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Genome-wide association studies (GWASs) have identified hundreds of single nucleotide

polymorphisms (SNPs) associated with cancer risk, several of which have shown

pleiotropic effects across cancers. Therefore, we performed a systematic cross-cancer

pleiotropic analysis to detect the effects of GWAS-identified variants from non-lung

cancers on lung cancer risk in 12,843 cases and 12,639 controls from four lung cancer

GWASs. The overall association between variants in each cancer and risk of lung cancer

was explored using sequential kernel association test (SKAT) analysis. For single variant

analysis, we combined the result of specific study using fixed-effect meta-analysis. We

performed functional exploration of significant associations based on features from public

databases. To further detect the biological mechanism underlying identified observations,

pathway enrichment analysis were conducted with R package “clusterProfiler.” SNP-set

analysis revealed the overall associations between variants of 8 cancer types and lung

cancer risk. Single variant analysis identified 6 novel SNPs related to lung cancer risk

after multiple correction (Pfdr < 0.10), including rs1707302 (1p34.1, OR = 0.93, 95% CI:

0.90–0.97, P = 7.60 × 10−4), rs2516448 (6p21.33, OR = 1.07, 95% CI: 1.03–1.11, P

= 1.00 × 10−3), rs3869062 (6p22.1, OR = 0.91, 95% CI: 0.86–0.96, P = 7.10 × 10−4),

rs174549 (11q12.2, OR = 0.90, 95% CI: 0.87–0.94, P = 1.00 × 10−7), rs7193541

(16q23.1, OR = 0.93, 95% CI: 0.90–0.96, P = 1.20 × 10−4), and rs8064454 (17q12,

OR = 1.07, 95% CI: 1.03–1.11, P = 4.30 × 10−4). The eQTL analysis and functional

annotation suggested that these variants might modify lung cancer susceptibility through

regulating the expression of related genes. Pathway enrichment analysis showed that

genes modulated by these variants play important roles in cancer carcinogenesis. Our

findings demonstrate the pleiotropic associations between non-lung cancer susceptibility

loci and lung cancer risk, providing important insights into the shared mechanisms of

carcinogenesis across cancers.
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INTRODUCTION

With rapidly increasing incidence and mortality rates, lung
cancer has become the most frequently diagnosed cancer and
the leading cause of cancer-related death in recent years. Based
on GLOBOCAN 2012, there were 1.82 million new lung cancer
cases (12.9% of the total cancer cases) and 1.59 million deaths
(19.4% of the total cancer deaths) around the world (1). Although
tobacco smoking has been confirmed as the main cause of lung
cancer, genetic factors also determine lung cancer susceptibility
(2). To identify genetic variants that contribute to lung cancer
development, several GWASs have been performed and dozens
of SNPs were identified over the past few years (3). However,
these identified loci could explain only a small fraction of
susceptibility. Thus, the challenge remains to detect additional
risk loci with small effects, which may partially account for the
missing heritability (4, 5).

Recent studies have identified that some genetic loci
represent pleiotropic associations with multiple cancers (6–
8). For example, genetic variants in the TERT-CLPTM1L
region at 5p15.33 are associated with risk of lung, bladder,
prostate, and cervical cancers (8). The discovery of pleiotropic
effects may allow for the identification of shared genes and
pathways that influence carcinogenesis across different cancers
(9). In 2014, Park et al. evaluated the effects of 165 genetic
variants associated with non-lung cancers on lung cancer
susceptibility, which demonstrated novel susceptibility loci for
lung cancer and indicated the commonality between lung
cancer and other cancer types (10). However, the number of
SNPs in the study by Park et al. was limited and subsequent
GWASs have identified more susceptibility loci for cancers in
recent years.

Thus, in this study, we comprehensively collected 1,915
GWAS loci associated with non-lung cancers from 5,876
publications and GWAS catalog database, and performed a
systematic evaluation of possible pleiotropic associations with
lung cancer risk. Our study could provide important insights
into pleiotropic associations across cancers and better clarify the
mechanism involved in lung cancer susceptibility.

