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Abstract
Rapidly developing machine learning methods have stimulated research interest in
computationally reconstructing differential equations (DEs) from observational data,
providing insight into the underlying mechanistic models. In this paper, we propose
a new neural-ODE-based method that spectrally expands the spatial dependence of
solutions to learn the spatiotemporal DEs they obey. Our spectral spatiotemporal DE
learning method has the advantage of not explicitly relying on spatial discretization
(e.g., meshes or grids), thus allowing reconstruction of DEs that may be defined on
unbounded spatial domains and thatmay contain long-ranged, nonlocal spatial interac-
tions. By combining spectral methods with the neural ODE framework, our proposed
spectralDEmethod addresses the inverse-type problemof reconstructing spatiotempo-
ral equations in unbounded domains. Even for bounded domain problems, our spectral
approach is as accurate as some of the latest machine learning approaches for learning
or numerically solving partial differential equations (PDEs). By developing a spec-
tral framework for reconstructing both PDEs and partial integro-differential equations
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(PIDEs), we extend dynamical reconstruction approaches to a wider range of prob-
lems, including those in unbounded domains.

Keywords Neural ODE · Spectral method · Differential equations · Spatiotemporal
inverse problem · Unbounded domains

Mathematics Subject Classification 35P05 · 62M45 · 62F30 · 62G99 · 34A55

1 Introduction

There has been much recent interest in developing machine-learning-based methods
for learning the underlying physics-based equations of motion from data. In this paper,
we are interested in learning the general dynamics F[u; x, t] of spatiotemporal partial
differential equations (PDEs) or spatiotemporal partial integro-differential equations
(PIDEs) such as

∂t u = F[u; x, t], x ∈ �, t ∈ [0, T ]. (1)

Here,� is the spatial domain of interest and F[u; x, t] represents a general spatiotem-
poral operator acting on the function u(x, t), including linear combinations of all
differential operators acting on u, such as ux , uxx , uxxx , ..., and spatial convolutional
operators.

Although machine learning approaches have been proposed for many types of
inverse problems that reconstruct partial differential equations (PDEs) from data [1, 2],
most of them make prior assumptions about the specific form of the PDE and use spa-
tial discretization i.e., grids or meshes, of a bounded spatial variable x to approximate
the solutions of the PDE. There are three main types of machine-learning-based meth-
ods for learning PDEs: (i) methods that use neural networks to reconstruct the RHS
of Eq. (1), F[u; x, t], by assuming that it can be well approximated by a (non)linear
combination of a class of differential operators, (ii) methods that try to find an explicit
mathematical expression for F[u; x, t] by imposing specific forms on F , and (iii)
methods that circumvent learning F[u; x, t] by reconstructing a map from the initial
condition to the solution at a later time. Long et al. [3] and Churchill et al. [4] used
convolutional layers to construct the spatial derivatives of u, then applied a neural net-
work [3, 4] or a symbolic network [5] to approximate F[u; x, t] by F(x, ux , uxx , . . . ).
Sparse identification of nonlinear dynamics (SINDy) [6] and its variants [7, 8] have
been developed to learn the dynamics of PDEs by using a sparse regression method
to infer coefficients a in ∂t u(x, t) = a · (1, u, u2, ux , uxx , . . .), where a is the to-be-
learned rowvector of coefficients associatedwith each term in the PDE.Thesemethods
imposed an additive form for F[u; x, t]. Additionally, Fourier neural operator (FNO)
[9] and other approaches [10] which learn the mapping between the function space
of the initial condition u0(·, 0) and the function space of the solution u(·, t) within a
time range t ∈ [t1, t2] have also been recently developed [10, 11].

In summary, previous methods either assume F[u; x, t] can be approximated by
some (non)linear combinations of differential operators, impose a specific form of

123



Learning unbounded-domain spatiotemporal… 4397

F[u; x, t], or circumvent learning F[u; x, t] by reconstructing a map from the initial
condition to the solution at a later time. To our knowledge, there has been no method
that can extract the dynamics F[u; x, t] from data without making prior assumptions
on its form. Moreover, since most prevailing numerical methods for time-dependent
DEs rely on spatial discretization viameshes or grids, they cannot be directly applied to
problems defined on an unbounded domain [12]. Nonetheless, many physical systems
involve the evolution of quantities that experience long-ranged spatial interactions,
requiring the solution of spatiotemporal integro-differential equations defined on
unbounded domains; i.e., the dynamics F on the RHS of Eq. (1) might contain a
spatial convolutional operator. Examples of such spatiotemporal integro-differential
equations involve the fractional Laplacian equations for anomalous diffusion [13] and
the Keller–Segel equation [14] for describing the swarming behavior. Reconstructing
F[u; x, t] on the RHS in Eq. (1) given some observations of the physical quantity
u(x, t) can help uncover the physical laws that govern their time evolution.

One major difficulty that prevents direct application of previous methods to
unbounded domain problems is that one needs to truncate the unbounded domain
and define appropriate boundary conditions [15, 16] on the new artificial boundaries.
Although generalizations of the FNO method that include basis functions other than
the Fourier series [17] can potentially be applied to unbounded domains, they do not
reconstruct the dynamics F[u; x, t]. Moreover, they treat x and t in the same way
using nonadaptive basis functions which can be inefficient for addressing unbounded-
domain spatiotemporal problems where basis functions often need to be dynamically
adjusted over time. Recently, an adaptive spectral PINN (s-PINN) method was pro-
posed to solve specified unbounded-domain PDEs [18]. The method expresses the
underlying unknown function in terms of adaptive spectral expansions in space and
time-dependent coefficients of the basis functions, does not rely on explicit spa-
tial discretization, and can be applied to unbounded domains. However, like many
other approaches, the s-PINN approach assumes that the PDE takes the specific form
ut = F(u, ux , uxx , ...)+ f (x, t) in which F(u, ux , uxx , ...) is known and only the u-
independent source term f (x, t) is unknown and to be learned. Therefore, the s-PINN
method is limited to parameter inference and source reconstruction.

In this paper, we propose a spectral-based DE learning method that extracts the
unknown dynamics in the spatiotemporal DE Eq. (1) by using a parameterized neural
network to express F[u; x, t] ≈ F[u; x, t,�]. Specifically, our spectral-based DE
learning approach aims to reconstruct both spatiotemporal PDEs and spatiotemporal
PIDEs where the spatial variable x is defined on an unbounded domain. Moreover, our
approach does not require prior assumptions on the form of F[u; x, t]. Throughout
this paper, the term “spatiotemporal DE” will refer to both PDEs and PIDEs in the
form of Eq. (1). The formal solution u is then represented by a spectral expansion in
space,

u(x, t) ≈ uN (x, t) =
N∑

i=0

ci (t)φi (x), (2)
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Fig. 1 a A 1D example of the spectral expansion in an unbounded domain with scaling factor β and
displacement x0 (Eq. (7)). bThe evolution of the coefficient c0(t) and the two tuning parameters β(t), x0(t).

c A schematic of how to reconstruct Eq. (1) satisfied by the spectral expansion approximation uβ
N ,x0

. The
time t , expansion coefficients ci , and tuning variables β(t), and x0 are inputs of the neural network, which
then outputs F(c̃N ; t,�) = (F0, ..., FN , Fβ, Fx0 ). The basis functions φi

(
β(t)(x − x0(t))

)
are shaped by

the time-dependent scaling factor β(t) and shift parameter x0(t) which are determined by dβ
dt ≈ Fβ and

dx0
dt ≈ Fx0 , respectively

where {φi }Ni=0 is a set of appropriate basis functions that can be defined on bounded
or unbounded domains and {ci }Ni=0 are the associated coefficients. We assume that the
spectral expansion coefficients ci (t j ), i = 0, ..., N in Eq. (2) are given as inputs at
various time points {t j } = t0, ..., tM .

