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Abstract: Tetralogy of Fallot is the most common heart defect associated with cyanosis characterized
by the co-occurrence of pulmonary stenosis, right ventricular hypertrophy, and ventricular septal
defect with over-riding of the aorta. The present review purposed to summarize myocardial, valvular
and vascular abnormalities, which were described in a series of patients following repair of tetralogy
of Fallot. It was also aimed to describe potential differences in these parameter using different
surgical strategies.
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1. Introduction

Tetralogy of Fallot (TOF) is the most common congential heart defect (CHD) associated
with cyanosis characterized by the co-occurrence of pulmonary stenosis, right ventricular
(RV) hypertrophy, and ventricular septal defect with over-riding of the aorta [1]. Its fre-
quency considering all heart defects is 3.5%, while considering all live births, its prevalence
is 1/3600. Its cause is unknown, and most cases occur sporadically, but family accumulation
can also be observed. Its association with certain genetic abnormalities, however, has been
described including 22q11-micro deletion, the mutation underlying DiGeorge syndrome,
which can be detected in almost a quarter of patients [2].

In recent decades, two surgical strategies have been used. Previously, the size of the
patient and the techniques available at that time only allowed for a palliative surgical
solution. In such cases, systemo-pulmonary shunts were established (Blalock–Taussig,
Potts, Waterston–Cooley) in order to ensure the blood supply of the pulmonary circulation
and thus the survival of the patient. After reaching the body size required, the complete
reconstruction could be performed in a second session with a closure of the ventricular
septal defect and restoration of the RV outflow tract. However, in such cases, there is a risk
that it will already progress and cause irreversible morphological and functional transfor-
mation of the right side of the heart by the time the second surgery is performed. Owing to
developing surgical techniques and perioperative care, early full reconstruction can now
be performed even in patients with very low body weight. In the long term, early complete
reconstruction carries the risk that the child will “outgrow” the pulmonary homograft
(pulmonary valve replacement, PVR) early, and thus reoperation may be necessary several
times during his life [1,3,4].

2. Cardiovascular Imaging and Criteria

In addition to what has been written above, it is a well-known fact that cardiovascular
imaging has also undergone a significant development. The importance of this in the case of
repaired TOF (rTOF) is that complicated anatomical conditions can now be diagnosed with
high precision in a non- or semi-invasive way. Considering that TOF is a rare disease, this is
of fundamental importance. Not only has echocardiography been developed significantly,
and new speckle-tracking (STE) and/or three-dimensional (3D) techniques been spread
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all around the world, but cardiac magnetic resonance imaging (cMRI) and computer
tomography have become part of the daily routine with significant importance, usability,
applicability and reproducibility.

3DSTE is a relatively new echocardiographic technique which enables the 3D evalua-
tion of complicated anatomical conditions using a virtual 3D echocardiographic cast and
assessment of valvular annuli [5–8]. In the present summary, findings from our ‘Motion
Analysis of the heart and Great vessels bY three-dimensionAl speckle-tRacking echocardio-
graphy in Pathological cases’ [MAGYAR-Path] Study are also presented, aiming to examine
3DSTE-derived parameters in certain disorders including rTOF since 2011 [9–14]. Clini-
cal data of these patients originate from the Registry of C(S)ONGenital caRdiAc Disease
patients at the University of Szeged (CSONGRAD Registry), which summarizes data of
almost 4000 CHD patients who have been treated and managed since 1961 at the University
of Szeged, Hungary [15].

The purpose of the present review was to summarize the results of examinations
considering myocardial, valvular and vascular abnormalities in patients with rTOF empha-
sizing differences following different surgical strategies including findings from our own
MAGYAR-Path Study. From vascular parameters, only aortic and pulmonary artery-related
abnormalities were detailed.

TOF is frequently associated with disorders like atrial fibrillation and heart failure,
non-invasive/invasive treatment of these conditions was not managed separately in the
text due to limited information. Different types of surgical/interventional methods within
the treatment groups were not managed separately either. Rare TOF-associated other
abnormalities and case reports were not listed in this paper either.

