance22,23. Therefore, for future
studies, it may be worthwhile to explore additional filtering and pre-
processing steps to address these anomalies and enhance the dataset’s
quality before model development and testing.

It is essential to consider that HTD and NHTD are specialized
hospitals for infectious diseases. They specifically designated as
COVID-19 hospitals during the pandemic, primarily receiving referrals
for severe cases of COVID-19. While both the UK and Vietnam datasets
included the first recorded blood tests and observations, it is impor-
tant to acknowledge that in LMICs during pandemics, there might be
some delay in recording these features after the initial presentation.
Moreover, COVID-19 negative cases in these facilities typically involved
other infectious diseases, and critical cases, including patients with
various comorbidities, were treated at these hospitals. Given that the
Vietnamese cohorts primarily consisted of severely ill patients, this
might account for the more noticeable fluctuations in blood test
results. Due to these differences, models may encounter challenges in
accurately differentiating COVID-19 for patients at HTD and NHTD
based on vital signs and blood test features, as other diseases
(including infectious diseases) might also be present. Furthermore, in
the case of UK hospitals, there was a broader spectrum of COVID-19
case severity. The UK datasets encompassed all individuals coming to
the hospital, with only a small subset of patients progressing to ICUs.
Consequently, diagnosing COVID-19 using AI is a significantly more
challenging task at HTD and NHTD because we must distinguish the
specific reason for ICU admission, particularly in cases of infectious
diseases. For instance, distinguishing COVID-19 from bacterial pneu-
monia (which is frequently encountered at HTD and NHTD) is more
challenging than distinguishing it from a case like a fractured leg.

This difficulty may also account for the lower level of specificity
observed in the HTD and NHTD datasets compared to the UK sites.
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Thus, even if AUROC/AUPRC metrics are high at external sites, it may
be necessary to tailor the classification threshold (i.e., the criterion for
categorizing COVID-19 status as positive or negative) for each site
independently, to maintain the desired levels of sensitivity and
specificity8. Nonetheless, we acknowledge the value of assessing the
likelihood of having a disease rather than simplifying it into a binary
classification.Whileweopted for a binary classification to expedite the
categorization of COVID-19 as positive or negative, probability can
serve as a viable final outcome for tasks when suitable. This is parti-
cularly relevant given that the Vietnamdatasets contained information
on varying levels of disease severity. Future studies can consider har-
nessing these labels to offer more detailed diagnoses or to estimate
levels of uncertainty when necessary.

While we analyzed patient cohorts admitted to ICUs at HTD and
NHTD, the datasets and features we utilized were those readily avail-
able and documented upon hospital admission. These models can
provide swift insights and facilitate efficient and precise triage during a
patient’s initial presentation at the hospital. It’s important to note that
inmany cases, such as those observed in Vietnam, by the time patients
are transferred from the hospital to the ICU, the diagnosis is typically
already established. Therefore, even though similar features are
recorded upon ICU admission, in these scenarios, the relevance of a
machine learning-based classification algorithm may appear redun-
dant, and the benefits of diagnosing at ICU admission may be limited.
Ultimately, the decision to employ machine learning algorithms
should consider various factors, including the clinical context, the
patient’s condition, and the urgency of the situation. Additionally,
similar approaches could be applied to other diseases or integrated
into local hospital protocols, including guidelines for patient transfer,
among other considerations.

It is also important to acknowledge that prediction models can
never be fully validated due to inherent variability in their perfor-
mance across different locations, settings, and time periods20,24. A
single external validation study conducted in a specific geographical
area, during a particular time frame, and within a distinct patient
population offers only a limited view and cannot assert universal
applicability. In this study, our investigation spanned a significant
time period, from December 1, 2019, to December 30, 2022. During
this extended duration and particularly during peak pandemic per-
iods, such as the COVID-19 outbreak, the relationship between
patient and disease factors with clinical events, including hospital-
acquired infections, may undergo changes20. Additionally, over
time, there may be variations in practice patterns such as hardware
and software updates and changes in protocols, which can impact
data capture and outcomes. Although this retrospective study
offered valuable insights into historical data, future research should
ideally focus on prospective analysis. Models should be updated
regularly to maintain their relevance. This approach enables a more
dynamic assessment of model performance and provides timely
feedback for refining and improving predictive models. Therefore,
future efforts should validation efforts should aim to quantify and
comprehend the heterogeneity in model performance, rather than
solely focusing on point estimates24. This broader understanding of
performance variability is crucial for refining and improving the
models over time. For instance, in LMIC settings, real-time data
preprocessing and curation can be achieved through cost-effective
and accessible strategies. In the study highlighted here, an offline,
in-house version of the algorithm can be used, where a doctor
manually enters feature values in real-time (feasible with only
14 features). These values can then be automatically processed
through a script that imputes missing features and performs stan-
dardization, ultimately outputting a diagnosis for further triaging.
Additionally, emphasizing the use of open-source tools and scalable,
cost-effective infrastructure ensures applicability in resource-
constrained settings.

