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Systematic discovery of gene-environment
interactions underlying the human plasma
proteome in UK Biobank

Robert F. Hillary 1,2,3, Danni A. Gadd1,2,3, Zhana Kuncheva1,3,4,
Tasos Mangelis1,3,4, Tinchi Lin3, Kyle Ferber3, Helen McLaughlin3, Heiko Runz3,
Biogen Biobank Team*, Riccardo E. Marioni 1,2,3,6 ,
Christopher N. Foley 1,3,4,6 & Benjamin B. Sun 3,5,6

Understanding how gene-environment interactions (GEIs) influence the circu-
lating proteome could aid in biomarker discovery and validation. The presence
of GEIs can be inferred from single nucleotide polymorphisms that associate
with phenotypic variability - termed variance quantitative trait loci (vQTLs).
Here, vQTL association studies areperformedonplasma levels of 1463proteins
in 52,363 UK Biobank participants. A set of 677 independent vQTLs are iden-
tified across 568 proteins. They include 67 variants that lack conventional
additive main effects on protein levels. Over 1100 GEIs are identified between
101 proteins and 153 environmental exposures. GEI analyses uncover possible
mechanisms that explain why 13/67 vQTL-only sites lack corresponding main
effects. Additional analyses also highlight how age, sex, epistatic interactions
and statistical artefactsmay underscore associations between genetic variation
and variance heterogeneity. This study establishes the most comprehensive
database yet of vQTLs and GEIs for the human proteome.

High-throughput proteomic analyses enable scalable biomarker dis-
covery for complex disease states1. A growing number of studies have
catalogued genetic influences on the human plasma proteome2–6.
Sequence variants associated with protein abundances are termed
protein quantitative trait loci (or pQTLs) and their colocalisation with
disease-associated variants has guided the identification of pathogenic
molecular pathways, aiding drug and biomarker validation7–9. How-
ever, the influences of environmental factors and, in particular, gene-
environment interactions (or GEIs) on the human plasma proteome
have remained understudied. Determining whether environmental
exposures modify genetic associations with protein abundances
should provide additional, nuanced insights into protein biology and
biomarker discovery.

GEIsmost commonly arise when genotype groups at a locus show
differential associations between an environmental exposure and a
phenotype of interest (e.g. protein levels)10,11. There has been relatively
limited success in identifying GEIs due to their small effect sizes and
challenges in accurately recording multiple environmental exposures
over the life course12,13. Using all genome-wide genetic variants and
hundreds of potential environmental modifiers to test for GEIs also
imposes a significant multiple testing burden.

A GEI can manifest in the form of differences in the variance of a
given trait across genotypes at a locus (Fig. 1). Therefore, one strategy
to infer the presence of a GEI is to perform genome-wide scans for
these loci, which are defined as variance quantitative trait loci or
vQTLs14,15. This is in contrast with pQTLs, which associate with
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differences in mean protein levels across genotype groups. Of note,
variants that associate withmean differences in traits (i.e. pQTLs) have
been referred to as additive main effect or simply, main effect loci in
the vQTL literature16,17. Studies have identified vQTLs for lifestyle and
cardiopulmonary traits such as blood pressure and body mass
index15,16,18,19. These studies have also shown that the power to detect

GEIs is enhanced when restricting the genetic search space to vQTLs
instead of all genome-wide variants or to QTLs with additive main
effects on the outcome (analogous to pQTLs)15–17. Westerman et al.17

applied the two-stage approach of vQTL discovery and GEI testing to
serum cardiometabolic biomarkers, which included 10 proteins.
However, the vQTL architecture for most human proteins remains
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Fig. 1 | Overview of study design for variance QTL analyses in The UK Biobank
Pharma Proteomics Project sample. Top panel: Plasma levels of 1463 proteins
(measured by 1472 Olink analytes) and genotype data were available for up-to-
52,363 participants in UK Biobank after quality control. Variance QTL (vQTL) ana-
lyses were performed using 6.8million imputed SNPs to detect loci that associated
with differential variances in protein levels across genotypes. Gene-environment
interactions (GEIs) canmanifest as differences in the variance of a trait (e.g. protein
levels) across genotypes at a given polymorphism. In this example, which uses
fictitious data, theG-allele positively correlateswith protein levels in one sub-group
of the sample (current smokers, shown in teal). A negative correlation is observed
in never smokers (shown in red). There is no correlation in ex-smokers (shown in
peach). Therefore, genotype at this locus interacts with the exposure (e.g. smoking
status), which creates a mean-based interaction effect. The effect underlies the

dispersionof thedata inG-allele carriers and in turngives the appearanceof a vQTL.
Bottom panel: The independent discovery and replication sets consisted of 34,557
and 17,806 participants, respectively. Effect sizes and p values for variance QTLs
were compared against those from a recent main effect QTL analysis on the same
proteins and sample by Sun et al. The use of vQTLs for GEI tests can greatly reduce
computational burden. Therefore, we tested whether protein levels were asso-
ciated with an interaction between their vQTLs and a broad range of health-related
phenotypes inUKBiobank.A largenumber of phenotypeswere correlatedwith one
another (e.g. adiposity-related traits). Stepwise conditional analyses were
employed in order to identify ‘independent’ interactions. GEI gene-environment
interactions, MAF minor allele frequency, vQTL variance quantitative trait locus.
Figure 1 created with BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license.
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undescribed thereby hindering systematic screens for GEIs that may
impact their circulating levels. Identifying vQTLs and associated GEIs
in this context could further guide predictions on the safety and effi-
cacy of protein biomarkers and drug targets.

In stage one, we conduct genome-wide vQTL association studies
on plasma levels of 1463 Olink proteins in up-to-52,363 UK Biobank
participants. In stage two, GEI associations are comprehensively
screened for using vQTL loci identified in stage one and over 500
environmental exposures (see Fig. 1 for a summary of the study
design). vQTL variants are cross-referenced with a recent pQTL (or
main effect QTL) study using the same sample, highlighting aspects of
protein biology that may not have otherwise been captured by con-
ventional GWASmodels6. GEI association tests are also repeated using
pQTLs to assess whether there is an enrichment in GEI discovery when
restricting the genetic search space to variance effect versus main
effect QTLs.We pinpoint environmental factors that explain why some
sites affect the variance of protein levels only and fail to show a genetic
main effect. We also explore additional explanations for variance
heterogeneity, such as epistatic interactions, phantom vQTLs and
statistical artefacts from phenotype transformations. This study
establishes a comprehensive catalogue of variance effects for the
human proteome, which others may utilise to investigate GEIs of
interest.