METHODS

Study Participants
Data from four existing lung cancer GWASs including 12,843
lung cancer cases and 12,639 controls was used in this study:
(i) Nanjing Medical University (NJMU) GWAS including 2,331
lung cancer cases and 3,077 controls (11), (ii) Female Lung
Cancer Consortium in Asia (FLCCA) GWAS with 4,796 lung
cancer cases and 3,741 controls (12), (iii) Environment and
Genetics in Lung Cancer Etiology (EAGLE) GWAS consists of
1,937 lung cancer cases and 1,984 controls and (iv) Division
of Cancer Epidemiology and Genetics (DCEG) Lung Cancer
GWAS encompasses 3,779 cases and 3,837 controls (13). Briefly,
two Asian GWASs and two European GWASs were included
in our study to explore the overall genetic effects of variants.
The basic demographic information of participants involved are
shown in Table 1. Informed consent was obtained from each

subject, and this study was approved by the institutional review
boards of each participating institution.

Quality Control and Imputation of GWAS
Data
The detail about quality control and imputation has been
described in our previous study (11). Briefly, individuals with
call rates<95%, familial relationships or extreme heterozygosity
rates were excluded. We selected SNPs based on the following
criteria: (i) call rates >95%, (ii) minor allele frequencies (MAFs)
>0.05, (iii) P > 1 × 10−6 for Hardy-Weinberg equilibrium
(HWE). We then phased the haplotypes with Shapeit (14) and
performed imputations with IMPUTE2 (15) taken the 1,000
Genomes Project Phase III data as reference. We ruled out SNPs
with imputation quality score (INFO) <0.4, MAF <0.01, and
HWE P < 1 × 10−6. Quality control procedure was performed
using PLINK1.9 software.

SNP Selection
We undertook a comprehensive systematic review of
publications on GWASs and cancers in PubMed using the
Mesh Term “Genome-wide association study” or “GWAS”
and “cancer.” A total of 5,876 abstracts and if necessary the
full texts were screened for eligibility. Among them, GWASs,
genome-wide meta analyses and replication studies for GWAS
loci were evaluated. Additionally, SNPs associated with cancers
as of July 2018 from the NHGRI GWAS catalog were also
included. Finally, a total of 2,167 SNPs beyond the threshold of
significance (P < 1 × 10−7) remained. After that, we excluded
lung cancer GWAS loci as well as those in the same linkage
disequilibrium (LD) blocks (r2 > 0.2), and 1,915 SNPs within
15 cancer types were remained. The search strategy is shown in
Figure 1.

SNP-Set Analysis by Cancer Types
The aim of SNP-set analysis was to explore the overall
associations of variants identified from other cancer types with
the risk of lung cancer. SNP-set analysis was conducted using
SKAT-C package, which tests for association between groups of
SNPs and a phenotype by aggregating the weighted variance-
component score statistics for each SNP within a group using
kernel function (16). In this case, SNPs in LD (r2 > 0.2)
with lung cancer GWAS loci were excluded. We divided the
remained variants into different groups by cancer types and
tested the correlations with lung cancer. Age, gender, smoking
status and principal components (PCA) were adjusted in the
SNP-set analysis. We used Benjamini-Hochberg method for
multiple correction and cancers with FDR less than 0.05 in the
combined dataset were considered to be significantly correlated
with lung cancer.

Single Variant Analysis
We used an additive effect model to test the associations of
variants with lung cancer in each dataset. Then, meta-analysis
was performed using a fixed-effect model. We calculated the
index of heterogeneity (I2) and SNPs with high heterogeneity
(I2 > 75%) were excluded. Then, Benjamini-Hochberg method
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TABLE 1 | Basic characteristics and clinical features of participants in each dataset.

