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Method

Rescuing error control in crosslinking mass
spectrometry
Lutz Fischer 1 & Juri Rappsilber 1,2,3✉

Abstract

Crosslinking mass spectrometry is a powerful tool to study protein-
protein interactions under native or near-native conditions in
complex mixtures. Through novel search controls, we show how
biassing results towards likely correct proteins can subtly under-
mine error estimation of crosslinks, with significant consequences.
Without adjustments to address this issue, we have misidentified
an average of 260 interspecies protein-protein interactions across
16 analyses in which we synthetically mixed data of different
species, misleadingly suggesting profound biological connections
that do not exist. We also demonstrate how data analysis proce-
dures can be tested and refined to restore the integrity of the
decoy-false positive relationship, a crucial element for reliably
identifying protein-protein interactions.
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Introduction

Crosslinking mass spectrometry (MS) has emerged as a powerful
approach for studying protein-protein interactions in native or
near-native conditions (O’Reilly and Rappsilber, 2018; Piersimoni
et al, 2022). This technique involves introducing a crosslinker into
a protein sample to covalently connect interacting proteins,
followed by digesting the sample and identifying the linked
peptide pairs through mass spectrometry. The challenge in
identifying these crosslinked peptides arises from several factors,
particularly the vast database search space required. Additionally,
crosslinked peptide pairs between different protein sequences
(referred to as protein heteromeric links in the HUPO PSI
controlled vocabulary) are less abundant than crosslinks between
peptides within one protein sequence (self crosslinks). These
heteromeric links are subject to higher rates of random matching
due to their scarcity and the increased number of theoretical
combinations in the search space, resulting in lower scores and

increased noise levels—the proportion of random matches in these
groups. Therefore, accurately distinguishing true heteromeric
crosslinks from false positives is challenging, which limits the
sensitivity of crosslinking MS.

To enhance the identification of protein heteromeric crosslinks,
it may be tempting to utilise information beyond individual
crosslink-spectrum matches (CSMs). Given that protein abundance
will impact the likelihood of a protein being observed, it seems
perfectly reasonable to accordingly restrict the data analysis.
One example of such a strategy, referred to as mi-filter (Chen
et al, 2022) (Fig. 1), considers only those proteins that also show
self-crosslinking or linear peptides modified by a crosslinker
(monolinks) to reduce the false positives among the heteromeric
matches. This is based on the observation that monolinks and self
crosslinks are more abundant and, hence, more detectable
than heteromeric crosslinks. Other tools like ECL-PF (Zhou et al,
2023), CRIMP 2.0 (Crowder et al, 2023), XLinkProphet
(Keller et al, 2019) and likely others similarly make use of
information about individual proteins during search or rescoring
of matches. However, leveraging these observations can be tricky,
and improper application could undermine the integrity of the
error models used in decoy-based false discovery rate (FDR)
assessments.

Typically, crosslinking mass spectrometry uses decoy matches—
known false positives—to estimate the prevalence of unknown false
positives among the target matches. This approach allows for
filtering results to a predefined confidence level, reflected as a false
discovery rate (FDR) (Maiolica et al, 2007; Walzthoeni et al, 2012;
Yang et al, 2012; Fischer and Rappsilber, 2017, 2018; Lenz et al,
2021). Decoy matches typically involve searching either reversed
target proteins (Maiolica et al, 2007) or randomly generated
proteins (Kaake et al, 2014), where each decoy protein serves as an
equivalent to a target protein. The quantity and score distribution
of decoy matches provides a model for the potential false positives
among the target matches.

