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Low density lipoprotein oxidized under lysosomal conditions decreases 
arterial vasodilatation

Hadeel K. M. Alboaklaha,b , Alister J. McNeishc*  and David S. Leakea 
aSchool of Biological Sciences and Institute of Cardiovascular and Metabolic Research, University of Reading, Reading, UK; bCollege of 
Pharmacy, University of Kerbala, Kerbala, Iraq; cReading School of Pharmacy, School of Chemistry, Food and Pharmacy, University of 
Reading, Reading, UK

ABSTRACT
Endothelial dysfunction is a risk factor for atherosclerosis and includes impaired endothelium- 
dependent vasodilatation. We have shown previously that low density lipoprotein (LDL) can be 
oxidized by iron in the lysosomes of macrophages. Macrophage lysis in atherosclerotic lesions 
might expose endothelial cells to this oxidized LDL and adversely affect their function. LDL was 
oxidized by ferrous sulfate (5 µM) for 24 h at pH 4.5 at 37 °C. Aortas from male Wistar rats were cut 
into rings and subjected to wire myography for isometric tension recording. The rings were 
incubated with or without oxidized LDL (50 µg protein/ml) for one hour, constricted with 100 nM 
phenylephrine and relaxation to acetylcholine (1 nM − 3 µM) was measured. There was about 50% 
less relaxation in the presence of this oxidized LDL. Endothelial-independent vasodilatation 
induced by sodium nitroprusside was less affected by oxidized LDL. Oxidized LDL increased the 
formation of reactive oxygen species by the aortic rings and by cultured human aortic and dermal 
microvascular endothelial cells, which might have inactivated nitric oxide. Acetylcholine increased 
the activatory phosphorylation of eNOS (ser-1177), but oxidized LDL had little effect on this 
activation in cultured human aortic endothelial cells. These findings raise the possibility that LDL 
oxidized in lysosomes and released from lysed macrophages might decrease vasodilatation in 
atherosclerotic arteries.

Introduction

Impaired arterial vasodilatation is a risk factor for car-
diovascular disease, a major cause of death in the 
world [1]. Endothelial cells dilate arteries by generating 
nitric oxide, endothelium-derived hyperpolarisation and  
prostacyclin [2–4]. Nitric oxide is produced by endothe-
lial nitric oxide synthase (eNOS), which has a complex 
mechanism of activation [5]. As well as mediating 
vasodilatation and regulating blood pressure, nitric 
oxide affects many other processes, such as, inflamma-
tion and platelet activity [5]. Vasodilatation is well 
known to be decreased by low density lipoprotein 
(LDL) oxidized by copper ions [6–12] or by endothelial 
cells [11,13].

There has been a great deal of interest in the oxida-
tion of low density lipoprotein (LDL) [14], as oxidized 
LDL has many pro-atherogenic activities [14,15], in 
addition to decreasing vasodilatation. It is widely 

assumed that LDL is oxidized in the extracellular space 
of the intima of the arterial wall, but we have discov-
ered that it can be oxidized by redox-active iron in the 
lysosomes of macrophages, a prominent cell type pres-
ent in atherosclerotic lesions [16–18]. The mechanisms 
of LDL oxidation at lysosomal pH (about 4.5) might well 
be different to those of LDL oxidation by copper or cul-
tured cells at pH 7.4 [19] and this might alter the effects 
of the oxidized LDL on cells. Very little is known about 
how the pH of oxidation affects the oxidation prod-
ucts in LDL.

As macrophage death is a prominent feature of 
advanced atherosclerotic lesions [20] and oxidized cho-
lesteryl esters can cause the exocytosis of the contents 
of lysosomes in macrophages [21], it is possible that 
LDL which was oxidized in lysosomes might be released 
into the extracellular space of atherosclerotic lesions 
and interact with cells present in these lesions, includ-
ing the endothelium. We have therefore investigated if 
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LDL oxidized under lysosomal conditions, that is by 
iron at lysosomal pH (pH 4.5), can affect the vasodila-
tation of arteries. We show here that LDL oxidized 
under these conditions can indeed decrease vasodila-
tation of rat aortas and present data regarding the 
mechanisms that might be involved.