NJMU FLCCA EAGLE DCEG

Cases Controls Cases Controls Cases Controls Cases Controls

Sample size 2,331 3,077 4,796 3,741 1,937 1,984 3,779 3,837

Gender

Male 1,711 2,086 n/a n/a 1,532 1,519 2,926 3,375

Female 620 991 4,796 3,741 405 465 853 462

Smoking

Never 825 1,768 4,796 3,741 138 636 n/a n/a

Former 254 226 n/a n/a 821 855 n/a n/a

Current 1,252 1,083 n/a n/a 966 488 n/a n/a

Missing information n/a n/a n/a n/a 12 5 n/a n/a

Age

<60 1,111 1,429 2,164 1,745 423 502 1,402 1,315

≥60 1,220 1,648 2,632 1,996 1,514 1,482 2,377 2,522

Histology

Squamous cell carcinoma 822 n/a 660 n/a 492 n/a n/a n/a

Adenocarcinoma 1,304 n/a 3,469 n/a 795 n/a n/a n/a

Othera 205 n/a 667 n/a 616 n/a n/a n/a

Missing information n/a n/a n/a n/a 34 n/a n/a n/a

n/a, not available or non-existent.
aOther histological types include small cell lung cancer, large cell lung cancer and mixed cell lung cancer.

FIGURE 1 | Flowchart for (1) Four existing lung cancer GWASs were included in the study, and standard quality control and imputation were performed for eligibility;

(2) SNP selection strategy based on publications as of July 2018 on GWASs and cancers in PubMed and GWAS Catalog was used as a supplement; (3) Pleiotropic

analysis of the effects of GWAS-identified risk variants from non-lung cancers on lung cancer risk both in general and in single variant: correlations between non-lung

cancers and lung cancer by SNP-set analysis, and associations of non-lung cancer susceptibility loci with lung cancer risk, and functional exploration for these

variants and related genes.

was used to correct multiple testing and FDR less than 0.10

in the combined dataset was considered as a cutoff threshold.

In addition, subgroup analyses by age (≤60 and >60), gender
(male and female), smoking status (never and ever), and

tumor histology (adenocarcinoma, squamous cell carcinoma and
other types of lung cancer) and following gene-environment
interaction analysis were performed to further explore the
interaction between variants and smoking. Association analyses

were conducted with PLINK1.9 while general statistical analyses
were carried out using R (R 3.5.0).

Functional Explorations of Significant
Associations
We performed annotations for variants within promising genes
using ANNOVAR software (17). We applied the SIFT (18)
and PolyPhen databases (19) to predict the function of exonic
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variants. To investigate the potential function of association
at non-coding regions, we utilized data from the Genotype-
Tissue Expression (GTEx, version 7) to perform the expression
quantitative trait loci (eQTL) analysis in 383 lung tissue samples.
Then, we annotated SNPs to regulatory elements including the
histone Chip-seq (H3K27AC, H3K4ME1, H3K4ME3) peaks,
DNase I hypersensitivity sites (DHS) and transcription factor
binding sites (TFBS) from ENCODE Project Consortium. All
these features estimated in A549 cell lines were downloaded from
the UCSC website. In addition, we used RegulomeDB database to
further evaluate regulatory potential for identified variants.

Co-expression and Pathway Enrichment
Analysis
Based on results from functional annotation, we defined SNP-
related genes with the following criteria: (i) locate within LD
blocks where the identified variants as well as their related
SNPs (r2 > 0.6) reside in, (ii) show most significant cis-eQTL
associations with identified variants or bear exonic mutations
that affect the function of proteins. In order to test whether
these identified related genes were associated with lung cancer
susceptibility, we performed gene-based analysis with MAGMA
software, which is a powerful tool using multiple regression
approach to detect multi-marker effects for a genome-wide gene
association analysis (20). To explore biological function and
alternative pathways of these related genes, which help to explain
their pathogenic mechanism involved in the development of lung
cancer, we conducted co-expression and pathway enrichment
analysis based on GTEx V7 database and Kyoto Encyclopedia
of Genes and Genomes (KEGG, 186 pathways) were used

as reference. We used linear regression model to detect co-
expressed genes and Bonferroni method was utilized for multiple
correction. Significant co-expressed genes with adjusted P-
value < 0.05 were included in pathway analysis performed by
“clusterProfiler” package (21).