By using the spectral expansion in Eq. (2) to approximate u, we do not need an
explicit spatial discretization like spatial grids or meshes, and the spatial variable x
can be defined in either bounded or unbounded spatial domains. The best choice of
basis functions will depend on the spatial domain. In bounded domains, any set of
basis functions in the Jacobi polynomial family, including Chebyshev and Legendre
polynomials, provides similar performance and convergence rates; for semibounded
domains R+, generalized Laguerre functions are often used; for unbounded domains
R, generalized Hermite functions are used if the solution is exponentially decaying
at infinity, while mapped Jacobi functions are used if the solution is algebraically
decaying [19, 20].

Additionally, after using the spectral expansion Eq. (2), a numerical scheme for
Eq. (1), regardless of whether it is a PDE or a PIDE involving convolution terms in
the spatial variable x , can be expressed as ordinary differential equations (ODEs) in
the expansion coefficients cN (t) := (c0(t), . . . , cN (t))

dcN (t)

dt
= F(cN ; t). (3)

The spatiotemporal DE learning method proposed here differs substantially from the
s-PINN framework because it does not make any assumptions on the form of the spa-
tiotemporal DE in Eq. (1) other than that the RHS F does not contain time-derivatives
or time-integrals of u(x, t). Instead, the spectral neural DE method models F directly
by a neural network and employs the neural ODE method [21] to fit the trajectories
of the ground truth spectral expansion coefficients cN (t). (see Fig. 1c). The method
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inputs both the solution u(x, t) (in terms of a spectral expansion) and t into the neural
network and applies a neural ODE model [21]. Thus, general DEs such as Eq. (1)
can be learned with little knowledge of the RHS. To summarize, the proposed method
presented in this paper has the advantage that it

(i) does not require assumptions on the explicit form of F other than it should not
contain any time-derivatives or time-integrals of u. Both spatiotemporal PDEs and
PIDEs can be learned in a unified way.

(ii) directly learns the dynamics of a spatiotemporal DE (RHS of Eq. (1)) by using a
parameterized neural network that can time-extrapolate the solutions, and

(iii) does not rely on explicit spatial discretization and can thus learn unbounded-
domainDEs. By further using adaptive spectral techniques, our neural DE learning
method also learns the dynamics of the shaping parameters that adjust the basis
functions. Additionally, our neural DE learning method can also take advantage
of sparse spectral methods [22] for effectively reconstructing multidimensional
spatiotemporal DEs using a reduced number of inputs.

In the next section, we formulate our spatiotemporal DE learningmethod. In Sect. 3,
we use our spatiotemporal DE method to learn the underlying dynamics of DEs.
Although our main focus is to address learning unbounded-domain spatiotemporal
DEs, we perform benchmarking comparisons on bounded-domain problems that are
solved using other recently developed machine-learning based PDE learning meth-
ods that apply only in bounded domains. Concluding remarks are given in Sect. 4.
Additional numerical experiments and results are given in the Appendix.

2 Spectral spatiotemporal DE learningmethod

We now formalize our spectral spatiotemporal DE learning method for spatiotemporal
DEs of the general structure of Eq. (1), assuming F[u; x, t] does not include time-
differentiation or time-integration of u(x, t). However, unlike in [10], the “dynamics”
F[u; x, t] on the RHS of Eq. (1) can take any other form including differentiation in
space, spatial convolution, and nonlinear terms. Below is a table of the notation used
throughout the development of our method and the test examples in the rest of the
paper.

First, consider a bounded spatial domain �. Suppose we have observational data
um(x, t), m = 1, ..., M for all x at given time points t j , j = 1, ..., T associated with
different initial conditions um(x, t0), m = 1, ..., M . Furthermore, we assume that
um(x, t) all obey the same underlying, well-posed spatiotemporal DE Eq. (1). Upon
choosing proper orthogonal basis functions {φi (x)}Ni=0, we can approximate u(x, t)
by the spectral expansion in Eq. (2) and obtain the spectral expansion coefficients
cN (t) := (c0(t), ..., cN (t)) as Eq. (3). We aim to reconstruct the dynamics F(cN ; t)
in Eq. (3) by using a neural network

F(cN ; t) ≈ F(cN ; t,�), (4)
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Table 1 Overview of variables and parameters

Symbol Definition

N Spectral expansion order

T Number of sampled time points

M Number of different initial conditions/solutions

� Neural network hyperparameters

φi i th order basis function in a spatial spectral expansion

β(t) Spatial variable scaling factor: φi (β(x − x0))

x0(t) Spatial variable translation factor: φi (β(x − x0))

uβ
N ,x0

(x, t) Spectral expansion approximation of order N , scaling

factor β, translation x0: u
β
N ,x0

= ∑N
i=0 ci (t)φi (β(t)(x − x0(t)))

Ĥi Generalized Hermite function of order i

Definitions of the main variables and parameters used in this paper. Besides the expansion order N , the
adaptive spectral method for unbounded domain problems employs two additional parameters (per spatial
dimension) β(t) and x0(t) that are dynamically adjusted to optimize the spectral approximation

where� is the set of parameters in the neural network. We can then construct the RHS
of Eq. (1) using

F[u; x, t,�] ≈
N∑

i=0

Fi (cN ; t,�)φi (x) (5)

where Fi is the i th component of the vector F(cN ; t,�). We shall use the neu-
ral ODE to learn the dynamics F(cN ; t,�) by minimizing the mean loss function
L(uN (x, t;�), u(x, t)) between the numerical solution uN (x, t;�) and the observa-
tions u(x, t). When data are provided at discrete time points t j , we need to minimize

M∑

m=1

T∑

j=1

L
(
uN ,m(x, t j ;�), um(x, t j )

)
, (6)

with respect to �. Here, um(x, t j ) is the solution at t j of the mth trajectory in the
dataset and uN ,m(x, t j ;�) denotes the spectral expansion solution reconstructed from
the coefficients cN ,s obtained by the neural ODE of the mth solution at t j .

To solve unbounded domain DEs (in any dimension � ⊆ R
D), two additional

sets of parameters are needed to scale and translate the spatial argument x, a scaling
factor β := (β1, . . . , βD) ∈ R

D , and a shift factor x0 := (x10 , . . . , x
D
0 ) ∈ R

D . These
factors need to be dynamically adjusted to obtain accurate spectral approximations
of the original function [12, 23, 24]. When generalizing the spectral approximation
uβ
N ,x0

(x, t) in Table 1 to higher spatial dimensions, we can write
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u(x, t) ≈ uβ
N ,x0

(x, t) =
N∑

i=0

ci (t)φi
(
β ∗ (x − x0)

)
, (7)

where here, β ∗ (x − x0) := (β1(x − x10), ..., β
D(x − xD0 )) is the Hadamard product

and φi (·) are D-dimensional basis functions.
Given observed u(x, t), the ground truth coefficients ci (t) as well as the spectral

adjustment parameters β(t) and x0(t) at discrete time points can be obtained by
minimizing the frequency indicator (introduced in [12])

F(u;β, x0) =
√√√√

∑N
i=N−[ N3 ]+1

c2i
∑N

i=0 c
2
i

(8)

that measures the error of the numerical representation of the solution u [25].
F(u;β, x0) depends onβ, x0, and the expansion order N through the arguments of the
basis functions and thus implicitly through their expansion coefficients ci . Thus, mini-
mizingF(u;β, x0)will alsominimize the approximation error ‖u−∑N

i=0 ciφi (β(t)∗
(x − x0(t)))‖22. Numerically evaluating ci (t j ) usually requires setting up appropriate
collocation points determined by the basis functions and adaptive parameters β and
x0. In such unbounded domain problems, the ground truth coefficients and adaptive
parameters c̃N := (

c0(t), ..., cN (t),β(t), x0(t)
)
at times t j are given as inputs to the

neural network.
In addition to cN (t), evolution of the adaptive parameters β(t), x0(t) over time can

also be learned by the neural ODE. More specifically,

dc̃N
dt

= F(c̃N ; t) (9)

for the ODEs satisfied by c̃N := (
cN (t),β(t), x0(t)