Results
Discovery of variance QTLs underlying the plasma proteome
In the first stage of the study, Levene’s test with median was used to
perform genome-wide vQTL analyses on blood levels of 1463 unique
proteins (N ≤ 34,557). The 1463 proteins were measured by 1472 ana-
lytes using Olink technology. A Bonferroni-corrected significance
threshold was set at p < 3.4 × 10−11, which reflected the adjustment of
p < 5 × 10−8 (a commonly used threshold in GWAS)20 for 1463 proteins.
There were 269,225 significant vQTL associations across 575 analytes
at p < 3.4 × 10−11. The associations implicated 568 unique proteins.
There was limited evidence for genomic inflation (range of
λ = [0.9, 1.1], Supplementary Data 1). Six hundred and seventy-seven
independent vQTLs were identified through linkage disequilibrium
(LD) clumping (see “Methods”, SupplementaryData 2). Supplementary
Data 2 and 3 show genomic annotations of the variants using the Open
Targets platform21,22.

Four hundred and seventy-three (69.9%) of the 677 independent
vQTLswere cis effects (within 1Mb from the gene encoding the protein)
and the remaining 204 represented trans effects (Fig. 2a). The majority
of proteins had one independent vQTL (488, 85.9%) and the maximum
number of vQTLs per protein was 5 (for FOLR3 and PNLIPRP2, Fig. 2b).
There was an inverse relationship between the logarithms of effect sizes
and minor allele frequency (MAF) for both cis and trans loci (r=−0.45
and −0.46, respectively, MAF≥ 5%, Fig. 2c). One vQTL was in strong LD
(r2 = 0.87) with an expression vQTL at the same locus (rs858502 and
rs66809776 for PILRA, respectively)23. However, no protein vQTL over-
lapped with known DNA methylation vQTLs24.

Six variants were not available for replication analyses as they had
MAF < 5% in the replication set (N = 17,806). This left 671 variants for
replication testing. Effect sizes for the variants were highly correlated
between the discovery and replication sets (r =0.96, 95% CI = [0.95,
0.97], Fig. 2d, Supplementary Data 4). Three hundred and ninety-six
variants (59.0% of 671) survived Bonferroni correction in the replica-
tion set (p < 3.4 × 10−11), and had effect sizes that were directionally
concordant with those from the discovery set. Of note, the discovery
set had twice the sample size of the replication set. The discovery
sample also contained white Europeans only whereas the replication
set comprised 80% white Europeans and several other ethnic back-
grounds (see Methods). It is likely that differences in ancestries
underpinned variants whose effect sizes showed opposing directions
across sets. A notable example was the cis vQTL rs35489971-A for

CD300LF, which had an effect size of −0.35 in the discovery set and
0.13 in the replication set (highlighted in Fig. 2d). There was evidence
for ancestry-specific effects for such outliers. TheA allele increased the
variance of CD300LF levels in those of Black/Black British ancestry but
not in those of South Asian or European ancestries. The A allele is also
the major allele in those of Black/Black British ancestry (frequency =
70%) but is the minor allele (<25%) in other ancestries. The ancestry-
specific effects likely underscored thepositive associationbetween the
A allele and CD300LF variance in the replication sample but not the
discovery sample, which comprised individuals of European ancestry
only. However, sensitivity analyses showed that vQTL effect sizes were
largely comparable (r =0.82) between individuals of non-European
and European descent when matched for sample size (N ≤ 2518, Sup-
plementary Data 5). The sample structure was retained, which enabled
direct comparisons to a recent main effect QTL study by Sun et al.6,
who implemented the same sampling strategy.

Variance QTLs largely overlap with main effect QTLs for the
blood proteome
Themajority of vQTLs (610, 90.1%)hadmain effectp values < 3.4 × 10−11

(Supplementary Data 6). Only fifteen vQTLs lacked a main effect
finding at p <0.05. Their p-values ranged from 0.08 to 0.98 and three
loci were located within the complex MHC region. Figure 3a, b
demonstrate examples of vQTL loci with and without marginal main
effects, respectively. A reverse look-up strategy showed that only 3.4%
of main effect QTLs (301 of 8856 variants at MAF ≥ 5%) had vQTL
p values < 3.4 × 10−11. Over 23% of main effect QTLs (2053 of 8856) had
vQTL p values below a more relaxed threshold of p <0.05 (Supple-
mentaryData 6). Therefore,most vQTLsweremaineffectQTLs but not
vice versa.

Supplementary Fig. 1 shows the relationship between the sig-
nificance of cis vQTLs or main effect QTLs and their distances from
TSS. Figure 3c, d show the predicted functional classes of vQTLs and
main effect QTLs. Most predicted classes exhibited little variation
between these QTL types given their substantial overlap. However, a
higher proportion of main effect QTLs were annotated to exons than
vQTLs (17.3% vs. 10.3%). In balance, a lower proportion of main effect
QTLs were annotated to intergenic sites when compared to vQTLs
(18.9% vs. 28.2%)6.