RESULTS

Correlations Between Non-lung Cancers
and Lung Cancer
In order to obtain a general overview of susceptibility regions
for each cancer, we collected the reported GWAS loci and
mapped them to particular band of chromosome according to
hg19, which was the susceptibility band we mentioned below.
To date, 60 susceptibility bands have been identified for lung
cancer and 50 of them were overlapped with the bands of non-
lung cancer (Figure 2), further suggesting that some genomic
bands are associated with multiple cancers. Here, we defined
susceptibility bands shared by more than half of cancers (i.e.,
shared by at least 8 cancer types) as cancer enriched bands,
and 4 (5p15.33, 6p21.32, 8q24.21, 9p21.3) met the criterion
and showed pleiotropic associations with multiple cancers.
Supplementary Table 1 displayed an overview of GWAS loci
located in cancer enriched bands identified in different cancers,
some of which showed significant associations with lung cancer
risk, indicating the correlations between non-lung cancers and
lung cancer.

In the SNP-set analysis, we found that the GWAS SNPs of
8 cancer types, including, cervical/endometrial, bladder/renal,
prostate, pancreatic, ovarian, leukemia/lymphoma, esophageal,
and colorectal cancer, were significantly associated with

FIGURE 2 | Heatmap for a general overview of susceptibility bands for each cancer type. For non-lung cancers, we included susceptibility bands overlapped with that

of lung cancer. The intensity of color represented the number of GWAS susceptibility loci in the band. Therefore, darker colors indicates more susceptibility loci.
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lung cancer risk in the combined dataset (FDR < 0.05)
(Supplementary Table 2). To rule out the impact of shared
bands among different cancers (i.e., MHC), we excluded variants
within MHC as well as the 4 cancer enriched bands mentioned
above and re-conducted a SNP-set analysis. Similar associations
were observed in cervical/endometrial, bladder/renal,
prostate, ovarian, leukemia/lymphoma, esophageal, and
colorectal cancer, which were still correlated with lung cancer
(Supplementary Table 3).

Single Variant Analysis and Subgroup
Analysis
After combining results from four GWAS datasets of lung cancer,
we identified 17 SNPs that were significantly related to lung
cancer susceptibility (Pfdr < 0.10) (Supplementary Table 4). For
variants in the same LD block (r2 > 0.2), the most significant
one remained and 6 independent SNPs were showed in Table 2.
Supplementary Table 5 displays the association results of these
6 variants in each separate cohort. The regional plots of these
6 variants were presented in Supplementary Figure 1. Among
these 6 identified novel susceptibility loci, rs2516448 (6p21.33,
OR = 1.07, 95% CI: 1.03–1.11, P = 1.00 × 10−3) and rs3869062
(6p22.1, OR = 0.91, 95% CI: 0.86–0.96, P = 7.10 × 10−4)
reside in known lung cancer susceptibility regions, but were
independent from previously reported SNPs of lung cancer
(Supplementary Table 6); while rs1707302 (1p34.1, OR = 0.93,
95% CI: 0.90–0.97, P = 7.60 × 10−4), rs174549 (11q12.2, OR =

0.90, 95% CI: 0.87–0.94, P = 1.00 × 10−7), rs7193541 (16q23.1,
OR = 0.93, 95% CI: 0.90–0.96, P = 1.20 × 10−4) and rs8064454
(17q12, OR = 1.07, 95% CI: 1.03–1.11, P = 4.30 × 10−4)
were located in novel susceptibility bands for lung cancer and
were firstly identified to be correlated with lung cancer risk in
this study.

