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Abstract

The impact of invasive species on biodiversity, food security and economy is increasingly
noticeable in various regions of the globe as a consequence of climate change. Yet, there is
limited research on how climate change affects the distribution of the invasive Asian citrus
psyllid Diaphorina citri Kuwayama (Hemiptera:Liviidae) in Ghana. Using maxnet package
to fit the Maxent model in R software, we answered the following questions; (i) what are
the main drivers for D. citri distribution, (ii) what are the D. citri-specific habitat requirements
and (iii) how well do the risk maps fit with what we know to be correctly based on the avail-
able evidence?. We found that temperature seasonality (Bio04), mean temperature of warmest
quarter (Bio10), precipitation of driest quarter (Bio17), moderate resolution imaging spectro-
radiometer land cover and precipitation seasonality (Bio15), were the most important drivers
of D. citri distribution. The results follow the known distribution records of the pest with
potential expansion of habitat suitability in the future. Because many invasive species, includ-
ing D. citri, can adapt to the changing climates, our findings can serve as a guide for surveil-
lance, tracking and prevention of D. citri spread in Ghana.

Introduction

Species from one place can move to another due to anthropogenically driven activity and nat-
ural dispersal (Padayachee et al., 2017). Alien species have the potential to become established
and expand after being introduced to a new area, leading to ecological destruction and eco-
nomic losses (Nahrung et al., 2023; Uden et al., 2023). There has been a dramatic rise in
the prevalence of invasive species during the nineteenth century (Simberloff and Gibbons,
2004). The invasiveness of these species is influenced by many factors, including climatic con-
ditions, host plant resistance, propagule pressure and natural enemies in the invaded
area (Skendžić et al., 2021).

Invasive pest population sizes, survival rates, geographic distributions, disease prevalence
and proliferation can all be regulated by climatic factors (Aidoo et al., 2021, 2022, 2023a).
Their populations, mainly in temperate regions, are expected to increase worldwide due to cli-
mate change (Schneider et al., 2022). However, it still needs to be determined how much of a
role climate change plays in determining invasive species like the invasive Asian citrus psyllid
Diaphorina citri Kuwayama (Hemiptera: Liviidae) in Ghana.

Diaphorina citri is a sap-sucking hemipteran pest of citrus and its close relatives. The psyllid
undergoes five nymphal stages, which may take about 49 days, depending on the thermal
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conditions (Tsai and Liu, 2000). Apart from temperature, other fac-
tors that can influence the development and survival of the psyllid
include availability of host plants and abundant flush growth.
Diaphorina citri prefers warm and dry climates where conditions
are suitable for developing all life stages (Hall et al., 2013).

The physical damage caused by the psyllid through feeding
leads to the formation of sooty molds, and leaf distortion.
Indirectly, the psyllid transmits the invasive pathogens;
‘Candidatus Liberibacter asiaticus’ (CLas) and ‘Ca. L. americanus’
(CLam) (Bové, 2006). ‘Candidatus Liberibacter asiaticus’ occurs
in Africa, Asia and the Americas, whereas CLam is distributed in
Brazil. These phloem-limited pathogens have been associated
with the deadliest disease of citrus called citrus greening disease
or Huanglongbing (HLB). The interplay between the pathogens
and the local accumulation of callose affects the movement of
phloem in the plant (Welker et al., 2022).

There is no effective method for preventing or curing HLB.
Symptoms of HLB infection may not appear for months or even
years, making it difficult to detect in affected trees (Lee et al.,
2015). Producing seedlings from CLas-free nursery stock, removing
affected trees and applying insecticides to curb vectors are all part
of HLB management. However, if pesticides are used extensively,
pest resistance to pesticides may develop (Naeem et al., 2016).

In 2023, for the first time, Ghana reported D. citri (Hemiptera:
Liviidae) (Aidoo et al., 2023b). The psyllids were obtained from
orange jasmine Murraya paniculata (L.) in one of Ghana’s 16
regions. However, none of the samples tested positive for the
phloem-limited bacteria; CLas, CLam and CLaf. Risk maps of D.
citri, which can serve as a guide for sampling and tracking, are
urgently needed to develop quarantine and preventive measures.
D. citri has been the subject of many species’ distribution models.
For example, Aidoo et al. (2022) used the Maxent model to project
where D. citri might develop in the world given the current and
future climates. The potential distribution of D. citri was estimated
in China using the Maxent and CLIMEX models (Wang et al.,
2015, 2020). The Maxent model has a friendly user interface and
works well when only presence and fewer occurrence records are
available (Aidoo et al., 2019, 2022).

The newly developed package maxnet in R is used to estimate
Maxent models for regularised generalised linear models
(Friedman et al., 2010). Maxnet employs the R package glmnet
instead of relying on external sources such as the Maxent Java
programme. It incorporates feature classes and regularization set-
tings to effectively fit models comparable to those generated by
the Maxent Java application (Phillips et al., 2017). This enables
enhanced integration of Maxent modelling with R’s diverse
range of visualization and analysis tools. The package helps to
incorporate all the derived feature classes, with a particular
emphasis on hinge features, as well as the default configured regu-
larization settings from the Maxent Java programme into the
maxnet package, thereby enabling the seamless and straightfor-
ward fitting of Maxent models within the R environment
(Phillips et al., 2017). The performance of maxnet is similar to
that of the Maxent Java programmes (Phillips and Phillips, 2021).

Understanding areas suitable for an invasive insect pest is a
prerequisite for surveillance and tracking programmes. Using
local distribution information of a species to examine its geo-
graphic distribution offers excellent accuracy when operating
under the niche conservation tenet (Phillips, 2017). However,
limiting occurrence records to only local records seems problem-
atic given that D. citri has only recently become established in
Ghana (Aidoo et al., 2023b). These local records may not

represent its ultimate niche in the country for accurate model pre-
dictions. Herein, we used the maxnet package in R to estimate the
future spread risk for two shared socioeconomic pathways (SSPs)
based on local and global occurrence records and climate datasets,
and determine the climatic factors influencing the distribution of
the pest. Also, we predicted the current suitable regions using
local and global records to help policymakers develop effective
responses to D. citri-borne disease.

Material and methods

Occurrence data

Four hundred and seventy (470) global occurrence records were
sourced from Aidoo et al. (2019), Aidoo et al. (2023b) and
Sétamou et al. (2023). These records were supplemented by new
field surveys in Ghana, and by data obtained from the Global
Biodiversity Information Facility (GBIF). For the former, citrus
and non-citrus host plants in the Western, Central, Eastern,
Greater Accra, Ashanti and Volta Regions of Ghana were sur-
veyed for the presence of the pest. If D. citri was found, Garmin
eTrex® 32 × was used to obtain the Geographical Processing
System (GPS) coordinates. The survey yielded 28 occurrence
points. The occurrence records from GBIF were obtained using
the {rgbif} package version 3.7.7 (Chamberlain et al., 2023).
Only records with a spatial resolution ≤1 km2 were retained for
analysis. When only the names of locations were identified in
the publications, their geographic coordinates were obtained
online with Google Maps. The dataset was then formed by 498
occurrence points compiled from literature and field data, and
516 acquired from GBIF.