Olink assays also rely on limits of detection (LOD) for each protein
and sample plate. The percentage of individuals falling below their LOD
for each protein is shown in Supplementary Data 1. Individuals were not
removed based on LOD in the consortium. It is challenging to select a
threshold to filter proteins based on LOD (e.g. removing proteins that
had >50% of individuals falling below the LOD). Such thresholdsmay be
arbitrary. We characterised how many vQTL sites were associated with
proteins that had an appreciable number of individuals falling below the
LOD. Sixty vQTLs were associated with proteins that had >10% of indi-
viduals whose relative measurements were below the LOD for that
protein. In addition, 39, 13 and8vQTLs associatedwithproteins that had
>25%, >50% of >75% of individuals whosemeasurements did not surpass
the LOD. If a variant influenced whether individuals surpassed the LOD,
it could introduce disparities in trait variance across carriers and non-
carriers. We conducted a sensitivity analysis to assess if vQTL variants
were associated with whether individuals were above or below the LOD
for their respective proteins (binarised outcome). Forty-one vQTLs
(6.1%) were associated with assay detectability p < 7.4 × 10−5 (p<0.05
adjusted for 677 tests, Supplementary Data 7). However, we did not
observe a significant difference in LOD distributions between the 575
proteins with vQTL associations when compared to the 895 without
(χ= 338, p =0.90). vQTL variants were not associated with missingness
due to other technical factors at p < 7.4 × 10−5 (Supplementary Data 8).
Therefore, assay detectability, but not other technical considerations,
may have exerted an effect on the discovery of a small subset of vQTL
associations.
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Variance QTLs unveil gene-environment interactions dispersed
across the plasma proteome
Variance QTLs may be explained by a number of potential influ-
ences, including gene-gene interactions (epistasis), statistical arte-
facts and gene-environment interactions. A particular strength of
vQTL discovery has rested in nominating a priority set of genetic
variants for gene-environment association tests15,17. In the second
stage of the study, we therefore tested whether protein levels were
associated with an interaction between their vQTL(s) and 518 dis-
parate environmental factors (see “Methods” for phenotype selec-
tion and quality control criteria). Summary data for these
phenotypes are shown in Supplementary Data 9. Briefly, pheno-
types were selected through a combination of systematic selection
criteria (using the GWAS Catalog25) and further manual curation to
ensure that a broad range of relevant phenotypes were considered.
Variance QTLs were first queried against the GWAS Catalog. Phe-
notypes that associated with these variants at p < 5 × 10−8 in the

GWAS Catalog were extracted and included in GEI tests if they were
also present in the UK Biobank database. Additional continuous
phenotypes that were previously examined by Westerman et al.17

were included, as well as possibly relevant lifestyle or metabolic
traits. Possible sources of variance heterogeneity other than GEIs,
such as epistasis, phenotype preparation and phantom vQTLs are
explored in later sections.

We observed 1168 GEIs at a Bonferroni-adjusted threshold of
p < 1.4 × 10−7 when vQTLs were used as index variants (p <0.05 adjus-
ted for 677 variants and 518 exposures). Significant GEIs comprised
15.4% of the vQTLs tested (104 variants) and reflected 101 unique
proteins (Supplementary Data 10). The main effect QTL strategy
returned 3061 GEIs at the same threshold. However, these associations
encompassed only 2.8% of main effect QTLs (244 of 8856 variants,
SupplementaryData 11). Theproportion of vQTLs thatparticipated in a
GEI effect was 5.5-fold higher than the proportion of pQTLs, and this
estimate is in line with previous findings15,17.
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Fig. 2 | Genome-wide association studies to identify variance QTLs for 1472
blood protein measures in UK Biobank. a The 1472 analytes or measures repre-
sented 1463 unique proteins. Genome-wide variance QTL tests were performed
using Levene’s test (two-sided). A Bonferroni-corrected significance threshold of
p < 3.4 × 10−11 was set. The x-axis represents the chromosomal location of inde-
pendent cis and trans vQTLs. The y-axis represents the position of the gene
encoding the associated protein.Cis (red circles); trans (blue circles).bThe number
of independent vQTLs per protein. c Association between the common logarithm

ofminor allele frequencies and the natural logarithm of absolute effect sizes for cis
and trans vQTLs. Cis (red circles and line); trans (blue circles and line). d The dis-
covery and replication sets consisted of 34,557 and 17,806 participants, respec-
tively. Pearson’s correlations between effect sizes in the discovery and replication
sets are shown for vQTLs that were significant in the discovery set. An outlier is
highlighted and resulted from differences in allele frequencies across distinct
ethnic groups in the study sample. CI confidence interval, MAF minor allele fre-
quency, vQTL variance quantitative trait locus.
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Many of the exposures tested were from highly correlated cate-
gories (e.g. physical and lipid traits). Therefore, to identify ‘indepen-
dent’GEI associations, we undertook stepwise conditional analyses for
each protein. Here, GEI associations for each protein were iteratively
conditioned on the most significant association for that protein. GEIs
that failed to survive Bonferroni correction once conditioned on the
most significant association were removed. The process was repeated
using the next most significant association for that protein until no
further phenotypes could be considered (see Methods). These ana-
lyses do not point towards biological pathways or potentially under-
lying biological effects. They were carried out to help account for the
correlation structure between GEIs at a given locus. Conditional ana-
lyses suggested that 130 of the 1168 GEIs with vQTLs were

‘independent’ when further accounting for correlations between phe-
notypes (Supplementary Data 12). Twenty proteins exhibited two or
more conditionally significant associations with a maximum of 4
conditional GEIs for FCGR2A, FUCA1 and LDLR (Fig. 4a). Conditional
GEIs included 53 unique phenotypes. In total, 115/130 GEIs were nom-
inally significant (p < 0.05) anddirectionally concordantwith estimates
from the replication set (Supplementary Data 13).

GEIs implicate known biological pathways and are influenced by
age and sex
GEIs revealed a number of interactions consistent with knownbiology.
Thirty-eight conditional GEIs involved phenotypes that were selected
via look-up analyses in the GWAS Catalog25 (Supplementary Data 16).
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Fig. 3 | Genetic architectures of main effect and variance QTLs for plasma
protein levels. a Example of variance QTL (rs147072313) without corresponding
main effect on protein levels (FLT3LG). Levene’s test was used to perform variance
QTL tests (two-sided). Centre line of boxplot:median, bounds of box: first and third
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imum. c Distributions of predicted functional annotation classes for all variance
QTLs. Bar height represents the mean proportion of variants within each class.
d Distributions of predicted functional annotation classes for main effect QTLs. TF
transcription factor, UTR untranslated region, vQTL variance quantitative
trait locus.
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a

