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Abstract 
Governments have begun to view AI compute infrastructures, 
including advanced AI chips, as a geostrategic resource. This 
is partly because “compute governance” is believed to be 
emerging as an important tool for governing AI systems. In 
this governance model, states that host AI compute capacity 
within their territorial jurisdictions are likely to be better 
placed to impose their rules on AI systems than states that do 
not. In this study, we provide the first attempt at mapping the 
global geography of public cloud GPU compute, one partic-
ularly important category of AI compute infrastructure. Us-
ing a census of hyperscale cloud providers’ cloud regions, we 
observe that the world is divided into “Compute North” coun-
tries that host AI compute relevant for AI development (ie. 
training), “Compute South” countries whose AI compute is 
more relevant for AI deployment (ie. running inferencing), 
and “Compute Desert” countries that host no public cloud AI 
compute at all. We generate potential explanations for the re-
sults using expert interviews, discuss the implications to AI 
governance and technology geopolitics, and consider possi-
ble future trajectories.  

1 Introduction  
Compute, data, and algorithms are three core inputs in the 
development and deployment of artificial intelligence (AI) 
systems (Sevilla 2022). Of these, compute has emerged as a 
particularly important resource over the last few years, as 
the computing power used to train frontier AI models has 
doubled approximately every six months (Heim et al. 2024). 
Where in the world is all the compute used in AI develop-
ment and deployment physically located? We argue that this 
question is becoming increasingly important from the per-
spectives of AI governance and geopolitical analysis.  

Sastry and colleagues (2024) argue that “compute govern-
ance” is emerging as an important tool for governing the de-
velopment and deployment of AI systems. This is because 
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compared to data and algorithms, compute is an observable 
and measurable aspect of AI training which can be restricted 
through the physical nature of compute hardware (Sastry et 
al. 2024). The compute used to train and deploy a large-scale 
AI model is typically produced by hundreds or even thou-
sands of graphics processing units (GPUs) and other AI ac-
celerator chips, which are housed inside large data centers 
that consume megawatts of electric power (Pilz and Heim 
2023). Regulators could for instance implement legal com-
pliance checks at the point at which algorithms and data ar-
rive at a data centre for the purpose of enabling shared secu-
rity standards, government record keeping, and the verifica-
tion of AI systems and developers, or to enforce restrictions 
and limitations on non-compliant systems (Heim et al. 
2024).  

Compute governance could potentially empower states 
that don’t have other means to enforce AI regulations (Radu 
2021; Png 2022), such as jurisdiction over the developers (as 
the United States), or jurisdiction over important market ar-
eas for the developers (as the European Union). However, 
not all countries are equally able to implement governance 
via compute. States that can exercise territorial jurisdiction 
over physical compute infrastructures are better placed to 
impose their rules on them than states that cannot (Ferrari 
2024). This is because even if a state’s laws are intended to 
cover the contents of computational infrastructures situated 
abroad, the enforcement of those laws can be difficult and 
become contested by other states (Abraha 2019; 2021).  

For similar reasons, the geography of AI compute has also 
become a subject of geopolitical contestation. Many govern-
ments see AI as a potential source of national economic, mil-
itary, and/or cultural advantage (Wang and Chen 2018; Mil-
ler 2022). The United States, China, United Kingdom, 
United Arab Emirates, and many other governments have 

 



adopted industrial policies aimed at securing sufficient sup-
plies of AI compute for local industries and researchers 
(Vipra and West 2023). The United States has also adopted 
a policy of restricting China’s access to compute in an effort 
to contain its AI progress (Allen 2022). Following the Cre-
ating Helpful Incentives to Produce Semiconductors 
(CHIPS) Act in 2022, the United States (U.S.) government 
restricts exports of advanced GPUs to China. The govern-
ment is also considering imposing restrictions on the remote 
provision of cloud computing services to Chinese AI devel-
opers (Edgerton 2023). Chinese developers would then only 
have access to domestic compute and possibly to compute 
hosted in sympathetic nations. Insofar as AI development is 
important for national economic, military, and/or cultural 
competitiveness, the physical location of compute infra-
structures thus matters in geopolitical analysis.  