Finally, the adoption of AI in LMICs encounters significant infra-
structural and capacity-building challenges1,2,4,5. These challenges
encompass power outages, unreliable internet connectivity, cyberse-
curity concerns, inadequate digital infrastructure (such as data and
storage), and a shortage of skilled AI professionals. As a result, prior-
itizing AI solutions may divert resources from more urgent founda-
tional needs. These issues also impact the broader concern of AI
governance, which remains a challenge even in HICs25, and is likely
evenmore challenging in LMICs. Therefore, while AI holds promise, its
adoption in LMICs necessitates a careful, context-sensitive approach
to address these underlying challenges.

Methods
In this study, we used clinical data with linked, deidentified demo-
graphic information for patients across hospital centres in the UK and
Vietnam. United Kingdom National Health Service (NHS) approval via
the national oversight/regulatory body, the Health Research Authority
(HRA), has been granted for use of routinely collected clinical data to
develop and validate artificial intelligence models to detect Covid-19
(CURIAL; NHS HRA IRAS ID: 281832). The study was limited to working
with deidentified data, and extracted retrospectively; thus, explicit
patient consent for use of the datawasdeemed to not be required, and
is covered within the HRA approval. All necessary consent has been
obtained and the appropriate institutional forms have been archived.

The ethics committees of theHospital for TropicalDiseases (HTD)
and the National Hospital for Tropical Diseases (NHTD) approved use
of the HTD and NHTD datasets for COVID-19 diagnosis, respectively.
The study was limited to working with deidentified data and collected
as part of ongoing audit; thus, OxTREC (Oxford Tropical Research
EthicsCommittee), NHTDandHTDethics committees havewaived the
need for individual informed consent for this process. All methods
were carried out in accordance with relevant guidelines and
regulations.

Datasets
From the UK, we used data from hospital emergency departments in
Oxford University Hospitals NHS Foundation Trust (OUH), University
Hospitals Birmingham NHS Trust (UHB), Bedfordshire Hospitals NHS
Foundations Trust (BH), and Portsmouth Hospitals University NHS
Trust (PUH). For these datasets, United Kingdom National Health
Service (NHS) approval via the national oversight/regulatory body, the
Health Research Authority (HRA), has been granted for development
and validation of artificial intelligence models to detect COVID-19
(CURIAL; NHSHRA IRAS ID: 281832). FromVietnam,we used data from
the intensive care units (ICUs) in the Hospital for Tropical Diseases
(HTD) and the National Hospital for Tropical Diseases (NHTD). This
was approved by ethics committees of the HTD and the NHTD,
respectively.

To ensure consistency with previous studies, we trained our
models using the same cohorts as those used in8–10,13,14. Specifically, we
utilized patient presentations exclusively from OUH for training and
validation sets. Two data extracts were obtained from OUH, corre-
sponding to the first wave of the COVID-19 epidemic in the UK
(December 1, 2019, to June 30, 2020) and the second wave (October 1,
2020, to March 6, 2021) (Supplementary Section B). During the first
wave, incomplete testing and the imperfect sensitivity of the PCR test
resulted in uncertainty regarding the viral status of patients who were
either untested or tested negative. To address this, similar to the
approach taken in refs. 8–10,13,14, wematched eachpositive COVID-19
presentation in the training set with a set of negative controls based on
age, using a ratio of 20 controls to 1 positive presentation. This
approach created a simulated disease prevalence of 5%, which aligned
with the actual COVID-19 prevalences observed at all four UK sites
during the data extraction period (ranging from 4.27% to 12.2%). To
account for the uncertainty in negative PCR results, sensitivity analysis
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was conducted and found to improve the apparent accuracy of the
models, as described in refs. 10,14.

Thus, the model development process involved a dataset com-
prising 114,957 patient presentations from OUH prior to the global
COVID-19 outbreak, guaranteeing that these cases are COVID-free.
Additionally, we included 701 patient presentations that tested posi-
tive for COVID-19, as confirmed by a PCR test. This careful selection of
data ensured the accuracy of COVID-19 status labels used during the
training phase of the model.

