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Abstract—Noisy labels are often encountered in datasets, but learning with them is challenging. Although natural discrepancies
between clean and mislabeled samples in a noisy category exist, most techniques in this field still gather them indiscriminately, which
leads to their performances being partially robust. In this paper, we reveal both empirically and theoretically that the learning
robustness can be improved by assuming deep features with the same labels follow a student distribution, resulting in a more intuitive
method called student loss. By embedding the student distribution and exploiting the sharpness of its curve, our method is naturally
data-selective. This ability makes clean samples aggregate tightly in the center, while mislabeled samples scatter, even if they share
the same label. Additionally, we employ the metric learning strategy and develop a large-margin student (LT) loss for better capability. It
should be noted that our approach is the first work that adopts the prior probability assumption in feature representation to decrease
the contributions of mislabeled samples. This strategy can enhance various losses to join the student loss family, even if they have
been robust losses. Experiments demonstrate that our approach is more effective in inaccurate supervision. Enhanced LT losses
significantly outperform various state-of-the-art methods in most cases. Even huge improvements of over 50% can be obtained under
certain conditions. An implementation of the main codes is available at https://github.com/Zhangshuojackpot/Student-Loss.

Index Terms—Learning with Noisy label, Robust Loss Function, Deep Learning
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1 INTRODUCTION

R ECENT developments in supervised deep neural networks
(DNNs) have considerably increased the performance of

state-of-the-art (SOTA) models in various applications. These
successes are highly dependent on the emergence of large-scale
datasets that have been carefully labeled. Nevertheless, labeling
precise annotations for training is time-consuming and prone
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Fig. 1. The comparison between employing the traditional loss and our
student loss in inaccurate supervision. The traditional loss attempts to
gather clean and mislabeled samples and obtains messy categorical
clusters. However, since we introduce a long-tail student distribution to
feature representation, our student loss obtains distinguishable categor-
ical clusters even if mislabeled samples exist.

to mistakes (even high-quality datasets, such as ImageNet [1],
include erroneous labels [2]). Therefore, inaccurate supervision,
particularly in learning with noisy labels, is a critical issue in
practical deep learning tasks [3]. Numerous approaches have been
suggested sequentially to address this issue, including: 1) Robust
Architecture [4], [5], [6], [7], [8], [9], [10], [11], in which some
novel structures of DNNs are designed to limit the mislabeled
samples; 2) Robust Regularization [12], [13], [14], [15], [16],
[17], in which some additional constraints should be met during
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convergence; 3) Sample Selection [18], [19], [20], [21], [22], [23],
[24], [25], [26], in which clean samples are picked up as much
as possible for training. 4) Robust Loss Design [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], in which some new robust loss functions are proposed to
learn with noisy labels. In comparison to alternative techniques
that may suffer from imprecise noise estimates or complicated
training procedures, applying the robust loss is simpler and more
effective, so that is also the main focus of this paper.

Generally speaking, a discriminative loss is encouraged by
congregating the samples with the same labels, which can be
achieved by evaluating the sample similarity on a specific metric
(such as cosine distance, Mahalanobis distance, etc.). The angle
between the feature vector and the learned categorical weight
vector in the last layer is usually chosen as this metric. However,
this kind of thinking is largely valid but falls short when the label
is inaccurate. As shown in Fig. 1, if we apply a traditional loss
to learn a noisy category for classification, not only does the
angle between the clean sample and the learned weight vector
decrease, but that between the mislabeled sample and the learned
weight vector also decreases. It generates discrepancies and finally
leads to an inseparable categorical cluster. To overcome the defects
of losses in inaccurate supervision, researchers have made many
attempts: [27] compared Categorical Cross-Entropy (CCE) with
Mean Absolute Error (MAE) loss and concluded that MAE is
more noise-resistant due to its data-equal characteristic. This result
prompted [28] to propose Generalized Cross-Entropy (GCE),
which can be seen as a combination of CCE and MAE. Further-
more, [29] offered the Negative Learning for Noisy Label (NLNL)
strategy, which introduced a three-stage pipeline for filtering the
noisy data. [30] proposed Symmetric Cross-Entropy (SCE), which
was a robust variant of CCE that combined CCE with Reverse
Cross-Entropy (RCE). Extensively, [31] categorized current losses
as “Active” or “Passive” and proposed Active Passive Loss (APL).
This technique combines active losses that induce overfitting (such
as CCE) with a passive loss that causes underfitting (such as MAE)
to achieve optimal performance. Meanwhile, [32] employed the
curriculum loss (CL), which is a surrogate loss of the 0–1 loss
function and provided a tight upper bound that can easily be
extended to multi-class classification. Recently, [33] reported the
Joint Negative and Positive Learning (JNPL) and claimed it can
be regarded as an improved approach of NLNL. [34] practiced the
Jensen-Shannon Divergence (JS) loss and its generalized version,
which trained the samples by Jensen-Shannon Divergence.

Despite numerous efforts, these SOTA methods do not get
rid of the thinking stereotype that still aggregates samples with
the same labels as much as possible, although some mislabeled
samples exist. It also leads to them being partially robust. In fact,
natural discrepancies between clean and mislabeled samples of the
same label hinder the traditional attempt but trigger us to achieve
unsupervised distinctions with prior assumptions. Specifically, by
considering deep features under the same label to follow a long-tail
student distribution in the penultimate hidden space, in this paper,
we propose a more intuitive and effective method called student
loss. As shown in Fig. 1, since the curve of the student distribution
is extremely steep in a particular region, the edge probabilities
(P1 and P2 in Fig. 1) are reserved. It allows our approach to
have a naturally data-selective capability and can be applied to
fight against the inconsistency produced by the labeling errors.
Additionally, we introduce a hyperparameter to encourage wider
inter-class distance and further propose a large-margin student

(LT) loss. Following our approach, intra-class clean samples can
aggregate tightly in the center, while mislabeled samples scatter
at the edge, achieving an unsupervised clean/mislabeled sample
partition. It should be noted that the student loss is the first
research which introduces an assumption of prior probability
distribution in the hidden space to improve the performance
in inaccurate supervision. Moreover, various losses, even SOTA
robust losses, can be further strengthened by our method. Our
major contributions can be summarized as follows:

• We provide an insight into the probability distribution of
deep features and not only empirically but also theoreti-
cally point out that the robustness of learning with noisy
labels can be improved by assuming the samples with the
same label to follow the student distribution.

• Based on this perspective, we propose the student loss.
It is data-selective by embedding the student distribution,
causing clean intra-class samples to concentrate neatly
while mislabeled samples disperse, even if their labels are
uniform. Furthermore, we employ some strategies from
metric learning and develop its large-margin version.

• Various losses can be enhanced by our approach. Experi-
ments on both benchmark and real-world datasets demon-
strate that LT losses can achieve better performances than
SOTA approaches in inaccurate supervision.