3. The Left Heart and the Aorta
3.1. Left Ventricle
3.1.1. Under Healthy Circumstances

The LV is the central engine of systemic circulation. The two papillary muscles of the
LV are required for the proper function of the mitral valve (MV) separating the LV and the
left atrium (LA) and allowing blood flow from the LA into the LV during diastole. The blood
leaves the LV via the aortic valve (AV), which prevents the backflow of blood from the aorta
to the LV during diastole under healthy circumstances. The fibers in the subepicardium are
left-handed, the mid-layer fibers run in the circumferential direction, while the fibers in
the subendocardium are right-handed [16]. The LV moves in a 3D pattern including radial,
circumferential and longitudinal deformation. This sort of movement can be character-
ized by several quantitative parameters named echocardiographic (unidirectional strains
represented by its 3D motion: radial (LV-RS), longitudinal (LV-LS) and circumferential
(LV-CS). While area (LV-AS) strain combines LS and CS, 3D (LV-3DS) strain combines all
unidirectional strains [5–8,17–20]. In addition to the above, LV has a movement similar to
wringing a towel called LV twist. In this case, the LV base rotates in a clockwise direction,
while the LV apex rotates in a counterclockwise direction in systole [17–19] [Figure 1].

3.1.2. In Repaired Tetralogy of Fallot
LV Structure, Volumes and Function

LV (and RV) shape and function show abnormalities in rTOF [21]. Moderate or
severe LV (or RV) systolic dysfunction shows an independent association with deteriorated
clinical status following repair of TOF [22]. In rTOF patients, LV ejection fraction (EF) was
negatively related to the RV end-systolic volume normalized to body surface area [23].
In NYHA class 1 rTOF patients, a frequently seen impaired systolic and diastolic LV
function, LV adverse remodeling with LV atrophy, a decreased mass/volume ratio, and
extracellular matrix expansion suggest cardiomyopathic changes. The best predictor for LV
systolic dysfunction was the RV mass/volume ratio [24]. Currently, follow-up of patients
is based on echocardiography and cMRI, although in a retrospective study, it was found
that biventricular shape modes discriminated differences between rTOF patients who did
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and did not require subsequent PVR better than standard cMRI-based indices in current
use [25]. There is an impaired contractile reserve for LV (and RV) in rTOF represented by
exercise stress cMRI [26].

Figure 1. Examination of the left ventricle (LV) by three-dimensional (3D) speckle-tracking echocar-
diography. Following echocardiographic data acquisitions, the following typical views are created:
(A) Apical 4-chamber and (B) two-chamber longitudinal views and (C3,C5,C7) cross-sectional views
at apical, midventricular and basal levels, respectively. LV can be easily detected alongside other heart
cavities including the left atrium (LA) and the right atrium (RA) and ventricle (RV). A number of
other details were also presented including (D) 3D cast and (E) end-diastolic (EDV) and end-systolic
(ESV) volumes of the LV together with ejection fraction (EF) and mass of the LV and (F) curves
representing changes in volumes and strains of LV over time. (F) Apical [white arrow] and basal
[white dashed arrow] LV rotations and (G) radial, (H) longitudinal, (I) circumferential, (J) area and
(K) 3D strains are also demonstrated.