)
. The underlying dynamics

F(c̃N ; t) is approximated as

F(c̃N ; t) ≈ F(c̃N ; t,�) (10)

by minimizing with respect to � a loss function that also penalizes the error in β and
x0

M∑

m=1

T∑

j=1

[
L
(
um(x, t j ), u

βm
N ,x0,m ,m(x, t j ;�)

) + λ
∥∥βm(t j ) − βm(t j ;�)

∥∥2
2

+ λ
∥∥x0,m(t j ) − x0,m(t j ;�)

∥∥2
2

]
. (11)

Similarly, the DE satisfied by uβ
N ,x0

(x, t) is

∂t u
β
N ,x0

(x, t) = F[uβ
N ,x0

; x, t,�], (12)
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where

F[uβ
N ,x0

; x, t,�] =
N∑

i=0

Fi (c̃N ; t,�)φi
(
β(t) ∗ (x − x0(t))

)

+
N∑

i=0

ci (t)
D∑

j=1

(
∂t

(
β j (t)

(
x j − x j

0 (t)
))

∂x j φi
(
β(t) ∗ (x − x0(t))

))
(13)

and Fi is the i th component of F(c̃N ; t,�). Here, βm(t j ) and x0,m(t j ) are the scaling
factor and the displacement of the mth sample at time t j , respectively, and λ is the
penalty due to squared mismatches in the scaling and shift parameters β and x0. In
this way, the dynamics of the variables x0,β are also learned by the neural ODE so
they do not need to be manually adjusted as they were in [12, 18, 24, 25].

If the space � is high-dimensional, sufficiently smooth and well-behaved solutions
can be approximated by restricting the basis functions {φβ

i,x0
} to those in the hyperbolic

cross space. If this projection is performed optimally, such sparse spectral methods
with spectral expansions defined in the hyperbolic cross space can reduce the effec-
tive dimensionality of the problem by leaving out redundant basis functions [22, 26]
without significant loss of accuracy. We will show that our method can also easily
incorporate the hyperbolic cross spaces to enhance training efficiency in modestly
higher-dimensional problems.

3 Numerical experiments

In this work, we set L(·, ·) to be the relative squared L2 error

L(u(x, ti ), uN (x, ti ;�)) :=
∥∥u(x, ti ) − uN (x, ti ;�)

∥∥2
2

‖u‖22
(14)

in the loss function Eq. (6) used for training. We carry out numerical experiments to
test our spectral spatiotemporal DE reconstruction method by learning the underlying
DE given data in both bounded and unbounded domains. In this section, we use the
odeint_adjoint function along with the dopri5 numerical integration method
developed in the torchdiffeq package [21] to numerically integrate Eqs. (3) and
(9). Stochastic gradient descent (SGD) and the Adam optimizer are used separately
to optimize parameters of the neural network. Computations for all numerical exper-
iments were implemented on a 4-core Intel® i7-8550U CPU, 1.80 GHz laptop using
Python 3.8.10, Torch 1.12.1, and Torchdiffeq 0.2.3.

Since algorithms already exist for learning bounded-domain PDEs,wefirst examine
a bounded-domain problem in order to benchmark our spatiotemporal DE method
against two other recent representative methods, a convolutional neural PDE learner
[10] and a Fourier neural operator PDE learning method [11].

Example 1 For our first example, we consider learning a bounded-domain Burgers’
equation that describes the behavior of viscous fluid flow [27]. This example illustrates
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the performance of our spatiotemporal DE method in learning bounded-domain PDEs
and benchmarks our approach against some recently developed methods.

∂t u + 1
2∂x (u

2) = 1
10∂xxu, x ∈ (−1, 1), t ≥ 0,

u(−1, t) = u(1, t), ∂xu(−1, t) = ∂xu(1, t), u(x, 0) = − 1
5
ψx (x, 0)

ψ(x, 0)
,

(15)

where

ψ(x, t) ≡ 5 + ( 2+ξ1
2

)
e−π2t/10 sin πx + ξ2

2 e
−2π2t/5 cos 2πx . (16)

This model admits the analytic solution expressible as u(x, t) = − ψx (x,t)
5ψ(x,t) . We then

sample two independent random variables from ξ1, ξ2 ∼ U(0, 1) to generate a class of
solutions to Eq. (16) {u}ξ1,ξ2 for both training and testing. To approximate F in Eq. (4),
we use a neural network that has one intermediate layer with 300 neurons and the ELU
activation function. The basis functions in Eq. (2) are taken to be Chebyshev poly-
nomials. For training, we use 200 solutions (each corresponding to an independently
randomly sampled pair (ξ1, ξ2) of Eq. (15)) and record the expansion coefficients
{ci }9i=0 at different times t j = j�t,�t = 1

4 , j = 0, . . . , 4. The test set consists of
100 more solutions, also evaluated at times t j = j�t,�t = 1

4 , j = 0, . . . , 4.
In this bounded-domain problem, we can compare our results (the generated solu-

tions u(x, t)) with those generated from the Fourier neural operator (FNO) and the
convolutional neural PDE learner methods. In the FNO method, four intermedi-
ate Fourier convolution layers with 128 neurons in each layer were used to input
the initial condition u(i�x, 0). Then, the FNO method outputs the function values
u(i�x, t = j�t) (with �x = 1

128 ,�t = 1
4 ) for j > 0 [11].

When implementing the convolutional neural PDEsolver [10],we inputu(i�x, ( j−
1)�t) and u(i�x, j�t) (with �x = 1

100 ,�t = 1
250 ) [10] into seven convolutional

layers with 40 neurons in each layer which outputs u(i�x, ( j + 1)�t) as the numer-
ical solution at the next time step. Small �x and �t are used in the convolutional
neural PDE solver method because this method depends on both spatial and temporal
discretization, requiring fine discretization meshes in both dimensions. For all three
methods, we used the Adam method to perform gradient descent with a learning rate
η = 0.001 to run 10000 epochs, which was sufficient for the errors in all threemethods
to converge. We list in Table 2 the mean relative L2 error

1

MT

M∑

m=1

T∑

j=1

∥∥uN ,m(x, t j ;�) − um(x, t j )
∥∥
2

‖um(x, t j )‖2 . (17)

For the FNO and spectral PDE learning methods, we aim to minimize the relative
squared L2 loss (Eq. (14)), while for the convolution neural PDE solver method, we
must minimize the MSE loss since only partial and local spatial information on the
solution is inputted during each training epoch so we cannot properly define a relative
squared loss as the relative squared loss Eq. (14) needs global spatial information
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Table 2 The convolutional PDEsolver, theFourier neural operatormethod, andour proposed spatiotemporal
DE learner are used to learn or solve the dynamics of Burgers’ equation Eq. (15) in a bounded domain

Method Training error Testing error
Mean relative L2 Mean relative L2

Convolutional 1.68e−02 ± 7.86e−03 2.82e−02 ± 6.62e−03

Fourier 7.43e−03 ± 1.76e−03 8.61e−03 ± 2.86e−03

Spectral 9.82e−03 ± 4.95e−03 9.99e−03 ± 4.97e−03

The FNO method gives the best performance and the convolutional neural PDE solver performs the worst.
Our proposed spatiotemporal DE learner achieves performance comparable to the FNO method

to calculate ‖u‖2. As shown in Table 2, the relative L2 error of the FNO method is
smaller than the MSEs of the other two methods on the training set while the con-
volutional neural PDE solver method performs the worst. Nonetheless, our proposed
neural spectral DE learning approach performs comparably to the FNO method, giv-
ing comparable mean relative L2 errors for learning the dynamics associated with
the bounded-domain Burgers’ equation, but can also generate new solutions given
different initial conditions.

