
Discrete Applied Mathematics 358 (2024) 230–253
Contents lists available at ScienceDirect

Discrete AppliedMathematics

journal homepage: www.elsevier.com/locate/dam

Multithread interval schedulingwith flexiblemachine
availabilities: Complexity and efficient algorithms
Mariia Anapolska a,∗,1, Tabea Brandt a,1, Christina Büsing a,1,2, Tobias Mömke b,3

a Teaching and Research Area Combinatorial Optimization, RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany
b Department of Computer Science, University of Augsburg, 86135 Augsburg, Germany

a r t i c l e i n f o

Article history:
Received 14 February 2023
Accepted 18 June 2024
Available online xxxx

Keywords:
Interval scheduling
Algorithms
Complexity

a b s t r a c t

In the known Interval Scheduling problem with Machine Availabilities (ISMA), each
machine has a contiguous availability interval, and each job has a specific time interval
which has to be scheduled. The objective is to schedule all jobs such that the machines’
availability intervals are respected or to decide that there exists no such schedule. We
extend ISMA by introducing machine capacities and flexible machine end times. Using
machine capacities we model parallel processing of multiple jobs per machine, which
leads to the Multithread Interval Scheduling with Machine Availabilities (MISMA). Lim-
ited machine availabilities are usually due to maintenance. Time slots for maintenance at
the end of a processing period are often predetermined by staff schedules before the slots
are assigned to specific machines. This motivates a variant of MISMA in which the end
times of the machines’ availability intervals can be permuted, the Flexible Multithread
ISMA (FlexMISMA).

In this paper, we determine a tight classification of conditions that are required
for obtaining a polynomial-time algorithm for both MISMA and FlexMISMA. More
specifically, we show that FlexMISMA is at least as hard as MISMA. For FlexMISMA,
we present polynomial-time algorithms for instances (i) with at most two available
machines at a time, and (ii) with constantly many parallel jobs at each point in time,
which both also solve MISMA; (iii) with arbitrarily many machines of capacity one each,
in which case MISMA is known to be NP-hard; and (iv) with jobs having length one or
two, for which the complexity of MISMA remains open Furthermore, we complement
result (i) by showing that both problems are NP-hard already for instances with three
machines as a special case of the Vertex-Disjoint Paths problem. In contrast to (iii), we
prove that increasing the capacity of machines from one to two renders FlexMISMA
NP-hard as well for arbitrarily many machines.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

∗ Corresponding author.
E-mail addresses: anapolska@combi.rwth-aachen.de (M. Anapolska), brandt@combi.rwth-aachen.de (T. Brandt), buesing@combi.rwth-aachen.de

(C. Büsing), moemke@informatik.uni-augsburg.de (T. Mömke).
1 This work was supported by the Freigeist-Fellowship of the Volkswagen Stiftung, Germany and by the German research council (DFG) Research

Training Group 2236 UnRAVeL.
2 This work was partially supported by the German Federal Ministry of Education and Research (Grant No. 05M16PAA) within the project

‘‘HealthFaCT - Health: Facility Location, Covering and Transport’’.
3 Partially supported by the DFG, Germany Grant 439522729 (Heisenberg-Grant).
https://doi.org/10.1016/j.dam.2024.06.031
0166-218X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2024.06.031
https://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2024.06.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:anapolska@combi.rwth-aachen.de
mailto:brandt@combi.rwth-aachen.de
mailto:buesing@combi.rwth-aachen.de
mailto:moemke@informatik.uni-augsburg.de
https://doi.org/10.1016/j.dam.2024.06.031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

s
h
k

i
I
m
o
m

e
m
m
d
w
e
t
F

r
a
m

1

a

a

1. Introduction

Interval scheduling problems frequently appear both in theory and in practice [20]. However, the classical interval
cheduling problem has only limited power to model real world applications, and already slight generalizations are NP-
ard [5,14]. One example of a real world application is the inclusion of maintenance intervals for machines, which is
nown to be NP-hard [5].
We propose two generalizations of the Interval Scheduling problem with Machine Availabilities (ISMA) [20], which,

n turn, is a generalization of the well-studied Interval Coloring problem4 [15,26]. The first generalization is Multithread
nterval Scheduling with Machine Availabilities (MISMA). MISMA is a natural scheduling problem where we are given m
achines and n jobs. Each machine i has an availability interval [si, fi) and an integer capacity Ci. Each job j has a demand
f one and a processing interval [aj, bj), which has to be scheduled. The task is to schedule all jobs, i.e., assign jobs to
achines, or to decide that no such schedule exists.
If the machines all have the same capacity, then their processing capabilities are the same, so the machines are

quivalent. In this case, the start and end times provide information about when and how the number of available
achines changes. In other words, we may assume that the machines’ end times are interchangeable. In the setting of
aintenance schedules, this would mean that the maintenance team fixes the time slots for servicing the machines, but
oes not decide which machine they service in which slot. Therefore, the second generalization is a version of MISMA in
hich it is allowed to permute the end times of machines. However, we may still assume without loss of generality that
very machine is preassigned a start time. The task is to assign an end time to every machine and to schedule all jobs, or
o decide that there is no such end time assignment and schedule. Due to the increased flexibility, we call the problem
lexible MISMA (FlexMISMA).
Besides the maintenance scheduling, FlexMISMA finds application in planning the usage of shared resources: when

enting third-party production capacities, the number of production units available for rent varies over time due to
lready existing bookings. Another application is integrated production and transport planning, where the transport of
anufactured parts is scheduled in advance, and a sufficient number of jobs must be finished before each transport.