LV Strains

rTOF is associated with impaired LV deformation represented by LV strains [9,27–30].
In rTOF patients with normal LV-EF reduced two-dimensional (2D) STE-derived LV strain,
especially segmental and global LV-CS and LV-LS could be detected [29,31,32]. Results from
the MAGYAR-Path Study confirmed that TOF patients late after early total reconstruction
with preserved LV strains showed supernormal mean segmental LV-RS and LV-3DS. In TOF
patients late after early palliation/late correction all LV strains were decreased, and mostly
septal segmental strains showed reductions. These findings could be explained by the
presence of compensatory effects and can be traced back to the nature of TOF, the presence
of the ventricular septal defect and the interventricular septal patch [9]. It has been partly
confirmed in a 3DSTE-based study, in which reduced global LV-AS was found in rTOF [33].
Moreover, LV strains and aortic stiffness correlated as well [9]. In rTOF patients, global LV-
RS, LV-LS and LV-CS were reduced, and global LV-CS reduction was more pronounced in
patients with increased RV-ESV with preserved global LV-RS and LV-LS [31]. Shortly after
surgical repair of TOF in children, despite normal LVEF, patients exhibit impaired LV strain
and strain rate together with RV parameters which can have prognostic implications [34]. In
rTOF patients, LV septal strain is reduced suggesting adverse effects of RV dysfunction on
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LV function [35]. Moreover, detailed analysis confirmed segmentally/regionality of strain
abnormalities [36]. LV and RV function and strain were found to be associated and interact
closely as well [29,37,38], while postoperative global LV-LS is more reduced compared
to preoperative values in children with rTOF [39]. When overweight and obese patients
were examined, while LV-EF (and RV-EF) were similar by weight categories, global LV-CS
differed significantly [40]. LV asynchrony may exist in rTOF patients with right bundle
branch block, which is associated with a reduced regional and global LV function [41]. In
the presence of normal LV-EF, LV-CS was found to be decreased at the LV base and apex
suggesting intraventricular dyssynchrony [42]. Moreover, higher LV (and RV) wall motion
delay as dyssynchrony parameters were associated with lower peak oxygen consumption
and worse LV-EF and RV-EF values [43].

The residual pulmonary regurgitation (PR) following TOF repair mediates biventricu-
lar dysfunction/dyssynchrony affecting long-term adverse outcomes [44]. A fall-and-rise
pattern for global LV-LS and RV-LS could be detected following TOF repair, which was not
seen in the case of patients undergoing PVR [45]. In another study, global LV-LS and RV-LS
improved significantly 6 months after PVR [46]. Global, basal and apical LV-CS and basal
synchrony showed improvement with no change in RV global strains following PVR [47].
The LV strain and strain rate before PVR have important prognostic power in predicting
adverse events after PVR in the presence of rTOF [48].

Global LV-LS (and RV-LS) were associated with adverse cardiac events in rTOF [49]. In
a cMRI-derived feature tracing (FT) study, LV-RS, LV-CS and LV-LS (and RV-LS) were related
to mortality [50]. In another cMRI-FT study, LV-CS rate was an independent predictor of
sustained/non-sustained ventricular tachycardia requiring invasive treatment [51].

LV Rotational Mechanics

Abnormalities of the LV rotational mechanics are known characteristics in rTOF, but
the results are unclear [10,27,52]. In the MAGYAR-Path Study, 38% of rTOF patients showed
absence of normally directed LV rotational mechanics called LV ‘rigid body rotation’, from
which 27% were clockwise oriented and 11% were counterclockwise oriented [10]. These
results in other studies proved to be 15% and 18% [27]. In another study, 38% of rTOF
patients had reversed [counterclockwise] LV basal rotation [52].

We found that 62% of rTOF patients had LV rotational mechanics in a normal direc-
tion; in these cases, impaired LV apical rotation was associated with preserved LV basal
rotation [10]. In another study, only 10% of rTOF patients showed reduced LV apical rota-
tion [27]. Moreover, LV apical rotation was reduced, but not reversed in another paper [52].
An association of decreased LV apical rotation with worse outcomes in rTOF patients [49].
According to the findings from the MAGYAR-Path Study, increased aortic stiffness was
associated with reduced LV apical rotation [10].