b

Fig. 4 | Gene-environment interactions underlying the plasma proteome are
pervasive. a InteractionZ-scores arehighlightedonly for proteinswith twoormore
conditionally significant GEI effects. Positive Z-scores are shown in green and
negative Z-scores are shown in purple. Supplementary Data 14 shows direct asso-
ciations between protein levels and their respective phenotypes displayed in (b)
(i.e. not stratified by genotype). b Illustrative example: mean transformed LDL

receptor or LDLR levels (closed circles) with 95%confidence intervals (vertical bars)
when stratified by vQTL genotype (rs75627662) and tertiles ofmeasured blood LDL
cholesterol. Data are presented as mean values ±95% confidence intervals. GEI
gene-environment interaction, LDL low-density lipoprotein, vQTL variance quan-
titative trait locus.
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These associations entailed variants with known main effects on the
exposure (i.e. phenotype) and also on themean and/or variance of the
protein’s measured abundance in blood. There were also known cor-
relations between the protein level and phenotype, including an
association between LDL receptor (low-density lipoprotein, LDLR) and
LDL cholesterol26 (Fig. 4b). Our GEI analyses supplements existing
knowledge by showing genotype-dependent effects for these asso-
ciations. For instance, the trans variant rs75627662 located near APOE
had an additive effect on transformed LDLR levels and served as a
vQTL. There was a strong positive correlation between LDLR and
cholesterol concentrations in major (C)-allele carriers (rhet =0.32, 95%
CI = [0.31, 0.34], p = 1.2 × 10−259; rmajor = 0.42, 95% CI = [0.41, 0.43],
p = 1.0 × 10−300; Pearson’s correlation). The association was ablated in
those homozygous for the minor T-allele (rminor = 0.01, 95% CI =
[−0.05, 0.06], p = 0.85). This underscored a clear GEI that was
uncovered by the two-stage strategy. Other GEIs included asso-
ciations between interleukin-6 and C-reactive protein levels
(Supplementary Data 16). Interleukin-6 stimulates the synthesis of
C-reactive protein27. We also detected a GEI whereby the effect of
a cis variant on oxytocin levels differed according to sex. Oxy-
tocin shows sex-dependent effects on a range of physical and
behavioural traits28.

Thirty-four vQTL associations were captured by GEIs involving
age or sex. Furthermore, 391 of the 1038 GEIs (37.7%) that did not
surpass conditional significance thresholds were removed after being
conditioned on age or sex. Most of these associations involved phe-
notypes with clear sex differences. For example, circulating levels of
PAEP (progestogen-associated endometrial protein, or glycodelin)
showed an initial GEI with body weight. A GEI effect was not present in
males or females when considered separately, but was detected when
both were considered together. It was observed only because males
had both higher PAEP levels and higher body weights at the minor
T-allele of the cis variant rs697449, giving the appearance of a GEI
(Supplementary Fig. 2). By contrast, we observed that age could mask
rather than induce associations. PAEPwas themost susceptibleprotein
to this effect, and the effect was restricted to female participants.
Negative correlations between PAEP levels and body weight were
observed across genotypes in the youngest age group (40-50 years).
Positive correlations were observed in the oldest age group (60–70
years, Fig. 5a). These opposing associationsmasked one another in the
main analyses. In terms of clinical relevance, we also detected negative
associations between PAEP levels and body weight in those who self-
reported not having experienced menopause (mean age = 46.3, sd =
4.4 years, Fig. 5b). There were positive correlations in those who had
experienced menopause (mean age = 60.5, sd = 5.4 years, Fig. 5b), and
in those who had undergone a hysterectomy (mean age = 58.7, sd = 6.8
years, Supplementary Fig. 3). In all instances, the associations were
strongest in carriers of the T-allele. Therefore, the allele underscored a
stronger negative relationship between its protein and body compo-
sition before menopause, and a stronger positive relationship follow-
ing menopause, when compared to the opposite allele. We also
observed that PAEP levels were, on average, lower in older participants
and by extension, those who had experienced menopause, mammo-
grams and hormonal replacement therapy (Supplementary Figs. 4–6).
Body weight was not altered by age (Supplementary Fig. 7). Together,
these lines of evidence suggest that the role of glycodelin in the
homoeostatic landscape may become altered in the context of
menopause.

Gene-environment interactions capture why some vQTLs lack
genetic main effects on protein levels
vQTLsmay lack geneticmain effects if the variant positively correlates
with protein levels in one stratum of an environmental exposure and
negatively in other strata. The opposing effect sizes preclude a mar-
ginal main effect and produce a ‘directionally discordant’ GEI17. A

slightly higher proportion of vQTLs without main effects at
p < 3.4 × 10−11 participated in conditional GEIs compared to those with
main effects on protein levels (14/67 or 20.9% versus 90/610 or 14.8%,
respectively). However, 13 of the 14 vQTLs (92.9%) without additive
main effects were involved in directionally discordant interactions,
compared to only 2/90 (2.2%) of those with additive main effects
(Supplementary Data 16). Indeed, directionally discordant interactions
likely explained why 13 of the wider 67 vQTL-only sites lacked additive
main effects. Associations between a given variant and protein level
may not have been significant in each strata of an exposure. However,
the requirement for a discordant interaction was that the effect size
must have been opposite in direction in at least two strata. All 13 vQTL-
only sites that are captured by such discordant GEIs are described in
full in Supplementary Information. An illustrative example is high-
lighted below.

The trans indel in FLT3 (rs147072313, fms-related tyrosine kinase 3)
associated with the variance of its ligand (FLT3LG). The binding of
FLT3LG tocell-surfaceFLT3promotesmonocyteproliferation (Fig. 6a)29.
FLT3LG levels associated with a genotype-by-monocyte count interac-
tion in this sample (p=9.3 × 10−11). rs147072313positively correlatedwith
FLT3LG levels within those assigned to the highest tertile of monocyte
counts (β =0.09, se =0.02, p=4.1 × 10−6). However, there was a negative
correlation in the lowest tertile (β= −0.04, se =0.02, p=0.01), preclud-
ing a main effect (Fig. 6b). The additive main effect was almost null
(p=0.96, shown previously in Fig. 2a). This illustrates how stratification
across levels of an environmental exposure can prevent the observation
of a geneticmain effect. The exposure thatwas likely responsible for this
stratification was delineated via our GEI analyses.