We then validated the model on four UK cohorts (OUH wave two,
UHB, PUH, BH), totaling 72,223 admitted patients (4600 COVID-19
positive), and two Vietnam cohorts (HTD and NHTD), totaling 3431
admitted patients (2413 COVID-19 positive). A summary of each
respective cohort is in Table 1. Full inclusion and exclusion criteria are
provided in the Supplementary Material.

For OUH, we included all patients presenting and admitted to
the emergency department. For PUH, UHB, BH, HTD, and NHTD, we
included all patients admitted to the emergency department.
COVID-19 status at the UK sites and HTD was determined through
confirmatory PCR testing, while at NHTD, both PCR and/or rapid
antigen testing were used. Nonetheless, concerning NHTD, there
were numerous instances where the specific test type was not
recorded. Therefore, in order tomaximize testing coverage, in cases
where the test type was unspecified, we examined how COVID-19
was documented, including terms such as COVID-19 lower respira-
tory infection, COVID-19 pneumonia, SARS-COV-2 Infection, COVID-
19 acute respiratory distress syndrome, Acute COVID-19, and others.
For our analysis, alongside confirmatory testing, we considered any
indication and severity of COVID-19 presence as COVID-19 positive.
These diagnoses were confirmed by attending specialist infectious
diseases clinicians, and thus, we consider these diagnostic labels to
be robust. A detailed breakdown of the labels available within the
NHTD database is provided in Supplementary Table 1. Furthermore,
we conducted a sensitivity analysis for NHTD, comparing PCR-
confirmed outcomes with those incorporating rapid antigen tests
and other written documentation of COVID-19, which is detailed in
“Results”.

Features
To facilitate a more meaningful comparison of our results with pre-
vious studies8–10,14,15, we adopted a similar set of features. These fea-
tures align with a focused subset of routinely collected clinical data,
including the first recorded laboratory blood tests (comprising full
blood counts, urea and electrolytes, liver function tests, and C-reactive
protein) as well as vital signs.

Regarding the UK NHS datasets, it’s worth noting that each hos-
pital operates within its own distinct IT infrastructure. However, in
general, laboratory data is managed within a system referred to as
LIMS (Laboratory Information Management System). The data
extraction process for these datasets typically involved sourcing data
from either a LIMS mirror, a trust integration system that interfaces
with LIMS, or a direct extraction from the LIMS system itself.

For the Vietnam hospitals, we extracted data from the Critical
Care Asia Registry (we will refer to this as Registry, a dedicated
prospectively acquired database facilitating quality improvement
initiatives. To test model generalizability at HTD and NHTD, we had
to match the features available at the UK hospitals to the features
available in the NTD and NHTD system (i.e., those recorded on
Registry).

Some features available in the UK datasets (such as albumin,
alkaline phosphatase, C-reactive protein) are not routine tests on
admission in HTD and NHTD.

Table 2 summarizes the final features included.

Pre-processing
We first ensured uniformity in the measurement units for identical
features. Next, we standardized all features to have amean of 0 and a
standard deviation of 1 to aid in achieving convergence in neural
network models. To address missing values in the UK datasets, we
used populationmedian imputation. These steps are consistent with
refs. 8–10,14,15. For matched features in the Vietnamese datasets,
we also applied population median imputation. Additionally, we
performed sensitivity analysis for these cohorts to account for
missing values using the XGBoost model, which is the baseline
model fromprevious studies and can handle missing values as input.

Table 1 | Total patients and positive COVID-19 cases in the OUH training cohorts (OUH pre-pandemic and wave one), pro-
spectivevalidation cohort (OUH), external validationcohorts of patients admitted to three independentNHSTrusts (UHB, PUH,
BH), and external validation cohorts of patients admitted to two Vietnam-based hospitals (NTD, NHTD)

Cohort Total Patients COVID-19 Positive Cases

OUH pre-pandemic Before Dec 1/19 114,957 0

OUH wave one Dec 1/19-June 30/20 701 701

OUH wave two Oct 1/20-Mar 6/21 22,857 2012 (8.80%)

UHB Dec 1/19-Oct 29/20 10,293 439 (4.27%)

PUH Mar 1/20-Feb 28/21 37,896 2005 (5.29%)

BH Jan 1/21-Mar 31/21 1177 144 (12.2%)

HTD Dec 10/20-Dec 30/22 1820 1360 (74.7%)

NHTD Nov 1/20-Dec 21/22 1611 1053 (65.4%)