3.2. Left Atrium
3.2.1. Under Healthy Circumstances

The muscle fibers of the LA run in circumferential and longitudinal directions. There
are several phases of LA function including reservoir (in systole, its volume is highest),
conduit (in early diastole) and booster pump (in late diastole, its volume is lowest). The
Frank–Starling mechanism has significance in shaping the function of LA [53–55] (Figure 2).
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Figure 2. Examination of the left atrium [LA] by three-dimensional [3D] speckle-tracking echocar-
diography. Following echocardiographic data acquisitions, the following typical views are cre-
ated: (A) Apical 4-chamber and (B) two-chamber longitudinal views and (C3,C5,C7) cross-sectional
views at basal, midatrial and superior levels, respectively. LA can be easily detected alongside other
heart cavities including the left ventricle [LV] and the right atrium [RA] and ventricle [RV]. A number
of other details were also presented including (D) 3D cast, (E,F) maximum [Vmax], preatrial contrac-
tion [VpreA] and minimum [Vmin] volumes of the LA and curves representing changes in volumes
and strains of LA over time. Reservoir [peak] and active contraction LA strains are represented by
white and dashed white arrows, respectively.

3.2.2. In Repaired Tetralogy of Fallot

Abnormal LA deformation was found in rTOF patients [11,23,56–58]. In recent find-
ings from the MAGYAR-Path Study, increased LA volumes respecting the cardiac cycle
could be demonstrated, which were accompanied by reduced LA total, passive and active
emptying fractions and preserved LA stroke volumes. From peak LA strains representing
the LA reservoir phase, global and mean segmental LA-CS, LA-LS and LA-AS were de-
creased. From LA strains at atrial contraction, all global LA strains (RS, CS, LS, AS and
3DS) were found to be reduced. These findings draw attention to the fact that all phases of
LA function are compromised in adult TOF patients late after repair [11]. This was partly
confirmed in a later study, in which abnormal reservoir LA strain and LA compliance could
be demonstrated in adult rTOF patients [56]. rTOF patients had reduced peak LA-LS, LA
contraction strain and LA ejection fraction. Moreover, peak LA-LS correlated negatively
with RA end-diastolic volume normalized to body surface area, whereas LA-EF correlated
weakly with LV-EF as well [23].
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3.3. Mitral Valve
3.3.1. Under Healthy Circumstances

The MV has several components: two leaflets, a subvalvular apparatus consisting of
chordae tendinae and papillary muscles and a saddle-shaped annulus (MA) that has a
dynamic motion respecting the heart cycle. The MV opens/closes during diastole/systole
with one-way flow of blood from the LA into the LV in normal healthy circumstances.
Adjacent regions of these heart chambers have a significant role in the contraction of
MV [16,59,60] (Figure 3).

Figure 3. Examination of the tricuspid (TA) and mitral (MA) annuli by three-dimensional (3D)
echocardiography (left panel and right panel, respectively). (A) Apical 4-chamber and (B) two-
chamber longitudinal views help visualization of valvular annuli on (C7) cross-sectional view. TA
and MA planes are marked by a white arrow. TA and MA can be easily detected alongside the
heart chambers including the left ventricle (LV) and atrium (LA) and the right ventricle (RV) and
atrium (RA).

3.3.2. In Repaired Tetralogy of Fallot

In a recent study from the MAGYAR-Path Study, dilation and dysfunctional MA could
be detected in adult rTOF patients. It could be stated that TOF patients who underwent
early palliation/later correction had worse results as compared to cases with early total
reconstruction. The age at the time of early total reconstruction and MA systolic dimensions
correlated as well. The ratio of grade 1–2 mitral regurgitation was 24%, and no subjects
had a higher grade of mitral regurgitation [13].

3.4. Aortic Valve
3.4.1. Under Healthy Circumstances

The AV consists of three semilunar leaflets; it opens/closes during ventricular sys-
tole/diastole. In healthy circumstances, there is a one-way LV-aortic flow [20].

3.4.2. In Repaired Tetralogy of Fallot

An association could be demonstrated between increased ascending aortic dimension
and aortic valve regurgitation in rTOF patients [61].