Additionally, the run times (using a 4-core i7-8550U laptop) in this example were
∼ 2 hours for the convolutional PDE solver method, ∼ 6 hours for the FNO method,
and ∼ 5 hours for our proposed spatiotemporal DE learning approach. Overall, even
in bounded domains, our proposed neural DE learning approach compares well with
the recently developed convolutional neural PDE solver and FNOmethods, providing
comparable errors and efficiency in generating solutions to Eq. (15) given different
initial conditions.

The Fourier neural operator method works well for solving Burgers’ equation
in Example 1, and there could be other even more efficient methods for recon-
structing bounded domain spatiotemporal DEs. However, reconstructing unbounded
domain spatiotemporal DEs is substantially different from reconstructing bounded
domain counterparts. First, discretizing space cannot be directly applied to unbounded
domains; second, if we truncate an unbounded domain into a bounded domain, appro-
priate artificial boundary conditions need to be imposed [15]. Constructing such
boundary conditions is usually complex; improper boundary conditions can lead to
large errors. A simple example of when the FNO will fail when we truncate the
unbounded domain into a bounded domain is provided in Appendix A.

Since our spectral method uses basis functions, it obviates the need for explicit spa-
tial discretization and can be used to reconstruct unbounded-domain DEs. Dynamics
in unbounded domains are intrinsically different from their bounded-domain coun-
terparts because functions can display diffusive and convective behavior leading to,
e.g., time-dependent growth at large x . This growth poses intrinsic numerical chal-
lenges when using prevailing finite element/finite difference methods that truncate the
domain.

Although it is difficult formost existingmethods to learn the dynamics in unbounded
spatial domains, our spectral approach can reconstruct unbounded-domain DEs by
simultaneously learning the expansion coefficients and the evolution of the basis func-
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tions. To illustrate this, we next consider a one-dimensional unbounded domain inverse
problem.

Example 2 Here,we examine a parabolic PDE in an unbounded domain andwith initial
conditions that depend on parameters ξ1, ξ2, ξ3. The PDE and its initial condition are
given by

∂t u = −∂xu + 1
4∂xxu, u(x, 0) = ξ1√

1 + ξ2
exp

(
− (x − ξ3)

2

1 + ξ2

)
. (18)

This example illustrates the application of our method to learning the dynamics of a
parabolic PDE given different ground truth solutions in an unbounded domain corre-
sponding to different initial conditions. The solution of the PDE, within the domain
x ∈ R and time interval t ∈ [0, 1], is expressed as

u(x, t; ξ1, ξ2, ξ3) = ξ1√
t + 1 + ξ2

exp

(
− (x − t − ξ3)

2

t + 1 + ξ2

)
. (19)

Since this problem is defined on an unbounded domain, neither the FNO nor the
convolutional neural PDEmethods can be used as they rely explicitly on spatialmeshes
or grids and apply only on bounded domains. However, given observational data u(·, t)
for different t , we can calculate the spectral expansion of u via the generalized Hermite
functions [20]

u(x, t) ≈ uβ
N ,x0

=
N∑

i=0

ci (t)Ĥi
(
β(t)(x − x0(t))

)
(20)

and then use the spatiotemporal DE learning approach to reconstruct the dynamics F
in Eq. (1) satisfied by u. Recall that the scaling factor β(t) and the displacement of the
basis functions x0(t) are also to be learned. To penalize misalignment of the spectral
expansion coefficients and the scaling and displacement factors β and x0, we use the
loss function Eq. (11). Note that taking the derivative of the first term in Eq. (11) would
involve evaluating the derivative of Eq. (14) which would require evaluation of inte-

grals such as
∫ uβ

N ,x0
(x,t j ;�)−u(x,t j )

‖u‖22
∂xu

β
N ,x0

(x, t j ;�)∂�

[
β(t j ;�)(x − x0(t j ;�))

]
dx .

Expressing ∂xu
β
N ,x0

(x, t j ;�) in terms of the basis functions Ĥi
(
β(t)(x − x0(t))

)

would involve a dense matrix–vector multiplication of the coefficients of the expan-
sion ∂xu

β
N ,x0

(x, t j ;�)∂�

[
β(t j ;�)(x − x0(t j ;�))

]
, which might be computationally

expensive during backward propagation in the stochastic gradient descent (SGD) pro-
cedure.

Alternatively, let the neural network parameter after the ( j − 1)th training epoch
be � j−1. During the calculation of the gradient of the loss function Eq. (11) w.r.t.
� at the j th epoch, we define β̃(t j ) := β(t j ;� j−1), x̃0(t j ) := x0(t j ;� j−1) to be
constants independent of � and then modify Eq. (11) to
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M∑

m=1

T∑

j=1

[∥∥uβ̃m (t j )
N ,x̃0,m (t j )

(x, t j ;�) − um(x, t j )
∥∥2
2

‖um(x, t j )‖22

+ λ
(
βm(t j ;�) − βm(t j )

)2 + λ
(
x0,m(t j ;�) − x0,m(t j )

)2
]
,

(21)

so that backpropagation within each epoch will not involve calculating gradients of
β̃m(t j ), x̃0,m(t j ) in the first term of Eq. (21). This simplified calculation reduces the
computational cost of the training process but can provide gradients close to the true
gradients when the reconstructed β̃(t j ), x̃0(t j ) are close to the ground truth values
βm(t), xm,0(t). For example, when βm(t;� j−1) = βm(t), xm,0(t;� j−1) = xm,0(t),
i.e., the reconstructed βm(t;� j−1), xm,0(t;� j−1) agree exactly with the ground truth,
Eq. (11) and Eq. (21) will both become

M∑

m=1

T∑

j=1

∥∥uβm (t j )
N ,x0,m (t j )

(x, t j ; �) − um(x, t j )
∥∥2
2

∥∥um(x, t j )
∥∥2
2

=
M∑

m=1

T∑

j=1

∑N
i=0

(
cm,i (t j ;�) − ci (t j )

)2
∑N

i=0 cm,i (t j )2
.

(22)

No derivative of β, x0 w.r.t. � will be used and only the gradient of F in Eq. (4)
w.r.t. � appears. In this case, the simplified gradient exactly reflects the true gradient.
Therefore, we can fit the coefficients ci (t) and β(t), x0(t) separately, and then use the
simplified loss gradient to update the neural network parameters.

We use 100 solutions for training and another 50 solutions for testing with
N = 9,�t = 0.1, T = 9, λ = 0.1. Each solution is generated from Eq. (19)
with independently sampled parameters ξ1, ξ2, ξ3. A neural network with two hid-
den layers, 200 neurons in each layer, and the ELU activation function is used for
training. Both training and testing data are taken from Eq. (19) with sampled param-
eters ξ1 ∼ N (3, 1

4 ), ξ2 ∼ U(0, 1
2 ), ξ3 ∼ N (0, 1

2 ).
Settingλ = 0.1,we first compare the two different loss functions Eqs. (11) and (21).

After running 10 independent training processes using SGD, each containing 2000
epochs and using a learning rate η = 0.0002, the average relative L2 error when using
the loss function Eq. (11) are larger than the average relative L2 errors when using the
loss function Eq. (21). This difference arises in both the training and testing sets as
shown in Fig. 2a.

In Fig. 2b, we plot the average learned F (RHS in Eq. (1)) for a randomly selected
sample at t = 0 in the testing set. The dynamics learned by using Eq. (21) is a little
more accurate than that learned by usingEq. (11). Also, using the loss function Eq. (21)
required only ∼ 1 hour of computational time compared to 5 days when learningwith
Eq. (11) (on the 4-core i7-8550U laptop). Therefore, for efficiency and accuracy, we
adopt the revised loss function Eq. (21) and separately fit the dynamics of the adaptive
spectral parameters (β, x0) and the dynamics of the spectral coefficients ci .