However, we demonstrate that approaches that filter search results
based on additional considerations can disadvantage decoys relative to
targets, thereby impairing the decoys’ ability to model false positive
targets. Consequently, these remaining decoys cannot be reliably used
to gauge the confidence of results. Moreover, we outline how to
increase the detection of protein-protein interactions at a given
confidence level, without underestimating the incidence of false
positives when adding protein level information.
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Methods

Reagents and tools table

Software

xiSEARCH 1.7.6.7 https://www.rappsilberlab.org/
software/xisearch/

xiFDR 2.0 https://www.rappsilberlab.org/
software/xifdr/

msConvert (ProteoWizard 3.0) https://proteowizard.sourceforge.io/

Dataset origins

The datasets employed in this study were obtained from ProteomeX-
change (Deutsch et al, 2023). The Mycoplasma pneumoniae dataset,
specifically raw files from strong cation exchange (SCX) fractions

11 to 14, was sourced from Pride ID PXD017711 (O’Reilly et al, 2020;
Data ref: O’Reilly and Rappsilber, 2020). The E. coli dataset came from
JPOST ID JPST000845 (Lenz et al, 2021; Data ref: Sinn and Rappsilber,
2021), comprising DSSO raw files for SCX fractions 18, 20, 22, and 24.
Additionally, the 26S proteasome dataset included the trypsin-only
raw files from Pride ID PXD008550 (Mendes et al, 2019; Data ref:
Mendes and Rappsilber, 2019).

Data processing

The raw files were converted to mgf-files with msConvert from
ProteoWizard (version 3.0) (Chambers et al, 2012) with peak picking
enabled. Crosslink search was done with xiSEARCH (version 1.7.6.4).
Search parameters used were: crosslinker DSSO for M. pneumoniae
and E. coli dataset and BS3 for the 26S proteasome dataset with
specificity for lysine, serine, threonine, tyrosine and protein n-terminal
with a penalty value for serine, threonine, and tyrosine of 0.2, fixed

Figure 1. A simple protein-based filter leads to hidden error.

(A) Schema of a protein-based filter that considers information on individual proteins. Only proteins that pass the filter are considered further. In the case of the mi-filter,
only proteins that are observed with monolinks or self crosslinks are kept and considered as observable in heteromeric protein-protein interactions. (B) Effect of the mi-
filter on false positives: decoy-based FDR estimate (green) and known error (orange). The known error comprises the matches to E. coli spectra that involveM. pneumoniae
proteins and matches to M. pneumoniae spectra that involve E. coli proteins. A minimum score cut-off of 5 was applied, resulting in 42,399[ ± 1485] target matches and
20336[ ± 669] known false positives (All), which changed after applying the mi-filter to 10,966[ ± 568] target matches and 4685[ ± 236] known false positives. The mi-
filter results in a known error of 16.2% (267[ ± 27] of 1625[ ± 112] target matches) and 9% (104[ ± 12] of 1160[ ± 82] target matches) at 2 and 1% FDR cut-offs. The shaded
areas indicate the fraction of known error not modelled by decoys (i.e. hidden error). (C) Effect of the mi-filter on the total estimated true positive: Decoy-based estimate
of assumed true positives among results for either just applying a minimum score cut-off (left) or after applying the score cut-off and mi-filter (right). The shaded area
indicates the number of impossible true positives. Data plotted are the average for 16 pairwise combinations of each of four SCX fractions of M. pneumoniae with each of
four SCX fractions of E. coli fractions. Error bars indicate the standard error.
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modification of carbamidomethylation of Cysteine, variable modifica-
tion of oxidation on methionine and hydrolysed and amidated
crosslinker modifications on K, S, T, Y and protein N-termini as linear
only modifications. Non-covalent interactions were considered as part
of the search as well but ignored during data analysis.

The datasets from E. coli and M. pneumoniae were analysed using a
combined database comprising all E. coli proteins (UniProt proteome
UP000000625 as of January 19, 2023) and all M. pneumoniae proteins
(UniProt proteome UP000000808 as of January 16, 2023). This
approach of searching against a unified database serves as a decoy-
independent method for generating a set of known false positives,
providing a benchmark to evaluate if decoy matches accurately mirror
false positive target matches. Specifically, any detected match between
E. coli and M. pneumoniae proteins, or an M. pneumoniae protein
matched to an E. coli spectrum and vice versa, is inherently incorrect.
This methodology is akin to a traditional entrapment strategy, where a
dataset is searched against both target and non-present (entrapment)
protein sequences. The advantage of the pairwise entrapment model is
that all proteins act simultaneously as targets for some spectra and as
known false proteins for others. For data analysis, spectra from each
E. coli SCX fraction (n = 4) were paired with those of each
M. pneumoniae SCX fraction (n = 4), and the average number of
matches of all possible combinations (n = 16) was calculated and plotted.