Subgroup analyses were conducted according to age, gender,
smoking status, and tumor histology to investigate potential
large differences among subgroups of population. As shown in
Figure 3, the association for rs3869062 showed heterogeneous
among different tumor histology (Pheterogeneity < 0.01), where the
association appeared to be significant to adenocarcinoma (OR
= 0.91; 95% CI: 0.85–0.97) but not squamous cell carcinoma
(OR = 1.08; 95% CI: 0.99–1.19). We also identify significant
heterogeneity among different tumor histology in the association
for rs174549 (Pheterogeneity = 0.02), where other histological
types include small cell lung cancer and large cell lung cancer

show more significant association with lung cancer susceptibility
(OR = 0.82; 95% CI: 0.76–0.89). Besides, rs8064454 showed
a significant association with lung cancer risk in non-smokers
(Pheterogeneity < 0.01, OR = 0.88, 95% CI: 0.83–0.93), while not
in smokers (OR = 1.00; 95% CI: 0.93–1.07). Then, a significant
interaction (P-interaction = 0.01, Supplementary Table 7) was
observed between rs8064454 and smoking.

Functional Annotation and Pathway
Enrichment Analysis
To further unearth the underlying biological function of
identified SNPs, we carried out a systematic functional
annotation analysis in silico. The identified variants as well
as their high LD (r2 > 0.6) variants were evaluated in our
study. Among these variants, four were missense but none was
predicted as deleterious (Supplementary Table 8). Based on
results from GTEx, we found that the G allele of rs1707302 was
significantly associated with increased expression of MAST2 (β
= 0.16, P = 4.30 × 10−7, Supplementary Figure 2A). Besides,
rs3869062 and rs8064454 showed significant associations
with up-regulated HLA-G (β = 0.77, P = 9.60 × 10−8,
Supplementary Figure 2B) and HNF1B (β = 0.065, P =

0.028, Supplementary Figure 2C), respectively. While the
protective allele of rs2516448 and rs7193541 were related
to decreased expression of MICA (β = −0.34, P = 1.50 ×

10−14, Supplementary Figure 2D) and RFWD3 (β = −0.23,
P = 2.20 × 10−7, Supplementary Figure 2E). The rs174549
was in high LD with rs174548 (r2 = 0.98), which was proven
to be correlated with lung cancer risk by regulating FADS1
gene expression in liver tissues (β = −0.23, P = 2.20 × 10−7,
Supplementary Figure 2F) and plasma levels of polyunsaturated
fatty acids (PUFAs) according to our recent study (22).

Gene-based analysis revealed that the associations between
identified related genes and lung cancer risk were statistical
significant (P < 0.05, Supplementary Table 9). To further
explore the biological process of these identified related
genes, we performed co-expressed analysis using data from
GTEx V7 database and implemented pathway analysis with
KEGG database. At the level of statistical significance (Pfdr <

0.05), related genes along with their co-expressed genes were
significantly aggregated in cancer associated pathways, such as
p53 signaling pathway (23), Ras signaling pathway (24), MAPK
signaling pathway (Supplementary Table 10) (25).

TABLE 2 | Independent associations of significant locus with lung cancer risk.

Band Related gene SNP EA/NEA OR (95%CI)a Pa FDRa Source of Cancer

1p34.1 MAST2 rs1707302 A/G 0.93(0.90-0.97) 7.60E-04 6.60E-02 Breast cancer

6p21.33 MICA rs2516448 T/C 1.07(1.03-1.11) 1.00E-03 8.10E-02 Cervical cancer

6p22.1 HLA-G rs3869062 G/A 0.91(0.86-0.96) 7.10E-04 6.60E-02 Nasopharyngeal carcinoma

11q12.2 FADS1 rs174549 A/G 0.90(0.87-0.94) 1.00E-07 1.40E-04 Laryngeal squamous cell carcinoma