We also explore how network architecture and regularization affect the recon-
structed dynamics. The results are shown in Appendix B, from which we observe
that a wider and shallower neural network with 2 or 4 intermediate layers and 200
neurons in each layer yields the smallest errors on both the training and testing sets,
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Fig. 2 a Errors using the different loss functions Eqs. (11) and (21). b Average dynamics found from using
Eqs. (11) and (21). c Errors with λ and σ . d Errors on the testing set with random times ti ∼ U(0, 1.5)

and short run times. We also apply a ResNet [28] as well as the dropout technique [29,
30] to regularize the neural network structure. Dropout regularization does not reduce
either the training error or the testing error probably because even with a feedforward
neural network, the errors from our spatiotemporal DE learner on the training set are
close to those on the testing set and there is no overfitting issue. On the other hand,
applying the ResNet technique leads to about a 20% decrease in errors. Results from
using ResNets and dropout are shown in Appendix B.

Next, we investigate how noise in the observed data and changes in the adaptive
parameter penalty coefficient λ in Eq. (21) impact the results. Noise is incorporated
into simulated observational data as

uξ (x, t) = u(x, t)
[
1 + ξ(x, t)

]
, (23)

where u(x, t) is the solution to the parabolic equation Eq. (18) given by Eq. (19) and
ξ(x, t) ∼ N (0, σ 2) is aGaussian-distributed noise that is both spatially and temporally
uncorrelated (i.e., 〈ξ(x, t)ξ(y, s)〉 = σ 2δx,yδs,t ). The noise term is assumed to be
independent for different samples. We use a neural network with 2 hidden layers, 200
neurons in each layer, to implement 10 independent training processes using SGD
and a learning rate η = 0.0002, each containing 5000 epochs. Results are shown in
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Fig. 2c and further tabulated in Appendix C. For σ = 0, choosing an intermediate
λ ∈ (10−1.5, 10−1] leads the smallest errors and an optimal balance between learning
the coefficients ci and learning the dynamics of β, x0. When σ is increased to nonzero
values (∼ 10−4 − 10−3), a larger λ ∼ 10−0.75 − 10−0.5 is needed to keep errors small
(see Fig. 2c and Appendix C). If the noise is further increased to, say, σ = 10−2

(not shown in Fig. 2), an even larger λ ∼ 10−0.5 is needed for training to converge.
This behavior arises because the independent noise ξ(x, t) ∼ N (0, σ 2) contributes
more to high-frequency components in the spectral expansion. In order for training to
converge, fitting the shape of the basis functions by learning β, x0 is more important
than fitting noisy high-frequency components via learning ci . A larger λ puts more
weight on learning the dynamics of β, x0 and basis function shapes.

We also investigate how intrinsic noise in the parameters ξ1, ξ2, ξ3 affects the solu-
tion (Eq. (19)) and the accuracy of the learned DE. As shown in D, we find that if the
intrinsic noise in ξ1, ξ2, ξ3 is increased, the training errors of the learned DE models
also increase. However, compared to models trained on data with lower ξ1, ξ2, ξ3,
training using noisier data leads to lower errors when testing data are also noisy. Addi-
tionally, we explore how the number of solutions in the training set impacts how the
learned DE model makes new predictions given the initial conditions of solutions in
the testing set. The results are also listed in Appendix D and show that larger numbers
of training samples (solutions associated with different (ξ1, ξ2) in Eq. (19)) lead to
smaller relative L2 errors of the predicted solutions in both the training and testing
sets.

Finally, we test whether the parameterized F (Eq. (10)) learned from the training
set can extrapolate well beyond the training set sampling interval t ∈ [0, 0.9]. To do
this, we generate another 50 trajectories and sample each of then at random times
ti ∼ U(0, 1.5), i = 1, ..., 9. We then use models trained with σ = 0 and different λ

to test. As shown in Fig. 2d, our spatiotemporal DE learner can accurately extrapolate
the solution to times beyond the training set sampling time intervals. We also observe
that a stronger penalty on β and x0 (λ = 10−0.5) leads to better extrapolation results.

In the last example, we carry out a numerical experiment on learning the evolu-
tion of a Gaussian wave packet (which may depend on nonlocal interactions) across a
two-dimensional unbounded domain (x, k) ∈ R

2. We use this case to explore improv-
ing training efficiency by using a hyperbolic cross space to reduce the number of
coefficients in multidimensional problems.

Example 3 We solve a 2D unbounded-domain problem of fitting a Gaussian wave
packet’s evolution

f (x, k, t; ξ1, ξ2) = 2e− (x−ξ1)2

2a2 e2bt(x−ξ1)(k−ξ2) e−2a2(1+b2t2)(k−ξ2)
2
, (24)

where ξ1 is the center of the wave packet and a is the minimum positional spread.
If ξ2 = 0, the Gaussian wave packets defined in Eq. (24) solves the stationary zero-
potential Wigner equation, an equation often used in quantum mechanics to describe
the evolution of the Wigner quasi-distribution function [31, 32]. We set a = 1 and
b = 1

2 in Eq. (24) and independently sample ξ1, ξ2 ∼ U(− 1
2 ,

1
2 ) to generate data. Thus,

the DE satisfied by the highly nonlinear Eq. (24) is unknown and potentially involves
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nonlocal convolution terms. In fact, there could be infinitely many DEs, including
complicated nonlocal DEs, that can describe the dynamics of Eq. (24). An example
of such a nonlocal DE is

∂t f + 2a2bA[ f ; x, k, t] ∂x f (x, k, t) = 0,

A[ f ; x, k, t] = bt(x − B[ f ; x, k, t])
2a2(1 + b2t2)

+
√
log D[ f ; k, t] − C(t) − log( f /2)

a2(1 + b2t2)
,

B[ f ; x, k, t] = x −
√
2a2(1 + b2t2)

√
2C(t) − 2 log D[ f ; x, k, t] + log( f /2),

C(t) = 1

2
log

[ π

a2(1 + b2t2)

]
,

D[ f ; x, k, t] =
∫

f (x, y, t)e−2a2(1+b2t2)(y−k)2dy.

(25)

We wish to learn the underlying dynamics using a parameterized F in Eq. (10). Since
the Gaussian wave packet Eq. (24) is defined in the unbounded domain R

2, learning
its evolution requires information over the entire domain. Thus, methods that depend
on discretization of space are not applicable.

Our numerical experiment uses Eq. (24) as both training and testing data. We take
�t = 0.1, t j = j�t, j = 0, ..., 10 and generate 100 solutions for training. For test-
ing, we generate another 50 solutions, each with starting time t0 = 0 but t j taken from
U(0, 1), j = 1, . . . , 10. The parameters ξ1, ξ2 in the solutions Eq. (24) are indepen-
dently sampled for both the training set and the testing set. For this example, training
with ResNet results in diverging gradients, whereas the use of a feedforward neural
network yields convergent results. So we use a feedforward neural network with two
hidden layers and 200 neurons in each hidden layer and the ELU activation function.
We train across 1000 epochs using SGD with momentum (SGD M), a learning rate
η = 0.001, momentum = 0.9, and weight decay = 0.005. We use a spectral expan-
sion in the form of a two-dimensional tensorial product of Hermite basis functions
ĤiĤ�

fN (x, k, t j ; ξ1, ξ2) =
14∑

i=0

14∑

�=0

ci,�(t j )Ĥi (β
1(x − x10))Ĥ�(β

2(k − k20)) (26)

to approximate Eq. (24). We record the coefficients ci,� as well as the scaling factors
and displacements β1, β2, x10 , k

2
0 at different t j as the training data.