2 RELATED WORK

We briefly review existing approaches for robust learning with
noisy labels.
1) Robust Architecture. These approaches aim to employ a noise
adaptation layer on top of a DNN to learn the label transition
process or create a dedicated architecture to support more varied
types of label noise. As such, Webly learning [4] first taught the
underlying DNN to retrieve only simple instances. The confusion
matrices of all training instances were utilized as the initial weight
W of the noise adaptation layer. The noise model [5] set W to
an identity matrix and added a regularizer to diffuse W during
DNN training. In [6], Dropout regularization was applied to the
adaptation layer, whose output was normalized by softmax to
implicitly diffuse W . Similarly, the s-model [7] was proposed for
the dropout noise model but without dropout. The c-model [7] was
regarded as an extension of the s-model, which was more realistic
than the symmetric and asymmetric noises. The Noisy labels
Neural-Network (NLNN) algorithm [8] applied the Expectation-
Maximization (EM) method to execute the E-step to estimate
the noise transition matrix and the M-step to backpropagate the
DNN. Additionally, several research projects built specific noise-
handling structures. Masking [9] was a human-aided method
of communicating the human understanding of erroneous label
transitions. The faulty transition explored by humans was used to
confine noise modeling. On the other hand, to anticipate the noise
type and label transition probability, probabilistic noise modeling
[10] controlled two separate networks. The contrastive-additive
noise network [11] was recently presented to compensate for
inaccurately estimated label transition probabilities. This network
introduced the novel notion of quality embedding to characterize
the reliability of noisy labels.
2) Robust Regularization. These approaches aim to prevent a
DNN from overfitting false-labeled instances by creating some
training restrictions. The primary benefit of this group is that it can
easily adapt to new contexts by incorporating very few changes.
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As such, Bilevel learning [12] offered a different tactic by present-
ing a bilevel optimization strategy to regularize the overfitting of a
model using a clean validation dataset. This approach varied from
the standard one in that the regularization constraint was itself
an optimization issue. Mini-batch-level weight adjustments and
validation-set error minimization were used to rein in overfitting.
Equally, in [13], it was assumed that several annotators existed,
and a regularized EM-based technique was introduced to model
the label transition probability. Besides, fine-tuning a pretrained
model yielded a large gain in resilience compared with models
trained from scratch [14]. This was because the universal represen-
tations learned during pretraining prevented the model parameters
from being updated in the incorrect direction by noisy labels.
For adapting to clean and noisy labels, respectively, robust early
learning [15] categorized factors as either crucial or noncritical,
and only noncritical updates were penalized. To increase resistance
to label noise, PHuber [16] suggested a composite loss-based gra-
dient clipping as an alternative to traditional gradient clipping. By
randomly labeling the open-set instances, ODLN [17] employed
the open-set auxiliary data and eliminated the overfitting of noisy
labels.
3) Sample Selection. These approaches aim to isolate the most
likely clean samples for optimization. As such, [18] offered
MentorNet, which was considered a curriculum-based approach
for learning the most likely correct samples. Decouple [19] recom-
mended uncoupling update frequency from update methodology.
Hence, two DNNs were kept in parallel and only modified when
the examples were judged to have a disagreement. Similarly, in
Co-teaching [20] and Co-teaching+ [21], two DNNs were kept.
One DNN chose a predetermined number of low-loss samples
and input them to the other DNN for training. Co-teaching+
added decoupling disagreement to co-teaching. INCV [22] divided
noisy training data at random and then applied cross validation to
classify clean examples while getting rid of mislabeled examples
in training. JoCoR [23] practiced co-regularization to lower the
diversity between two DNNs, bringing together their predictions.
DivideMix [24] employed two-component and one-dimensional
Gaussian mixture models to fit the loss values of samples and
turned noisy samples into labeled and unlabeled sets. Then, a
semi-supervised technique called MixMatch [25] was introduced
for classification. RoCL [26] similarly followed a two-stage learn-
ing strategy: first, supervised training on selected clean examples,
and second, semi-supervised learning on relabeled noisy samples
under self-supervision. It computed the exponential moving aver-
age of training loss for selection and relabeling. Although learning
through sample selection is effective in most cases, it produces
a large amount of accumulated error when there are numerous
ambiguous labels in the training data.
4) Robust Loss Design. These approaches aim to adjust the loss
value according to the confidence of a given loss (or label) by some
strategies or design a new loss function for inaccurate supervision.
Robust losses typically include a constraint to penalize predictions
with a low degree of confidence that are most likely caused by
noisy samples. This subject is the most pertinent to our work.
Since some robust losses have been discussed in Sec. 1, here
we only report some loss adjustment techniques. As such, it
can be categorized into three groups: 1) loss correction. This
approach multiplied the predicted label transition probability to
adjust the loss. Backward [35] first made an approximation of the
noise transition matrix by employing the softmax output of the
DNN trained without loss correction. Subsequently, it refreshed

the DNN with a revised loss based on the estimated matrix.
Forward [35] combined the softmax output of a DNN before
applying the loss function. Recently, T-revision [36] offered a
technique that inferred the transition matrix without anchor points.
To circumvent directly estimating the noisy class posterior, dual
T [37] factorized the matrix into the product of two easy-to-
estimate matrices. 2) loss reweighting. This approach gave smaller
weights to the mislabeled examples and greater weights to the
clean examples. Active bias [38] prioritized uncertain examples
with inconsistent label predictions by applying their prediction
variances as training weights. DualGraph [39] practiced graph
neural networks, reweighted the examples by the structural rela-
tions among labels, and eliminated the abnormal noise examples.
3) label refurbishment. This approach repaired a noisy label to
avoid overfitting incorrect labels. Bootstrapping [40] was the first
method that provided the concept of label refurbishment to update
the label of training examples. It built a more coherent network
that improved its ability to evaluate the consistency of noisy labels
by the label confidence via cross validation. D2L [41] developed
a DNN with a dimensionality-driven learning strategy to prevent
overfitting to the false label. SELFIE [42] proposed a paradigm
of refurbishable examples that can be revised with high precision.
The main notion was to regard examples with consistent label
predictions as refurbishable because of the learner’s perceptual
constancy.

3 STUDENT LOSS

3.1 Preliminaries
Assuming a K-class classification task, a posterior probability of
true class z ∈ [1,K] can be obtained by the softmax function as

p(z|xi) =
efz(xi)∑K
k=1 e

fk(xi)
, (1)

where xi represents the deep feature vector of the i-th sample in
the training set. If xi is the input vector of the last fully connected
layer, an affinity score fk(xi) generates to a linear transform
written as

fk(xi) = wT
k xi + bk, (2)

where wk and bk represent weights and bias corresponding to k-
th class. Then if we employ CCE for training, the loss L can be
written as

L = −
K∑

k=1

tk log(
efk(xi)∑K
j=1 e

fj(xi)
), (3)

where tk represents the k-th value of the one-hot label.

3.2 Robust Student Loss
Generally, let p(xi) represent the probability that sample xi

occurs, and it can be written as

p(xi) =
K∑

k=1

p(xi|k)p(k) = ∆x
K∑

k=1

fk
X (xi|θ) p(k), (4)

where fk
X (xi|θ) is the value of the specific probability density

function of k-th class at point xi. θ is the parameter of the
distribution function. p(k) represents the prior probability of k-th
class. After that, the posterior probability p(z|xi) can be written
as

p(z|xi) =
fz
X (xi|θ) p(z)∑K

k=1 f
k
X (xi|θ) p(k)

. (5)
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In [43], the authors proposed the GM loss by assuming f to a
Gaussian distribution function and discovered that it performs well
on the clean dataset. However, the Gaussian function makes nearly
all of the samples compulsorily distribute within three times the
variance surrounding the mean, which is defective in inaccurate
supervision. In order to obtain a more tolerant representation, we
employ a long-tail student distribution to exhibit the deep features.
Under this line, the f can generate into

fz
X (xi|θ) = T (xi|nz, µz,Σz)

=
Γ(nz+l

2 )

Γ(nz

2 )n
l
2
z π

l
2

|Σ|− 1
2 [1 +

D(xi)

nz
]−(nz+l

2 ),
(6)

D(xi) = (xi − µz)
TΣ−1(xi − µz), (7)

where n, µ and Σ represent the freedom degree, the mean, and
the covariance matrix of each class, respectively. They are three
trainable parameters introduced because of the student distribution
assumption. l represents the number of feature dimensions, and D
represents the Mahalanobis distance between deep features.