The purpose of our study is to provide the first attempt at 
mapping the global geography of public cloud GPU com-
pute, one particularly important category of AI compute in-
frastructure. We achieve this by carrying out a census of the 
cloud regions of six leading hyperscale public cloud compu-
ting providers: Amazon Web Services (AWS), Microsoft 
Azure, Google Cloud, Alibaba Cloud, Huawei Cloud, and 
Tencent Cloud (Lehdonvirta, Wu and Hawkins 2023). We 
also examine potential explanations for the observed geog-
raphies based on expert interviews and discuss the implica-
tions for compute governance and geopolitics. 

2 Background and Related Work  
The global AI compute supply chain broadly speaking con-
sists of (1) companies that design and market GPUs and 
other AI-relevant chips, (2) companies that fabricate and 
package the chips, (3) companies that deploy the chips to 
provide compute, and (4) companies that consume the com-
pute to develop and/or deploy AI systems (OECD 2023). 
Previous work on the geography of compute has focused es-
pecially on the design and fabrication steps (Miller 2022). 
The market leader in GPU design and marketing is U.S.-
based Nvidia corporation, fabrication is dominated by Tai-
wanese TSMC, and Dutch ASML is currently the sole pro-
ducer of photolitography machines that are essential in the 
fabrication of the most advanced chips (Miller 2022). These 
parts of the compute supply chain are thus very concentrated 
in terms of both geography and ownership. Much of the pre-
vious literature discusses the economic and political impli-
cations of this concentration (Allen 2022; Yeung 2022), as 
well as attempts by governments to shape it to their ad-
vantage (Drezner, Farrell and Newman 2021; Farrell and 
Newman 2019; 2023), such as the U.S. CHIPS Act and ex-
port controls aimed at restricting the export of GPUs to 
China (Heim et al. 2024; Sastry et al. 2024) .   

In this study, we are concerned with the geography of the 
third step: Where in the world are chips deployed to provide 
AI compute for AI development and deployment, that is, to 
train AI models and run inferencing on existing models? 
There are broadly speaking three types of compute providers 
doing this on a large scale: scientific supercomputing facili-
ties, private compute clusters, and so-called public cloud 
providers.  

Scientific supercomputing facilities have existed from the 
early 1960s. They are typically government-funded and in-
tended mainly for academic and military use. A study by 
OECD (2023) provides a simple geographic analysis of sci-
entific supercomputing facilities. The highest concentration 
of supercomputers listed in the TOP500 database is found in 
China (32%), followed by the United States (25%) and the 
European Union (21%). However, most scientific super-
computers were not designed with AI model training in 
mind (OECD 2023). The current generative AI development 
boom has been powered mostly by private compute clusters 
and by public cloud compute. Previous research has not at-
tempted to analyse their geography in any detail.  

Private compute clusters are owned by for-profit compa-
nies, such as Meta, HP, and many smaller firms. They con-
sist of interconnected GPU-equipped computers deployed in 
data centres. A private cluster can be used to power the com-
pany’s own AI development or rented out to another com-
pany. Public cloud providers are likewise for-profit compa-
nies. They are called “public” not because of any govern-
ment affiliation but because their services are available on 
demand and shared by many customers (i.e. the public in 
public house rather than in public sector) (Herr 2020). The 
market leaders in public cloud computing, including public 
cloud AI compute are AWS, Microsoft Azure, and Google 
Cloud; Chinese public cloud providers Alibaba, Huawei, 
and Tencent also provide AI compute at scale (Lehdonvirta, 
Wu and Hawkins 2023). These large providers are often re-
ferred to as “hyperscalers” (Vipra and West 2023).  

In this study we choose to focus on the geography of pub-
lic cloud AI compute. Private compute clusters have been 
used to train some landmark models such as Meta’s Llama 
and Llama 2 (Sastry et al. 2024). But much of the training 
and development of frontier AI models is concentrated 
within public cloud hyperscalers Google, Microsoft, and 
Amazon, and their corresponding “compute partnerships” 
with leading AI companies such as Anthropic, Cohere, 
Google DeepMind, Hugging Face, OpenAI, and Stability AI 
(Sastry et al. 2024). Public cloud is also important because 
it is accessible to a great number and variety of developers, 
including academic researchers. Our main research question 
therefore is, where in the world is public cloud AI compute 
located? We will also examine potential explanations for the 
observed geographies, discuss their implications for com-
pute governance and geopolitics, and finally briefly discuss 



private clusters and government-owned national AI com-
pute.  