3.5. Aorta
3.5.1. Under Healthy Circumstances

The aorta is the central element of the systemic circuit, the largest artery with charac-
teristic distensibility/stiffness features. The aorta and LV interact closely with each other
[coupling] [62,63].
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3.5.2. In Repaired Tetralogy of Fallot

Possibly, abnormal histopathology of the aortic media may be behind the aortic di-
lation in TOF, which can lead to regurgitation, dissection, or rupture due to its role in
weakening the aortic wall [64,65]. TOF patients show abnormal aortic features correlating
with higher age, which may be associated with later repair [66]. Interestingly, abnormal
aortic elastic property is found to be confined to the proximal [not distal] segments regard-
less of the ope rative status [67]. Children with postoperative TOF have stiffer aortas [68].
Despite early repair and normal aortic dimensions, preadolescents and adolescents with
TOF had elevated wall shear stress, increased stiffness, and pathologic systolic flow for-
mations in the proximal aorta, suggesting that although early repair normalizes aortic
dimensions in childhood, TOF patients remain at risk for late aortic complications [69].
High prevalence of aortic dilation and stiffness as assessed by pulse wave assessment,
echocardiography and cMRI are found in rTOF patients [70–74]. Male sex influences and
is the strongest factor for aortic dilation [70,71]. In a recent stress cMRI study, reduced
aortic distensibility during exercise could be detected in rTOF [26]. Patients with rTOF
have lower ascending aortic distensibility, higher aortic stiffness index and lower global
peak circumferential ascending aortic strain assessed by 2D-STE compared to controls [75].
As mentioned above, aortic strains correlated with LV strains [9] and LV apical rotation [10].
Interestingly, increased aortic stiffness was associated with decreased LV apical rotation
in rTOF. This result is contrary to what can be found in healthy subjects, where increased
aortic stiffness is positively correlated with LV apical rotation, suggesting an abnormal
physiologic response in rTOF [10]. Dilation and stiffening of the ascending aorta were
frequent findings in repaired patients with complex CHD including TOF, which was asso-
ciated with diminished exercise capacity and morbidity [76]. If the balance between the
blood supply and the workload of the heart is examined, its maintenance can be confirmed
regardless of the stiffness of the aorta in rTOF [77]. Matrix metalloproteinases, which are
capable of degrading extracellular matrix proteins, polymorphism of MMP-9 (not MMP-3)
has an influence on aortic stiffness and root dilation [78]. In CHD patients, including
those with rTOF, increased transforming growth factor-beta 1 (TGF-ß1) levels were present,
which correlated with aortic sinus dimension [79]. Moreover, autonomic cardiac function
is impaired in rTOF patients, which is independently associated with vascular function
represented by carotid artery stiffness [80].

Early studies indicated abnormal arterial haemodynamics after TOF repair [81]. Ac-
cording to recent findings, abnormal aortic flow seen in rTOF is associated with increased
viscous energy loss in the thoracic aorta, the magnitude of which is associated with LV
function and volumes. It is theorized to be due to inherently abnormal LV outflow geometry
and/or RV interaction. Reduced aortic flow efficiency increases cardiac work and may be
an important factor in long-term cardiac performance [82].

4. The Right Heart and the Pulmonary Artery
4.1. Right Ventricle
4.1.1. Under Healthy Circumstances

The RV is not similar to the LV; its shape, when viewed from the front, resembles a
triangle while its cross-sectional image resembles a crescent moon. The RV encircles the LV,
its wall thinner than the LV (only 3–5 mm), and trabecularizations are more pronounced in
the RV apex than in the LV apex [83]. Contraction of the RV starts in the inlet and ends in
the outflow tract. The free wall of the RV contains superficial subepicardial fibers arranged
in the transverse direction and deep subendocardial fibers, which run longitudinally and
extend from the base toward the apex. While longitudinal shortening is due to longitudinal
fibers, RV free-wall radial movement is due to fibers running in a circumferential direction.
There is a ventricular interdependence of LV and RV due to superficial fibers as well. Heart
rate, Frank–Starling mechanism and autonomic nervous system have significant roles in
the determination of RV function, which has no rotational/twisting components [83–86].
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4.1.2. In Repaired Tetralogy of Fallot