Occurrence records with a radius of 1 km around the capitals
and centres of countries, equal absolute longitude and latitude, a
radius of one degree around the GBIF headquarters, duplicated
coordinates and zero values were removed, in addition to verifying
that the informed coordinates corresponded to a valid coordinate
reference system, using the clean_coordinate function of the
{CoordinateCleaner} package version 2.0-20 (Zizka et al., 2019)
(table S1). After these procedures, of the total 1014 points, 707
points of occurrence remained. After extracting environmental
data in their coordinates and eliminating those in which at least
one of the selected variables did not present information, the
final set of occurrences was 704 points, of which 628 corresponded
to invaded areas around the world, and others referred to D. citri
native areas in South and Southeast Asia (e.g. Bangladesh,
Bhutan, India, Nepal, Pakistan and southern China) (Bayles
et al., 2017; Bové, 2014; Luo and Agnarsson, 2018).

To further mitigate the bias in occurrence data sampling, for
the variable selection process, a spatial filter based on a 5 km dis-
tance was applied after data cleaning, considering the 2.5 km2

resolution of the used variables. For the final model, the 704
points of presence were filtered by applying an environmental fil-
ter (Varela et al., 2014; Castellanos et al., 2019; Velazco et al.,
2020), using the function occfilt_env from the {flexsdm} package
(Velazco et al., 2022). As the environmental filters are sensitive to
the number of intervals (bins), filters with four, five, six, eight and
ten bins were made, using the selected variables to build the dis-
tribution models. Spatial autocorrelation, based on the Moran
Index, was calculated for each resulting dataset and the number
of bins that showed the lowest autocorrelation (5 bins, with I =
0.352) was selected. After all these steps, a final set of 315 unique
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occurrence records was obtained, cleaned and filtered, for the
modelling process (fig. 1).

As our intention was to estimate the areas susceptible to inva-
sion by D. citri in Ghana, its probability of establishment was
evaluated, and the results were interpreted without considering
limitations to the future dispersal of the species, using native
and invaded regions since this is the best option, especially if con-
sidering the modelling goal for invasive species (Beaumont et al.,
2009; Broennimann and Guisan, 2008; Zhang et al., 2020).

Environmental data

The bioclimatic variables (table 1) utilised in this study were
obtained from the Worldclim database version 2.1 (Fick and
Hijmans, 2017). These variables have an average spatial resolution
of 2.5 arc-min, which corresponds to about 4 km at the equator.
The data cover the period from 1970 to 2000. The {geodata} pack-
age version 0.5-8 (Hijmans et al., 2023) was used to access and
process the data. These variables were chosen as predictor vari-
ables due to their ability to capture annual climate variations
and limiting factors known to affect the geographic distribution
of species (O’Donnell and Ignizio, 2012). In addition, Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Cover
was sourced from Friedl and Sulla-Menashe (2022).

Variables that exhibited a Pearson’s correlation coefficient (r)
greater than the absolute value of 0.70, which is considered sig-
nificant at an α level of 0.05, were categorised based on the results
of a hierarchical cluster analysis (fig. 2). The cluster analysis was
conducted using the {corrplot} package version 0.92 (Wei and
Simko, 2021). The initial set of all environmental variables was
reduced using an algorithm that: (1) ranks variables based on per-
mutation importance, (2) checks if the top-ranked variable is cor-
related with others (Pearson, r > |0.7|), and (3) if correlated,
performs a Jackknife test between correlated variables, removing
the variable that minimally impacts model performance when
removed, based on the true skill statistics (TSS) metric
(Allouche et al., 2006; Lawson et al., 2014; Shabani et al., 2018).
This process was repeated until all variables were tested, and all
correlated variables were removed. Variables with low permuta-
tion importance (<3%) were then removed using Jackknife, ensur-
ing that removal did not decrease model quality (based on
estimated TSS value) using independent test data in ten permuta-
tions. We presented the contribution of the environmental vari-
ables to the base model in table S2. The resulting variables, and
their descriptive statistics considering the points of presence, are

presented in table 2. These variables were retained because find-
ings from earlier studies indicate that, when developing models
under various conditions, it is more useful to focus on a few vari-
ables that align with well-defined biological expectations rather
than incorporating many variables with uncertain impacts on spe-
cies distribution (Araújo and Guisan, 2006; Austin and Van Niel,
2011; Santini et al., 2021).

Model development

All procedures related to data processing, development of models
and maps were performed with the R environment, version 4.3.0

Figure 1. Distribution of D. citri: points of occurrence (red, native areas; magenta, invaded areas) and study area (areas with darker contour).

Table 1. Environmental variables used for the initial model

Code Climatic variable Unit

Bio01 Annual mean temperature oC

Bio02 Mean diurnal range (mean of monthly (max
temp–min temp))

oC

Bio03 Isothermality (BIO2/BIO7) ( × 100) -

Bio04 Temperature seasonality (standard deviation × 100) -

Bio05 Maximum temperature of warmest month oC

Bio06 Minimum temperature of coldest month oC

Bio07 Temperature annual range (BIO5-BIO6) oC

Bio08 Mean temperature of wettest quarter oC

Bio09 Mean temperature of driest quarter oC

Bio10 Mean temperature of warmest quarter oC

Bio11 Mean temperature of coldest quarter oC

Bio12 Annual precipitation mm

Bio13 Precipitation of wettest month mm

Bio14 Precipitation of driest month mm

Bio15 Precipitation seasonality (coefficient of variation) mm

Bio16 Precipitation of wettest quarter mm

Bio17 Precipitation of driest quarter mm

Bio18 Precipitation of warmest quarter mm

Bio19 Precipitation of coldest quarter mm

MODISLC Moderate resolution imaging spectroradiometer
land cover product

-
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‘Already Tomorrow’ (R Core Team, 2023) with the following
packages: {rnaturalearth} version 1.0.1 (Massicotte and South,
2023), to obtain spatial data from Ghana; {terra} version 1.7-29
(Hijmans, 2023) and {sf} version 1.0-13 (Pebesma, 2018), for ana-
lysis and transformation of spatial data; {flexsdm} version 1.3.3
(Velazco et al., 2022), for all species distribution modelling proce-
dures, with resources from {maxnet} version 0.1.4 (Phillips and
Phillips, 2021); {pROC} version 1.18.2 (Robin et al., 2011), for
graphics and estimates of the receiver operating characteristics
(ROC) curve; {ade4} version 1.7-22 (Dray and Dufour, 2007)
and {ecospat} version 3.5.1 (Broennimann et al., 2022), for eco-
logical analyses; {factoextra} version 1.0.7 (Kassambara and

Mundt, 2022), to visualise the results of multivariate analyses;
{tmap} version 3.3-3 (Tennekes, 2018), to plot all resulting maps.