For the calculability and simplicity of optimization, we rewrite
Eq. (6) and Eq. (7) as follows: 1) We limit x and µ to make them
lie on the ℓ2-norm ball. 2) We introduce a hyperparameter φ to
confine the lower bound of the freedom degree and ensure that the
probability at curve edge is not excessively large. In the paper, it
is set to 0.1. 3) We eliminate the constant π

l
2 and replace l with

ln l to ensure the computed correction of extreme high-dimension
inputs. 4) We assume Σ is the identity matrix Λ and the prior
probability p(k) = 1/K. As such, the revised class probability
function f̂ and the posterior probability pt(z|xi) can be written
as:

f̂z
X (xi|θ) = T

′
(xi|nz, µz,Λz)

=
Γ( n̂+ln l

2 )

Γ( n̂2 )n̂
ln l
2

[1 +
D̂(xi)

n̂
]−( n̂+ln l

2 ),
(8)

n̂ = |nz|+ φ, (9)

D̂(xi) = (
xi

∥xi∥2
− µz

∥µz∥2
)T (

xi

∥xi∥2
− µz

∥µz∥2
), (10)

pt(z|xi) =
f̂z
X (xi|θ)∑K

k=1 f̂
k
X (xi|θ)

. (11)

According to the above distribution embedding strategy, we
propose our student loss Lt. Overall, it includes two parts:

Lt = Ltds + λLC . (12)

The first term Ltds represents a discriminative loss. Various losses
can be further employed as Ltds. The second term LC represents
the center loss [44], which can be written as

LC = ||xi − µz||22. (13)

Attributed to LC , the student loss can detect the mislabeled
samples. λ represents a weighting hyperparameter.

In other words, our strategy is universal. Many popular losses,
even the SOTA robust losses, can be strengthened to join the
student loss family. For example, a student loss Ltcce based on
CCE can be written as

Ltcce = −
K∑

k=1

tk log(pt(k|xi)) + λLC . (14)

A student loss Ltsce based on SCE can be written as

Ltsce =− α ·
K∑

k=1

tk log(pt(k|xi))− β ·
K∑

k=1

pt(k|xi) log(tk)

+ λLC ,
(15)

where α and β are the weighting hyperparameters.
Furthermore, from a metric learning standpoint, the generaliza-

tion of a deep model can be enhanced by increasing the inter-class
margin [45], [46]. Similar to [43], an extra hyperparameter ϵ is
introduced to restrain D̂. Accordingly, f̂ can generate into

ĝzX (xi|θ) =
Γ( n̂+ln l

2 )

Γ( n̂2 )n̂
ln l
2

[1 +
D̂(xi) · (1 + ϵ)

n̂
]−( n̂+ln l

2 ). (16)

We replace f̂ in Sec. 3.2 with ĝ, so that further develop their
large-margin versions.

3.3 Theoretical Illustration

Proposition 1. When the freedom degree n converges to a positive
infinity, the unsimplified student loss degenerates into the GM loss.

It is commonly accepted that the student distribution
T (xi|nzi , µzi ,Σzi) becomes the Gaussian distribution
N (xi|µzi ,Σzi) when n → +∞. In other words, the GM
loss is a specific case of the unsimplified student loss that we
propose. Strikingly, the introduced n is employed to change the
sharpness of the curve adaptively, making it indispensable in
inaccurate supervision.

Proposition 2. When the sample number converges to a positive
infinity, the accuracy (Acc) of k-th class can be calculated as

Acc =

∫
· · ·

∫
︸ ︷︷ ︸

D

T ′
(x|nk, µk,Λk)dA

∫
· · ·

∫
︸ ︷︷ ︸

D

T ′(x|nk, µk,Λk)dx
, (17)

where A represents the area enclosed by the decision boundary of
k-th class. D represents the dimension of deep features.

Note that, we assume f̂k
X (x|θ) as T ′

(x|nk, µk,Λk) and
deduce the posterior probability p(k|x) by the Bayesian formula.
As a result, Acc satisfies the rule of the minimal Bayesian error
rate. It reveals that when the number of training samples is large
enough, an theoretical accuracy of deep learning in which a
statistical model embeds can be derived.

Proposition 3. When applying the student loss, the gradients pro-
vided by the mislabeled samples in the convergence are relatively
limited.

This proposition explains the effect of our approach from a
gradient perspective. According to [47], assuming xm represents
a mislabeled sample and employ CCE to train a network F , its
gradient ∇Lcce(ΘF ) can be written as

∇Lcce(ΘF ) = (pxm
− yxm

)︸ ︷︷ ︸
scale term

·∇Fxm
(ΘF ), (18)

where pxm and yxm denote the prediction and the label of xm,
respectively. Θ denotes the trainable parameters in F . As can be
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seen, pxm
−yxm

is a significant term in the inaccurate supervision.
This part represents a small value when the label is correct but
a large one when it is incorrect. Accordingly, the mislabeled
sample provides a much larger gradient than the clean sample
accompanied by the convergence process, which leads to poor
performance.

In contrast, while employing the student loss (taking Ltcce

as an example), F (xm) can further generate as F ′(T (xm)). F ′

denotes the projection before the student distribution embedding.
As such, its gradient ∇Ltcce(ΘF ′) can be written as:

∇Ltcce(ΘF ′) =
Γ( n̂+ln l

2 )

Γ( n̂2 ) · n̂
ln l
2

· (− n̂+ ln l

2
) · (pxm

− yxm
)

· (1 + D̂xm

n̂
)−( n̂+ln l

2 +1) · 1
n̂
· ∇D̂(ΘF ′)

= −H(n̂) · pxm
− yxm

(D̂xm + n̂)
n̂+ln l

2 +1︸ ︷︷ ︸
adaptive scale term

·∇D̂(ΘF ′),

(19)

H(n̂) = n̂
n̂+ln l

2 +1 · Γ(n̂+ ln l)(n̂+ ln l)

2 · Γ( n̂2 ) · n̂
ln l
2 +1

, (20)

We observe that pxm − yxm is limited by D̂xm in the
student distribution. The mislabeled sample xm also produce
a larger D̂xm

, making pxm−yxm

(D̂xm+n̂)
n̂+ln l

2
+1

change to be a small

value. Furthermore, the term of H(n̂) generates an adaptive scale.
Shifting n̂ can dynamically adjust the gradient, providing a more
tolerant convergence. Obviously, this proposition theoretically
demonstrates the effectiveness of our approach from a gradient
weighting perspective. It is also consistent with our motivation for
introducing the long tail of the student distribution to hold the
mislabeled samples.

3.4 Discussions
Why Student Distribution? It is commonly documented that
loss functions encourage gathering naturally similar samples while
dispersing dissimilar samples. Usually, traditional losses achieve
it by learning a categorical template (weight vectors) and directly
minimizing the cosine distance between the sample and the
template. Since categorical information can only be transmitted
by the label, mislabeled samples produce intra-class inconsistency
and finally result in the messy cluster shown in Fig. 1. In contrast
to previous approaches, we rethink inaccurate supervision from the
perspective of probability distribution and define the deep features
of one noisy category to follow the student distribution. By this
assumption, the prior huge disparities in the distribution can
tolerate this inconsistency. In other words, the long-tail property
of the student distribution can “absorb” most mislabeled samples
and make different categories recognizable, even if they share the
same label. Therefore, our student loss can minimize intervals
among the intra-class clean samples under inaccurate supervision
tasks.
Why Attach LC? According to the analysis in Sec. 3.2, we can
design Ltds with student distribution embedding to resist the label
noise. As for LC in the formulation, three impacts are considered:
1) Similar to [43], it acts as a likelihood regularization term to
limit the distance between the outlier and the class centroid µz .
2) Since LC is directly minimized during the training procedure,

TABLE 1
Test accuracy (%) of the GM loss and our LT loss on benchmark

datasets with various rates of symmetric noisy labels. The best results
are in bold.