Figure 6C shows that the indel was associated with decreased
variance of transformed FLT3LG levels (p = 1.1 × 10−15, also visualised
previously in Fig. 2a). In relation to the GEI effect, it revealed a weak
negative correlation between measured FLT3LG levels and monocyte
count in major allele carriers (T-allele, rmajor = −0.03, 95% CI = [−0.04,
−0.02], p = 3.2 × 10−6). A weak positive correlation was observed in
heterozygotes (rhet = 0.04, 95% CI = [0.02, 0.06], p = 1.1 × 10−4) and a
stronger positive correlation was observed in indel homozygotes
(rminor = 0.12, 95% CI = [0.06, 0.18], p = 2.6 × 10−4, Fig. 6c). This sug-
gested that the effect of FLT3LGonmonocyte count couldbe linked to
rs147072313 genotype.However, the relationshipbetweenFLT3LGand
FLT3 levels was consistent across genotypes, which suggested that
ligand-receptor bindingwas preserved (Fig. 6d). Genotype also did not
associate with mean differences in monocyte count (β = −0.003 per
T-allele, se=0.002, p = 0.13, Fig. 6e). Therefore, the indel was not
associated with an overall detrimental effect on monocyte count. The
relationship was specific to monocytes when considering eight other
blood cell types (Supplementary Fig. 8).

Alternative explanations for variance QTLs underlying the
plasma proteome
GEIs are sufficient but not necessary to generate a vQTL15. It is also not
possible to draw a causal interpretation between tagged genetic var-
iants, environmental exposures and variance heterogeneity. Further-
more, vQTL associations may reflect epistatic (or gene-gene)
interactions, phantom vQTLs and artefacts of statistical transforma-
tions applied to phenotypes. To explore these alternative explana-
tions, we first examined whether protein levels associated with an
interaction between a vQTL and any other SNP located more than
10Mb away on the same chromosome (see Methods, Supplementary
Data 17). Of the 677 vQTL associations, 5 showed an epistatic interac-
tion effect on their respective protein level at p < 5.0 × 10−8. This sig-
nificance threshold was selected as we estimated that there were
approximately 1 million independent epistasis tests across our ana-
lyses (p <0.05 adjusted for 1 million tests).

Another important consideration in vQTL analyses is the rela-
tionship between the mean and the variance of phenotypes16.
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Differences in the variance of protein levels could be explained by
additional linked main effect SNPs or QTLs24,30. This is of particular
concern for traits with QTLs of large mean-effect sizes, such as mole-
cular phenotypes (e.g. protein levels and DNA methylation24), but less
so for complex traits15. Therefore, where possible, we additionally
adjusted each protein that had a vQTL association for the most sig-
nificant mean-effect SNP at p < 3.4 × 10−11 from Sun et al.6. We then
repeated each vQTL association test and observed that 451 (66.6% of
677) associations survived Bonferroni correction at p < 3.4 × 10−11

(Supplementary Data 18). Therefore, 226 associations could be cap-
tured by linkage tomain effect QTLs. Of note, epistasis effectsmay also
arise from linkage tomain effectQTLs. Furthermore, these associations
are indicative of phantom vQTLs but this cannot be ascertained with-
out the use of whole genome sequencing data. Therefore, the 226
associations highlighted in these sensitivity analyses can more accu-
rately bedescribed as statistical artefacts. Together, 301 of all 677 vQTL
associations were captured by GEIs, epistasis or statistical artefacts.

Rank-based inverse normal transformation (RINT), imple-
mented in this study, may reduce the correlation between mean
and variance effects31 but such non-linear transformations can
inflate the type I error in Levene’s test in the presence of QTL
effects. Therefore, as further sensitivity analyses, we re-estimated
vQTL associations when preparing phenotypes in line with
guidelines from Wang et al. to avoid these potential biases
(see Supplementary Information)15. 671 variants remained at
p < 3.4 × 10−11 with the remainder at p < 8 × 10−11 (Supplementary
Data 19). Supplementary Information details further sensitivity
analyses in which protein levels were adjusted for the exposures
they associated with in stage two of our study design. vQTL
association statistics were re-estimated when adjusting for parti-
cipating exposures. Relative effect sizes were correlated 99% with
those from the main analyses (Supplementary Data 20). There-
fore, vQTL associations were largely robust to statistical trans-
formations of phenotypes.

a

b

Fig. 5 | Relationships between glycodelin levels and bodyweight are influenced
by genotype and menopause history. a Mean transformed glycodelin levels
(PAEP, closed circles) with 95% confidence intervals (vertical bars) are shown
according to tertilesofbodyweight (in kilograms, kg) and rs697449genotype. Data
are presented as mean values ±95% confidence intervals. The associations are
stratified according to three decades of life in females. b Correlations between
PAEP levels and body weight are shown in green (left-side) for participants who

reported ‘No’ to the question ‘Hadmenopause?’ at the study baseline (Field: 2724).
Correlations are shown in purple for participants who reported ‘Yes’ to the same
question. Correlations are stratified further by genotype and evidence that the
T-allele underscores a stronger correlation in participants who had and also who
hadnot experiencedmenopause. The statistical test usedwas Pearson’s correlation
(two-tailed).
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Discussion
In this study, we utilised one of the world’s largest proteomic datasets
to perform genome-wide vQTL association studies on blood levels of
approximately 1450 proteins. All vQTL associations are newly descri-
bed. However,most variants showed amain effect on their protein and
30 were previously reported as lead cis pQTLs. We identified 1168 GEIs
across 101 blood proteins. We also highlighted genotype-genotype
interactions andmean-variance relationships that, together with gene-
environment interactions, underpinned 301 of the 677 observed vQTL
associations. Many of the GEIs identified in our study reflected known
associations between protein biomarkers and environmental expo-
sures or health outcomes (e.g. LDLR and cholesterol levels). Our data
supplement the existing literature by documenting instances where
the genetic control of protein levels is modified by exposures, or
alternatively, where relationships between protein levels and expo-
sures aremodified by genotype. Furthermore, we catalogue a series of
biologically plausible relationships that explain why some vQTL sites
did not show genetic main effects on circulating protein levels. In
effect, these associations reveal environmental exposures that act as
stratifiers in the population and the resulting strata show apparently
opposing genetic effects on protein abundances. Lastly, we detail
several methodological considerations for future studies interested in

defining the GEI landscape of molecular and complex traits. Together,
these data and findings bolster new toolkits in proteogenomics and
impart nuanced insights that can guide biomarker discovery efforts.