Because (x, k) ∈ R
2 are defined in a 2-dimensional space, instead of a tensor

product, we can use a hyperbolic cross space for the spectral expansion to effectively
reduce the total number of basis functions while preserving accuracy [22]. Similar to
the use of sparse grids in the finite element method [33, 34], choosing basis functions
in the space

V β,x0
N ,γ :=span

{
Ĥn1(β

1(x − x10))Ĥn2(β
2(k − k20)) : |n|mix‖n‖−γ∞ ≤ N 1−γ

}
,

n :=(n1, n2), |n|mix := max{n1, 1}max{n2, 1}
(27)
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Fig. 3 a, bMean relative L2 errors for N = 14 and γ = −∞, −1, 0, 1/2. c–f Saliency maps showing the
mean absolute values of the partial derivative of the loss function w.r.t. to {ci,�(0)} for γ = −∞, −1, 0, 1/2

can reduce the effective dimensionality of the problem. We explored different hyper-
bolic spaces V β,x0

N ,γ with different N and γ . We use the loss function Eq. (21) with

λ = 1
50 for training. The results are listed in Appendix E. To show how the loss func-

tion Eq. (21) depends on the coefficients ci,� in Eq. (26), we plot saliency maps [35]

for the quantity 1
10

∑10
j=1

∣∣∣ ∂Loss j
∂ci,�(0)

∣∣∣1, the absolute value of the partial derivative of the
loss function Eq. (21) w.r.t. ci,� averaged over 10 training processes.

As shown in Fig. 3a, b, using γ = −1, 0 leads to similar errors as the full tensor
product γ = −∞, but could greatly reduce the number of coefficients and improve
training efficiency. Taking a too large γ = 1/2 leads to larger errors because useful
coefficients are left out. From Fig. 3c–f, there is a resolution-invariance for the depen-
dence of the loss function on the coefficients ci,� though using different hyperbolic
spaces with different γ . We find that an intermediate γ ∈ (−∞, 1) (e.g., γ = −1, 0)
can be used to maintain accuracy and reduce the number of inputs/outputs when
reconstructing the dynamics of Eq. (24). Overall, the “curse of dimensionality" can
be mitigated by adopting a hyperbolic space for the spectral representation.

Finally, in Appendix F, we consider source reconstruction in a heat equation. Our
proposed spatiotemporal DE learning method achieves an average relative error L2 ≈
0.1 in the reconstructed source term. On the other hand, if all terms on the RHS of
Eq. (1) except an unknown source (which does not depend on the solution) are known,
the recently developed s-PINN method [18] achieves a higher accuracy. However, if
in addition to the source term, additional terms on on the RHS of Eq. (1) are unknown,

1 We take derivatives w.r.t. only the coefficients {ci,�(0)} of the predicted uβm (0)
N ,x0(0),m

(x, 0; �) in Eq. (21)

and not w.r.t. the expansion coefficients of the observational data u(x, 0).
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s-PINNs cannot be used but our proposed spatiotemporal DE learningmethod remains
applicable.

4 Conclusions

In this paper, we propose a spatiotemporal DE learning method that is quite suit-
able for learning spatiotemporal DEs from spectral expansion data of the underlying
solution. Its main advantage is its applicability to learning both spatiotemporal PDEs
and integro-differential equations in unbounded domains, while matching the perfor-
mance of the most recent high-accuracy PDE learning methods applicable to only
bounded domains. Moreover, our proposed method has the potential to deal with
higher-dimensional problems if a proper hyperbolic cross space can be justified to
effectively reduce the dimensionality.

In future investigations, we plan to apply our spatiotemporal DE learningmethod to
many other inverse-type problems in physics with other appropriate basis functions in
unbounded domains, such as the mapped Jacobi functions that characterize algebraic
decay at infinity [36–38], the radial basis functions [39–41], or the Laguerre functions
on the semi-unbounded half lineR+ [42–44]. A potentially interesting application is to
learn the evolution of probability densities associated with anomalous diffusion [45] in
an unbounded domain, which is often described by fractional derivatives or convolu-
tional terms in the corresponding F[u; x, t] term.Finally, higher dimensional problems
remain challenging since the number of inputs (expansion coefficients) grows expo-
nentially with spatial dimension and the computational cost in may not be sufficiently
mitigated by the optimal hyperbolic cross space indices N , γ (see Eq. (27)). Two pos-
sible ways to address this issue are promising. First, prior knowledge on the observed
data can be used to reduce the dimension of the unknown dynamics to be learned, e.g.,
if we can determine an optimal hyperbolic cross space for the spectral expansion from
data, we can effectively reduce the number of basis functions needed. Second, deep
neural networks [46, 47], which can effectively handle a large number of inputs, could
be adopted when the number of spectral expansion coefficients becomes large. Explor-
ing these directions can further extend the applicability of our proposed spatiotemporal
DE learning method to higher-dimensional problems.

A Using Fourier neural operator to solve unbounded domain DEs

We shall show through a simple example that it is usually difficult to apply bounded
domain DE solve methods to reconstruct unbounded domain DEs even if we truncate
the unbounded domain into a bounded domain, because appropriate boundary con-
ditions must be provided. Here, we show how the FNO method fails to generalize
well on the testing set when solutions to a PDE with a wrong boundary condition are
inputted as training data. We wish to use the Fourier neural operator method to solve
the unbounded domain DE

ut = 1
4uxx , x ∈ R, t ∈ [0, 1]. (28)
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Table 3 Training and testing errors when using the FNO method and truncating the unbounded domain.
However, an incorrect boundary condition for the training set is imposed

Training error Testing error
MSE Mean relative L2 MSE Mean relative L2

Fourier 3.78e−5 ± 1.78e−5 6.09e−3 ± 1.47e−3 8.95e−4 ± 6.9e−5 3.07e−2 ± 1.2e−3

The error is significantly larger on the testing set than that on the training set because a different DE is
reconstructed from the training data

If one imposes the initial condition u(x, 0) = 10ξe−100x2 , then

u(x, t) = ξ√
0.01 + t

exp

(
− x2

0.01 + t

)
(29)

is the analytic solution to Eq. (28). For this problem, we will assume ξ ∼ U(1, 3
2 ).

Since the Fourier neural operator (FNO) method relies on spatial discretization and
grids, and cannot be directly applied to unbounded domain problems, we truncate
the unbounded domain. Suppose one is interested in the solution’s behavior for x ∈
[−1, 1]. One approach is to truncate the unbounded domain x ∈ R to [−1, 1] and
use the FNO method to reconstruct the solution u(x, t), x ∈ [−1, 1], t ∈ [0, 1] given
u(x, 0).However,we showhow improper boundary conditions of the truncated domain
can leads to large errors.

For example, we assume the training set satisfies the boundary condition u(x =
±1, t) = 0, which is not the correct boundary condition since it is inconsistent
with the ground truth solution. Therefore, we would not be solving the model in
Eq. (28). We generate the testing dataset using the correct initial condition u(x, 0) =
10ξ exp(−100x2), without boundary conditions. The results are given in Table 3.

From Table 3, the testing error is significantly larger than the training error because
a different DE (not Eq. (28)) is constructed from the training data, which is not the heat
equation we expect. Therefore, even if methods such FNO are efficient in bounded
domain DE reconstruction problems, directly using them to reconstruct unbounded
domain problems is not feasible if we cannot construct appropriate boundary condi-
tions.

B Dependence on neural network architecture

The neural network structure of the parameterized F[u; x, t,�] may impact learned
dynamics. To investigate how the neural network structure influences results, we use
neural networks with various configurations to learn the dynamics of Eq. (19) in
Example 2 in the noise-free limit. We set the learning rate η = 0.0002 and apply
networks with 2,3,5,8 intermediate layers, and 50, 80, 120, 200 neurons in each layer.