The 26S proteasome dataset was initially processed using
MaxQuant (Tyanova et al, 2016) version 1.6.17, targeting the complete
Saccharomyces cerevisiae proteome (UniProt proteome UP000002311
as of February 6, 2023). This analysis identified 1073 non-contaminant
target protein groups, from which the first protein of each group was
selected as a representative. These proteins were then ranked by their
iBAQ values and divided into three sets. Proteins not identified in the
original FASTA file were grouped into ten subsets.

For the crosslinking MS data analysis, xiSEARCH (version
1.7.6.4) was initially used to search against a progressively
increasing number of present proteins, sorted by abundance. To
evaluate the impact of the filter with non-present proteins, the
search included all previously identified proteins plus incremental
additions of non-identified protein sets. The results were then
filtered using xiFDR 2.2, with experiments conducted both with and
without boosting on residue pairs, and with the ec-filter enabled
and disabled. Data analysis was performed by individually
searching and filtering each fraction.

To enable a valid FDR calculation, the datasets were filtered to
only accept the highest scoring match for any given combination
of peptide pairs, precursor charge state modifications and linkage-
site—termed unique CSM in xiFDR.

Results

Classes of false positives

In the context of protein-based filters in crosslinking MS, we can
describe two different types of false positive matches within the
realm of target matches:

False Positive Group 1: This category encompasses random
matches that involve at least one protein that is not observable as
part of a genuine crosslink. This situation arises either because the
protein is absent from our sample or due to practical factors like
low protein abundance, rendering it undetectable as part of a

crosslink. If such a protein is nevertheless identified by being
matched to a spectrum, it constitutes a false positive. Of course, one
does not know which specific matches this applies to. However, one
knows that this error occurs.

False Positive Group 2: This category encompasses random
matches between protein pairs where both proteins are observable as
part of genuine crosslinks. This means that these proteins are
detectable as interacting with each other or with one or more other
proteins. Being part of a genuine crosslink does not mean that a
protein can not also be matched in a false positive peptide-spectrum
match. In other words, a random match may still occur involving a
protein with multiple correctly identified crosslinks. For example, if
two protein pairs, AB and XY, truly existed independently of each
other in a sample, one could still identify false matches between them,
i.e., AX, AY, BX, BY, AA, BB, XX, and YY.

In the absence of any rescoring or filtering, decoys model both of these
false positive groups. However, this conventional approach becomes
inadequate when a filter is introduced that distinguishes between these
two groups, as it necessitates a more nuanced modelling strategy.

Theoretical weakness of post-search
protein discrimination

One way of post-search protein discrimination is by limiting
protein-protein crosslinks to only those proteins that were observed
also with self crosslinks or monolinks. This is done by the mi-filter
(Fig. 1A). Related heuristics have been employed before, albeit
when constructing the search database. These include restricting
the search to those proteins that are in the sample, i.e. can be
identified by any peptide (Maiolica et al, 2007; Götze et al, 2019) or
those proteins that are identified with a certain abundance (Mendes
et al, 2019; Lenz et al, 2021). Asking for self crosslinks or monolinks
relates to the abundance criterion, as these peptides tend to have
higher abundance than protein heteromeric crosslinks but lower
abundance than linear unmodified peptides. One also adds the
observation that peptides of those proteins actually reacted with the
crosslinker, although, it is unclear if this is important. In this way,
the mi-filter excludes proteins that are likely not observable as
being crosslinked with other proteins. This reduces noise matches.
Note that the mi-filter also reduces correct matches by biassing
against proteins with few identifiable peptides, for example, small
proteins (Lenz et al, 2021).