Large biobank efforts have successfully detected genetic under-
pinnings of the human proteome, defining variants that associate with
mean differences in protein levels. In terms of biological and clinical
advancements, these data have supported causal inference analyses
that nominate candidate drug targets for diverse disease states. A
primary utility of vQTL analyses in advancing biological knowledge
rests in discovering gene-environment interactions, which remain
comparatively understudied. Variants with additive main effects alone
(i.e. non-vQTL sites) could be used in GEI tests. However, we observed
that the proportion of vQTLs participating in a GEI was five-fold higher
than corresponding main effect sites, providing additional evidence
that vQTLs increase the likelihood of identifying an underlying gene-
environment interaction16,17. The higher number of main effect loci
over vQTLs reflects the greater statistical power of standard regression
methods when compared to Levene’s test. By contrast, the power of
GEI tests may increase when using vQTLs rather than main effect loci.
Identifying vQTLs as a priority set of genetic variants, which can only
be revealed through vQTL discovery, allows for good practice in
screening for such interactions.

Fig. 6 | Variance QTL in FLT3 receptor gene modifies the relationship between
FLT3 ligand levels andmonocyte count. a Schematic diagram showing the role of
FLT3 receptor and FLT3 ligand (FLT3LG) binding in monocyte proliferation.
b Linear regression was used to examine the relationship between rs147072313
genotype and FLT3LG levels across tertiles of monocyte count (two-sided). Mean
transformed FLT3LG levels (closed circles) with 95% confidence intervals (vertical
bars) are displayed according to tertiles of monocyte count and rs147072313 gen-
otype. Of note, the wide confidence intervals in those homozygous for the indel
reflect the small sample size of this group. They represent confidence intervals for
the mean of the protein levels across strata. They do not reflect the variance of the
protein level, which is instead visualised in (c) and is most clearly illustrated via
boxplots in Fig. 2a. c displays full distributions of FLT3LG levels and their

correlation with monocyte counts. c The statistical test used was Pearson’s corre-
lation (two-tailed). The correlation between transformed FLT3LG levels and
monocyte count differs according to genotype at rs147072313 giving rise to a gene-
environment interaction. Here, it is also apparent that the vQTL confers reduced
variance in FLT3LG in carriers of the indel. d The association between circulating
FLT3LG levels and FLT3 receptor levels is consistent across genotypes. The statis-
tical test used was Pearson’s correlation (two-tailed). (e) Violin plots show that
rs147072313 genotype does not have an additive main effect on monocyte count.
Centre line of boxplot: median, bounds of box: first and third quartiles and tips of
whiskers: minimum andmaximum. QTL, quantitative trait locus. Figure 6a Created
with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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Our study specifically advances beyond the vQTL-GEI literature by
conducting vQTL analyses on over 1400 blood proteins and con-
sidering the largest number of biomarkers in vQTL-GEI studies to date.
We also detail how demographic variables (e.g. age and sex) and
environmental exposures may mask or induce observed GEIs. Specific
examples are discussed in detail in the following paragraphs. The
findings are not readily interpreted in a clinical context given that
causative pathways between the genome, proteome and phenome
cannot be inferred from our computational approach alone and will
require validation in mechanistic in vitro and in vivo settings and/or in
targeted epidemiological studies. It is also possible that some vQTLs
without GEI associations in our study are explained by exposures that
we did not include. Importantly, others will be able to utilise our
prioritised set of vQTLs and extract their genotypes to perform GEI
tests with phenotypes of interest in their study. On balance, vQTLs
should be viewed as a complementary but not competing resource to
main effect QTLs in proteogenomic efforts. Our data provide new
opportunities to guide studies on the safety and efficacy of candidate
protein biomarkers by characterising exposures and demographic
variables that impact the genetic control of circulating proteins.

GEIs identified environmental exposures and biological mechan-
isms that explained why some loci affect the variance of protein bio-
markers only. For instance, the effect of a trans indel within FLT3 on
the distribution of its ligand FLT3LG was explained by an interaction
with monocyte count. A conventional model suggests that lower cir-
culating FLT3LG levels serve as a proxy for higher receptor-bound
ligand. In turn, higher receptor-coupled ligand produces higher
monocyte count, leading to a negative correlation with the free
ligand32. An unexpected positive correlation was observed in indel
carriers. However, monocyte count and receptor-ligand binding were
stable across genotype groups. This suggested that the indel may
instead impact downstream ligand-mediated signalling processes
without exerting overall detrimental effects on blood cell profiles.

Age and sex showed complex effects on GEIs. A key illustrative
example of their effects involved associations between glycodelin and
physical traits. GEIs that were confounded by sex were attributed to
sexual dimorphism in body composition and QTL effects. By contrast,
associations between glycodelin and body composition were masked
by age within females only. Glycodelin has four major glycoforms (-A,-
S,-F and –C) with prominent roles in reproduction, pregnancy and
immune function33. They also exhibit differential expression across
sexes and tissues. Glycodelin-A is expressed in the female genital
tract34,35. Glycodelin-F and –C are detected in follicular fluid and in
cumulus cells within the ovarian follicle, respectively36. Glycodelin-S is
secreted from seminal vesicles into seminal fluid37,38. Temporal studies
on the expression of glycodelin are primarily restricted to pregnancy
and ovulation and less is known about its characteristics throughout
the lifespan39. We observed that glycodelin levels were lower in parti-
cipants who had experienced menopause, who were on hormonal
replacement therapy or who had undergone a hysterectomy. This is
likely attributed to reduced levels of progesterone, which maintains
glycodelin levels40. Body weight was not altered in our sample by age
or by history of menopause. However, the correlation between gly-
codelin and body composition switched in direction following meno-
pause or hysterectomy, which may suggest that its role in regulatory
mechanisms becomes altered after these events. It is challenging to
separate whether this is due to relevant medications or in response to
biological cascades. Our data provide methodological considerations
for other GEI studies and further underscore the need for large sam-
ples that can enable stratified analyses and biomarker research in
understudied groups.