The maximum entropy model (Maxent) was used because of
its widespread application in species distribution modelling and
its demonstrated effectiveness relative to alternative methods
(Elith et al., 2006, 2011; Heikkinen et al., 2012; Hijmans, 2012;
Venette, 2017; Helmstetter et al., 2021; Valavi et al., 2022).
Maxent has been employed to identify suitable regions for the
establishment of D. citri on a global scale (Aidoo et al., 2022).
It has been recognised as a reliable approach for species distribu-
tion modelling (Valavi et al., 2022). Yet, Maxent is susceptible to
sample bias and can easily result in overfitting (Zhu et al., 2014).

Figure 2. Correlation between bioclimatic variables. Blue colour sloping to the right indicates a positive correlation, while red sloping to the left indicates a nega-
tive correlation. The intensity of Pearson’s correlation coefficient (r) increases from the circle (r = 0) to the ellipse (r = intermediate) to the line (r = 1). Correlated
variables, r > 0.70, were grouped by centroid with hierarchical cluster analysis.

Table 2. Descriptive statistics of the environmental variables considering their values at the 315 occurrence points (before the environmental filter) used to develop
the models

Variable Minimum Maximum Median Mean SD

Bio02 4.93 19.77 10.62 10.54 2.69

Bio04 28.30 875.18 380.31 378.16 246.45

Bio10 12.69 34.81 26.97 26.62 3.12

Bio15 10.20 161.74 67.18 70.04 26.29

Bio16 26.00 3457.00 600.00 628.54 340.59

Bio17 0.00 614.00 89.00 111.58 102.05

Bio19 1.00 1725.00 159.00 239.95 283.40
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To mitigate the overfitting and enhance the generalizability of a
model, it is crucial to carefully select parameters. This includes
determining suitable transformations for the explanatory vari-
ables and identifying the best value for the regularization multi-
plier. This step was carried out through constructing and
validating different models, seeking the best combination of
these parameters.

The process of variable transformation in Maxent involves
expanding the explanatory variables to include a broader range
of derived variables. The bioclimatic variables chosen for the
model are represented as derived variables, which are functions
of the original variables (Phillips et al., 2006). This phenomenon
might be interpreted as a change in the functional structure of the
model specification, akin to including polynomial parts in a linear
regression analysis. According to Phillips et al. (2017) and Phillips
and Dudík (2008), the latest iterations of Maxent offer support for
five types of transformations applicable to continuous independ-
ent variables. These transformations include linear, quadratic,
threshold, forward hinge and reverse hinge.

A multi-step process (Perkins-Taylor and Frey, 2020;
Warren et al., 2020; Khan et al., 2022) was applied to identify
species-specific adjustments used for optimizing the model
(Shcheglovitova and Anderson, 2013; Radosavljevic and
Anderson, 2014). This was done to prevent excessive complexity
and, consequently, low performance when projecting the model to
different locations or under climate change scenarios (Elith et al.,
2011; Merow et al., 2013; Low et al., 2021). Several authors have
employed a non-homogeneous Poisson process to estimate models
(Renner and Warton, 2013; Renner et al., 2015; Phillips et al., 2017).
These models incorporated linear (L), quadratic (Q) and hinge (H)
features and combinations of these features such as ‘LQ’, ‘QH’ and
‘LQH’. A base Maxent model was fitted using RM= 1 and FC =
LQHP (default settings), employing the ‘Maxnet’ method and the
training dataset (d), including all predictor variables. The goal was
to evaluate and select the most important variables. A total of 119
models (FC = L, Q, H, LQ, QH, LQH, LQP, LQHP; RM= 1–5,
with increments of 0.25) were fitted to identify the best combination
of defined hyperparameters and to select the most suitable model
(final model) using TSS with the selected variables (fig. S1). If
results from different models are similar, the simplest one, ecologic-
ally easier to understand, was chosen. This is particularly important
for the formulation of phytosanitary policies and decision-making
processes.

Background points are based on occurrence distribution. In
the first dataset we applied a geographic filter which is easy and
faster, as we are working with all 19 variables. To run the final
model, we filtered the occurrences with an environmental filter
( just with the selected variables) and thus, had to create another
background sample. For defining background points, the occur-
rence points were divided into four blocks using conventional
k-fold cross-validation, allowing control over potential spatial
autocorrelation between training and testing data and evaluating
model transferability more appropriately (Roberts et al., 2017;
Santini et al., 2021). Thirty grids with resolutions ranging from
0.5 to 8 degrees were generated, each with a minimum of ten
occurrences (fig. S2 a, b). This method effectively addresses
potential spatial autocorrelation between the training and test
data, and provides a more suitable evaluation of the models’
transferability compared to alternative partitioning methods
(Roberts et al., 2017; Santini et al., 2021). In their study on effects
of future climate, land use and protected areas ineffectiveness on a
dark scenario for Cerrado plant species, Velazco et al. (2019)

generated 20 grids, each with resolutions ranging from 0.5 to 5
degrees. The optimal grid size was selected considering (i) min-
imal spatial autocorrelation, (ii) maximum environmental simi-
larity and (iii) minimal differences in records between training
and testing data (Velazco et al., 2022). In this study, we made
sure each cell included at least five occurrence points. For the pur-
pose of conducting an autocorrelation test between groups, 50%
of the points of existence were used. After establishing the division
of occurrence records, the allocation of 10,000 background points
was carried out in a random way, making sure they were dispersed
proportionally based on the number of occurrences in each
partition.

Excluding product features is justified by the fact that the
model is defined by the marginal response curves of each pre-
dictor variable (Phillips et al., 2017). These curves are more
straightforward to interpret compared to those that rely on the
values of other variables. It is worth noting that some of the
used variables already encompass the combination of others.
Phillips et al. (2017) specified the use of the clog-log output for-
mat as the most appropriate method for representing the prob-
ability of occurrence or establishment of a species.

The maximum entropy approach is a statistical technique that
seeks to estimate an unknown probability distribution by lever-
aging the observed frequencies and background information
within a defined study area. The goal of this strategy is to identify
the distribution that shows the highest degree of geographic uni-
formity, often known as maximum entropy. This is achieved by
incorporating the restrictions resulting from the environmental
conditions seen in the known occurrence locations. Maxent
often uses randomly generated background points distributed
throughout the spatial extent of the study area (Phillips et al.,
2009). The purpose of this is to determine the extent of environ-
mental variability surrounding the best conditions for the survival
of a species. The number of background points significantly influ-
ences the model’s predictions, and it is recommended to incorp-
orate a considerable quantity of data to effectively represent the
environmental conditions in which the species is found
(Barbet-Massin et al., 2012; Northrup et al., 2013). It is crucial
to recognise that the results depict a model of habitat suitability
relative in nature. Put otherwise, such findings indicate that one
location is more suitable than another, without indicating the
actual presence or inhabitation of the species.