However, because the mi-filter is applied as a filter after the
search and not before, it requires some consideration of how target
and decoy proteins are affected. The passing decoys now model
proteins that pass the filter falsely, i.e. are not observable as self-link
or monolink. In line with the initial hypothesis, these can be
assumed to be not observable as part of a heteromeric link either.
As a result, after filtering the protein heteromeric matches, any
decoys can now only represent false positive matches from the false
positive group 1. However, matches from false positive group 2
remain present. Consequently, any FDR calculation relying on
decoys will underestimate the total error.

Post-search protein discrimination can lead to severely
underestimating the error

To assess if post-search protein discrimination, as done by
the mi-filter, leads to underestimation of error requires a
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decoy-independent test of error. An entrapment search is used
frequently in proteomics for similar evaluations, and has already
been used in the context of crosslinking (Lenz et al, 2021). This
method involves adding a set of sequences to the database that are
known not to be present in the sample being analysed—these are
the “entrapment” sequences. When the mass spectrometry data is
searched against this augmented database, any identifications
matching the entrapment sequences can be confidently classified
as false positives because these sequences do not exist in the
experimental sample. Unfortunately, a simple entrapment search
only provides ground truth for the absence of proteins, and, in
effect, can only test if false positive group 1 (crosslinks involving
non-present proteins) is modelled.

We therefore develop here the pairwise entrapment search, by
constructing a test case of two sets of proteins that are crosslinked
and measured only within each set but searched together,
permitting “identifications” of crosslinks also between the sets of
proteins. This allows us to reveal false protein pairings among
actually present and crosslinkable proteins (false positive group 2
errors or types AX, AY, BX, and BY in the example above). For this,
we took the data of two separate large-scale crosslink investigations,
from E. coli (Lenz et al, 2021) and M. pneumoniae (O’Reilly et al,
2020), and searched against a combined database of E. coli and M.
pneumoniae proteins. In this way, the M. pneumoniae proteins
become the entrapment database for the E. coli data and vice versa.
Importantly, both species contain observable proteins that, at the
same time, will be visibly false positive when they are matched to
spectra of the other species or in a pair together with a protein of
the other species. Our pairwise entrapment setup establishes a
baseline for identifying proteins in cases where they should not
crosslink or correspond to a given spectrum. This approach more
accurately mirrors the complexity and dynamic range of real
biological experiments compared to synthetic models of peptides or
proteins. Our approach is reminiscent of studying a eukaryotic cell,
where proteins separate into subsets (such as compartments). We
have, however, then only moderate confidence in the composition
of these protein subsets. In contrast, our method provides definitive
information on distinct protein groups.

Examining all matches that meet a minimum score threshold
(xiSEARCH score >= 5), the decoy-based estimation of false
positives surpasses the count of observed impossible matches
(Fig. 1B). This discrepancy is anticipated since legitimate matches
(e.g. E. coli protein pairs matched to E. coli spectra and M.
pneumoniae protein pairs matched to M. pneumoniae spectra)
inevitably include incorrect results (false positives). However, after
applying the mi-filter, the number of remaining decoys drops
dramatically, leading to a significantly reduced estimate of false
positives. Nevertheless, the frequency of impossible matches—those
that cross dataset boundaries—is substantially higher than expected
if the false discovery rate (FDR) estimates were accurate.
Specifically, there are more than five times as many impossible
matches as there are decoy-estimated false positives. Consequently,
the actual FDR for mi-filtered results must exceed 33%, even
though the decoys suggest an apparent FDR of only 6.2% at the
crosslink-spectrum match level.