In rTOF, the dimensions and function of the RV have major concerns [30]. It has
been confirmed that both systolic and diastolic RV function deteriorated shortly after
surgery [39,87]. Global RV function and exercise capacity were similarly impaired re-
gardless of the presence of rTOF in patients with a severely dilated RV [88]. The RV
myocardial systolic-to-diastolic duration ratio incorporates systolic and diastolic perfor-
mance, electromechanical dyssynchrony, and postsystolic shortening and is associated
with exercise capacity in rTOF [89]. Although Doppler parameters proved to be normal,
adults following late after TOF repair still showed deteriorated RV myocardial function
as assessed by tissue Doppler imaging [90]. In pediatric rTOF patients, global RV-LS
was decreased, while RV transverse strain was increased in patients with normal EF [91].
Patients with rTOF had LV, RV and interventricular dyssynchrony, which showed no
correlations with changes in ventricular size and function over time [92]. RV longitu-
dinal pumping was associated with LV filling pressure in rTOF patients explaining LV
underfilling in patients with PR [93]. Late after repair in adults, reduced RV free-wall
strain and strain rate were present, especially at the apical region, suggesting that this is
the most affected RV region [35]. Interestingly, surrogates of RV dyssynchrony did not
show correlations with outcomes in adults with rTOF [94]. In another study, reduced
RV (and LV) early diastolic strain rate could also be detected in rTOF [37]. The diameter
of the RV outflow tract (RVOT) increased gradually at all ages, but in the first decade
after surgery, this turned out to be more pronounced. More rapid RVOT enlargement
was noted in patients with a larger RV, more PR, and greater rates of increases in RV size
and PR severity [95].

Regarding prognostication, RV (and LV) deformation is of prognostic significance
and has significantly improved risk stratification in terms of RV size and certain vari-
ables [96]. Both global RV-LS and RV free-wall LS were found to be associated with
adverse events [49,97], RV free-wall LS provided superior prognostic value than that of
global RV-LS in rTOF patients [97]. These findings were strengthened by others confirm-
ing that TAPSE and RV strain worsen following TOF repair in children together with LV
parameters, possibly having prognostic implications [34].

It has been confirmed that in patients with PR and residual RV outflow tract obstruction
had smaller RV volumes and higher RV-EF [98]. Others found that residual RV outflow
tract obstruction does not affect RV function [99] or have increased RV-CS and RV-RS [100].
Previous PVR showed no association with changes in RV-EF, but with an increased risk of
infective endocarditis and atrial arrhythmias [101].

4.2. Right Atrium
4.2.1. Under Healthy Circumstances

The RA is composed of three components: the venous part, the appendage and the
vestibule. The muscle fibers of the RA run in circumferential and longitudinal directions.
There are several phases of RA function including reservoir [in systole, its volume is
highest], conduit [in early diastole] and booster pump [in late diastole, its volume is lowest].
Additionally, RA has a regulator role in the conduction of the heart via the sinus node which
is located in its wall and also produces atrial natriuretic peptides regulated by tension and
baroreceptors [102] (Figure 4).
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Figure 4. Examination of the right atrium (RA) by three-dimensional (3D) speckle-tracking echocar-
diography. Following echocardiographic data acquisitions, the following typical views are created:
(A) Apical 4-chamber and (B) two-chamber longitudinal views and (C3,C5,C7) cross-sectional views
at basal, midatrial and superior levels, respectively. RA can be easily detected alongside other heart
cavities including the left ventricle (LV) and atrium (LA) and the right ventricle (RV). A number of
other details were also presented including (D) 3D cast and (E,F) maximum (Vmax), preatrial contrac-
tion (VpreA) and minimum (Vmin) volumes of the RA and curves representing changes in volumes
and strains of _RA over time. Reservoir (peak) and active contraction RA strains are represented by
white and dashed white arrows, respectively.