The model development requires the spatial extent to
encompass the accessible area for the species of interest during
the relevant period (Araújo et al., 2019). Additionally, the back-
ground data must be constrained to this same extent, and his-
torical dispersion methods should be employed (Barve et al.,
2011; Merow et al., 2013; Cooper and Soberón, 2018). The
choice of a proper geographic area for sampling background
points varies depending on the species and the goals of the
study (Santini et al., 2021). This is important for the develop-
ment of niche models that rely on presence-only data, such as
Maxent models (VanDerWal et al., 2009; Anderson and Raza,
2010; Barbet-Massin et al., 2012; Khosravi et al., 2016; Cooper
and Soberón, 2018; Machado-Stredel et al., 2021; Amaro
et al., 2023). It is also crucial to make sure the sample size is
large enough to adequately represent all environments
(Renner et al., 2015). In our study, the calibration area for the
model was defined by considering the Köeppen–Geiger zones
occupied by the species (Webber et al., 2011; Hill et al.,
2017), as depicted in fig. 3. The resulting calibration area
encompassed 68,026,420 km2.
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Applying this approach is pertinent to models intended for
extrapolation to different geographic regions beyond the calibra-
tion area or for alternative temporal intervals (Velazco et al.,
2022). The best grid size was determined using the part_sblock
function from the {flexsdm} package. This function systematically
explores various block sizes and selects the most suitable size
based on a multi-dimensional optimization procedure. The opti-
mization process considers three dimensions: spatial autocorrel-
ation (measured by Moran’s I ), environmental similarity
(measured by Euclidean distance) and variation in data quantity
among partition groups (measured by standard deviation – SD)
(Velazco et al., 2022). Velazco et al. (2022) established four parti-
tions, each consisting of a test set of 40 cells and the resolving cells
varying from 2 to 30 pixels.

In multiple cases of species distribution modelling, the chosen
model predictions are transformed into binary maps that depict
areas considered suitable or unsuitable for the species under
investigation. While some scholars have advocated for the com-
plete avoidance of this procedure unless there is a clear justifica-
tion for applying the model (Guillera-Arroita et al., 2015; Santini
et al., 2021), the information provided by a map is valuable when
addressing invasive species. It aids in focusing on areas for imple-
menting phytosanitary public policies. The determination of a
threshold value that serves as a cut-off point for site classification
is a critical part, since varying thresholds might provide signifi-
cantly divergent estimates (Jarnevich et al., 2015). In this study,
the threshold selected was max_sens_spec, which has been earlier
shown to provide consistent findings (Liu et al., 2005, 2013, 2016;
Allouche et al., 2006). This threshold is equal to optimizing the
vertical separation between a point on the ROC curve and the
diagonal line, or maximizing the TSS. Still, it is crucial to acknow-
ledge that when using thresholds to transform distribution mod-
els, the resulting interpretations should generally be regarded as
hypothetical distributions (Liu et al., 2013).

When constructing a model to estimate the possible distribu-
tion of a species, the model is adjusted to the observed data
using a predetermined range of values for each environmental
variable, known as the calibration range. When conducting
model predictions for spatial or temporal projections, parts of
the environment may show conditions that fall outside the cali-
bration range. These conditions, under non-analogous circum-
stances, can lead to model extrapolation (Randin et al., 2006;
Williams et al., 2007; Fitzpatrick and Hargrove, 2009; Owens
et al., 2013; Yates et al., 2018). To assess which areas had the high-
est extrapolation, the Shape metric (pers. comm.) was used, which
consists of a model-independent method, since its calculation is
based exclusively on the environmental distance between the
training and projection data, that is, extrapolation is independent
of model parameters and predictions.

Model evaluation

The scholarly literature has various perspectives on the best evalu-
ation criteria for species distribution models. The ROC is a widely
used metric for evaluating classification performance. One of its
most commonly employed parts is the area under the curve
(AUC) value. This metric is independent of threshold and scale
(Merow et al., 2013). Bradley (1997) has revealed many useful
attributes linked to the use of AUC as a performance metric in
classification tasks. Still, the AUC values can be affected by the
size of the study region (Smith, 2013; Amaro et al., 2023).
Specifically, if the model encompasses a vast area and the species
being studied has a limited distribution inside that area, the AUC
values may be artificially inflated. Evaluating a classifier only
based on total AUC may not be enough when assessing its per-
formance specifically in areas characterised by high specificity
or high sensitivity (Robin et al., 2009). To address these scenarios,
the idea of partial area under the curve (pAUC) was created as a

Figure 3. Map of the Köeppen–Geiger zones used to define the model calibration area, considering the current dispersion of Diaphorina citri.
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localised comparative method that specifically examines a seg-
ment of the ROC curve (McClish, 1989; Jiang et al., 1996;
Streiner and Cairney, 2007).

Alternative metrics for evaluating the adequacy of a model
show certain limitations (Allouche et al., 2006). These limitations
include sensitivity, which refers to the proportion of correctly pre-
dicted attendances or the true positive rate (TPR), specificity,
which denotes the proportion of accurately predicted absences,
and the TSS, a metric that remains unaffected by prevalence
and is calculated using sensitivity and specificity (Allouche
et al., 2006). Additionally, κ, another metric unaffected by preva-
lence, can also be used for this purpose (Allouche et al., 2006).

According to Hosmer et al. (2013), an ROC curve with an
AUC value of 0.9 or higher indicates an excellent model fit. A
value between 0.6 and 0.9 is considered good, while a value of
0.5 or lower suggests that the model performs no better than ran-
dom chance. The TPR should be positioned near 1, hence indicat-
ing a heightened level of sensitivity. The TSS is a numerical
measure that falls within the range of 0–1. A TSS value over 0.9
is regarded as ideal, while a value between 0.85 and 0.9 is consid-
ered exceptional. A TSS value ranging from 0.7 to 0.85 is classified
as very good, while a value between 0.5 and 0.7 is considered
good. Additionally, a TSS value ranging from 0.4 to 0.5 is consid-
ered decent, and any value ≤0.4 indicates a poor fit (Landis and
Koch, 1977). According to Peterson (2006), to accurately
represent low false-negative scores, omission values should be
reduced and brought closer to zero.