Table 2 | Clinical predictors considered for COVID-19 diagnosis

Category Matched UK and Vietnam UK Features

Vital Signs Heart rate, respiratory rate, systolic blood pressure, dia-
stolic blood pressure, temperature

Blood Test Hemoglobin, hematocrit, white cell count, platelets Mean cell volume, neutrophil count, lymphocyte count, monocyte
count, eosinophil count, basophil count

Liver Function Tests &
C-reactive protein

Bilirubin Albumin, alkaline phosphatase, alanine aminotransferase, C-reactive
protein

Urea & Electrolytes Sodium, potassium, creatinine, urea Estimated glomerular filtration rate
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Using the test set, we achieved AUROC scores of 0.525
(0.500–0.553) and 0.427 (0.401–0.452) for the HTD and NHTD sets
with missing values, respectively. For the imputed sets, the AUROC
scores improved to 0.533 (0.508–0.559) and 0.478 (0.453-0.504) for
HTD and NHTD, respectively. The technique used to handle com-
pletely missing features in the Vietnam datasets is discussed in the
following sections.

Model architectures
In order to evaluate the generalizability of developed models, we
conducted investigations using three commonly used model archi-
tectures: logistic regression, XGBoost, and a standard neural network.
Logistic regression is a linear model that is widely accepted in the
clinical community; XGBoost is a tree-based model known for its
strong performance on tabular data26; and lastly, a standard neural
network serves as the foundation for many powerful machine learning
models and can be used alongside transfer learning. It shouldbe noted
that LR is a relatively simple and linear classificationmodel which does
not inherently involve complex neural network architectures or deep
learning, and thus, is not typically used alongside transfer learning; and
XGBoost depends on the availability of the entire dataset, such that
transfer learning is not typically feasible8. Additionally, a neural net-
work has previously been shown to have superior performance for
COVID-19 diagnosis (using the same UK cohorts)8–10,15. Thus, like pre-
vious studies, we trained a fully-connected neural network which used
the rectified linear unit activation function in the hidden layers and the
sigmoid activation function in the output layer. For updating model
weights, the Adam optimizer was used during training. Details of the
model architecture are presented in Section C of the Supplementary
Material.

Metrics
In order to evaluate the performance of the trained models, we
provide the following metrics: sensitivity, specificity, positive pre-
dictive value, NPV, area under the receiver operating characteristic
curve (AUROC), and area under the precision-recall curve (AUPRC).
These metrics are accompanied by 95% confidence intervals (CIs),
which are computed using 1000 bootstrapped samples drawn from
the test set. Tests of significance (p values) comparing model per-
formances are calculated by evaluating how many times one model
performs better than other models across 1000 pairs of boot-
strapped iterations. We use 0.05 as the threshold for determining
statistical significance.

Weperformed a grid search to adjust the sensitivity/specificity for
identifying COVID-19 positive or negative cases. We chose to optimize
the threshold to achieve sensitivities of0.85 (±0.05), ensuring clinically
acceptable performance in detecting positive COVID-19 cases. This
chosen sensitivity surpasses the sensitivity of LFD tests, which
achieved a sensitivity of 56.9% for OUH admissions betweenDecember
23, 2021, and March 6, 202114. Additionally, the gold standard for
diagnosing viral genome targets is real-time PCR, which has estimated
sensitivities between 80 and 90%27,28. Thus, by optimizing the thresh-
old to a sensitivity of 0.85, ourmodels can effectively detect COVID-19
positive cases, comparable to the sensitivities of current diagnostic
testing methods.

Training outline
For each task, we utilized a training set to develop, select hyperpara-
meters, train, and optimize the models. A separate validation set was
employed for ongoing validation and threshold adjustment. Following
successful development and training, six independent test sets were
utilized to evaluate the performance of the final models.

To start, we used the OUH pre-pandemic controls and wave one
positive cases to develop models, using the reduced feature set (i.e.,
matched HTD/NHTD features).

In their study, Soltan et al.13 identified specific laboratory blood
markers, such as eosinophils and basophils, as having a significant
impact onmodel predictions. This determination wasmade through
the application of SHAP (SHapley Additive exPlanations) analysis
during the development and evaluation of their models using
patient cohorts from the UK. However, these particular features
were not accessible in the Registry dataset, and consequently, were
not incorporated into the initial models developed for compatible
testing across UK and Vietnam cohorts.We hypothesize that without
the inclusion of these features during training, the models’ perfor-
mance would be inferior compared to the previously reported
scores. Hence, our goal is to illustrate how HICs could potentially
assist LMICs by facilitating dataset augmentation or completion,
which can improve outcomes when applying an HIC model to an
LMIC setting.