From Tables 4 and 5, we see that a shallower and wider neural network yields the
smallest error. Runtimes increase with the number of layers and the number of neurons
in each layer; however, when the number of layers is small, the increase in runtime
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Table 4 The relative L2 errors on the training set and testing set (in parentheses) for Example 2 when there
is no noise in both the training data and the testing data (σ = 0). λ = 0.1 in Eq. (21), and the training rate
is set to be η = 0.0005 for 5000 training epochs using SGD

Neurons Layers
2 3 5 8

50 0.0166 (0.0179) 0.0175 (0.0196) 0.0219 (0.0251) 0.0249 (0.0272)

80 0.0143 (0.0155) 0.0164 (0.0181) 0.0186 (0.0208) 0.0238 (0.0266)

120 0.0130 (0.0141) 0.0148 (0.0162) 0.0192 (0.0218) 0.0232 (0.0265)

200 0.0098 (0.0108) 0.0126 (0.0137) 0.0176 (0.0196) 0.0228 (0.0263)

Table 5 The training time (in seconds) for Example 2 when there is no noise in both the training data and
the testing data (σ = 0)

Neurons Layers
2 3 5 8

50 5306 ± 216 5447 ± 885 5780 ± 1027 6110 ± 1233

80 5204 ± 468 5415 ± 311 6291 ± 923 5717 ± 530

120 5860 ± 491 6286 ± 444 6114 ± 872 7098 ± 1141

200 5438 ± 522 6282 ± 672 6640 ± 741 9282 ± 217

λ = 0.1 in Eq. (21), and the training rate is set to be η = 0.0005 for 5000 training epochs using SGD.
Training was performed on a laptop with a 4-core Intel® i7-8550U CPU@ 1.80 GHz using Python 3.8.10,
Torch 1.12.1, and Torchdiffeq 0.2.3

with the number of neurons in each layer is not significant. Thus, for the best accuracy
and computational efficiency, we recommend a neural network with 2 hidden layers
and 200 neurons in each layer.

Regularization of the neural network can also affect the spectral neural PDE
learner’s ability to learn the dynamics or to reduce overfitting on the training set.
We set λ = 0.1 in the loss function Eq. (21) and the training rate η = 0.0002 and
train over 5000 epochs using SGD. We applied the ResNet and dropout techniques
with a neural network containing 2 intermediate layers, each with 200 neurons. For
the ResNet technique, we add the output of the first hidden layer to the output of the
second hidden layer as the new output of the second hidden layer. For the dropout
technique, each neuron in the second hidden layer is set to 0 with a probability Pd.
The results are presented in Table 6 which shows the relative L2 errors on the train-
ing set and testing set for Example 2 when there is no noise in both the training and
testing data (σ = 0). We apply regularization to the neural network, testing both the
ResNet and the dropout techniques with different dropout probabilities Pd. The errors
are averaged over 10 independent training processes. Applying the ResNet technique
leads to approximately a 20% decrease in the errors, whereas applying the dropout
technique does not reduce the training error nor the testing error.
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Table 6 Mean relative L2 errors and their standard deviations for the training and testing (in parentheses)
sets for a noiseless (σ = 0) Example 2

Method None ResNet

0.0101 ± 0.0006 (0.0112 ± 0.0005) 0.0083 ± 0.0005 (0.0099 ± 0.0004)

Pd Method

Dropout Dropout & ResNet

0.1 0.0146 ± 0.0006 (0.0153 ± 0.0007) 0.0125 ± 0.0004 (0.0139 ± 0.0004)

0.5 0.0314 ± 0.0021 (0.0327 ± 0.0023) 0.0275 ± 0.0018 (0.0286 ± 0.0021)

The ResNet and dropout techniques are applied to regularization the neural network used to parameterize
F[u; x, t] ≈ F[u; x, t,�]. For dropout, we experimented with different probabilities Pd of dropping out
the links between neurons. The errors are averaged over 10 independent training processes

C How data noise and penalty parameter � affect learning

We now investigate how different strengths σ and penalties λ affect the learn-
ing, including the dynamics of β and x0. For each strength of noise σ =
0, 0.0001, 0.001, 100 trajectories are generated for training and another 50 are gen-
erated for testing according to Eq. (23). The penalty parameter tested are λ =
10−2, 10−1.5, 10−1, 10−0.5. The mean relative errors on the training set and testing
set over 10 independent training processes are shown in Table 7 below and are plotted
in Fig. 2c.

D How parameter noise and number of training solutions affect
reconstruction

Here, we take different distributions of the three parameters ξ1, ξ2, ξ3 in Eq. (19).

We shall use ξ1 ∼ N (3,
σ 2
p
4 ), ξ2 ∼ 1

4U(−σp
4 ,

σp
4 ), ξ3 ∼ N (0,

σ 2
p
2 ) and vary σp =

0, 1
4 ,

1
2 , 1. For different σp, we train 10 independent models and the results are given

in Table 8.
The training and testing error is the same for models with σp = 0 in Table 8 because

if there is no uncertainty in the initial condition, all trajectories are the same. Though
giving larger training errors, models trained on training sets with larger variances in
the parameters of the initial condition could generalize better on testing sets where the
variances in the parameters of the initial condition is larger.

Next, we change the number of solutions in the training set for training the spa-
tiotemporal DE model and test the performance of the learned spatiotemporal DE
models with different training solutions on the testing set. We take the first 12, 25,
50, and 100 solutions of the 100-solution training set generated by Eq. (19) with
independently sampled ξ1 ∼ N (3, 1

4 ), ξ2 ∼ U(0, 1
2 ), ξ3 ∼ N (0, 1

2 ). Solutions in
the testing set (a total of 50 solutions) are also generated from Eq. (19) with inde-
pendently sampled ξ1 ∼ N (3, 1

4 ), ξ2 ∼ U(0, 1
2 ), ξ3 ∼ N (0, 1

2 ). The time points
for both the training set and the testing set are taken to be t j = 0.1 j, j = 0, ..., 9.
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Table 7 Mean relative L2 errors defined in Eq. (17) and standard deviations, averaged over 10 independent
processes, of the training and testing sets (in parentheses) with different λ and σ when learning the dynamics
of the noisy data Eq. (23)

λ σ

0 10−4 10−3

10−2 0.0243 ± 0.0055 0.0454 ± 0.0693 0.0585 ± 0.0196

(0.0244 ± 0.0058) (0.0478 ± 0.0632) (0.0632 ± 0.0207)

10−1.75 0.0209 ± 0.0068 0.0469 ± 0.0694 0.0572 ± 0.0278

(0.0210 ± 0.0069) (0.0506 ± 0.0767) (0.0602 ± 0.0203)

10−1.5 0.0129 ± 0.0017 0.0477 ± 0.0417 0.1074 ± 0.0656

(0.0133 ± 0.0020) (0.0495 ± 0.0499) (0.1117 ± 0.0675)

10−1.25 0.0115 ± 0.0014 0.0426 ± 0.0249 0.1178 ± 0.0097

(0.0116 ± 0.0014) (0.0451 ± 0.0291) (0.1231 ± 0.1023)

10−1 0.0103 ± 0.0007 0.0291 ± 0.0137 0.0626 ± 0.0097

(0.013 ± 0.0006) (0.0292 ± 0.0181) (0.0646 ± 0.0111)

10−0.75 0.0111 ± 0.0006 0.0284 ± 0.0005 0.0672 ± 0.0124

(0.0131 ± 0.0005) (0.0283 ± 0.0004) (0.0667 ± 0.0148)

10−0.5 0.0117 ± 0.0005 0.0272 ± 0.0004 0.0573 ± 0.0009

(0.0141 ± 0.0004) (0.0271 ± 0.0006) (0.0563 ± 0.0006)