Niche change

The occurrence records of the species were divided into two sets
of data: the native area and the area invaded by D. citri. At first,
updated Köppen–Geiger climate classes (Rubel and Kottek, 2010)
were extracted from a raster file obtained from the Climate
Change and Infectious Diseases Group (https://koeppen-geiger.
vu-wien.ac.at/present.htm) of the University of Vienna, Austria,
to create histograms of the frequencies of occurrences and com-
parisons. To assess the ecological niches in the environment
and compare the distinctions between the native and invaded
regions, the COUE framework (Centroid shift, Overlap,
Unfilling, and Expansion) proposed by Broennimann et al.
(2012) was used for both datasets. The comparison of niches
was conducted in a two-dimensional space using the Schoener
Index (D), a metric that measures the extent of overlap and ranges
from 0 (showing no overlap) to +1 (representing complete over-
lap) (Broennimann et al., 2012). Subsequently, principal compo-
nent analysis was used to analyse environmental data obtained
from occurrence locations in both native and introduced areas
to identify and assess the variability captured by the first two prin-
cipal parts. The spatial extent of the environment was partitioned
into a grid consisting of 100 cells, and the estimation of occur-
rence density within this spatial domain was conducted using a
kernel density estimator, as described by Broennimann et al.
(2012) and Parravicini et al. (2015).

The measured overlap (D) was assessed by using a niche
equivalency test to determine whether it deviated significantly
from a null distribution consisting of 1000 randomly generated
D-metrics. This null distribution was created by randomly redis-
tributing the occurrences of both niches among two datasets
(Broennimann et al., 2012). The null hypothesis, which posits
that the niches are comparable, is considered invalid when the
observed D value falls below the fifth percentile of the null

distribution. This null distribution was generated by considering
the geographic availability of environmental conditions.
Specifically, one niche was randomly distributed in the back-
ground while the other remained unchanged.

In this study, we used the same metrics as Guisan et al. (2014)
who examined various metrics related to niche dynamics in inva-
sive species. These metrics include niche stability, which measures
the proportion of environments within the introduced niche
shared with the native niche. Another metric is niche expansion,
which measures the proportion of environments in the intro-
duced niche that do not overlap with the native niche. Last, the
metric of unoccupied niche, also known as niche unfilling,
assesses the proportion of environments that are not occupied
by the invasive niche.

Projections for future climate scenarios

For future projections under different climate change scenarios,
three periods were selected (2021–2040, 2041–2060 and 2061–
2080), SSPs 245 and 585, using three global climate models
(GCMs) considered suitable for Ghana (Oduro et al., 2021),
BCC-CSM2-MR, INM-CM5-0, MRI-ESM2-0, as per the
Coupled Model Intercomparison Project Phase 6 (CMIP6).

The SSPs provide different development paths, contemplating
possible trends about radiative forcing (Wm–2). SSP 245 describes
a society in which development follows a historical pattern with-
out significant future deviations, with a radiative forcing in 2100
of 4.5Wm–2, representing an increase in global temperature
between 1.4 and 2.8 °C. SSP 585 assumes a society in which econ-
omy is based on fossil fuels and intensive energy use, with a pro-
jected radiative forcing of 8.5 Wm–2 in 2100 and a rise in global
temperature between 3.5 and 5.5 °C.

The bioclimatic variables, SSPs and GCMs were obtained from
the Worldclim. The mean model, for the periods and SSPs, was
obtained by averaging the three GCMs used as a consensus model.

Contribution of environmental variables

Maxent’s first formulation is equal to maximizing the probability
of a parametric exponential distribution (Phillips et al., 2004), but
more recently the identical maximum likelihood exponential
model may be obtained through an Inhomogeneous Poisson
Process (IPP) (Aarts et al., 2012; Fithian and Hastie, 2013;
Renner and Warton, 2013). One often used technique is the
approach used by the ‘varImportance’ function within
{fitMaxnet} package. The method used for calculating variable
importance aligns with the method used in the R packages bio-
mod2 and ecospat. The model generates predictions for every
row in the combined environmental data table, created by stack-
ing the occSWD and bkgSWD datasets. In the maxnet model
object, the values of each variable undergo permutation across
rows, resulting in a model prediction for each row using the per-
muted or shuffled data table. The permutation procedure is
repeated numReplicates times for every variable. For every permu-
tation, a Pearson correlation coefficient is calculated between the
reference predictions and the predicted values obtained from the
shuffled table. The significance value is calculated as the differ-
ence between 1-correlation coefficient. The outcome yields a vec-
tor of average scores for each variable, represented as a percentage
relative to the sum of all average scores.
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Results

Based on the TSS metric ( = 0.42224), the best combination was
obtained using the linear, quadratic and hinge (LQH) classes sim-
ultaneously and regularised multiplication 0.5. The evaluation
metrics of the selected model among the 50 tested models, pro-
vided by the {flexsdm} package and calculated from these, are pre-
sented in table 3, although all models have presented
good performance to the random one.

The ROC curve of the final model (fig. 4a), resulting from
evaluating true-positive predictions (sensitivity) and false-positive
predictions (1 – specificity), showed a useful predictive capacity
with an AUC value between 0.7 and 0.9. The ROC curve and par-
tial AUC information when constraining the false- and true-
positive rate (x = FPR = specificity; y = TPR = sensitivity) in the
90–100% range are illustrated in fig. 4b. The partial area
(pAUC) can be interpreted as the mean sensitivity over the spe-
cified specificity range and the mean specificity over the specified
sensitivity range. In addition, the suitability of habitats against the
projection and training data are illustrated in fig. S3.

The response curves of the model are illustrated in fig. 5, which
allow exploring the average marginal effect of environmental vari-
ables on the suitability of the environment for D. citri. The graphs
show how the model response is individually influenced by each
predictor variable, keeping the effects of the other variables
fixed. The most suitable habitats (ideal values) for D. citri, as pre-
dicted by our model, are presented in supplemental information
table S3. The histogram depicting the occurrence of D. citri
against environmental variables is illustrated in fig. S4.

The analysis showed that the order of importance of the eight
environmental variables is temperature seasonality (Bio04) >
mean temperature of warmest quarter (Bio10) > precipitation of
driest quarter (Bio17) > moderate resolution imaging spectroradi-
ometer land cover (MODISLC) > precipitation seasonality
(Bio15) > precipitation of coldest quarter (Bio19) > precipitation
of wettest quarter (Bio16) > mean diurnal range (Bio02), were the
most important drivers of D. citri distribution. Among these
environmental variables, Bio04, Bio10, Bio17, MODISLC and
Bio15 contributed to about 85% of the model (fig. 6). Further,
the characteristics of the mean of the analysis on the D. citri
are presented in table S4.