It is worth noting that any effort to map or measure com-
pute is always imprecise in some way. Although the term 
“compute” is often used in a way that suggests it is a fungi-
ble commodity, measurable in units such as FLOPs (floating 
point operations), in practice computation is heterogeneous: 
chips and system architectures that excel at one type of task 
may perform significantly worse in another. In this study, 
we use the term “AI compute” to refer to computational ca-
pabilities that are particularly relevant for tasks related to to-
day’s AI systems. A further distinction will be made be-
tween compute relevant for AI model development (train-
ing) and compute more relevant in AI system deployment 
(running inferencing). 

3 Methodology  
Our methodology is two-fold. We first conduct a census of 
public cloud providers’ cloud regions and analysed the geo-
graphic distribution of regions where customers can access 
GPUs. We also interviewed 10 experts from policy, aca-
demia and the public cloud providers themselves to develop 
potential explanations.  

3.1 Census of Public Cloud Regions  
Our census comprised the six hyperscale public cloud pro-
viders mentioned earlier: AWS, Microsoft, Google, 
Alibaba, Huawei, and Tencent. Although there are also 
smaller providers, these six represent the great majority of 
the global public cloud market as well as each regional mar-
ket (Lehdonvirta, Wu, and Hawkins 2023). We used provid-
ers’ websites and customer interfaces to collect a list of each 
provider’s public cloud regions as of October 2023. A 
“cloud region” is essentially a cluster of interconnected data 
centres and supporting infrastructure located in a specific 
geographic area, named after a nearby city (Google, n.d.). 
To map the region names to approximate physical locations 
we relied on the World Cities Database (World Cities Data-
base, 2024). A developer wishing to use public cloud AI 
compute must choose the region they would like it to be 
physically hosted in. Different regions may support different 
types of GPUs or none at all. We collated this information 
into a database, using the variables shown in Table 1.  

 
Variables Levels  
Provider  6 (AWS…Tencent)  
Country  39 (Argentina…United States)  
H100 available  2 (Yes/No)  
A100 available  2 (Yes/No)  
V100 available  2 (Yes/No)  
H800 available  2 (Yes/No)  
A800 available  2 (Yes/No)  

N of cloud regions  187  

Table 1. Public cloud region census 2023 variables (unit of 
analysis: cloud region)  

When the census was taken, the most powerful GPU for 
the purposes of training common AI models was the Nvidia 
H100, launched in 2023 (Pilz and Heim 2023). The previous 
flagship model A100 was launched in 2020, and the V100 
before that in 2017. In 2023 Nvidia introduced the H800 and 
A800 to circumvent U.S. export restrictions to China, but 
the restrictions were quickly expanded to cover them (Rein-
sch, Schleich, and Denamiel 2023). We focused our data 
collection on these five most AI-relevant GPU types (Table 
2). Custom AI accelerator chips such as the Google Tensor 
Processing Unit (TPU) were excluded from the census for 
logistical reasons, which is a limitation in our study.  

 
  Mean  SD  Min  Med  Max  
Total cloud regions 4.7  6.7  1  3  36  
GPU-enabled regions 2.5  5.3  0  1  27  
H100-enabled regions 0.2  1.3  0  0  8  
A100-enabled regions 1.2  3.1  0  0  18  
V100-enabled regions 2  3.9  0  1  19  
H800-enabled regions 0  0  0  0  0  
A800-enabled regions 0  0  0  0  0  
N of  countries 39          

 Table 2. Public cloud AI compute infrastructure by coun-
try (unit of analysis: country)  

From the census database we then constructed a country-
level data set to facilitate geographic analysis. For each 
country we calculated the total number of public cloud re-
gions situated in its territory. We also calculated the subset 
of regions that supported at least one type of GPU (“GPU-
enabled region”), as well as the subsets of regions that sup-
ported specific GPU types. In practice we did not observe 
any H800s or A800s being made available by public cloud 
providers in China or elsewhere. Although Hong Kong is a 
special administrative region of China, it is treated as a sep-
arate entity in this data set, because it has a partly separate 
legal system and because public cloud providers distinguish 
between mainland Chinese and Hong Kong regions.  

A notable weakness in this approach to mapping public 
cloud AI compute is that it does not consider how many 
GPUs of each type each of the cloud regions makes availa-
ble to customers. Nor does it consider other system architec-
ture parameters, such as memory or maximum cluster size. 
The approach simply counts regions and their capabilities in 
terms of GPU types available. We partially address these 
limitations with the expert interviews.  