This study has a number of limitations. First, we note an absence
of an external replication cohort. The split of the sample into discovery
and replication sets was carried out in order to directly match the
sample split and approach of Sun et al., who report a main effect QTL

study on the same proteins. The statistical power of Levene’s test is
weaker than that of linear regression GWAS14. Therefore, it is advan-
tageous to implement a large available sample size in vQTL association
studies. Presently there is no external cohort with the same proteins
measured, with matched phenotype definitions for GEI analyses and is
of sufficient sample size to permit an informative external replication
analysis. Hence, we elected to retain the analytical approach of Sun
et al. Furthermore, while we observed evidence for ancestry-specific
effects in some vQTL association tests, larger sample sizes will also be
needed to provide meaningful, fine-scale ancestry-specific and cross-
ancestry vQTL discovery efforts. Second, on a related note, the
majority of participants were of European ancestry. Therefore, it is not
possible to clearly generalise gene-environment effects to other
ancestry groups given potential differences in both genetic and
environmental profiles. Third, specific quality control parameters
could not feasibly be applied to all phenotypes tested. Additional
confounders and phenotype-specific transformations may need to be
considered in follow-up or mechanistic studies. Complex interactions
between multiple environmental exposures or inaccurately recorded
phenotypes could also have precluded GEI detection within the large
correlated constellation of phenotypes studied.

The study complements existing proteogenomic efforts by con-
sidering additional distributional properties of the proteome whilst
cataloguing biologically informative examples of its interaction with
the genome, metabolome and phenome. Our datasets of variance QTL
effects and GEIs establish unmet resources in the pursuit of accel-
erating biomarker discovery and validation.

Methods
UK biobank study
UK Biobank, or UKB, is a prospective, population-based cohort of
approximately 500,000 individuals aged between 40 and 69 years at
recruitment41. Recruitment took place between 2006 and 2010. Here, a
subset of the UKB sample was utilised, which was defined by The UKB
Pharma Proteomics Project or UKB-PPP consortium. The consortium
comprises 13 biopharmaceutical companies, which funded the gen-
eration of blood-based proteomic data. The UKB-PPP sample includes
54,219 participants and consists of (i) a randomised subset of 46,595
UKB participants at the baseline visit, (ii) 6376 individuals at the
baseline selected by the UKB-PPP consortium members and (iii) 1268
individuals who participated in the COVID-19 repeat imaging study.

Protein measurement in UK Biobank
Blood samples from 54,219 UKB-PPP participants were analysed using
the Olink Explore 1536 platform. The platform uses Proximity Exten-
sion Assay42 and measured 1,472 protein analytes across four Olink
panels (Cardiometabolic, Inflammation, Neurology and Oncology).
The analytes reflect 1,463 unique proteins. EDTA-treated plasma sam-
ples (60 µl) were serially diluted to 1:10, 1:100 and 1:1000 and trans-
ferred to 384-well plates. Samples were processed in eight batches
(termedbatches0-7) and incubatedwith antibodiesovernight at−4 °C.
Olink’s inbuilt quality control (QC) workflow returned Normalized
Protein eXpression (NPX) values, which is a relative quantification unit
on a log-2 scale. Full details on protein measurement and QC are
available in Supplementary Information.

Genotyping in UK Biobank
The UKB genotype dataset includes 488,377 participants. Of these,
49,950 individuals were genotyped on the Applied Biosystems UK
BiLEVE Axiom™Array and 438,427 participants were genotyped on the
closely related UK Biobank Axiom™ Array41. Here, we followed the
genotype QC process of Sun et al.6 in order to enable direct compar-
isons to a conventional main effect QTL analysis using the same
sample6. Briefly, UKB genotype data were imputed to the Haplotype
Reference Consortium43 and UK10K44 reference panels. Imputed
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genetic variantswerefiltered for INFO>0.7 andminor allele count>50,
and chromosome positions were lifted to hg38 build using LiftOver45.
Variants with a genotyping rate >99%, Hardy-Weinberg equilibrium
test p > 10−15 and <10% missingness were retained. Sun et al.6 utilised
variants with minor allele frequency (MAF) > 1%. We applied a higher
threshold of MAF > 5% in accordance with the workflow of Wang et al.
for vQTL analyses15. Following QC, 6,815,338 variants remained. There
were 52,363 individuals with paired genotype and protein data fol-
lowing QC protocols.

The UKB-PPP sample was separated into discovery (n = 34,557)
and replication subsets (n = 17,806) as per the design of Sun et al.6. The
discovery set included participants who were of European ancestry
and present in Olink measurement batches 1–6. The remaining sam-
ples comprised the replication set and included 10,840 White, 931
African, 920 Central/South Asian, 308 Middle Eastern, 262 East Asian,
and 97 admixed American ancestries.

Variance QTL association studies
vQTL association studies were performed using the vQTL suite in OSCA
(version0.46)46. Levene’s testwithmedianwas applied. The false-positive
rate of this test has been shown to be well-calibrated across simulated
data in comparison to other commonly-used vQTL methods15.

In the discovery cohort, rank-based inverse normal transformed
protein values (NPX) were regressed onto age, age2, sex, age*sex,
age2*sex, batch, UKB study centre, UKB genotype array, time between
blood sampling and measurement and 20 genetic principal compo-
nents. One additional covariate was included in the replication set,
which indicated whether samples were pre-selected by consortium
members or as part of the COVID imaging study. Summary data for
covariates are available in Supplementary Data 21 and their associations
with protein levels are shown in Supplementary Data 22 and 23 for
discovery and replication sets, respectively. The preparation of protein
data was aligned as closely as possible to the correspondingmain effect
QTL study by Sun et al.6 Of note, Sun et al. did not adjust protein levels
prior to genetic association studies and instead included fixed-effect
covariates. This was not possible in our study as the Levene’s test
module did not permit fixed-effect covariates. Residuals were standar-
dised to Z-scores and entered as dependent variables. Additively-coded
genotype status was included as the independent variable.