Materials and methods

Myography

Male healthy Wistar rats (12-14 week-old, body weight 
250-350 g, n = 10) were anesthetized by isoflurane and 
killed by cervical dislocation. The thoracic aorta was 
immediately and carefully removed and placed in ice 
cold Krebs’ solution (118 mM NaCl, 3.6 mM KCl, 1.2 mM 
MgSO4, 1.2 mM KH2PO4, 2.5 mM CaCl2, 11 mM glucose 
and 24 mM NaHCO3). The aortas were cleaned of adi-
pose and connective tissue, cut into rings (2 mm width) 
and mounted on a wire myograph (Danish Myo 
Technology, 620 M) connected to a force transducer 
(PowerLab ML846, ADInstruments) and the LabChart 7 
Software suite (ADInstruments) for isometric tension 
recording, as previously described [22]. Briefly, the organ 
bath was filled with Krebs’ solution heated at 37 °C and 
bubbled with carbogen (95% O2 and 5% CO2). The aor-
tic rings were subjected to zero tension followed by 
equilibration for 30 min and then stretched to a stan-
dardized tension of 10 mN [23]. The rings were 
pre-constricted with the α1-adrenoceptor agonist phen-
ylephrine (100 nM) and only arteries that were able to 
relax by ≥75% to the muscarinic agonist acetylcholine 
(1 µM) were deemed to have functional endothelium 
and used for further study. In arteries preconstructed to 
about 80% of maximal phenylephrine-induced tone 
(50 − 300 nM phenylephrine), concentration-response 
curves to acetylcholine (1 nM-3 μM) were obtained to 
confirm that the aortic rings were responding as 
expected. Rings were then washed several times with 
Krebs’ solution and incubated with oxidized LDL (50 μg 
protein/ml) for 60 min before being contracted with 
phenylephrine and relaxed with acetylcholine (1 nM − 
3 µM). Aortic rings were also treated with sodium nitro-
prusside (1 nM − 3 µM) to assess endothelium-independent 
vasodilatation.

Oxidized LDL

LDL was isolated from healthy volunteers by sequential 
density ultracentrifugation (1.019 − 1.063 g/ml), as 
described previously [24]. It was oxidized by FeSO4 
(5 μM) for 24 h at 37 °C in 150 mM/10 mM sodium ace-
tate buffer of pH 4.5 [25].

Culture of endothelial cells

SV40 large T antigen-transformed human dermal micro-
vascular endothelial cells (HMEC-1) were obtained from 
the Center For Disease Control and Prevention (Atlanta, 
Georgia) and were grown in MCDB 131 supplemented 
with 10% (v/v) heat-inactivated FBS, L-glutamine 
(1.461 g/l), hydrocortisone acetate (1 mM) and human 
epidermal growth factor (10 ng/ml).

Human aortic endothelial cells (Lonza) were cultured 
in EBMTM-2 Endothelial Cell Growth Basal Medium-2 
containing fetal bovine serum, human epidermal 
growth factor, vascular endothelial growth factor, 
R3-insulin-like growth factor-1, ascorbic acid, hydrocor-
tisone, human fibroblast growth factor-β, heparin, gen-
tamicin and amphotericin-B (Lonza).

Measurement of reactive oxygen species in aortic 
rings and cultured endothelial cells

After the wire myography experiments, the rat aorta was 
frozen in liquid nitrogen-cooled isopentane and mounted 
in Optimal Cutting Temperature compound cooled by dry 
ice/ethanol and cryosections (10 μm) were prepared.