The potential geographic distribution of D. citri for Ghana,
resulting from our model, is shown in fig. 7a, segmenting the
probability of establishment into seven classes to help with visu-
alization and comparison between locations. The high, optimal,
moderate, marginal and unsuitable probability calculated at the
occurrence points was 100% (table 4, fig. 7b). Applying a thresh-
old that maximises the sum of sensitivity and specificity (max_-
sens_spec = 0.3656577) resulted in the map in fig. 7b which

Table 3. Threshold-dependent and independent metrics (mean values and
standard deviations) used to evaluate the developed model

Metric names Values

True-positive rate or sensitivity (TPR) 0.63935

True-negative rate or specificity (TNR) 0.78289

True skill statistic (TSS) 0.42224

Sorensen index 0.17578

Jaccard index 0.09642

F-measure on presence-background (FPB) 0.19285

Omission or false-negative rate (OR) 0.36065

Boyce index 0.90534

Area under ROC curve (AUC) 0.75868

Inverse mean absolute error (IMAE) 0.69743

Maximum sensitivity plus specificity (maxSSS) 0.47555

False-positive rate (FPR) 0.21711

Positive predictive value or precision (PPV) 0.74650

Accuracy 0.71112

F1 score 0.68878

Balanced accuracy 0.71112

Matthews correlation coefficient (MCC) 0.42666

Minimum training presence (MTP) 0.03987

10th Percentile training presence (10TP) 0.11588

Symmetric extremal dependence index (SEDI) 0.49300

Figure 4. Graph of the receiver operating characteristic (ROC) curve for the potential geographic distribution model of Diaphorina citri in Ghana, showing the total
area (AUC) under the ROC curve (a) and partial areas (pAUC) (b).
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represents an area of 244,129 km2 (table 4). Extrapolation of mod-
els utilizing the shape metric is contingent upon its value,
whereby a larger value (shown by shades of dark blue) indicates
a greater disparity in the environment. Consequently, this dis-
crepancy leads to a diminished level of reliability in the model’s
predictions for the corresponding area (fig. 7c).

In its native distribution areas, D. citri predominantly occupies
regions with hot semi-arid (steppe) climate (BSh),
monsoon-influenced humid subtropical climate (Cwa) and trop-
ical savanna, wet (Aw) climate classes according to the updated
Köppen–Geiger climate classification (fig. 8a) with about 80%
of the points belonging to these classes. Yet, in invaded areas,
occurrences are more concentrated (about 58%) in the climate
classes tropical savanna, wet (Aw), humid subtropical climate
(Cfa) and tropical monsoon climate (Am) (fig. 8b). In general,

we identified a greater number of climate classes occupied by
D. citri in newly invaded compared to native areas, suggesting a
change in niche.

The predicted distribution areas for D. citri in Ghana under
the SSPs 245 and 585 and for the three periods are illustrated
in fig. 9 and presented in table 4. The suitability classes for the
country as predicted by the model are illustrated in fig. 10, with
habitats ranging from marginal to high suitability. Yet, areas
with high suitability are primarily located in the southern parts
of the country. In citrus-producing regions, such as Ashanti,
Central, Western, Eastern and Volta, a change in habitat suitabil-
ity from the current time into the future is forecasted, with most
parts showing high suitability for D. citri (fig. 10). The computed
areas of habitat suitability for D. citri under the different climates
are presented in table 4. We showed the optimal areas and the

Figure 5. Graphs of the response curves of the variables used in the model. Mean diurnal range (Bio02), temperature seasonality (Bio04), mean temperature of
warmest quarter (Bio10), precipitation seasonality (Bio15), precipitation of wettest quarter (Bio16), precipitation of driest quarter (Bio17), precipitation of coldest
quarter (Bio19), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover.
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probability of establishment of the pest in the world in figs S5 and
S6, respectively. Further, we illustrate Ghana’s Maxent probability
and classes maps in fig. S7. The probability of occurrence of D.
citri across the time periods under climate change scenarios
using a box plot are presented in fig. 11.

Discussion

Linking climatic conditions to occurrence data is a commonly
employed biogeographic strategy for characterizing species distri-
butions and forecasting the potential effects of climate change
(Guisan et al., 2014; Finch et al., 2021). Applying climate model-
ling in assessing habitat suitability has clearly demonstrated that
climate change will substantially affect the distribution patterns
of invasive species (Aidoo et al., 2022, 2023a). Notwithstanding
the limitations and uncertainties in the outcomes of species distri-
bution models, using these models is a valuable technique for pre-
dicting potential distribution of species (Woodman et al., 2019).
Previous studies have established a correlation between tempera-
ture and precipitation patterns and their impacts on the spread,
survival and development of D. citri and other invasive species
(e.g. Hall et al., 2012; Devi and Sharma, 2014). The present
work used the CMIP6 data to predict the potential geographic dis-
tribution of D. citri in Ghana. Currently, the pest has a broad geo-
graphical distribution within the country, encompassing the
major citrus-growing regions including, Western, Eastern,
Central, Volta, Northern and the Ashanti Region (Brentu et al.,
2012; Asare-Bediako et al., 2013). Our model now predicts a fur-
ther expansion, with new areas of habitat suitability covering parts
of Ahafo, Bono, Bono East, Northern, Savannah, North East,
Upper East, Oti and Western North Regions. However, under
the current climate areas with high and optimal suitability are
restricted to southern parts of the country, including parts of
Volta, Ashanti, Eastern, Western, Western North, Greater Accra
and Central Regions, with moderate to marginal suitable climates
in parts of the more arid Northern, North East, Upper West and
Upper East Regions of Ghana. Our modelling results suggest that
about 244,129 km2 of Ghana are climatically suitable for D. citri,
which corresponds well with the available occurrence data (Aidoo

et al., 2023b), indicating that the maxnet package can effectively
predict the pest’s habitats. The original formulation of Maxent
equals maximizing the likelihood of a parametric exponential dis-
tribution (Phillips et al., 2004). Like the Maximum Entropy java
software, the maxnet package in R can generate forecasts and
decrease commission mistakes when only a few occurrence
records for a species are accessible.

In this study, temperature seasonality, mean temperature of
warmest quarter, precipitation of driest quarter, moderate reso-
lution imaging spectroradiometer land cover, precipitation sea-
sonality, precipitation of coldest quarter, precipitation of wettest
quarter and mean diurnal range were identified as significant
environmental factors, collectively accounting for more than
two-thirds of the observed geographical distribution of the pest.
Earlier research on the growth and spread of D. citri has shown
temperature and precipitation are crucial in influencing its repro-
ductive, developmental, migratory, morphology and dispersal pat-
terns (Antolínez et al., 2022; Paris et al., 2017). Further,
temperature alters the flight capacity of D. citri (Antolínez
et al., 2022). New citrus flush production as well as maximum
temperature, daily lowest temperature and rainfall have been posi-
tively correlated with D. citri infestations (Zorzenon et al., 2021).
The same authors found that the migration patterns of D. citri
aligned with seasonal variations in specific climatic factors.
Higher levels of humidity and daily maximum temperatures
were associated with adverse effects, while increased rainfall in
the preceding weeks had a favourable impact. Specifically, ideal
conditions for the psyllid’s spread include a mean diurnal range
ranging from 2.7 to 4.2 °C, temperature seasonality of 56.5 °C
and a mean temperature of warmest quarter of 22.2 °C (table
S3). The changes in the climatic condition pattern resulting
from climate change have the potential to exert both direct and
indirect effects on the survival of invasive species. Nevertheless,
it should be noted that in Brazil, the optimal environmental para-
meters for D. citri are typically observed within a temperature
range of 22–28 °C (Zavala-Zapata et al., 2022). However, labora-
tory studies predictions showed that temperatures ranging from
25 to 28 °C were optimal for the proliferation of D. citri and
the subsequent expansion of its population (Tsai and Liu,