An increase in σ typically results in higher errors. For small σ , selecting an intermediate λ around 10−1.5

balances learning of the adaptive spectral parameters (scaling factors β and displacements x0) with that of
coefficients ci (t) and leads to a minimal relative L2 error. For large σ , choosing a larger λ = 10−0.5 to
better fit the dynamics of β and x0 leads to smaller errors

Table 8 Training and testing errors of trained models on different testing sets with different variances in
the initial condition parameters, averaged over ten trained models

Training σp 0 1/4 1/2 1

Training error 4.43e−3±9.9e−4 1.25e−2±5e−4 1.64e−2±8e−3 1.62e−2±1.1e−3

Training σp testing σp

0 1/4 1/2 1

0 4.43e−3±9.9e−4 2.81e−2±3.2e−3 3.88e−2±3.3e−3 5.64e−2±3.0e−3
1
4 1.11e−2±7e−4 1.28e−2±6e−4 2.33e−2±1.4e−3 4.55e−2±2.4e−3
1
2 1.24e−2±1.0e−3 1.07e−2±6e−4 1.65e−2±9e−4 2.95e−2±1.5e−3

1 1.24e−2±1.1e−3 9.22e−3± 9e−4 1.03e−2±8e−4 1.68e−2±1.2e−3

A neural network with two hidden layers, 200 neurons in each layer, and the ELU
activation function is used for training. The results shown in Table 9 are averaged over
10 independent training process using SGD, each containing 2000 epochs and using
a learning rate η = 0.0002. Equation (21) is minimized for training and the penalty
parameter λ = 0.1.
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Table 9 Comparison of the learned DE models with different numbers of training samples for Example 2.
When the number of solutions in the training set increases, the relative L2 errors of the predicted solutions
generated by the learned DE model are smaller on both the training set and the testing set

Training samples Training error Testing error
Mean relative L2 Mean relative L2

12 0.142 ± 6.240e−04 0.0239 ± 1.469e−03

25 0.0140 ± 5.234e−04 0.0167 ± 8.549e−04

50 0.0106 ± 6.202e−04 0.0122 ± 5.613e−04

100 0.0081 ± 4.160e−04 0.0097 ± 4.371e−04

Table 10 The L2 errors (Eq. (17)) and the total number of basis functions used to learn the evolution of
the Gaussian wave packet (Eq. (24)) are listed for different N and γ

γ N
5 9 14

−∞ 36, 0.0180 (0.0164) 100, 0.0204, (0.0194) 225, 0.0110, (0.0105)

−1 23, 0.0342, (0.0302) 51, 0.0185, (0.0166) 92, 0.0102, (0.0093)

0 21, 0.0414, (0.0363) 42, 0.0230, (0.0210) 70, 0.0309, (0.0279)
1
2 20, 0.0459, (0.0409) 37, 0.0413, (0.0365) 55, 0.0336, (0.0295)

The bold number in each cell represents the number of basis functions used, which is also sensitive to the
hyperbolicity γ . The numbers in parentheses are the errors on the testing set

E Varying hyperbolic cross-space parametersN and �

If the spectral expansion order N is sufficiently large, using a hyperbolic cross space
Eq. (27) can effectively reduce the required number of basis functions while main-
taining accuracy. In our experiments, we set N = 5, 9, 14 and γ = −∞ (full tensor
product),−1, 0, 1

2 .We train the network for 1000 epochs using SGDMwith a learning
rate η = 0.001, momentum = 0.9, andweight decay = 0.005. The penalty coefficient
in Eq. (21) is λ = 0.02.

From Table 10, we see that a hyperbolic space with N = 14, γ = −1 leads to
minimal errors on the testing set. Furthermore, the number of basis functions for the
hyperbolic space with N = 15, γ = −1 is smaller than the full tensor product space
for N = 9, 14 when γ = −∞, so the hyperbolic space with N = 14, γ = −1
could be close to the most appropriate choice. We shall also use the saliency map to
investigate the role of different frequencies and plot | ∂Loss

∂ci,�(0)
| for different N and γ

in Fig. 4, where the loss function is Eq. (21). Even for different choices of N , γ , the
changes in frequencies on the lower-left part of the saliency map (corresponding to
a moderate γ and a large N ) have the largest impact on the loss. This “resolution-
invariance” justifies our choices that the proper hyperbolic space should have a larger
N but a moderate γ > ∞ so that the total number of inputs or outputs are reduced to
boost efficiency in higher-dimensional problems while accuracy is maintained.

The errors in Table 10 can be larger on the training set than on the testing set,
especially at larger training set errors (e.g., for N = 5). This arises because the largest
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Fig. 4 Saliency maps of the absolute value of derivatives of the relative L2 loss w.r.t. {ci,�}. Here, N =
5, 9, 14 and γ = −∞, −1, 0, 1

2 in Eq. (27). The loss function is always most sensitive to frequencies ci,�
on the lower left of the saliency maps. Such a “resolution-invariance” indicates that having a larger N but a
moderate γ > −∞ to include the frequencies in the lower-left part of this saliency map leads to a balance
between efficiency and accuracy

sampling time among the training samples is t = 1 while it is less than 1 for testing
samples. If the trained dynamics F(Ũ ; t,�) does not approximate the true dynamics
F(Ũ ; t) in Eq. (10) well, the error of the training samples with time t = 1 will be
larger than that of testing samples due to error accumulation.

F Comparison with the s-PINNmethod

To make a comparison with the s-PINN method proposed in [18], we consider the
following inverse-type problem of reconstructing the unknown potential f (x, t) in

ut = uxx + f (x, t), (30)

by approximating f (x, t) ≈ f̂ := F[u; x, t,�] − uxx . The function u is taken to be

u(x, t) = ξ√
t + 1

exp

(
− x2

4(t + 1)

)
+ sin(x)√

t + 1
exp

(
− x2

4(t + 1)

)
(31)
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Fig. 5 Comparison of the relative L2 error in the potential in Eq. (30) learned from our proposed spatiotem-
poral DE learner and from the s-PINN method. Our spectral neural DE learner achieved an average relative
L2 error of 0.1, while the s-PINN method, designed to input the exact form of the RHS of Eq. (30) with
only one unknown potential, achieved better accuracy with an average relative L2 error of about 0.01

where ξ ∼ U( 12 , 1) is i.i.d. sampled for different trajectories. Therefore, the true
potential in Eq. (30) is

f (x, t) =
[
(t + 1) sin(x) + x cos(x)

]
(t + 1)−3/2 exp

(
− x2

4(t + 1)

)
, (32)

which is independent of u(x, t). We generate 100 solutions um(x, ti ), m = 1, ..., 100
as the training set to learn the unknown potential with ti = i�t,�t = 0.1, i =
0, ..., 10. In the s-PINN method, since only t is inputted, only one reconstructed f̂
(which is the same for all trajectories) is outputted in the form of a spectral expansion.
However, in our spatiotemporal DE learning method, f (x, t) ≈ f̂ = F[u; x, t,�] −
uxx will be different for different inputted u giving rise to a changing error along the

time horizon. The mean and variance of the relative L2 error ‖ f̂ − f ‖2
‖ f ‖2 is plotted in

Fig. 5.
When all but the potential on the RHS of Eq. (1) is known, s-PINN is preferable

because more information is inputted as part of the loss function in [18]. Nevertheless,
our spatiotemporal DE learner can still achieve a relative L2 error ∼ 0.1, indicating
that without any prior information it can still reconstruct the unknown source term
with acceptable accuracy. However, the accuracy of our spatiotemporal DE learner
for reconstructing the potential f deteriorates as the time horizon t = j�t increases.
Since errors accumulate, minimizing Eq. (21) requires more accurate reconstruction
of the dynamics (RHS of Eq. (1)) at earlier times than at later times.
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