Superoxide production by the aortic sections or cultures 
of endothelial cells was detected by a dihydroethidium 

Figure 1. E ffect of LDL oxidized by iron at pH 4.5 on vasodila-
tation. Rat aortic rings were incubated for 60 min with LDL 
oxidized by FeSO4 at pH 4.5 (50 µg protein/ml), contracted by 
phenylephrine (100 nM) and the relaxations by increasing con-
centrations of (A) acetylcholine or (B) sodium nitroprusside 
were measured in a wire myograph. The means ± SEM of 5 
independent experiments were compared by a t-test. * indi-
cates p < 0.05 for the EC50 compared to the controls.
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assay, according to the manufacturer’s instructions. In brief, 
aortic ring sections or cells were incubated with 10 μM 
dihydroethidium in PBS for 30 min, fluorescence was mea-
sured with a fluorescence microscope with an excitation 
wavelength of 488 nm and quantified using ImageJ analy-
sis software.

Western blots

Proteins from human aortic endothelial cells were 
extracted using RIPA buffer (Sigma-Aldrich) and Halt™ 
protease and phosphatase inhibitor (ThermoFisher 
Scientific). Western blotting was performed [26] for total 
and phosphorylated eNOS. Proteins in the lysates were 
separated by sodium dodecyl sulfate-polyacylamide gel 
electrophoresis (SDS-PAGE) on 10-12% gels and trans-
ferred to polyvinylidene difluoride membranes (Millipore). 
The membranes were blocked by incubation in 10 mM 
Tris-buffered 100 mM NaCl, pH 7.5 containing 0.1% (v/v) 

Tween 20 and 5% (v/v) nonfat dry milk for 1 h to 
decrease nonspecific binding, followed by a 24 h incuba-
tion at 4 °C with rabbit polyclonal antibodies to eNOS 
and phosphorylated-eNOS antibody (ser-1177) (1:1,000 
dilution) (Cell Signaling Technology). β-Actin (mouse 
monoclonal, Developmental Studies Hybridoma Bank) 
was used as a loading control. The membranes were 
washed in Tris-buffered saline containing 0.1% (v/v) 
Tween 20 before incubation for 1 h at room temperature 
with a horseradish peroxidase-conjugated secondary 
antibody (Invitrogen). The membranes were then washed 
and developed using ECL substrate (ThermoFisher 
Scientific). Band intensities were measured using Image J.

Immunoflurorescence measurement of 
phosphorylated eNOS

Human aortic endothelial cells grown on glass covers-
lips were washed once with PBS and then incubated 

Figure 2. E ffect of oxidized LDL on reactive oxygen species formation by sections of rat aorta. Representative dihydroethidium 
fluorescence image of the control (A) and oxidized LDL-treated (B) aortic tissue. Quantification of dihydroethidium fluorescence (C). 
The mean ± SEM of five experiments is shown. Paired t-test. ***p < 0.001.
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at 37 °C with oxidized LDL (50 μg protein/ml) for 
60 min, followed by acetylcholine (3 µM) for 8 min. 
Control and oxidized LDL treated cells were then 
washed by phosphate buffer and fixed for 10 min with 
4% (w/v) paraformaldehyde in phosphate buffer. After 
fixation, the cells were rinsed three times with phos-
phate buffer, permeabilised with 0.1% Triton X-100 for 
2 min and rinsed three times in phosphate buffer. Cells 
were then incubated for 24 h at 4 °C with a monoclo-
nal antibody to phosphorylated eNOS (ser1177) (20 μg/
ml) in phosphate buffer plus 1% (w/v) bovine serum 
albumin. Cells were washed three times with phos-
phate buffer and then incubated for 60 min at room 
temperature with a goat anti-rabbit secondary anti-
body (20 μg/ml) in phosphate buffer containing 1% 
(w/v) bovine serum albumin. Cells were washed three 
times with phosphate buffer and once in de-ionised 
water, mounted in Fluorescence Mounting medium 
(Dako) and examined using a Zeiss Axioskop epifluo-
rescence microscope.