In the context of addressing missing data, nearest neighbor (NN)
imputation algorithms provide efficient approaches for completing
missing values. In thesemethods, each absent value in certain records
gets replaced by a value derived from related cases within the entire
dataset29. This approach has the capacity to substitute missing data
with plausible values that closely approximate the true ones.

Drawing from a similar concept, a recent technique called
Geometrically-Aggregated Training Samples (GATS)30 has been intro-
duced to address missing data challenges. GATS constructs training
samples by blending various patient characteristics using convex
combinations. This approach enables the creation of missing columns
by combining features frommultiple patient samples that do not have
missing data in those columns. Importantly, these generated samples
exist within the same data space as genuine training samples, preser-
ving the original data structure and avoiding any distortion in the
distribution of the imputed variables. This preservation facilitates
effective model training, as these samples can be considered a sum-
mary of multiple patients. Furthermore, it’s noteworthy that this
method can be used to tacklemissing columns without compromising
the privacy of individual patient data, thereby mitigating privacy
concerns.

We start by matching each patient in the HTD and NHTD datasets
to the kmost similar patients in the UKdatasets, based on the available
features in the Registry. Here, we use the OUH wave two, PUH, UHB,
and BH datasets, as to ensure that the training and test sets are com-
pletely independent of one another (i.e., not bias any samples towards
the developed model). Similar patients are identified using a kNN
method. For the kmatched samples, the GATS technique is employed
to combine values of the columns missing in Registry, effectively
filling-in the missing features for each Vietnam-based patient. As a
result, the HTD and NHTD datasets have a feature set matching the
UK data.

Using the comprehensive feature set, we proceeded to perform
supplementary experiments by utilizing the OUH pre-pandemic con-
trols and wave one positive cases as the training set, as previously
conducted. Subsequently, we re-evaluated the models’ performance
on the six test sets. Anticipating an enhancement in performance on
the UK test sets due to the inclusion of additional features, we also
hypothesized that the performance on the Vietnam datasets would
also improve (particularly when evaluated using the UK-based
models).

We additionally investigate the utility of transfer learning, as this
has proven to be a successful approach for applyingmodels developed
at one center to another independent center8. In our study, we assess
the effectiveness of transfer learning by taking the network weights
from a trained neural network model, which was initially trained on
OUH data. We then fine-tune the network by updating the existing
weights using a subset of either the HTD or NHTD data, allowing us to
customize the model to the local context of Vietnam. For each of HTD
and NHTD, the subset of data selected for transfer learning comprises
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the earliest 40% of patients, with 20% used for training and 20% used
for threshold adjustment. This allows us to validate the model pro-
spectively on the remaining 60% of patients and externally validate it
on the other hospital.

Finally, to establish a baseline, wewill train neural networkmodels
locally at each hospital in Vietnam. Similar to the transfer learning
approach, wewill select the earliest 40% of patients from eachhospital
dataset to trainmodels, with 20% of the data allocated for training and
another 20% for threshold adjustment. As before, this setup enables us
to perform prospective validation on the remaining 60% of patients
within the same hospital and external validation on the dataset from
the other hospital (external validation will be performed on the entire
dataset).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from OUH studied here are available from the Infections in
Oxfordshire Research Database (https://oxfordbrc.nihr.ac.uk/
research-themes/modernizing-medical-microbiology-and-big-
infection-diagnostics/infections-in-oxfordshire-research-database-
iord/), subject to an application meeting the ethical and governance
requirements of the Database. Data from UHB, PUH and BH are avail-
able by direct request to the hospitals, subject to HRA and research &
governance approvals at the individual Trusts. These raw datasets are
protected and are not publicly available due to data privacy regula-
tions. Data from HTD and NHTD are available through a managed
access policy at OUCRU, through the CCAA Vietnam Data Access
Committee, subject to an application meeting the ethical and gov-
ernance requirements. The data sharing policy can be found here:
https://www.oucru.org/data-sharing-policy/. These raw datasets are
protected and are not publicly available due to data privacy regula-
tions. Please contact Dr. Louise Thwaites (lthwaites@oucru.org) if you
would like help accessing the data. Source data for result Tables and
Figures are provided with this paper. Source data are provided with
this paper.

Code availability
Code can be found in: https://github.com/yangjenny/standard_
algorithms(https://doi.org/10.5281/zenodo.12789225)31
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