ABonferroni-corrected significance thresholdofp < 3.4 × 10−11 was
applied (p < 5 × 10−8 adjusted for 1463 proteins). Primary associations
were defined by clumping variants ±1Mb around significant vQTLs
using PLINK (version 1.9)47 with the exception of the HLA locus
(chromosome 6: 25.5–34.0Mb). The larger HLA locus was considered
as one region due to its complex linkage disequilibrium structure.

Annotation of vQTLs
We deemed vQTLs to be cis sites if they were within 1Mb from the
canonical transcription start site of the gene encoding the respective
protein. A vQTLwasallocated asa trans site if it fell outwith this region.
Trans vQTLs can point towards hierarchical networks of genes within
regulatory pathways. They may also reflect epistatic interactions with
cis variants or capture networks of proteins that are similarly impacted
by a given GEI. Genomic annotation was performed using two strate-
gies. In the first strategy, annotation was carried out using Ensembl
Variant Effect Predictor (VEP) (version 110), ANNOVAR and (https://
annovar.openbioinformatics.org/en/latest/) and WGS Annotator
(WGSA, https://sites.google.com/site/jpopgen/wgsa) (version 0.95).
Gene annotation was based on RefSeq and Ensembl. The rank of genic
intolerance was estimated for synonymous mutations along with the
consequent susceptibility to disease based on the ratio of loss-of-
function. SIFT and PolyPhen scores for changes to protein sequence
were estimated for coding variants. For non-coding variants, tran-
scription factor binding site, promoters, enhancers and open chro-
matin regions were mapped to histone marks chip-seq, ATAC-seq and

DNase-seq data from The Encyclopaedia of DNA Elements Project
(ENCODE, https://www.encodeproject.org) and ROADMAP Epige-
nomics Mapping Consortium (http://www.roadmapepigenomics.org).
For intergenic variants, the 5’ and 3’ nearby protein coding genes were
mapped and the distance between the 5’ transcription starting sites of
a protein coding gene to the variant was provided. In the second
strategy, variants were submitted to the Open Targets Genetics plat-
form to systematically estimate to most likely gene annotation for a
given vQTL21,22. A variant-to-gene score is estimated as an aggregate
score based on several lines of evidence from functional genomics
data (e.g. chromatin conformation, chromatin interactions) and
quantitative trait loci (expression, protein and splicing QTLs). This was
carried out as the genemost functionally implicated by a given variant
is not strictly that which holds the shortest distance between the var-
iant and its canonical TSS. Gene annotation is presented for both
strategies in Supplementary Data 2, which agreed for 55% of variants.

Preparation of phenotypes for gene-environment
interaction tests
First, we aimed to identify phenotypes of interest in a systematic
manner. vQTL variants were queried against the GWAS Catalogue25 and
traits which associated with the variants at a conventional significance
threshold of p< 5 × 10−8 were extracted. The list of associated traits was
thenqueried against theUKBiobankdata resource toassess if theywere
measured or assayed across our participants. This allowed us to include
exposures that had known main effect associations with our set of
genetic variants. Second,we considered remaining quantitative lifestyle
and metabolic factors available in the UK Biobank for GEI analyses,
given prior evidence for interactions between the proteome and
metabolome48,49. Third,we identifiedadditional continuousphenotypes
from a recent protein vQTL analysis by Westerman et al.17 and ensured
no technical QC variables were considered. Prior to QC, 782 candidate
phenotypes were deemed to be relevant and were considered for GEI
tests. Phenotypes with excessive missingness (i.e. <5% complete data,
n = 229) and insufficient heterogeneity (n = 35) were removed. There
were 518 phenotypes following QC. Categorical variables were con-
verted into binary or ordinal phenotypes as appropriate. Continuous
variableswere rank-based inverse normal transformed. Thephenotypes
or ‘exposures’ consisted of 113 psychological, 103 physical, 103 bio-
chemical, 83 health and disease, 79 dietary, 36 lifestyle and one tech-
nical variable (season of blood draw). Further information on
phenotype preparations is available in Supplementary Information.

Gene-environment interaction tests
Linear regression models tested whether the levels of a given protein
were associated with an interaction between its vQTL (stage one) and
each of 518 possible exposures (stage two):

Protein levelsðstandardised residualsÞ∼ SNPð0,1,2Þ*exposure + SNP+exposure
ð1Þ

No fixed-effect covariates such as age and sex were included in GEI
associationmodels as protein levels were already corrected for relevant
covariates in stage one, and in keeping with prior GEI studies17. Of note,
the protein variable was entered as the dependent variable to align with
the previous literature17. Further, this was carried out as we were
interested in uncovering genotype-dependent correlations between
protein levels and environmental factors. We do not attempt to draw
causal conclusions from these interaction effects regarding pathways
connecting genetic variation, protein levels and environmental vari-
ables. A Bonferroni-corrected threshold of p < 1.4 × 10−7 was applied
(p <0.05 adjusted for 677 vQTLs and 518 exposures). Conditional GEI
tests were performed in stage two in order to further account for the
correlation structure between related phenotypes. All GEIs for a given
protein that withstood multiple testing correction were brought
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forward to stepwise conditional analyses. GEIs for a given protein were
re-tested while iteratively conditioning on the association that involved
the most significant exposure (i.e. smallest p value for a given protein).
The process was repeated until no further GEIs could be considered. As
described in Weller et al., we ensured to account for covariate × envir-
onment and covariate × gene interaction terms in order to account for
the possible effect of confounding variables50.

Inclusion & Ethics
All participants provided informed consent. This research has been
conducted using the UK Biobank Resource under approved applica-
tion numbers 65851, 20361, 26041, 44257, 53639, 69804.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genome-wide vQTL and GEI summary statistics generated in this
study have been deposited in the Synapse database under the fol-
lowing https://doi.org/10.7303/syn61514369. The underlying NPX
measures are available through the UK Biobank Research Analysis
Portal (https://www.ukbiobank.ac.uk/enable-your-research).

Code availability
All code is available with open access at the following GitHub reposi-
tory: https://github.com/robertfhillary/vqtls-uk-biobank 51.
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