Statistics

The mean ± SEM of the given number (n) of indepen-
dent experiments is shown. In isolated arteries n corre-
sponds to the number of animals used. A paired t-test 
or one- or two-way ANOVA and a Bonferroni or Tukey’s 
post-hoc test were used to compare treatments as 
appropriate using GraphPad Prism 4software (Ja Jolla, 
CA, USA). A p value of < 0.05 was considered statisti-
cally significant.

Results

Effects of oxidized LDL on relaxation of aortic 
rings

We investigated the effects of LDL oxidized under lyso-
somal conditions on arterial vasodilatation. Rat aortic 
rings pre-incubated with LDL oxidized by ferrous ions 
at lysosomal pH (pH 4.5) showed less relaxation induced 
by acetylcholine than did the control aortic rings and 

Figure 3. E ffect of oxidized LDL on reactive oxygen generation by cultured endothelial cells. Human aortic endothelial cells (A, B) 
or human dermal microvascular endothelial cells (C, D) were treated for 1 h with control LDL or LDL that had previously been 
oxidized with 5 µM FeSO4 for 24 h at pH 4.5 (both at 50 µg protein/ml). Reactive oxygen species were measured using dihydro-
ethidium. DAPI was used to stain the nuclei in the microvascular cells. The mean ± SEM of five independent experiments is shown. 
***p < 0.001 (ANOVA, followed by tukey’s post hoc test).
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the EC50 was significantly increased (Figure 1A). This 
was due mainly to an effect on the endothelial cells, 
rather than the smooth muscle cells, as there was less 
effect of oxidized LDL on endothelium-independent 
relaxation induced by sodium nitroprusside, especially 
at low sodium nitroprusside concentrations (Figure 1B).

Effect of oxidized LDL on reactive oxygen species 
in aortic rings and cultured endothelial cells

We next investigated the mechanisms responsible for 
this decreased vasodilatation. One possibility is that 
the oxidized LDL increased the formation of superox-
ide, as superoxide can inactivate nitric oxide. Oxidized 
LDL increased the generation of reactive oxygen spe-
cies, mainly superoxide, by rat aortic sections, as mea-
sured using dihydroethidium (Figure 2). To investigate 
the mechanisms responsible for the decreased vasodi-
latation in more detail, we used cultured endothelial 
cells. In agreement with its effect on rat aortic rings, 

LDL oxidized under lysosomal conditions increased the 
generation of reactive oxygen species by cultured 
endothelial cells from both large and small blood ves-
sels, namely human aortic endothelial cells and human 
dermal microvascular endothelial cells (Figure 3). 
Control LDL had no effect.

Effect of oxidized LDL on eNOS phosphorylation

As eNOS is activated by phosphorylation, we investi-
gated the effect of the oxidized LDL on the phosphor-
ylation of this enzyme using western blots. Incubation 
of human aortic endothelial cells in culture with ace-
tylcholine (3 µM) for 8 min increased the levels of 
phosphorylated eNOS (Figure 4A and B). Pre-incubation 
with control LDL or oxidized LDL had no effect on  
the phosphorylation of eNOS (Figure 4A and B). We 
explored this further using immunofluorescence with 
the cultured endothelial cells. This confirmed that ace-
tylcholine alone or in cells pretreated with native LDL 

Figure 4.  Phosphorylated and total eNOS in cultured human aortic endothelial cells measured by Western blotting. Endothelial 
cells (A, B) were incubated for 1 h with control LDL or LDL that had been oxidized by 5 µM FeSO4 for 24 h at pH 4.5 (both at 50 µg 
protein/ml). Acetylcholine (3 µM) was added for 8 min and the cells were then lysed and total and phosphorylated eNOS (ser-1177) 
measured by Western blotting. Protein levels were normalized to beta-actin. Illustrative western blots are shown. The mean ± SEM 
of three independent experiments is shown. *indicates p < 0.05.
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increased eNOS phosphorylation, but this phosphory-
lation was not statistically significantly increased com-
pared to the control cells in the cells pre-incubated 
with oxidized LDL (Figure 5A and B).