16q23.1 RFWD3 rs7193541 C/T 0.93(0.90-0.96) 1.20E-04 1.90E-02 Multiple myeloma

17q12 HNF1B rs8064454 C/A 1.07(1.03-1.11) 4.30E-04 5.70E-02 Prostate cancer

EA, effect allele; NEA, non-effect allele.
aBased on meta-analysis of logistic regression results from 4 lung cancer GWASs.
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FIGURE 3 | The forest plot of 6 significant SNPs. (A) The forest plot of rs1707302. (B) The forest plot of rs2516448. (C) The forest plot of rs3869062. (D) The forest

plot of rs174549. (E) The forest plot of rs7193541. (F) The forest plot of rs8064454.

DISCUSSION

In our study, we performed a pleiotropic analysis to explore the
shared susceptibility mechanisms between non-lung cancers and
lung cancer and found genetic variants identified from other
cancer types were also significantly associated with the risk of
lung cancer. In the single variant analysis, 6 novel susceptibility
loci were identified related to lung cancer susceptibility after
multiple corrections. Functional exploration revealed that these

variants may modulate lung cancer risk by regulating the
expression of related genes, which play important role in
cancer development. Our findings demonstrate shared genetic
components across cancers and provide important insight
for future investigation of biological mechanisms involved in
cancer progression.

We conduct a systematic scan on the susceptibility bands
for each cancer and found that the majority (50/60) of lung
cancer susceptibility bands are in common with that of non-lung
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cancers. Besides, pleiotropic analysis showed that previously
reported GWAS SNPs for non-lung cancer were also associated
with the risk of lung cancer, indicating shared heritability across
cancers. However, for the lack of GWAS summary data of
each cancer, which is necessary for estimating the correlation
explained by the effects of common SNPs, we performed a
SNP-set analysis based on our existing lung cancer GWAS
data, and identified 8 cancer types correlated with lung cancer.
Some previous studies also reported similar findings (26–29).
Lindström et al. found significant genetic correlation between
colorectal and lung cancer (rg = 0.31) (26); Sampson et al.
identified that bladder cancer was statistically correlated with
lung cancer (rg = 0.35) (27); Recently, Xia et al. revealed
significant genetic correlation between ovarian and lung cancer
(rg = 0.18) (28). Additionally, the genetic associations based
on UK Biobank demonstrated that lung cancer was genetically
correlated with blood cell tumors (rg = 0.18) and malignant
neoplasms of digestive organs (rg = 0.10) (29). Our data
supported these findings, and identify another 2 cancer types
(cervical and prostate cancer) correlated with lung cancer. The
mechanism underlying these observations has not been well-
characterized. It is likely that the correlations are due to the
shared genetic factors such as penetrant mutations in BRCA2,
which predisposes to breast, ovarian, lung, and prostate cancers
(30, 31). In addition, the correlations between ovarian, colorectal
and lung cancer might be driven in part by genetic variants in
the inflammation pathway (32). Interestingly, bladder cancer was
identified to be genetic correlated with both lung cancer and
smoking (27), suggesting the overlapped smoking-related SNPs
among these cancers.

Rs1707302 (1p34.1), a known risk locus of breast cancer, was
associated with the risk of lung cancer in our study. SNPs in
LD (r2 > 0.6) with rs1707302 mainly locate in the functional
regions of MAST2 (Supplementary Table 7), which encodes
a microtubule-associated serine/threonine kinase. MAST2 has
been identified to be involved in PI3K-AKT signaling pathway
(33, 34), which plays crucial role in regulating many cellular
processes including cell proliferation, survival, growth and
motility (35). Consistent with these findings, we found that genes
co-expressed with MAST2 were significantly enriched in cell
metabolism, DNA replication and RNA polymerase pathways.