This indicates that much of the perceived benefit from the mi-
filter may merely mask the true error rate (illustrated in Fig. 1B
with a red hatched area). Implementing an FDR-based cutoff such
as 1 or 2% for decoys would still result in 8.6 or 15.9% impossible

matches, respectively, indicating a significantly greater error in the
reported data than anticipated. As a result, we could erroneously
report extensive protein-protein interactions between E. coli and M.
pneumoniae—in our 16 test analyses, an average of 260 interspecies
PPIs based on 2% CSM-FDR or 67 at 2% PPI-FDR—suggesting
profound biological connections that do not actually exist. These
conclusions would stem from a critical error in data analysis.

A universal test for error estimates being affected
by filters

A more comprehensive strategy to evaluate whether a filter disrupts
the estimation of false positives would involve changing the
viewpoint from false positives to true positives. The number of true
positives can be estimated by subtracting the estimated number of
false positives from all target-target matches:

eTPTT ¼ TT � eFPTT (1)

With eTPTT being the number of estimated true positives, eFPTT
being the estimated false positive matches and TT being the total
number of matches in which the amount of false and true positives
are to be estimated.

As we here use decoys to model false positive crosslink matches,
eFP turns into (Walzthoeni et al, 2012; Fischer and Rappsilber,
2017)

eFPTT ¼ TD� DD (2)

With eFPTT representing the estimated number of false
positives among the target-target matches, TD the number of
matches involving one target and one decoy part, and DD the
number of matches that involve only decoys. The possibly
surprising subtraction of DD from TD in this formula is the
result of search space considerations (Fischer and Rappsilber,
2017).

Inserting (2) into our initial formula (1) results in:

eTPTT ¼ TT � ðTD� DDÞ (3)

With TT being the number of matches that fall into the target
database.

Assuming the method used to estimate the number of false
positives (in this case, based on decoys) is accurate, our formula
reveals a theoretical maximum on the number of true positives that
can be identified. Therefore, the count of estimated true positives
after applying any filter or other approach should not exceed that
found in the unfiltered dataset. Typically, most correct filtering
approaches reduce the total number of true positives. However,
after applying the mi-filter, the estimated number of true positive
crosslink-spectrum matches (CSMs) is three times higher than that
in the unfiltered dataset (Fig. 1C). This significant discrepancy
suggests a serious overestimation of true positives and an
accompanying underestimation of false positives.

It is important to recognise that this test primarily identifies
potential issues; passing this test does not guarantee the correctness of
the filtering method. Furthermore, the test’s effectiveness hinges on
directly comparing the input data with the data that undergoes the
specific filter. Introducing further processing steps like FDR
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adjustments, score cut-offs, or other quality metrics may complicate
the interpretation of the test results.

How to restore the decoy—false positive relationship

The initial idea that proteins which are observable as part of a
protein heteromeric crosslink are likely also observable via self
crosslinks (Lenz et al, 2021) or monolinks (Parfentev et al, 2020;
Zhong et al, 2020) appears sensible. Hence, filtering protein
heteromeric matches to proteins that are seen as part of a self
crosslink or monolink should reduce noise and hence might
improve the detection of protein heteromeric crosslinks. We
therefore wondered if the decoy—false positive relationship could
be maintained while leveraging this information in post-search
filtering.

To accurately estimate the number of false positives after results
filtering, it becomes necessary to include an additional set of
'acceptable' proteins. We preserve the relationship between decoy
and false matches by considering the decoy complement for each

protein identified with self crosslinks or monolinks (Fig. 2A). This
means that for every target protein that passes the initial filter, any
crosslink involving the corresponding decoy protein derived from
that target protein is also accepted. For example, if protein A is
identified, the reversed form of protein A is accepted as passing the
filter as well. Similarly, for decoy proteins, we accept the original
target protein. This approach ensures a balanced target-decoy
relationship for heteromeric proteins even post-filtering. Our
modification shows that both tests in Fig. 2B,C are consistent
without contradictions. However, there is a noticeable reduction in
the total estimated true positives when applying this expected
crosslinked proteins filter (ec-filter). This decrease is due to the
additional criteria required for identifying crosslinked proteins,
which disproportionately affects small and low-abundance proteins
due to their lower likelihood of peptide identification (Lenz et al,
2021).