4.2.2. In Repaired Tetralogy of Fallot

RA end-diastolic volume, RA-EF and RA-LS representing reservoir function are ab-
normal in TOF. These abnormalities may indicate the presence of an RA diastolic burden
due to chronic RV dysfunction in the presence of rTOF [103]. Increased RA volume was
observed in adult rTOF patients whose higher RA volumes were associated with a higher
incidence of supraventricular arrhythmia, which was more frequent in men and in patients
with reduced LV-EF [104]. rTOF patients had reduced peak RA-LS, RA contraction strain
and RA-EF, moreover, peak RA-LS and mean RV strain were associated [23]. In ventricular
systole, early diastole and atrial contraction lower RA (and LA) peak positive and total
strain could be detected suggesting impaired atrial mechanics in rTOF [57]. Results from
the MAGYAR-Path Study confirmed the complexity of RA dysfunction [12]. All RA vol-
umes respecting the cardiac cycle were increased, while total and passive RA emptying
fractions were reduced with preserved active RA emptying fraction and all RA-SVs. From
peak reservoir RA strain, global RA-RS, RA-LS and RA-AS were reduced, while from RA
strains at atrial contraction, only global RA-CS and RA-3DS were decreased [12]. While
adverse events could be independently predicted by RA dilation [105], RA (and RV) strain
was an independent predictor of arrhythmic events among patients with rTOF [106].
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4.3. Tricuspid Valve
4.3.1. Under Healthy Circumstances

The tricuspid valve has several components: three leaflets, a subvalvular apparatus
consisting of chordae tendinae and papillary muscles and an asymmetrical, saddle-shaped,
ellipsoid annulus (TA) that has a dynamic motion respecting the heart cycle. The tricuspid
valve opens/closes during diastole/systole with a one-way flow of blood from the RA into
the RV in normal healthy circumstances [107] (Figure 3).

4.3.2. In Repaired Tetralogy of Fallot

The diameter of the tricuspid ring was found to be increased in rTOF [90]. In ac-
cordance with these findings, dilated TA with reduced functional properties could be
demonstrated in adult patients with rTOF in the MAGYAR-Path Study. Moreover, TA
dilation was related to RA volumes. Interestingly, when the results of TOF patients with
early total reconstruction and early palliation/late correction were compared, similar TA
dimensions and TA functional properties could be demonstrated [14]. In this study, 83% of
rTOF patients had grade 1–2 tricuspid regurgitation (TR) with a minimal number of patients
having higher grade TR, predominantly in cases with early palliation/late correction [14].

4.4. Pulmonary Valve
4.4.1. Under Healthy Circumstances

Similarly to AV, the pulmonary valve (PV) is morphologically semilunar and has
three leaflets and separates the RV from the pulmonary artery. The PV opens/closes at
ventricular systole/diastole to control one-way blood flow [108].

4.4.2. In Repaired Tetralogy of Fallot

In the presence of PR, RV dilation, dysfunction and/or dyssynchrony may gradually
develop during long-term follow-up leading to RV failure [44]. In rTOF, PR and resulting
RV and LV dysfunction are associated with adverse clinical outcomes [46]. In rTOF patients
with pulmonary stenosis >50% earlier PVR would be beneficial, which does not depend
solely on RV size and EF, global RV-LS seems to be a more sensitive marker [109].

4.5. Pulmonary Artery
4.5.1. Under Healthy Circumstances

The primary role of the pulmonary artery (PA) is to carry deoxygenated blood from
the RV to the pulmonary arterial system. The pulmonary artery is a low-pressure low-
resistance system. Similarly to the left heart, there is a significant interaction between RV
contractility and RV afterload called RV–PA coupling [86].

4.5.2. In Repaired Tetralogy of Fallot

Similarly to the aorta, vascular dysfunction of the PA could be detected in rTOF
represented by elevated PA elastance. It showed associations with exercise intolerance
and an inverse correlation with the severity of PR, which may prevent PR and RV and
LV dilation when significant pulmonary stenosis does not exist [110]. Impaired RV–PA
coupling was found in rTOF patients, which was mainly affected by the strategy used at
the primary surgery [111].