3.2 Expert Interviews  
To complement our quantitative cloud census, we carried 
out a series of qualitative and semi-structured expert inter-
views (Babbie 2016; Mikecz, 2012). We interviewed a total 
of ten informants representing two policy, three hyperscale 
public cloud provider, and five research informants with ex-
pertise in AI compute (Table 3). The informants were re-
cruited by snowball sampling through our own professional 
networks.   

 
Informant  Interview date  Stakeholder 
A 8 Feb 2024 Policy 
B 2 Apr 2024 Policy 
C 5 Feb 2024 Research 
D 18 Oct 2023 Research 
E 19 Jan 2024 Research 
F 5 Dec 2023 Research 
G 19 Jan 2024 Research 
H 11 Jan 2024 Hyperscaler 
I 15 Feb 2024 Hyperscaler 
J 15 Dec 2023 Hyperscaler 
N of informants 10  

 

Table 3: Overview of informants  

The main objectives of the interviews were to help im-
prove and validate our census approach, to generate comple-
mentary or alternative information on the geographic distri-
bution of public cloud AI compute, and to help generate ex-
planations for the geographic patterns observed. The inter-
views took place between December 2023 and March 2024. 
They were carried out via both video conferencing and in 
person meetings, and followed a semi-structured approach 
with questions designed to address a set of topics in-depth 
that reflected our objectives (Babbie, 2016). Interview re-
cordings were transcribed and the research team performed 
a simple thematic analysis of the transcripts to surface an-
swers on the issues of interest. 

In the following sections we report quantitative findings 
from the cloud census interspersed with interpretations and 
complementary answers surfaced from the interviews. 

4. Where is AI Compute Located? 
Figure 1 shows the approximate locations of the public 
cloud regions discovered in our census. Table 4 indicates 
how many of the regions are located in each country and 
how many of those regions offer GPU instances (“GPU-en-
abled regions”). Arguably the most important feature of the 
data from the point of view of compute governance is that 
the vast majority of countries in the world have no public 
cloud regions at all. Of the 39 countries that do have one or 

more cloud regions, 30 have cloud regions that feature 
GPUs.  

Another striking feature of the data is that even within 
those countries that host some GPU-enabled cloud regions, 
the geographic distribution of the regions is very polarized: 
China and the United States together host almost as many 
regions (49 regions) as the rest of the world put together (52 
regions). Of the two, China’s total number of GPU-enabled 
regions is slightly higher (27) than the US (22).  

Further insight may be gained by examining what types 
of GPU instances each country is hosting. The most obvious 
pattern is that the U.S. is hosting the newest and most pow-
erful GPUs in the world both in terms of the ratio of different 
types of instances available and in absolute numbers. The 
U.S. is the only country to have more regions offering the 
2020 Nvidia A100 GPU than the 2017 V100 GPU. The U.S. 
also has multiple regions offering the 2023 Nvidia H100 
GPU. China’s cloud regions are mostly based on the V100, 
with a smaller number of regions offering A100s. No re-
gions in China offer the H100. Across the rest of the world 
only 15 countries offer A100s and only one has H100s, the 
rest being purely V100-based.  

As noted, this analysis does not consider custom acceler-
ator chips such as TPUs, nor potential differences in the 
quantities of GPUs of different types available in different 
regions. Our interview informants noted that the quantity of 
GPUs of a given type available in a region is likely to vary 
significantly between regions and providers. “Hyperscalers 
have succeeded in giving the impression that they are almost 
omnipotent when it comes to compute or storage, that they 
can handle anything you bring. But that’s not quite the real-
ity”, noted one informant. In some cases the quantities of 
GPUs available in a region can be very limited, with the con-
sequence that only a limited number of customers can run 
GPU instances in that region, and/or only models of a lim-
ited size can be trained in a reasonable time span in that re-
gion. 

AWS and Microsoft are currently thought to have the 
largest cloud GPU clusters available, but “regions are defi-
nitely not identical in this respect.” That said, GPU quanti-
ties and especially how they are distributed across the pro-
viders’ regions are treated as highly confidential information 
by hyperscale cloud providers. None of our informants were 
willing or able to give us any concrete numbers nor identify 
how this information could be publicly accessed. But it was 
generally agreed that U.S.-based regions were likely to have 
larger quantities of GPUs of any given type than regions 
elsewhere in the world featuring the same GPU type. Chi-
nese regions might also feature V100 chips in larger num-
bers to make up for their comparatively lower performance. 
Our interviews thus suggest that even if it was possible to 
include the quantity of GPUs per region in this analysis, it 



would probably not challenge the major patterns noted 
above, but more likely amplify them.  