Methods
Datasets

MNIST CIFAR10
η = 0.2 η = 0.6 η = 0.2 η = 0.6

CCE 90.24 49.44 77.93 41.11
GM Loss (Σ = Λ) [43] 94.02 73.26 77.92 47.18

GM Loss [43] 90.71 58.87 78.23 70.02
LT Loss 98.92 97.91 90.20 80.06

Fig. 2. The differences between the GM loss and our LT loss in inaccu-
rate supervision. Samples with the same colors have identical labels,
and samples with the same shapes belong to identical categories.
Our LT loss has steeper curves of categorical distributions and higher
probabilities at their edges, which makes it more effective in this field.

it can assist the classification and accelerate the convergence. 3)
Last but most importantly, as the mislabeled sample is actually
closer to the centroid of its natural category, LC of the clean
sample and that of the mislabeled sample are extremely distinctive,
which can be utilized to identify and even revise incorrect labels.
In our experiments, we empirically demonstrate that LC plays a
significant role and is indispensable (see Secs. 4.1 and 4.4).
Generalization of LT Loss. The traditional thinking to robust loss
design is to generate a specific loss for addressing the problems in
learning with noisy labels. Different from it, we make assumptions
about the feature representation and directly employ the prior
distribution to construct the loss function. This strategy results in
many losses that were previously sensitive to label noise becoming
robust. In other words, we not only propose a robust loss in this
paper, but more importantly, we propose a paradigm to make
common losses robust. We have demonstrated that our approach
can enhance many losses, even robust losses, to suppress label
noise (see Sec. 4.2). The generalization is regarded as one of
evidences for the advancement of our method.
GM Loss versus LT Loss. The GM loss [43] and the LT loss both
consider feature representation from a probability perspective, and
the LT loss draws on the ideas of the GM loss in some ways.
Nonetheless, they have the following distinctions: 1) According
to Proposition 1 in Sec. 3.3, the GM loss is a particular case of
unsimplified LT loss. Since Σ and n are both the parameters for
adjusting the tightness of samples, the modification, preserving
n and simplifying Σ to the identity matrix, has no effect on this
generalization. Accordingly, our LT loss is more universal than
the GM loss. 2) Since we regulate the norms of the features and
the means in our approach, the LT loss still metrics the cosine
distance for classification in the penultimate feature space, while
the GM loss metrics the Mahalanobis distance. 3) Notably, as
the term of Dxm

in the GM loss also hinders the increase of
pxm

− yxm
when training with mislabeled samples, this method

can also improve performance to a certain extent. Nevertheless, its
gradient is not flexible, making it not as efficient as our strategy. In
other words, the smooth Gaussian function makes noisy samples
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(a) CCE, η = 0 (Clean) (b) CCE, η = 0.2 (c) CCE, η = 0.4 (d) CCE, η = 0.6 (e) CCE, η = 0.8

(f) LT-CCE, η = 0 (Clean) (g) LT-CCE, η = 0.2 (h) LT-CCE, η = 0.4 (i) LT-CCE, η = 0.6 (j) LT-CCE, η = 0.8

Fig. 3. Feature representations using CCE and LT-CCE under the various noise rates η of symmetric noise. Our approach can harvest more robust
clusters under η > 0

(a) CCE, η = 0.2 (b) CCE, η = 0.4 (c) CCE, η = 0.6 (d) CCE, η = 0.8

(e) LT-CCE, η = 0.2 (f) LT-CCE, η = 0.4 (g) LT-CCE, η = 0.6 (h) LT-CCE, η = 0.8

Fig. 4. Feature representations of noisy category ’1’ in MNIST using CCE and LT-CCE under the various noise rates η of symmetric noise. It is
obvious that LT-CCE can distinguish between clean samples and mislabeled samples even if they share the same label.

dispersed within three times the variance surrounding the mean,
leading to chaos within the cluster. On the contrary, the student
function keeps some probabilities at the edge and maintains the
sharpness of the curve, making it data-selective (shown in Fig. 2).
Our experimental comparisons also support our analysis (shown
in Tab. 1). To sum up, the LT loss clearly outperforms the GM loss
in terms of learning from inaccurate supervision.

4 EXPERIMENTS

In this section, we first discuss various empirical understandings
of our LT losses using CCE and LT-CCE as examples and compare
the performance of our approach against noisy labels to other
SOTA methods. To discover the influence of the hyperparameters ϵ

and λ in the LT loss, some ablation studies are also conducted. Our
experiments are supported by six datasets, including MNIST [48],
CIFAR-10 [49], CIFAR-100 [49] and three real-world datasets
ANIMAL-10N [42], WebVision [50] and ImageNet [3].
Noise Setting: We analyze both symmetric and asymmetric noise.
Symmetric noise is generated by uniformly translating a true label
to a random label with probability η, and asymmetric noise is
generated using rules that convert a true label to a given label with
probability η. In our experiments, we produce asymmetric noise
followed [28], [30], [31] in which translating 2 → 7, 3 → 8, 5 ↔ 6
and 7 → 1 for MNIST, and TRUCK → AUTOMOBILE, BIRD →
AIRPLANE, DEER → HORSE, CAT ↔ DOG for CIFAR-10. As
for CIFAR100, we first group the 100 classes into 20 super-classes,
with each containing 5 sub-classes, and then translate each class
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(a) Training set (b) Test set

Fig. 5. The accuracy curves during training. (a) shows the accuracy of
the training set under various noise rates accompanied by the global
step increases, and (b) shows the accuracy of the test set. As can be
seen, our strategy can effectively overcome the overfitting caused by the
label error.

(a) η = 0.2 (b) η = 0.4

(c) η = 0.6 (d) η = 0.8

Fig. 6. The densities of clean and mislabeled samples on LC under
various noise rates η of symmetric noise. We can observe that the dis-
tribution of clean samples and that of mislabeled samples are different,
which reflects our approach can automatically detect even relabel the
mislabeled sample by LC .

within the same super-class into the next in a circular fashion. For
the empirical interpretations, symmetric noise with η ∈ [0.2, 0.8]
is selected to test. For the robustness evaluation, both symmetric
noise with η ∈ [0.2, 0.8] and asymmetric noise with η ∈ [0.2, 0.4]
are selected to test.

4.1 Empirical Understandings

Experimental Setup: We build a toy model with two convo-
lutional layers and two fully connected layers and judge some
empirical understandings on MNIST. The experiment consists of

two parts. First, we explore the feature representation of the LT
loss in the penultimate layer. The dimension of the penultimate
output is set to two for better visualization. Then, the convergence
during the training and the effect of LC in the LT loss are further
evaluated. As such, the dimension of the penultimate output is set
to 128. For our LT loss, ϵ and λ are set to 0.3 and 0.05 under η ⩽
0.6, while 0.1 and 0.01 under η > 0.6, respectively. All networks
are trained using the Adam optimizer with a learning rate of 0.001,
a weight decay of 5 × 10−4, a batch size of 128, and cosine
learning rate annealing. The total epoch is set to 50. The situations
in various symmetric noises are picked up for illustration.
More Tolerant and Distinguishable Representation: The fea-
ture representation of the training set in the penultimate layer
has been shown in Fig. 3. As can be seen, the output features
from various categories are dispersed according to their respective
projected angles. When using CCE, the clusters are separable
and clear under η = 0, while the areas of different clusters
seem to be more imbalanced accompanied by η increases, leading
in the omission of some categories under η ⩾ 0.4 (shown in
Figs. 3(a) to 3(e)). Inversely, the harvested representation of LT-
CCE is obviously more tolerant and distinguishable, allowing the
development of a complete and more acceptable representation
even under the extreme noise rates. (shown in Figs. 3(f) to 3(i)).