Figure 6. Percentage contribution of environmental variables to the base (a) and final (b) models. Annual mean temperature (Bio01), mean diurnal range (Bio02),
isothermality (Bio03), temperature seasonality (Bio04), max temperature of warmest month (Bio05), min temperature of coldest month (Bio06), temperature annual
range (Bio07), mean temperature of wettest quarter (Bio08), mean temperature of driest quarter (Bio09), mean temperature of warmest quarter (Bio10), mean
temperature of coldest quarter (Bio11), annual precipitation (Bio12), precipitation of wettest month (Bio13), precipitation of driest month (Bio14), precipitation
seasonality (Bio15), precipitation of wettest quarter (Bio16), precipitation of driest quarter (Bio17), precipitation of warmest quarter (Bio18), precipitation of coldest
quarter (Bio19), Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover.
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2000). Previous research conducted under controlled and standar-
dised thermal conditions demonstrated that D. citri is unable to
complete its life cycle above a temperature barrier of 33 °C (Tsai
and Liu, 2000). Yet, a more recent investigation by Milosavljević
et al. (2020) has provided empirical evidence that D. ciri has
the ability to undergo developmental processes at temperatures
exceeding 35 °C, under both constant and fluctuating temperature
regimes. Furthermore, Antolínez et al. (2022) demonstrated an
effective completion of the psyllid’s life cycle throughout a

range of temperature treatments spanning from 28 to 43 °C.
However, it is important to note that the daily cycles with a tem-
perature of 43 °C sustained for 6 h posed an exception to this pat-
tern. Moreover, these authors observed a significant decline in the
rate of adult emergence as the temperature surpassed 40 °C. In
their study, Hall et al. (2011) conducted an estimation of tempera-
ture thresholds pertaining to the oviposition behaviour of D. citri.
The results indicated that the lower and higher thresholds for ovi-
position were 16 and 41.6 °C, respectively. Comparable ranges for

Figure 7. The extrapolation map of the model, considering the presence and background points, elaborated from the extra_eval function of the {flexsdm} package,
using the Shape metric. (A) Predicted probability of establishment of Diaphorina citri in Ghana. Warmer colours (closer to red) indicate environments more suitable
for establishing the species. Small black dots refer to identified occurrences. (B) Regions considered optimal for the occurrence of D. citri in Ghana (area in red),
considering max_sens_spec = 0.3656577, and (C) model extrapolation based on the Shape metric: the higher the value (shades of dark blue), the greater the envir-
onmental difference and, consequently, the lower the degree of reliability of a model prediction for the area.
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Table 4. Changes in habitat suitability from the current time to future with unsuitability, marginal, moderate, optimal and high percentages.

Climate
Unsuitable

(km2)
Marginal
(km2)

Moderate
(km2)

Optimal
(km2)

High
(km2)

%
Unsuitable

%
Marginal

%
Moderate

%
Optimal

%
High

Currently (historic 1970-2000) 0 103,712 72,213 49,516 18,688 - 100.00 100.00 100.00 100.00

CMIP6 BCC-CSM2-MR SSP245
(2021-2040)

0 54,361 46,112 55,584 88,072 - 52.42 63.86 112.25 471.28

CMIP6 INM-CM5-0 SSP245
(2021-2040)

0 11,943 67,572 50,932 113,683 - 11.52 93.57 102.86 608.32

CMIP6 MRI-ESM2-0 SSP245
(2021-2040)

0 126 73,426 52,109 118,468 - 0.12 101.68 105.24 633.93

CMIP6 Mean SSP245
(2021-2040)

0 15,039 70,737 52,216 106,137 - 14.50 97.96 105.45 567.94

CMIP6 BCC-CSM2-MR SSP245
(2041-2060)

0 30,783 46,084 60,045 107,218 - 29.68 63.82 121.26 573.73

CMIP6 INM-CM5-0 SSP245
(2041-2060)

0 3411 53,704 64,967 122,048 - 3.29 74.37 131.20 653.08

CMIP6 MRI-ESM2-0 SSP245
(2041-2060)

0 1932 66,883 61,571 113,743 - 1.86 92.62 124.35 608.64

CMIP6 Mean SSP245
(2041-2060)

0 8707 60,606 59,315 115,502 - 8.40 83.93 119.79 618.05

CMIP6 BCC-CSM2-MR SSP245
(2061-2080)

0 40,351 38,326 63,832 101,621 - 38.91 53.07 128.91 543.78

CMIP6 INM-CM5-0 SSP245
(2061-2080)

0 30,593 57,819 45,847 109,870 - 29.50 80.07 92.59 587.92

CMIP6 MRI-ESM2-0 SSP245
(2061-2080)

0 17,436 39,404 67,256 120,034 - 16.81 54.57 135.83 642.31

CMIP6 Mean SSP245
(2061-2080)

0 27,579 51,211 54,538 110,801 - 26.59 70.92 110.14 592.90

CMIP6 BCC-CSM2-MR SSP585
(2021-2040)

0 24,850 49,702 78,578 90,999 - 23.96 68.83 158.69 486.94

CMIP6 INM-CM5-0 SSP585
(2021-2040)

0 57,515 43,959 39,990 102,666 - 55.46 60.87 80.76 549.37

CMIP6 MRI-ESM2-0 SSP585
(2021-2040)

0 11,437 73,112 45,157 114,423 - 11.03 101.24 91.20 612.28

CMIP6 Mean SSP585
(2021-2040)

0 24,418 63,365 53,152 103,194 - 23.54 87.75 107.34 552.19

CMIP6 BCC-CSM2-MR SSP585
(2041-2060)

0 34,729 35,867 73,678 99,856 - 33.49 49.67 148.80 534.33

CMIP6 INM-CM5-0 SSP585
(2041-2060)

0 61,704 37,910 40,876 103,640 - 59.50 52.50 82.55 554.58

CMIP6 MRI-ESM2-0 SSP585
(2041-2060)

0 17,727 35,284 62,742 128,378 - 17.09 48.86 126.71 686.95
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D. citri response curves were found for the warmest quarter’s
mean temperature, warmest month’s maximum temperature
and temperature seasonality: 24.46–34.27, 28.6–40.91 and
56.83–818.03 °C, respectively (Wang et al., 2019). According to
Skendžić et al. (2021), global climate warming has the potential
to affect insects, including the expansion of their geographic
ranges, enhanced survival during winter months, an increase in
the number of generations, heightened susceptibility to invasive
insect species and insect-borne plant diseases and alterations in
the dynamics of their interactions with host plants and natural
predators.