Discussion

Oxidized LDL is well known to decrease vasodilata-
tion mediated by nitric oxide but there are many 
forms of oxidized LDL. LDL is often oxidized by cop-
per at pH 7.4 but this type of oxidation is unlikely to 
take place in vivo. We have shown that LDL can be 
oxidized by iron in the lysosomes of macrophages 
[16]. Macrophage death occurs in atherosclerosis, 

especially in advanced atherosclerotic lesions [20], 
and oxidized LDL might be released from their lyso-
somes to the interstitial fluid of the arterial wall when 
the cells lyse. Also oxidized cholesteryl esters have 
been shown to cause the exocytosis of the contents 
of lysosomes in macrophages [21]. The extracellular 
oxidized LDL might adversely affect the function of 
endothelial cells.

We have shown here that the relaxation of rat aortic 
rings by acetylcholine was decreased by LDL oxidized 
under lysosomal conditions, that is by iron at low pH 
(Figure 1A). The relaxation by sodium nitroprusside, 
which is not dependent on the endothelium, was not 
decreased significantly by oxidized LDL (Figure 1B), 
suggesting that the main effect of the oxidized LDL 
was on the endothelial cells.

The generation of reactive oxygen species by the 
aortic rings was increased by oxidized LDL (Figure 2). 
This raises the possibility that at least some of the 
decrease in vasodilatation might have been due to 
reactive oxygen species, mainly superoxide, inactivat-
ing nitric oxide, which is itself a free radical. To 
explore this in more detail, we incubated two types 
of cultured endothelial cells, human aortic and 
human dermal microvascular endothelial cells, with 
oxidized LDL. We found that oxidized LDL, but not 
control LDL, increased reactive oxygen species gener-
ation in both types of cells (Figure 3). It has previ-
ously been shown that LDL oxidized by copper at pH 
7.4 bound to LOX-1 on bovine aortic endothelial cells 
and increased superoxide formation by the cells, 
which inactivated nitric oxide and decreased its lev-
els inside the cells [27].

We then investigated the activation by phosphoryla-
tion of eNOS in cultured human aortic endothelial 
cells. eNOS is activated by phosphorylation at ser-1177 
(in the human enzyme) by Akt [28,29]. Western blot-
ting and immunofluorescence microscopy showed that 
acetylcholine increased the phosphorylation of eNOS, 
but oxidized LDL had no major effect on this activation 
(Figures 4 and 5).

In conclusion, LDL oxidized under lysosomal condi-
tions might have inhibited endothelium-dependent 
vasodilatation by inactivating nitric oxide with superox-
ide radicals. These results raise the possibility that LDL 
oxidized in lysosomes of macrophages might decrease 
vasodilatation of arteries when the macrophages die 
and lyse releasing their oxidized LDL into the intersti-
tial space of atherosclerotic lesions. This adds to the 
list of potentially atherogenic effects caused by the 
oxidation of LDL in the lysosomes of macrophages, 
namely the increased secretion of pro-inflammatory 
cytokines and the increase in pH of the lysosomes [30].

Figure 5.  Phosphorylated eNOS in endothelial cells measured 
by immunofluorescence microscopy. Human aortic endothelial 
cells were incubated for 1 h with control LDL or LDL that had 
been oxidized by 5 µM FeSO4 for 24 h at pH 4.5 (both at 50 µg 
protein/ml) and then with acetylcholine (3 µM) for 8 min. 
Phosphorylated eNOS (ser-1177) was measured by immunoflu-
orescence microscopy, with DAPI used to stain the nuclei. The 
mean ± SEM of three independent experiments is shown. *** 
indicates p < 0.001 test compared to the control (two-way 
ANOVA, followed by Tukey’s post hoc test).
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