Strikingly, the effects of our method are convincing for the
following two reasons: 1) It brings all-around improvements to
various noise rates. We can discover that LT-CCE can obtain
more robust clusters than CCE not only under low noise rates
but also under high noise rates. 2) It also brings all-around
improvements to various categories. When using CCE for training,
it is obvious that the influences of the noise label on various
categories are distinctive. Some categories are finally missing from
the predictions. However, the action of our approach is consistent
for different categories and allows them to become more stable.

To better illustrate, we take the noisy category “1” as an
example and exhibit the distribution of mislabeled samples in
the cluster. As shown in Fig. 4, following CCE training, the
mislabeled samples represent obvious overlap with clean samples
under η ⩽ 0.4 (shown in Figs. 4(a) and 4(b)), whereas larger
overlap occurs under η > 0.4 (shown in Figs. 4(c) and 4(d)).
Nevertheless, when using LT-CCE for training, nearly all clean
samples gather tightly while the mislabeled samples scatter, and
there is little overlap under all tested noise rates (shown in
Figs. 4(e) to 4(h)). These results adequately reveal the validity
of our strategy.

As a matter of fact, since introducing the prior hypothesis
of the student distribution in feature representation to resist the
chaos of noisy labels, the LT-CCE can produce more tolerant and
clearer clusters than the original CCE. It is essential to improve
the performance in inaccurate supervision.
Generalization of Results: It should be illustrated that we only
select CCE and LT-CCE as examples to explore the empirical in-
terpretation in this section. However, since clustering samples with
the same labels is a common denominator for most popular loss
functions (MAE, Focal loss [51], etc.), the above interpretations
can be generalized to others and their enhanced versions modified
by our approach.
More Appropriate Convergence during Training: The accuracy
curves of the training/test sets during training are shown in Fig. 5.
It can be seen that CCE suffers from a serious overfitting problem.
Although the accuracy of the training set can reach a high level
(nearly 100%) under all tested noise rates, the accuracy of the
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test set gradually decreases during convergence. This phenomenon
is also mentioned by most of the literature [27], [28], [29],
[30] and regarded as one of the main challenges in inaccurate
supervision. As for our strategy, we observe that although the
accuracy of LT-CCE is lower in the training set than that of CCE,
it can reach a high level in the test set in all tested situations.
Additionally, the training accuracy almost coincides with the rate
of clean samples in the noisy cluster (1 − η) shown in Fig. 5(a).
This result reveals that the contributions of mislabeled samples
towards the convergence can be little. As deduced in Sec. 3.3,
our method diminishes the weights of mislabeled samples in the
gradient by introducing the prior probabilistic assumption. The
long-tail characteristic of the student distribution is applied to
naturally resist the convergence of mislabeled samples. Thanks
to this reason, the performance of LT-CCE is much greater than
that of CCE at all tested noise rates (shown in Fig. 5(b)).

In other words, we not only theoretically but also empirically
demonstrate that LT losses have strong convergence abilities on
clean samples but weaken on mislabeled samples. It reflects the
outstanding data-selective characteristic of our approach, which
is especially significant in inaccurate supervision.
Different Distribution Patterns on Lc: In Sec. 3.4, we illustrate
that the incorrect label can be detected by our LT loss. In our
experiments, we further explore the densities of clean samples and
mislabeled samples on LC and discover that the distribution of
clean samples and that of mislabeled samples are totally different.
As shown in Fig. 6, the mislabeled sample represents a larger LC

than the clean sample. The distance between the two distributions
is far under the low noise rate of 0.2, while there are clear
boundaries in all tested situations. Apparently, mislabeled samples
are close to the clusters of their natural categories but far away
from others with our LT losses, which provides an opportunity
to automatically identify and even relabel them according to LC .
Attaching it makes our LT losses have adaptive amendment ability.
Unluckily, since relabeling samples based on LC should consider
tremendous rules that are not our focus, the reported results in this
paper are not subject to label correction. It will be left to our future
work to design further. Additionally, it should be illustrated that
since the density curves in Fig. 6 are obtained by filtering with the
kernel function, they have some responses in the negative axis of
LC . The values of LC are non-negative in all experiments.

4.2 Robustness Evaluation with Other Robust Losses

Baseline: We compare our LT loss with five SOTA robust losses
as well as the CCE loss: (1) GCE [28]: a training loss by
combining MAE and CCE losses; (2) SCE [30]: a training loss
by combining RCE and CCE losses inspired by the symmetricity
of the Kullback-Leibler divergence; (3) APL [31]: a training loss
by combining active losses with one passive loss. We select the
best-reported combination, Normalized Cross-Entropy (NCE) +
RCE, as our baseline; (4) JNPL [33]: a training loss regarded as
an enhanced version of NLNL [29]; (5) JS [34]: a training loss
adopting the generalized Jensen-Shannon divergence for multiple
distributions.
Experimental Setup: We attempt to observe the variations when
the baselines are strengthened by our method on MNIST, CI-
FAR10 and CIFAR100 datasets. Since the reported results of
baselines in the literature are generated in different experimental
environments (different models, different noise settings, etc.), we
reproduce them in our experiments for fairness in comparison. The

hyperparameter settings and codes are derived from their literature
and released programs. Experiments are conducted with a two-
layer CNN for MNIST, a six-layer CNN for CIFAR10 (used in the
experiments of empirical understandings) and the ResNet34 for
CIFAR100, and the epoch is set to 50, 120, and 200, respectively.
All networks are trained using the Adam optimizer with a learning
rate of 0.001, a weight decay of 5 × 10−4, a batch size of 128,
a gradient clip of five, and cosine learning rate annealing in all
experiments. For MNIST, ϵ and λ are set to 0.3 and 0.05 under
η ∈ [0.2, 0.6], while 0.1 and 0.01 under η = 0.8 in symmetric
noise experiments, respectively. They are set to 0.3 and 0.05 in
the asymmetric noise experiments, respectively. For CIFAR10, ϵ
and λ are set to 0.1 and 0.05 under η ∈ [0.2, 0.6], while 0.01 and
0.001 under η = 0.8 in symmetric noise experiments, respectively.
They are set to 0.1 and 0.05 in the asymmetric noise experiments,
respectively. For CIFAR100, ϵ and λ are set to 0.05 and 0.05
under η ∈ [0.2, 0.4], while 0.01 and 0.001 under η ∈ [0.6, 0.8]
in symmetric noise experiments, respectively. They are set to 0.01
and 0.005 when using CCE, GCE, SCE and JNPL for training,
and to 0.05 and 0.05 when using APL and JS for training in the
asymmetric noise experiments, respectively.
Robustness Performance: The classification accuracy is reported
in Tab. 2. As can be seen, the LT losses outperform the baselines
under most of situations, and various improvements are larger than
20%. On MNIST, the largest gap under symmetric noise represents
62.79% (85.80% - 23.01%) appearing when employing CCE and
LT-CCE with η = 0.8, while that under asymmetric noise repre-
sents 10.83% (96.52% - 85.69%) appearing when employing SCE
and LT-SCE with η = 0.4. On CIFAR10, the largest gap under
symmetric noise represents 37.87% (79.76% - 41.89%) appearing
when employing CCE and LT-CCE with η = 0.6, while that under
asymmetric noise represents 5.64% (86.72% - 81.08%) appearing
when employing SCE and LT-SCE with η = 0.4. On CIFAR100,
the largest gap under symmetric noise represents 23.31% (46.02%
- 22.71%) appearing when employing CCE and LT-CCE with
η = 0.6, while that under asymmetric noise represents 13.39%
(62.59% - 49.20%) appearing when employing APL and LT-APL
with η = 0.2. These results adequately demonstrate the validity
of our approach. Furthermore, it can be observed that the effect of
the LT loss under the symmetric noise is on average better than
that under the asymmetric noise, and even negative influences are
generated under the asymmetric noise in a few cases (such as
some experiments on CIFAR100). We guess that the randomness
in symmetric noise is more in line with the unbiased characteristic
of the student distribution, which makes our approach better for
handling the symmetric noise. The specific reasons and solutions
for the degeneration will be further explored and improved in the
future.