Our predictions showed that precipitation seasonality of
121.7 mm, precipitation of wettest quarter of 25.9–317.1mm,
precipitation of driest quarter of 459.5mm and precipitation of
coldest quarter of 183.8mm were ideal for the pest’s proliferation
in Ghana. Smaller insects such as D. citri are very vulnerable to
severe precipitation which can dislodge or wash them off from
their hosts. For example, Beattie (2020) showed that heavy rains
washed off eggs and nymphs, thereby considerably affecting
D. citri populations. The forecast conducted in China indicated
that the optimal range of precipitation during the wettest quarter
for D. citri was found to be between 562.89 and 1189.75 mm.
Similarly, the range of precipitation during the warmest quarter
was seen to vary from 503.73 to 1533.58mm (Wang et al., 2019).
Several studies have shown that the primary constraint on the
population size, geographical range and possible spread of D.
citri is the cold temperatures experienced during winter months
(e.g. Hall et al., 2011; López-Collado et al., 2013). This suggests
that the survival and distribution of D. citri are primarily influ-
enced by climatic factors such as temperature and precipitation.

Results from the maxnet package indicated high-suitability
habitats for D. citri, which overlap with the major citrus-produ-
cing regions in Ghana. Hence, the model showed a high level of
reliability in forecasting the distribution of D. citri confirming
previous findings (Aidoo et al., 2023b). Based on the model out-
puts for the projected future climatic conditions of the SSPs245
and 585 from the 2040s to the 2080s, Ghana’s regions including
Volta, Greater Accra, Central, Western and Eastern constitute
areas that harbour highly suitable climatic conditions for D.
citri. In contrast, some of Ghana’s northern regions, including
Savannah, Northern, North East, Upper East and Upper West,
are projected to be less suitable for the psyllid. The climate suit-
able areas will increase from the current time until the 2080s
for both climate change scenarios, with a few areas in the future
showing unsuitability for the pest.

A study by Aidoo et al. (2023b) reported for the first time the
presence of D. citri in the Volta Region of Ghana and suggested
regular tracking and surveillance of the pest. Our risk maps can
serve as a guide for the future development of control measures
to successfully manage the pest under current and future climate
change conditions. Such pest management measures are urgently
needed to prevent the further spread of D. citri in Ghana and
beyond because of the expected rising temperatures expanding
suitability for the pest in most parts of the country. However,
even a reduced distribution of D. citri could still threaten citrus
production in Ghana. Moreover, invasive species can often
adapt to changing climates (Barrett, 2000). Hence, the national
phytosanitary authorities in Ghana should continue their efforts
in preventing the spread of D. citri in the country as well as poten-
tial spillovers into the region.

The response curves from our model illustrate the manner in
which the predicted probability of the species’ habitat alters in
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response to fluctuations in each predictor, while holding all
other variables at their respective average sample values. They
offer insights into the environmental factors correlated with
varying species occurrence probabilities (Merow et al., 2013;

Tesfamariam et al., 2022). These parameters may correspond
to the species’ established ecological preferences or tolerances,
explaining certain features of its biology. However, species’ biol-
ogy is frequently shaped by many interconnected elements,

Figure 8. Frequency histograms of the climatic classes occupied by the recorded occurrences of D. citri (native (A) and none-native (B) ranges, tropical monsoon
climate (Am), tropical dry savanna climate (As), tropical savanna, wet (Aw), hot semi-arid (steppe) climate (Bsh), hot deserts climate (BWh), cold desert climate
(BWk), humid subtropical climate (Cfa), monsoon-influenced humid subtropical climate (Cwa), subtropical highland climate or temperate oceanic climate with
dry winters (Cwb), tropical rainforest climate (Af), cold semi-arid (steppe) climate (BSk), temperate oceanic climate (Cfb), hot-summer Mediterranean climate
(Csa) and warm-summer Mediterranean climate (Csb).

Figure 9. Mean future predictions of suitable areas for Diaphorina citri. (a) SSP 245 (2021-2040), (b) SSP 245 2041-2060, (c) SSP 245 2061-2080, (d) SSP 585
2021-2040, (e) SSP 585 2041-2060 and (f) SSP 585 2061-2080.
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encompassing biotic interactions, reproductive strategies and
other relevant characteristics. The ecological significance of
response curves may vary depending on the particular context
and size of the investigation. Varying reaction patterns may
arise due to different life phases, geographical regions or year’s
seasons. Maxent models can capture intricate interactions; how-
ever, it is essential to note that overfitting, which entails fitting
noise present in the data, can lead to unrealistic response curves
that then need to be revised (Phillips et al., 2009). Thorough
model validation and careful evaluation of ecological plausibility
are crucial aspects to be considered when modelling species dis-
tribution. Nonetheless, to thoroughly comprehend species biol-
ogy, it is necessary to incorporate broader ecological
information, field observations and domain experience along-
side the findings obtained using maxnet in future investigations
and analysis.

SDMs, like the maxnet package in R, can have some important
drawbacks. We did not consider the potential effects of socio-
economic development, D. citri evolution and adaptation, the
introduction of new plant protection and regulatory services pol-
icies, and changed farm-level management practices, all of which
could considerably change the spread risk, in addition to human
movement and interventions. Our predictions are based on SSPs,
and the chosen combinations of emission and socioeconomic
scenarios can influence our projections. Thus, different modelling
methods and their combinations should be used in future studies
to provide a better understanding of the uncertainty around our

estimations. Biotic and abiotic factors such as pest pressure, pre-
dators, parasitoids and elevation that were not included in our
model should be considered in future predictions.
Notwithstanding these drawbacks, our results offer valuable data
for developing surveillance and preventive policies against a fur-
ther spread of D. citri in Ghana and the pest’s impact on the
country’s citrus sector.

Conclusion

The present investigation examined the suitable ecological envir-
onment for D. citri in Ghana, including both present and pro-
jected climate change conditions represented by the SSP245 and
SSP585 scenarios. Such an analysis is crucial for the formulation
of effective strategies and policies aimed at an effective control of
D. citri. The potential habitats of the pest was predicted using the
maxnet in R. Our findings indicate that temperature and rainfall
conditions are significant predictors for the possible distribution
of D. citri in Ghana. Thus, the current climatic regions in
Ghana are highly conducive for D. citri and are expected to
expand until the 2080s. Still, it is projected that certain crucial
citrus-producing regions in southern Ghana will continue to
exhibit a high level of suitability for D. citri. Our findings can
thus assist researchers and policymakers in developing effective
and well-targeted pest management strategies for D. citri in a
changing climate.

Figure 10. Classes of future predictions of suitable areas for Diaphorina citri. (a) SSP 245 (2021-2040), (b) SSP 245 2041-2060, (c) SSP 245 2061-2080, (d) SSP 585
2021-2040, (e) SSP 585 2041-2060 and (f) SSP 585 2061-2080.
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