 
 

 
 

Country Total regions Total GPU- 
enabled regions 

H100-enabled 
regions 

A100-enabled 
regions 

V100-enabled 
regions 

Argentina 1 1 0 0 1 
Australia 9 3 0 1 3 
Bahrain 1 0 0 0 0 
Belgium* 1 0 0 0 0 
Brazil 5 1 0 0 1 
Canada 6 2 0 1 2 
Chile 2 1 0 0 1 
China 36 27 0 9 19 
Finland* 1 0 0 0 0 
France* 4 1 0 1 1 
Germany* 5 2 0 1 2 
Hong Kong 6 3 0 1 3 
India 9 3 0 1 2 
Indonesia 5 2 0 0 2 
Ireland* 3 2 0 2 2 
Israel 1 1 0 1 0 
Italy* 5 1 0 1 0 
Japan 9 4 0 3 3 
Korea 5 4 0 1 3 
Malaysia 1 1 0 0 1 
Mexico 2 2 0 0 2 
Netherlands* 4 2 1 2 2 
Norway 1 0 0 0 0 
Peru 1 1 0 0 1 
Philippines 1 0 0 0 0 
Poland* 2 0 0 0 0 
Qatar 2 0 0 0 0 
Saudi Arabia 2 1 0 0 1 
Singapore 6 5 0 2 4 
South Africa 3 1 0 0 1 
Spain* 2 0 0 0 0 
Sweden* 2 1 0 1 0 
Switzerland 3 1 0 0 1 
Taiwan 1 1 0 0 1 
Thailand 3 2 0 0 2 
Turkey 1 1 0 0 1 
UAE 3 0 0 0 0 
UK 6 2 0 2 2 
US 27 22 8 18 17 
*EU27 total 34 11 1 8 9 
Global Total 187 101 9 48 81 

 

 Table 4. Public cloud regions by country  

 



 

 
Figure 1. Approximate locations of public cloud regions and the most advanced GPU type available in each region 

5 Why is Advanced AI Compute Concen-
trated in the US?  

What explains the apparent U.S. lead in advanced public 
cloud AI compute over China and other countries? One ob-
vious explanation is U.S. government export controls that 
forbid exports of A100s and H100s to China (Reinsch, 
Schleich, and Denamiel 2023). Chinese cloud providers 
were able to import some A100s before the export controls 
took effect in 2023, but H100s have been export controlled 
from since the product was launched. The H800s and A800s 
were likewise export controlled soon after introduction. The 
considerably less powerful V100, which is the most com-
mon Nvidia GPU instance type in China, is not subject to 
export controls. One informant argued that if more powerful 
GPUs were finding their way into China via grey imports, 
then they were probably being deployed in private clusters 
where they could fly under the radar, as public cloud pro-
viders openly circumventing the controls could jeopardize 
their ability to do business with Nvidia on non-controlled 
chips.  

Yet export controls cannot explain why other countries 
besides China also host predominantly older GPUs. Several 
explanations are possible. One is simple friction in innova-
tion diffusion, referring to the process through which GPUs 
spread throughout markets (Rogers 2010). It may be that 
newer GPUs are first installed in the U.S. since that is where 
Nvidia is based and therefore where it has the strongest dis-
tribution networks. Over time advanced GPUs should dif-

fuse to markets that are relatively farther away. “I would as-
sume that almost all [GPUs] come to North American re-
gions first, but by now there should be significant clusters in 
Europe as well,” one informant speculated.  

Another potential explanation for the U.S. cloud compute 
lead stems from geographic differences in initial demand 
profiles, which combines with scale economies to create a 
“path dependency” that sustains the concentration of AI 
compute to certain geographies (Radu and Amon 2021). 
One informant explained:  

“Very few [cloud compute buyers] are actually doing 
groundbreaking AI development… So there’s no point 
spreading the capacity everywhere… you want a few 
super units, you want to have a critical mass of compute 
in some location, which is not worth replicating every-
where.” 
The first significant concentration of firms and research-

ers training large AI models emerged in the U.S., so cloud 
providers concentrated their most powerful training com-
pute capacity there. But even as the demand for compute 
grew in other locations around the world, this did not neces-
sarily translate into corresponding growth in local compute 
infrastructure, because developers could usually send their 
training workloads to U.S. cloud regions without incurring 
significant performance penalties. The initial U.S. compute 
lead was thus sustained.  