5. Pathophysiological Background

In short, the majority of the abnormalities detailed above can basically be traced
back to the basics of the disease, heart failure is most commonly caused by pulmonary
regurgitation, pulmonary stenosis, dilation of the RV, LV dysfunction or aortic regurgitation.
In addition, conditions that develop during surgical procedures can also have an effect. In
case of early palliation/late correction, the consequences of the systemic-pulmonary shunt
and those of the consequential LV volume overload are seen, while patients with an early
total reconstruction may require intervention or reoperation of the pulmonary homograft.
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The mutual effects of the heart chambers, valves and the great vessels must not be forgotten
either. In addition to these, of course, not only the surgical procedure itself and its timing
may also play a role [1–3,44].

6. Novelty of the Present Review

To the best of the author’s knowledge, this is the first review that tried to summarize
the most important findings related to myocardial, valvular and vascular abnormalities in
patients following rTOF. Although previous articles and reviews have attempted to collect
available scientific data on this topic, they have generally examined the topic according to
a specific aspect (e.g., the method used). In addition, valvular and vascular abnormalities
were not investigated in conjunction with myocardial abnormalities, as this review aimed
to do.

7. Clinical Implications

Although TOF is a rare disorder, there are special clinical consequences related to this
pathology following its repair. Knowing these potential complications helps in the early
diagnosis and leads to the creation of protocols used in the management of patients in the
determination of the ideal time of reoperation. There have been significant improvements
in surgical strategies, perioperative care and cardiovascular imaging over the past decades,
which enabled these patients to live longer and have a better quality of life.

8. Conclusions

The cardiac chambers of patients with rTOF show significant volumetric and functional
(strain, rotational, etc.) abnormalities, which are associated with significant valvular and
vascular abnormalities as well (Table 1). There are pieces of evidence from clinical studies
showing that early total reconstruction is associated with beneficial results during a long-
term follow-up. These findings partially suggest their importance in the improvement of
late complications in rTOF. Therefore, further evidences are required to compare different
surgical strategies on late morbidity data. Moreover, advanced imaging techniques could
help to detect specific subclinical abnormalities, whose clinical and prognostic importance
should be clarified in rTOF as well.

Table 1. Summarization of the most important findings.

References

LEFT HEART

Left ventricle There is a strong interaction between LV and RV function [23,24]

rTOF is associated with impaired LV deformation represented by LV strains [9] *, [27–51]

There are abnormalities of the LV rotational mechanics in rTOF [10] *, [27,49,52]

Left atrium LA volumes are increased with reduced LA-EFs and preserved LA-SVs [11] *

LA strains are reduced in rTOF [11] *, [23,56]

Mitral valve MA is dilated and dysfunctional in rTOF with mild and low ratio of
mitral regurgitation [13] *

Aortic valve Aortic valve regurgitation and increased ascending aortic dimension are
associated in rTOF patients [61]

Aorta rTOF patients show abnormal aortic features including dilation and
increased stiffness [64–80]

RIGHT HEART

Right ventricle Both systolic and diastolic RV function are deteriorated in rTOF [30,34,35,37,49,87–101]
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Table 1. Cont.

References

Right atrium RA volumes and strains are abnormal in rTOF [12] *, [23,57,103–106]

All RA volumes respecting the cardiac cycle were increased, while total and
passive RA emptying fractions were reduced with preserved active RA emptying

fraction and all RA-SVs.
[12] *

Tricuspid valve Dilated TA with reduced functional properties are present in rTOF mostly only
with grade 1–2 TR [14] *

Pulmonary valve In the presence of PR, RV dilation, dysfunction and/or dyssynchrony may
gradually develop [44]

In rTOF patients with PS, earlier PVR would be beneficial [109]

Pulmonary artery Vascular dysfunction of the PA could be detected in rTOF [110,111]

Abbreviations. LA = left atrium, LV = left ventricle, PR = pulmonary regurgitation, PS = pulmonary stenosis,
PVR = pulmonary valve replacement, RA = right atrium, rTOF = repaired tetralogy of Fallot, RV = right ventricle,
SV = stroke volume, TR = tricuspid regurgitation. The star [*] represents studies from the MAGYAR-Path Study.
In some topics, results are contradictory.
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