Besides, recent advances in explainable deep learning push the
development of feature visualization for classification decisions.
We attempt to employ the Grad-CAM [52] for exploring the
differences in feature extraction between the baseline and our
method (using CCE and LT-CCE as an example) under various
noise rates on CIFAR10. The experimental conditions are as
above, and the visualized results are shown in Fig. 7. As can
be seen, the label noise undoubtedly affects the accuracy of
feature extraction, not only for the baseline but also for our
method. Nevertheless, the influence on our approach is much
less. It is obvious that the areas of interest for the baseline are
mostly incorrect and unstable under the noisy labels, and this
phenomenon seems to be more apparent under high noise rates,
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TABLE 2
Test accuracy (%) of different methods on benchmark datasets under various rates of symmetric and asymmetric noise. The average accuracy

and the standard deviation of three random runs are reported, and the best paired results are in bold.

Datasets (Architecture) Methods
Symmetric Noise Asymmetric Noise

Noise Rate η Noise Rate η
0.2 0.4 0.6 0.8 0.2 0.3 0.4

MNIST (Two-layer CNN)

CCE 90.50 ± 0.20 73.48 ± 0.36 50.13 ± 0.80 23.01 ± 0.58 93.02 ± 0.39 87.24 ± 0.10 81.70 ± 0.15
LT-CCE 98.92 ± 0.03 98.75 ± 0.10 97.76 ± 0.17 85.80 ± 0.71 98.83 ± 0.08 96.78 ± 0.08 89.18 ± 0.06

GCE [28] 98.93 ± 0.02 97.64 ± 0.11 90.85 ± 0.19 63.51 ± 3.57 97.19 ± 0.18 91.49 ± 0.45 83.23 ± 0.57
LT-GCE 98.96 ± 0.01 98.76 ± 0.08 97.59 ± 0.07 84.62 ± 1.36 98.76 ± 0.03 96.31 ± 0.27 89.17 ± 0.40
SCE [30] 98.96 ± 0.10 97.63 ± 0.21 89.10 ± 0.79 54.53 ± 1.62 98.24 ± 0.07 94.39 ± 0.40 85.69 ± 0.38
LT-SCE 98.81 ± 0.11 98.78 ± 0.07 98.21 ± 0.18 93.80 ± 0.50 98.96 ± 0.05 98.51 ± 0.07 96.52 ± 0.24

APL [31] 99.06 ± 0.07 98.01 ± 0.14 92.85 ± 0.10 56.37 ± 0.45 98.59 ± 0.07 96.03 ± 0.13 88.08 ± 0.39
LT-APL 99.04 ± 0.10 98.78 ± 0.04 98.08 ± 0.10 85.70 ± 0.41 99.03 ± 0.03 98.41 ± 0.10 96.16 ± 0.41

JNPL [33] 97.77 ± 0.03 91.24 ± 0.69 64.55 ± 0.46 27.96 ± 0.24 97.53 ± 0.10 89.19 ± 0.38 80.87 ± 0.62
LT-JNPL 98.88 ± 0.11 98.30 ± 0.03 91.05 ± 1.15 50.26 ± 2.94 97.92 ± 0.16 93.15 ± 0.20 83.49 ± 1.24
JS [34] 98.89 ± 0.06 96.95 ± 0.33 93.43 ± 0.06 63.00 ± 1.72 93.07 ± 0.32 87.40 ± 0.44 81.55 ± 0.13
LT-JS 98.84 ± 0.10 98.84 ± 0.01 97.76 ± 0.16 87.99 ± 0.74 98.86 ± 0.07 97.25 ± 0.11 90.07 ± 0.67

CIFAR10 (Six-layer CNN)

CCE 77.53 ± 0.50 58.95 ± 0.56 41.89 ± 0.57 42.35 ± 2.42 85.39 ± 0.51 81.25 ± 0.12 76.35 ± 0.43
LT-CCE 89.92 ± 0.24 86.54 ± 0.30 79.76 ± 0.24 47.84 ± 0.91 88.53 ± 0.32 83.60 ± 0.43 76.66 ± 0.32

GCE [28] 89.43 ± 0.06 84.18 ± 0.13 71.75 ± 0.36 48.98 ± 1.06 87.58 ± 0.30 81.50 ± 0.14 75.38 ± 0.17
LT-GCE 90.01 ± 0.09 86.72 ± 0.22 79.89 ± 0.17 50.43 ± 0.82 88.68 ± 0.08 83.88 ± 0.51 77.10 ± 0.10
SCE [30] 87.31 ± 0.15 78.10 ± 0.10 57.76 ± 0.41 37.14 ± 1.10 86.37 ± 0.39 81.08 ± 0.29 75.63 ± 0.16
LT-SCE 89.38 ± 0.04 86.72 ± 0.09 80.68 ± 0.49 39.96 ± 1.70 89.27 ± 0.20 86.72 ± 0.39 80.38 ± 0.51

APL [31] 89.64 ± 0.28 86.63 ± 0.06 80.65 ± 0.11 39.97 ± 3.66 89.13 ± 0.18 85.66 ± 0.18 79.24 ± 0.46
LT-APL 89.42 ± 0.13 86.82 ± 0.18 80.93 ± 0.30 40.87 ± 1.57 89.28 ± 0.24 86.29 ± 0.36 79.99 ± 0.58

JNPL [33] 83.09 ± 0.14 74.18 ± 0.58 53.47 ± 0.47 36.51 ± 2.19 87.35 ± 0.21 83.12 ± 0.70 77.29 ± 0.10
LT-JNPL 87.62 ± 0.19 83.46 ± 0.81 74.44 ± 1.03 40.57 ± 2.68 87.17 ± 0.14 82.07 ± 0.23 76.00 ± 0.18
JS [34] 89.41 ± 0.10 83.45 ± 0.34 76.21 ± 0.13 52.01 ± 1.90 84.76 ± 0.39 80.63 ± 0.36 75.05 ± 0.36
LT-JS 89.93 ± 0.05 86.73 ± 0.31 80.70 ± 0.25 51.02 ± 1.19 88.94 ± 0.14 84.99 ± 0.18 77.39 ± 0.16

CIFAR100 (ResNet34)

CCE 56.87 ± 0.76 40.38 ± 1.37 22.71 ± 1.45 7.51 ± 0.40 58.11 ± 0.46 50.65 ± 0.63 42.26 ± 0.52
LT-CCE 65.91 ± 0.82 58.69 ± 0.93 46.02 ± 0.98 26.83 ± 0.18 62.37 ± 0.47 52.47 ± 0.89 41.02 ± 0.39

GCE [28] 64.99 ± 1.03 56.88 ± 0.62 45.51 ± 1.42 26.12 ± 0.50 64.24 ± 1.03 57.26 ± 0.57 44.08 ± 1.48
LT-GCE 66.02 ± 0.74 58.61 ± 1.31 46.15 ± 1.09 26.88 ± 0.80 61.35 ± 0.51 52.41 ± 0.50 41.01 ± 0.38
SCE [30] 55.73 ± 1.40 39.30 ± 0.84 21.68 ± 1.43 6.90 ± 0.18 58.03 ± 0.42 49.32 ± 0.68 41.08 ± 0.42
LT-SCE 63.75 ± 0.34 55.37 ± 0.70 43.37 ± 1.24 24.07 ± 0.09 55.58 ± 0.39 45.54 ± 0.62 37.08 ± 0.23