Informants argued that the situation was somewhat differ-
ent for AI compute capacity intended for deploying rather 
than training AI. In many AI use cases, such as with voice 
assistants, the user experience can suffer from latency if the 



distance between the user and the server is too great. Data 
transfer costs may also become a business issue. Such appli-
cations are thus best deployed on compute infrastructure sit-
uated physically closer to users. This would explain why 
less advanced V100 chips—that may be too slow for train-
ing purposes but still adequate for inferencing—are distrib-
uted more evenly around the globe than more advanced 
chips.  

Some exceptions are evident to the general pattern of the 
U.S. having the most advanced GPU assortment. Japan, the 
United Kingdom, and France each host the same number of 
A100-enabled regions as they host V100-enabled regions. 
Each of these countries has significant local AI development 
activity. There may be regulatory or political obstacles to 
local developers sending data to the U.S. for training (Ko-
maitis 2017; Herr 2020). According to one informant:  

“By now there are public sector actors or significant 
European actors that have the need to train GPT-4 level 
models with data that cannot be taken outside Eu-
rope… I would be surprised if hyperscalers weren’t re-
sponding to that demand.”  

In this context, informants referred to policy discourse on 
“digital sovereignty”, “data sovereignty”, and “compute 
sovereignty” as potentially creating demand for locally sit-
uated training compute (Tang 2022; Pohle and Thiel 2020; 
Gu 2023; Roberts et al. 2023). The Netherlands and Ireland 
also have small but relatively advanced GPU assortments. 
This is perhaps related to these countries’ strategic positions 
as infrastructure hubs for some of the hyperscalers (Herr 
2020; Rone 2023). Netherlands is particularly notable as the 
only country besides the U.S. to host a cloud region featur-
ing the powerful H100 GPU.   

6 Discussion  

6.1 A Global Compute Divide  
Governing AI through compute is a powerful idea, because 
compute is made up of large, observable material infrastruc-
tures (Sastry et al. 2024; Heim et al. 2024). The infrastruc-
tures must be physically situated somewhere, and are there-
fore susceptible to territorial jurisdiction, the most enforce-
able form of jurisdiction that all states—small and  
large—possess (Mikler 2018). However, our research shows 
that compute infrastructures are not situated evenly across 
the globe, and their geographic distribution strongly condi-
tions different states’ possibilities of turning compute into a 
point of intervention into AI.  

Our findings reproduce the familiar idea of two AI super-
powers engaged in a compute “arms race” (Wang and Chen 
2018), in which the U.S. holds an edge in terms of chip qual-
ity and China attempts to compensate with quantity (Miller 

2022). The U.S. export restrictions on advanced GPUs ap-
pear to have worked, as no public cloud providers offer the 
2023 H100 chip in China, nor the H800 or A800 created to 
circumvent the restrictions. Similarly, Russia and Iran, two 
countries subject to Western sanctions, do not host any pub-
lic cloud AI compute belonging to the providers in our sam-
ple.  

However, beyond ideas of geopolitical great power ri-
valry, our findings also suggest additional conceptual cate-
gories relevant to discussing compute-based AI governance. 
There are 15 other countries besides the U.S and China that 
also host at least some quantity of the GPUs most relevant 
to AI development, namely A100s and H100s. All of these 
first-tier countries save for India are located in the so-called 
Global North. To draw an analogy, we refer to them as the 
“Compute North” (Figure 2). These Compute North coun-
tries are positioned to use their territorial jurisdiction to in-
tervene in AI development at the point at which models are 
sent to their local public cloud regions for training. For in-
stance, they could require algorithms and data sets to be au-
dited and certified for compliance with their local rules be-
fore training is permitted to commence, shaping what kinds 
of AI systems can enter the global market.  