Having established a filter that maintains decoys as a model of
both false positive groups, we then evaluated the extent to which
this ec-filter improves the number of protein heteromeric matches.

Figure 2. Protein-based filter with target-decoy pairing.

(A) Schema of the ec-filter as a protein-based filter with target-decoy pairing: Proteins are treated as target-decoy pairs and these are filtered by the ec-filter considering
self crosslinks or monolinks in either partner. (B) Effect of the ec-filter on false positives: decoy-based FDR estimate (green) and known error (orange). The known error
comprises the matches to E. coli spectra that involve M. pneumoniae proteins and matches to M. pneumoniae spectra that involve E. coli proteins. A minimum score cut-off
of 5 was applied, resulting in 42,399[ ± 1485] target matches and 20,336[ ± 669] known false positives (All), which changed after applying the ec-filter to 10,966[ ± 568]
target matches and 4685[ ± 236] known false positives. The ec-filter results in no hidden error by returning 1.4% (9.7[ ± 1] of 672[ ± 47]) and 0.8% (4.8[ ± 0.8] of
546[ ± 47]) known error, respectively, when aiming for 2 and 1% FDR based on decoys. (C) Decoy-based estimate of assumed true positives among results for either just
applying a minimum score cut-off (left) or after applying the score cut-off and ec-filter (right). The shaded area indicates the number of impossible true positives. Data
plotted are the average for 16 pairwise combinations of each of four SCX fractions of M. pneumoniae with each of four SCX fractions of E. coli fractions. Error bars indicate
the standard error.
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For this, we searched a BS3 crosslinked 26S proteasome dataset
with increasing numbers of proteins. First, we used three
increasingly larger databases comprising only proteins identified
as part of a standard MaxQuant search and then searched against
databases additionally supplemented with proteins not previously
identified (Fig. 3). On its own, the ec-filter shows possibly a mild
improvement when just searching the most abundant proteins. The
improvement becomes somewhat more apparent when including
more of the lower abundant proteins. However, the ec-filter starts
to gain a distinctive advantage when a large extent of non-identified
proteins (as a model for non-crosslink-observable) are added to the
search database.

The effectiveness of the ec-filter might initially appear counter-
intuitive due to the loss of true positives depicted in Fig. 2C.
However, the ec-filter is ultimately advantageous. The key
difference is that Fig. 3 only considers matches that meet a 5%
FDR threshold, whereas Fig. 2C accounts for all estimated true
positives. The application of the ec-filter does lead to a reduction in
true positives, but it also results in a more significant decrease in
false positives. This trade-off contributes to an overall improvement
in data quality, which is especially beneficial when analysing many
proteins that may not be detectable as part of a crosslink.

As an alternative approach of post-search results optimisation,
xiFDR includes a boosting option. This feature increases the
number of true positives that pass a specific confidence level by
employing a combination of lower-level FDR filters and additional
subscores (Fischer and Rappsilber, 2017). When this boosting
option is utilised, the advantages of the ec-filter become less
pronounced. However, a slight benefit of using the ec-filter may be
observed in cases where the database has a substantial surplus of
proteins that are either absent or not crosslink-observable in the

sample. Thus, when analysing large databases, it might be beneficial
to compare results with and without the ec-filter, even when
boosting is applied. Both approaches are covered by valid error
estimation, allowing users to choose the option that identifies more
links at the desired FDR threshold.

Discussion

Our study emphasises the importance of understanding how filters
influence the relationship between decoys and false positives, and
the need to adjust for any alterations in this relationship. The
recently introduced mi-filter disrupts the balanced relationship
between decoys and targets. Similar issues have been noted
previously with the target-decoy approach in linear proteomics
(Gupta et al, 2011; Debrie et al, 2023), albeit the solutions proposed
there do not translate to crosslinks. In contrast, we present the ec-
filter, which is based on the same observed patterns that proteins
are more likely to be detected in a protein heteromeric crosslink if
they have already been identified in self crosslinks or monolinks.
This ec-filter effectively increases the detection of protein hetero-
meric matches at a given confidence level, without underestimating
the incidence of false positives.