For 6p21.33, we identified that the cervical cancer
susceptibility locus, rs2516448, was associated with lung cancer
susceptibility. This variant was related to the expression of
MICA, a stress-induced gene expressed by cancer cells, function
as ligands for NKG2D receptors (36). Proteolytic shedding of
MICA from tumor cells, might promote immunosubversion
by reducing the expression of NKG2D (37). Besides, soluble
MICA released by tumor cells contributes to tumor immune
evasion through down-regulating NKG2D and inactiving
tumor-antigen-specific effector T cells (38). Chen et al. reported
that rs2516448 is in perfect LD with a frameshift mutation
(A5.1) in MICA exon 5, which results in less membrane-bound
MICA, causing immune inactivation and tumor progression
(39). Furthermore, pathway analysis revealed an enrichment of
genes co-expressed with MICA in Non-small cell lung cancer,

Ras signaling pathway, MAPK signaling pathway, etc, indicating
the important role ofMICA in carcinogenesis process.

Two head/neck cancer GWAS SNP, rs3869062 (6p22.1)
and rs174549 (11q12.2), were correlated with lung cancer
susceptibility. Rs3869062 showed significant association with
increased expression of HLA-G, which has been reported to
be involved in immune recognition and might manipulate
tumor specific immune responses through cytokine production
(40). For rs174549, a recent metabolome-wide association study
identified its high LD (r2 = 0.98) variant, rs174548, associated
with both plasma levels of polyunsaturated fatty acids (PUFAs)
and lung cancer risk, proposing that plasma PUFAs might
function as risk indicator of lung cancer (22). However, challenge
remains to unravel the molecular mechanisms underlying
observations and further investigations are needed.

The multiple myeloma susceptibility locus, rs7193541, was
located in the exon of RFWD3 in 16q23.1. Functional annotation
revealed that rs7193541 is a missense variant of RFWD3 and its
related SNPs (r2 > 0.6) mainly locate in the functional regions
of RFWD3. RFWD3 is an E3 ubiquitin ligase that involves in
replication protein A (RPA) mediated DNA damage and repair
(41). In addition, it has been suggested that RFWD3mediates the
ubiquitination of p53/TP53 by forming a RFWD3-MDM2-p53
complex in the late response to DNA damage (42). Consistent
with previous observations (41, 42), genes co-expressed with
RFWD3 were enriched in Cell cycle, DNA replication and
p53 signaling pathway, suggesting that RFWD3 contributes
to lung cancer susceptibility possibly by manipulating DNA
repair process.

The rs8064454, a previously reported susceptibility loci for
prostate cancer, is located in the intron ofHNF1B at chromosome
17q12. Rs8064454 was associated with the expression of HNF1B
and variants in LD (r2 > 0.6) with rs8064454 all reside in a
region that has a chromatin state indicative of promoter and
enhancer elements. HNF1B, a member of the homeodomain-
containing superfamily of transcription factors (TFs), has been
demonstrated to act as a bookmarking factor and bind to mitotic
chromatin with efficient DNA binding ability, playing crucial
roles in the epigenetic transmission of information through
the cell cycle (43). Thus, abnormal mitotic chromatin binding
induced by mutations of HNF1B may be responsible for human
pathological conditions. For instance, SNPs of HNF1B are
associated with risk of multiple cancers, including prostate (44),
ovarian (45), endometrial (46), and renal cell carcinomas (47).
Our study found that genes co-expressed with HNF1B were
correlated with Ras signaling pathway, EGFR tyrosine kinase
inhibitor resistance, mTOR signaling pathway, etc.

In conclusion, we systematically evaluated the association of
non-lung cancer susceptibility loci with lung cancer risk. We also
identified 6 independent SNPs associated with the susceptibility
to lung cancer. Functional exploration revealed that the related
genes may be involved in cancer-associated pathways across
multiple cancers. However, one limitation of our study is that
we lack detailed biological mechanisms of how these SNPs
are associated with different pathways and thus are involved
in different cancers. In this case, molecular experiments are
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warranted to better characterize the effects of identified variants
as well as related genes on lung cancer development.
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