A second tier of 13 countries hosts compute of a type 
more suited for AI system deployment than for develop-
ment. All of these countries are situated in the Global South, 
save for Switzerland; we refer to them as the “Compute 
South”. For instance, Latin America hosts a total five GPU-
enabled cloud regions, but none of them featured more pow-
erful GPUs than the 2017 V100. These countries are posi-
tioned to use their territorial jurisdiction over compute to 
gatekeep which AI systems can be deployed locally, but less 
so for shaping AI system development.  

Besides the “Compute North” and the “Compute South”, 
there is also a “Compute Desert”, by which we refer to all 
of the remaining countries in the world. These countries host 
no public cloud AI compute at all, whether for training or 
for deployment. For them, shifting to cloud-based AI-pow-
ered services means relying on services both developed and 
deployed on infrastructures located in foreign jurisdictions. 
The Compute Desert contains a number of rich countries, 
but it also contains all of the world’s lower middle-income 
and lower-income countries, following the International 
Monetary Fund’s (IMF) classification (IMF 2024). The im-
plications of belonging to the Compute Desert are likely to 
differ between rich and poor countries. The rich countries in 
the Desert may be able to use their other advantages—such 
as diplomatic influence over Compute North countries, and 
wealth sufficient to build government-owned compute ca-
pacity—to offset their lack of locally hosted public cloud AI 
compute (Png 2022; Ferrari 2024). In contrast, the poorer 
countries in the Compute Desert have few prospects for 
making use of compute governance as a means to influence 
AI.  



  

Similar to how researchers have observed a “compute di-
vide” between academia and industry (Besiroglu et al. 
2024), we thus observe a global compute divide, in which 
the geography of public cloud AI compute seems to be re-
producing familiar patterns of global inequality. From mid-
1990s, discourses on digitalization posited that success in 
the new global “knowledge economy” would be based on 
immaterial assets such as knowledge and creativity, in con-
trast to material assets and resources required in the previous 
era of industrial economies (Negroponte 1995; Castells 
1998). This would allow developing countries to forgo ex-
pensive infrastructure investments and “leapfrog” directly 
into a knowledge-based economic model. However, today’s 
AI discourse has once again returned to emphasizing mate-
rial infrastructures such as chip fabs, data centres, and elec-
tricity networks as crucial for national competitiveness 
(Miller 2022; Vipra and West, 2023). If compute becomes a 
critical governance node, then such material infrastructures 
may turn out to be essential for retaining independent regu-
latory agency as well (Lehdonvirta 2023). A nation’s com-
putational power then equals, to an extent, its political 
power.   

Can the situation be expected to change? If the observed 
concentration of high-end AI compute to the U.S. and to the 
Compute North is explained simply by frictions in innova-
tion diffusion, then it is plausible that over time the globe 
could be increasingly saturated with compute, evening out 

the disparities. Nvidia’s competitors such as AMD and Intel 

are catching up in chip performance. Chinese Huawei is also 
developing AI processing chips, and it is backed by enor-
mous domestic demand following the US export controls, as 
well as Chinese government support (He 2024; The Econo-
mist, 2024).   

But if the geographic patterns we observed are explained 
more by path dependence resulting from first-mover ad-
vantages and scale economies, then it is possible that geo-
graphic concentration, regional specialization, and interna-
tional divisions of labour will be enduring features of com-
pute production, as they have been in many other industries.  

6.2 Public Cloud vs. Private and Government 
Compute Globally  

In this study we focused on public cloud compute, an im-
portant but by no means the only source of compute. Within 
public cloud compute, our data collection was targeted at 
Nvidia’s GPUs and six leading hyperscale cloud providers.   

Could the relative standing of different types of large-
scale compute providers be expected to change and chal-
lenge the observed geography of compute? An expensive 
capital good such as a GPU cluster needs a high utilization 
rate to achieve reasonable returns to investment, which ex-
plains why large clusters have been built mainly as shared 
infrastructures, whether government owned as in the case of 

 

 
Figure 2: Global compute divide between the Compute North, Compute South, and the Compute Desert, based on public 

cloud GPU compute 



scientific supercomputing, or more recently privately owned 
as in the case of public cloud (Herr 2020). Government-
owned compute now appears to be experiencing a small 
comeback in the form of “national AI compute” initiatives 
announced around the world (OECD, 2023). For example, 
the U.S. National AI Resource (NAIR) Task Force aims to 
create public compute infrastructure to “democratize AI re-
search” (NAIR, 2023; Vipra and West 2023). However, the 
scale of government investment in many cases does not ap-
pear sufficient to seriously challenge the dominance of 
hyperscale cloud providers. Many recent government efforts 
are also undertaken in collaboration with the hyperscalers, 
so that in practice projects rely on privately owned infra-
structure (Vipra and West 2023; Tardieu 2022).  