The relevance of our findings goes beyond the realm of post-
search filtering. Generally, using information about individual
proteins for the assessment of protein pairs, both derived from
within the search and derived from external sources, has to be done
with great care. Search engines or post-processing tools such as
ECL-PF (Zhou et al, 2023) and CRIMP 2.0 (Crowder et al, 2023)
utilise protein self crosslinks to assign scores or confidence values
to protein heteromeric matches. XLinkProphet (Keller et al, 2019)
uses information about individual proteins being present to rescore
matches. It is not always clear from the available descriptions what
is done exactly. However, the developers now have the tools to
ensure the correct handling of information: When a protein is
assigned a higher confidence level, the same treatment must be
applied to its corresponding decoy complement, following the
principles of the ec-filter.

We would like to highlight the need for caution when
incorporating external information into data analysis processes,
especially during different stages of the analysis itself. For instance,
when using both the residue-pair-level false discovery rate (residue
pair FDR) and the protein–protein interaction-level false discovery
rate (PPI-FDR), it’s essential to complete the residue-pair FDR
assessment before moving on to the PPI-FDR. More broadly, when
error assessments are performed sequentially across multiple
consolidation levels—where the output of one FDR filter serves as
the input for the next—it’s crucial to follow the natural order of
these levels, such as from crosslinked spectrum matches (CSMs) to
peptide pairs, then to residue pairs, and finally to PPIs. Reversing
this order, by addressing PPI-FDR first and then the residue pair
FDR, risks repeating the flaws seen in the mi-filter approach. This
method only considers a subset of remaining errors and can
undermine the overall accuracy of the analysis.

We have implemented our current understanding of proper
decoy-based error management in crosslinking, including the ec-
filter, into the open-source, error-estimation software xiFDR,
available in version 2.2 (Fig. EV1, https://www.rappsilberlab.org/
software/xifdr/). We encourage the community to openly

Figure 3. Effects of ec-filter in xiFDR.

Results of the xiFDR 2.2 implementation of the ec-filter at a fixed 5%-residue-
pair FDR, depending on the initially searched database size. Data plotted are the
average results among three fractions searched individually against the same
database. The coloured area represents the standard error. The data were
searched first against 360, 719, and 1073 present proteins and then against
1073, plus an increasing number of non-present proteins.
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communicate any updates or enhancements to FDR estimation to
the xiFDR GitHub repository (https://github.com/Rappsilber-
Laboratory/xiFDR). The principles of Findability, Accessibility,
Interoperability, and Reusability (FAIR) apply specifically to data
access. However, the actual use of data critically relies on trust,
which in turn depends on robust error management. Achieving this
level of trust and accuracy is a collective endeavour that requires
the active participation of the entire crosslinking mass spectrometry
community.

Data availability

The datasets and computer code produced in this study are available in
the following databases:Mycoplasma pneumoniae raw data: ProteomeX-
change/Pride ID PXD017711 (https://www.ebi.ac.uk/pride/archive/
projects/PXD017711). Escherichia coli raw data: ProteomeXchange/
JPOST ID JPST000845. 26S proteasome raw data: ProteomeXchange/
Pride ID PXD008550 (https://www.ebi.ac.uk/pride/archive/projects/
PXD008550). Source code xiSEARCH software: GitHub (https://
github.com/Rappsilber-Laboratory/xisearch). Source code xiFDR soft-
ware: GitHub (https://github.com/Rappsilber-Laboratory/xiFDR). All
newly regenerated search/fdr results: zenodo ID 10887761 (https://
doi.org/10.5281/zenodo.10887761, https://zenodo.org/records/10887761).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00057-2.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00057-2.
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Expanded View Figure

Figure EV1. xiFDR ec-filter selection.

To use the ec-filter the complete settings need to be used and the ec-filter checkbox ticked.
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