APL [31] 51.06 ± 2.87 41.13 ± 2.65 28.87 ± 1.01 9.57 ± 0.56 49.20 ± 3.89 43.95 ± 2.05 31.66 ± 2.28
LT-APL 63.29 ± 0.49 54.70 ± 1.73 40.52 ± 1.65 22.63 ± 0.78 62.59 ± 1.31 56.90 ± 1.29 44.05 ± 1.32

JNPL [33] 54.90 ± 0.52 37.96 ± 1.38 21.17 ± 2.17 6.92 ± 0.22 58.18 ± 1.19 49.61 ± 0.62 40.00 ± 1.50
LT-JNPL 61.44 ± 0.52 52.93 ± 0.07 35.58 ± 0.95 20.20 ± 1.00 54.98 ± 0.02 44.96 ± 0.46 36.40 ± 0.58
JS [34] 64.21 ± 0.85 56.24 ± 0.31 43.26 ± 1.62 22.42 ± 0.52 63.02 ± 0.68 53.73 ± 0.31 40.62 ± 0.85
LT-JS 64.40 ± 0.42 57.45 ± 2.61 40.43 ± 0.98 23.82 ± 0.92 64.48 ± 0.39 57.58 ± 0.48 43.26 ± 0.05

while the extracted features obtained by our method are relatively
exact and stable under various noise rates. These results also
illustrate the advancement of our approach from the perspective of
explainable feature extraction.

Generally speaking, the LT loss family produce better perfor-
mance than their original SOTA versions under most of tasks,
which illustrates the generalization and advancement of our ap-
proach in inaccurate supervision.

Next, we evaluate the performance of our LT losses on some
real-world noisy datasets. Specifically, ANIMAL-10N, Webvision,
and ImageNet ILSVRC12 are applied to explore. ANIMAL-
10N [42] contains 10 animals with confusing appearances. The
estimated label noise rate is around 8%. There are 50,000 training
images and 5,000 testing images. Webvision [50] contains 2.4
million images. It has 1,000 categories, the same as the ImageNet
ILSVRC12. The estimated label noise rate is around 20%. Similar
to [31], [53], the first 50 categories of the Google image subset are
selected as the training data, and we evaluate on both WebVision
and ILSVRC12 validation set. In our experiments, 19 SOTA
approaches to deal with learning with noisy labels [18], [19],
[20], [28], [30], [31], [35], [42], [53], [54], [55], [56], [56], [57],
[58], [59], [60] as well as CCE are employed as our baselines for
comparisons.
Experimental Setup: We employ the CCE, GCE and SCE as
Ltds in the experiments. When using GCE, we set q to 0.001.
When using SCE, we set α = 6 and β = 0.1. For ANIMAL-

10N, VGG19-BN backbone is applied for training. The batch
size and the epoch are set to 128 and 200, respectively. For
WebVision, Inception-ResNet backbone is utilized. The batch size
and the epoch are set to 32 and 200, respectively. All networks are
trained using the Stochastic Gradient Descent (SGD) optimizer
with cosine learning rate annealing. The weight decay is set to
1 × 10−3 for ANIMAL-10N while 5 × 10−4 for WebVision.
The learning rate is set to 0.1 for ANIMAL-10N and 0.01 for
WebVision, respectively. Additionally, the Random Crop, Random
Horizontal Flip, and CutMix are picked as data augmentation
strategies. ϵ and λ are set to 0.01 and 0.05 in all experiments.

4.3 Experiments on Real-World Noisy Dataset
Results: The classification accuracy on real-world datasets is
reported in Tabs. 3 and 4. As can be seen, compared to the
original versions of CCE, GCE and SCE, LT-CCE, LT-GCE, and
LT-SCE obtain much greater performance. The gap between CCE
and LT-CCE on ANIMAL-10N is 5.90% (85.30%-79.4%). The
gaps in top-1 accuracy between CCE, GCE, and SCE and their
enhanced versions on ILSVRC12 are 14.12% (73.00%-58.88%),
17.72% (71.40%-53.68%) and 11.92% (73.68%-61.76%), respec-
tively. Moreover, our methods outperform other SOTA strategies
in most cases. Except from the top-1 accuracy on ILSVRC12, all
LT losses yield the best result in our experiments. Meanwhile, in
the tested LT loss family, we discover that LT-SCE seems to be
more effective in real-world situations.
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(a) η = 0.2 (b) η = 0.4 (c) η = 0.6 (d) η = 0.2 (e) η = 0.4 (f) η = 0.6

(g) η = 0.2 (h) η = 0.4 (i) η = 0.6 (j) η = 0.2 (k) η = 0.4 (l) η = 0.6

(m) η = 0.2 (n) η = 0.4 (o) η = 0.6 (p) η = 0.2 (q) η = 0.4 (r) η = 0.6

(s) η = 0.2 (t) η = 0.4 (u) η = 0.6 (v) η = 0.2 (w) η = 0.4 (x) η = 0.6

Fig. 7. The feature visualiations of model predictions using Grad-CAM on CIFAR10. The red/blue areas have larger/smaller weights for the
predictions. The first three images in each row are from the baseline, and the last three are from our approach. It is obvious that our LT loss
can obtain more robust and exact features than the baseline under various η.

Additionally, it should be highlighted that our strategy is not
mutually exclusive with the baseline methods. In other words, it
is convenient to employ our method with other SOTA methods
for better performance. In fact, the generality is regarded as the
essential advantage of our approach and has been supported by
the earlier paragraph (see Tab. 2). Generally speaking, these results
demonstrate that our LT losses are still resistant to label noise from
the real world and can be a competitive solution compared to other
SOTA approaches.

4.4 Ablation Studies
Finally, to further explore the influence of hyperparameter settings,
some ablation studies are conducted. We train the model using LT-
CCE on CIFAR10 and take it as an example to illustrate.
Experimental Setup: Specifically, we apply the same structure in
Sec. 4.2 (a six-layer CNN) and attempt to observe the variances
under a low noise rate of 0.2 and a high noise rate of 0.6. When
changing ϵ, we set λ to 0.05, and the ϵ is set to [0, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5]. When changing λ, we set ϵ to 0.1, and the
λ is set to [0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. All networks are
trained using the Adam optimizer with a learning rate of 0.001, a
5× 10−4 weight decay, a batch size of 128 and a gradient clip of
five in all experiments.
Influences of Hyperparameters: As shown in Figs. 8(a) and 8(c),
we observe that setting ϵ to a big value represents an underfitting
phenomenon, and it is more obvious under a high noise rate of

0.6. In fact, employing the metric learning strategy increases the
difficulty of classification, especially under inaccurate supervision.
However, it can improve performance with a suitable setting
under conditions of high noise. We discover that there is a slight
overfitting under η = 0.6 with setting ϵ = 0, while setting it to
a small value successfully fights against the degradation. Of note,
the overfitting problem is common in inaccurate supervision and
become acuter accompanied by η increases [30], [31]. Introducing
metric learning with a small weight can effectively restrain the
overfitting problem under conditions of high noise rates. As for λ
shown in Figs. 8(b) and 8(d), we observe that LC can improve the
speed of convergence, which is consistent with our description in
Sec. 3.4. However, the overfitting problem is also exposed while
setting λ to a large value. To sum up, we recommend setting ϵ and
λ to a relatively small value according to various noise rates.

5 LIMITATIONS

Limitations exist in the current study. Firstly, the LC in our LT loss
can be applied to detect and even relabel the mislabeled sample
as shown in Sec. 4.1, implying the potential error correction
capability of our method. We speculate that the performance can
be further improved by excluding or relabeling the mislabeled
samples with LC , but it is not currently explored yet. Secondly, we
observe in Sec. 4.2 that our approach can enhance various SOTA
losses in most cases but is not ideal in a few cases. The reasons
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TABLE 3
Test accuracy (%) of different methods on ANIMAL-10N datasets. The best result is in bold.