A counterpoint is provided by the new LUMI supercom-
puter of the European High-Performance Computing Joint 
Undertaking, a collaboration of EU member country gov-
ernments. Located in Kajaani, Finland, LUMI comprises a 
cluster of 11,912 GPUs designed by Nvidia’s competitor 
AMD (Brans 2024). At that scale, it may provide a serious 
alternative to privately owned “public” cloud computing in-
frastructures as AI development infrastructure. Given that it 
is located in the EU, it does not challenge the North-South 
compute divide illustrated in Figure 2. It may, however, con-
tribute to complicating the bipolar image of the U.S. and 
China as the only AI superpowers.  

New private compute clusters also appear to be growing. 
Google’s TPUs likely represent a significant fraction of all 
AI compute. AWS and Microsoft both have plans to produce 
their own chips. Meta announced a very significant invest-
ment into building up their private compute capacity: CEO 
Mark Zuckerberg claimed to be investing in 340,000 Nvidia 
H100s and A100s (Heath 2024). In 2023, Microsoft claimed 
to have spent hundreds of millions of dollars on a cluster to 
power OpenAI’s ChatGPT chatbot (Roth 2023). Massive 
tech companies may be able to achieve high utilization rates 
for large clusters simply with their internal and partner de-
mand. But clusters initially deployed as private can later be 
turned into shared cloud infrastructure once their novelty 
has worn off and internal demand subsided. This blurs the 
difference between private and public (as in public house) 
cloud compute capacity.  

6.3 Future Directions for Research  
The most obvious extensions of this project entail expanding 
the scope of the mapping effort to broader varieties of com-
pute providers and to more types of AI accelerators and ar-
chitectures, potentially with new data sources. But the exist-
ing findings also point to potentially important research 
questions in the landscape of compute governance. Re-
searchers could seek to investigate what factors explain a 
country’s position across the Compute North, Compute 

South, and Compute Desert categories. Although the cate-
gories were broadly correlated with national income levels, 
there were notable exceptions. Can some differences be at-
tributed, for instance, to government policies?  

Research and policy understanding on privately owned 
compute infrastructures is currently hindered by the opaque-
ness and lack of transparency of their owners, which stems 
in part from business confidentiality reasons and the increas-
ingly competitive dynamics of the AI industry (Vipra and 
West 2023). But insofar as AI compute is also becoming a 
governance lever, the secrecy around compute infrastruc-
tures is out of step with the public interest. Norway has re-
cently made it obligatory for data centre operators to register 
with the government and provide basic details on their ca-
pabilities and workloads. As Trager et al. (2023), Heim et 
al. (2024) and Sastry et al. (2024) have argued, we can ex-
pect more governments to begin to intervene on compute 
with transparency, disclosure, and registration requirements. 
As a key input into AI, the management or monitoring of 
compute resources as well as the implementation of multi-
lateral controls will likely be a core concern of broader in-
ternational AI governance efforts (Ho et al. 2023; Trager et 
al. 2023). This may open up new opportunities for research-
ers to understand the global geography of compute in greater 
detail and shape the direction of AI research in terms of ac-
ademic compute access and outside scrutiny of private sec-
tor activity (Besiroglu et al. 2024). 

One important issue that we did not consider in this study 
is that the nationality of hyperscale cloud computing provid-
ers also matters for governance and geopolitics. Providers 
must comply with the laws of the jurisdictions in which their 
global infrastructures are physically located, but they also 
have to comply with the laws of their home countries. Some-
times the latter laws have extraterritorial intent, such as the 
U.S. Cloud Act of 2018, which allows U.S. law enforcement 
agencies to issue warrants for data held by U.S. companies 
regardless of where in the world the data centre is physically 
located (Abraha 2019; 2021). China’s National Intelligence 
Law may likewise have extraterritorial effects. The home 
states of the major cloud providers could in principle attempt 
to use their private companies as geopolitical tools to project 
power globally (Tang 2022; Gjesvik 2023; Gu 2023). Future 
research on compute governance and geopolitics should 
thus consider not only the physical location but also the na-
tionality of AI compute infrastructures. 
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