Methods CCE Nested [54] CED [54] SELEIE [42] PLC [55] NCT [54] LT-CCE LT-GCE LT-SCE
Accuracy 79.4⋆ 81.3 81.3 81.8 83.4 84.1 85.30 85.30 85.66
⋆: Results reported in [55].

TABLE 4
Test accuracy (%) of different methods on WebVision and ILSVRC12

datasets. The best two results are in bold.

Methods WebVision ILSVRC12
top-1 top-5 top-1 top-5

CCE - - 58.88⋆ -
GCE [28] - - 53.68⋆ -

Forward [35] 61.12 82.68 57.36 82.36
Decoupling [19] 62.54 84.74 58.26 82.26

D2L [41] 62.68 84.00 57.80 81.36
SCE [30] - - 61.76⋆ -
APL [31] - - 62.64 -

MentorNet [18] 63.00 81.40 57.80 79.92
Co-teaching [20] 63.58 85.20 61.48 84.98
Iterative-CV [58] 65.24 85.34 61.60 84.98
DivideMix [56] 77.32 91.26 75.20 90.84

ELR+ [57] 77.78 91.68 70.29 89.76
SPR [53] 78.12 - - -

ProtoMix [59] 76.3 91.5 73.3 91.2
MoPro [60] 77.59 - 76.31 -

LT-CCE 77.68 92.16 72.96 91.56
LT-GCE 78.72 92.40 73.32 91.68
LT-SCE 79.04 93.12 73.44 91.80

⋆: Results reported in [31].

and solutions are currently ambiguous. Thirdly, since the essence
of the LT loss is to tolerate intra-class discrepancies, our approach
may work not only for the noisy label, but also for the noisy data.
Unfortunately, the present work does not cover it, either. These
three key issues are left as future improvements to our LT loss.

6 CONCLUSIONS

This study set out to improve the robustness of deep learning
with noisy labels and indicated, not only empirically but also
theoretically, that assuming identically labeled deep features to
follow the student distribution could yield promising performance.
The analysis of the feature representation undertaken here has
extended the knowledge of existing robust losses and allowed us
to create a family of new losses called student losses. Strikingly,
the sharp shift in the probability distribution made the student loss
naturally data-selective, and various losses could be strengthened
to be student losses. After that, we further introduced some metric
learning strategies and developed the LT loss. Experiments on both
benchmark and real-world datasets demonstrated that the LT loss
outperformed the baseline. Overall, we believe the LT loss is a up-
and-coming perspective in inaccurate supervision and will become
a popular technique to deal with noisy labels.
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orary Professor from Óbuda University in 2011
and the Honorary Scholar Award from the Uni-
versity of Technology Sydney, in 2012. He is

also a Highly Cited Researcher in Crossfield for the year 2019 and in
computer science for the year 2020, 2021, and 2022 respectively by
Clarivate Analytics. He is currently a Distinguished Professor of artificial
intelligence with Iwate Prefectural University, Takizawa, Japan. He was
an Adjunct Professor of computer science and artificial intelligence with
Stockholm University, Stockholm, Sweden; the University of Technol-
ogy Sydney, Ultimo, NSW, Australia; National Taiwan Ocean University,
Keelung, Taiwan; National Taipei University of Technology. He is Re-
search Professor at the University of Granada, Granada, Spain, HTECH
University, Vietnam, Harbin Engineering University China, Malaysia-
Japan International Institute of Technology (MJIIT), Universiti Teknologi
Malaysia, Kuala Lumpur, Malaysia and others. He is Chairman of the
i-SOMET Incorporated Association. He has supervised Ph.D. students
jointly with the University of Laval, Quebec City, QC, Canada; the Uni-
versity of Technology Sydney; Oregon State University, Corvallis, OR,
USA; the University of Paris 1 Pantheon-Sorbonne, Paris, France; and
many others. He has given many keynotes in many prestigious inter-
national Conferences on intelligent system and subjective intelligence.
He headed a number of projects including intelligent HCI, a project
related to mental cloning for healthcare system as an intelligent user
interface between human users and computers, and SCOPE project
on virtual doctor systems for medical applications. He was the Editor-
in-Chief for Knowledge-Based Systems (2005 to 2020), and he is now
the Emeritus Editor of Knowledge-Based Systems. He is currently the
Editor-in-Chief for Applied Intelligence (Springer), and Editor-in-Chief of
Healthcare Management (Tayler&Francis).

Yu-Wen Li received the Ph.D. degree from Xi-
amen University, Xiamen, China, in 2019. Cur-
rently, she is a Lecturer with the School of Instru-
ment Science and Engineering, Southeast Uni-
versity, Nanjing, China. Her main research topics
include biomedical signal processing, ECG, real-
time monitoring, and health big data processing.

Deng-Bao Wang received the BSc degree in
computer science from Yantai University, China,
and the MSc degree in computer science from
Southwest University, China, in 2016 and 2019,
respectively. He is currently working toward the
PhD degree with the School of Computer Sci-
ence and Engineering, Southeast University,
China. His main research interests include ma-
chine learning and data mining, especially in
learning from weakly supervised data.

Ting-Ting Zhu received the D.Phil. degree in
information and biomedical engineering from the
Institute of Biomedical Engineering, Oxford Uni-
versity, Oxford, U.K., in 2016. She is currently a
Royal Academy of Engineering Research Fellow
and a member of faculty with the Department
of Engineering Science, University of Oxford.
Her research interests lie in machine learning
for healthcare applications. Her work involves
the development of machine learning for under-
standing complex patient data, with an emphasis

on Bayesian inference, deep learning, and applications involving low-
income countries.

Min-Ling Zhang (Senior member, IEEE) re-
ceived the BSc, MSc, and the PhD degrees
in computer science from Nanjing University,
China, in 2001, 2004, and 2007, respectively.
He is currently a professor with the School of
Computer Science and Engineering, Southeast
University, China. His main research interests
include machine learning and data mining. He
was the general co-chairs of ACML 2018, pro-
gram co-chairs of CCDM 2020, PAKDD 2019,
CCF-ICAI 2019, ACML 2017, CCFAI 2017, and

PRICAI 2016, a senior PC member or the area chair of KDD 2021, AAAI
2017-2020, IJCAI 2017–2022, and ICDM 2015–2021. He is on the edi-
torial board of the IEEE Transactions on Pattern Analysis and Machine
Intelligence, ACM Transactions on Intelligent Systems and Technology,
Neural Networks, Science China Information Sciences, and the Fron-
tiers of Computer Science. He is the Steering Committee member of the
ACML and PAKDD, the vice chair of the CAAI Machine Learning Society,
and the Standing Committee member of the CCFArtificial Intelligence
and Pattern Recognition Society. He is also a distinguished member of
CCF, CAAI, and a senior member of ACM.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST XX 14

Cheng-Yu Liu (Senior member, IEEE) received
Ph.D. degrees in Biomedical Engineering from
Shandong University, China, in 2010. He is now
a Professor of the State Key Laboratory of Bio-
electronics, and the founding Director of Wear-
able Intelligent Monitoring Lab in Southeast Uni-
versity. He has published more than 300 origi-
nal Journal/Conference papers, and holds more
than 30 patents as an inventor. His research
topics include: wearable medicine and intelligent
monitoring.


	Introduction
	Related Work
	Student Loss
	Preliminaries
	Robust Student Loss
	Theoretical Illustration
	Discussions

	Experiments
	Empirical Understandings
	Robustness Evaluation with Other Robust Losses
	Experiments on Real-World Noisy Dataset
	Ablation Studies

	Limitations
	Conclusions
	References
	Biographies
	Shuo Zhang
	Jian-Qing Li
	Hamido Fujita
	Yu-Wen Li
	Deng-Bao Wang
	Ting-Ting Zhu
	Min-Ling Zhang
	Cheng-Yu Liu