.1. Related work

The Interval Scheduling problem and its various extensions have been studied in the last decades. Surveys [20,21] give
n overview of the early research on Interval Scheduling.
There have been several approaches to extend Interval Scheduling by restricted machine availabilities [20]. Brucker

nd Nordman [6] introduce a variant of Interval Scheduling, the k-track assignment problem, in which every machine is
available only for a given time interval. The authors consider both identical machines and a generalization where machines
can process only given subsets of jobs. Later, Kolen et al. [20] studied this problem using the name Interval Scheduling
with Machine Availabilities (ISMA). They show that the problem is NP-complete if the number of machines is part of the
input but polynomially solvable for a fixed number of machines.

Restricted availability periods of machines is a special case of incompatibilities between some of the jobs and machines.
Such incompatibilities can also be caused by specialized machines being able to process only a subset of jobs. This model
finds application in aircraft maintenance scheduling, staff planning and booking management. Kolen and Kroon [19]
analyze the computational complexity of the optimization version of the problem with the objective of minimizing the
number of machines (TFISP). They show the NP-hardness of the problem for three or more distinct machine types, and
provide an exact polynomial algorithm for instances with two types of machines. A generalization called Personnel Task
Scheduling Problem (PTSP) includes both temporal availabilities of machines, which stand for workers’ shifts, and job-
machine incompatibilities, representing workers’ skills. Various versions of PTSP were surveyed by Krishnamoorthy and
Ernst [22].

Multitasking machines in Interval Scheduling have also been considered by several authors. Mertzios et al. [24] consider
a variant, called Interval Scheduling with Bounded Parallelism, in which all machines can concurrently process up to a
given number of jobs. The authors consider two objectives: minimizing the total busy time of the machines needed to
process all jobs and maximizing the number of processed jobs given a budget of machine busy time. FlexMISMA can be
seen as a special case of the decision version of this problem, since the machines’ busy time in FlexMISMA can start and
end only at the time points specified in the problem input. Interval Scheduling with Bounded Parallelism is known to be
NP-hard already for machine capacity of two for both optimization versions [24,30], and several approximation algorithms
are known [12,24]. A slightly different version of the machine busy time minimization is considered by Fridman et al. [13],
where the costs for busy time incur only if the number of necessary machines exceeds a given value, and only for the
additional machines. This models acquiring third-party machines for the periods when the company-own machines do
not suffice.

Another approach to allow for multitasking machines was presented by Angelelli and Filippi [2], extending the Resource
Allocation Problem [10] by considering multiple machines. They introduce Interval Scheduling with a Resource Constraint
(FISRC), where every machine and every job is additionally characterized by a resource supply or demand; they observe

4 Recall that coloring of interval graphs is equivalent to interval scheduling.
231

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

j

j
j
c

s

1

the relation of FISRC to ISMA and show the NP-hardness of the decision version of the problem in some special cases. For
the optimization version of the problem studied in [1], the authors show the polynomial-time approximability, present
an exact column generation approach and compare multiple greedy and enumeration heuristics.

Generalizations of interval scheduling include the well-studied Unsplittable Flow Problem on a path (UFP). In UFP,
instead of machines we have a resource capacity that can be used by all scheduled jobs and jobs have individual demands.
While it is easy to decide whether all jobs can be scheduled, the optimization problem where we have to select a maximum
cardinality or maximum weight subset of jobs is NP-hard (generalizing Knapsack) and the currently best result is a 5/3-
approximation algorithm [17]. UFP has a geometric version called the Storage Allocation Problem (SAP) [3,25], where all
scheduled jobs have to be drawn as non-overlapping axis-parallel rectangles. SAP with uniform job demands corresponds
to a version of MISMA in which for each pair of machines either the availability interval of one machine is contained in the
interval of the other or the two intervals are disjoint. A further generalization of SAP, the Flexible SAP, introduced in [29]
and studied in [18,27], considers the job resource demands as upper bounds, so that assigning fewer units of resource to
a job is allowed at a cost of decreased profit.

Pre-defined end times of machines in FlexMISMA can be interpreted as fixed transportation times at which the
manufactured goods are shipped to the customer. This makes FlexMISMA a special case of the problem of integrated
ob scheduling and transportation planning, surveyed by Chen [8].

Another important direction of recent research is dedicated to online versions of Interval Scheduling, where the
obs become known at their start time, as well as to stochastic variants of the problem, in which the finish times of
obs are subject to uncertainty. These variants find application in particular in the area of booking services and cloud
omputing [4,16,28]. We leave this field of study out of the scope of this contribution.
To the best of our knowledge, our particular extension of the Interval Scheduling problem, though related to already

tudied problems, has not been considered in the prior work.

.2. Our contribution

In this paper, we introduce FlexMISMA and determine a classification of conditions that are required for obtaining
a polynomial time algorithm for FlexMISMA. We first show that FlexMISMA is at least as hard as MISMA, i.e., for each
MISMA instance, we can construct an equivalent FlexMISMA instance that is feasible if and only if the original MISMA
instance is feasible. Subsequently, it is generally sufficient to show all hardness results for MISMA (Section 3) and all
algorithmic results for FlexMISMA (Section 4), which implies that all provided results hold for both FlexMISMA and
MISMA. There are, however, the following caveats. For one thing, the reduction does not preserve some properties of the
job set, such as job length relations. Furthermore, the transformation of a MISMA instance to the equivalent FlexMISMA
instance increases the machine capacities by one. This increase cannot be avoided for the following reason: it is known
that already the special version of MISMA with unit capacities is NP-hard [20]; for FlexMISMA, however, we show in
Theorem 3 that for unit capacities the problem essentially boils down to solving an interval coloring instance and is
thus solvable in polynomial time. We complement this result by showing in Theorem 1 that FlexMISMA is NP-hard for a
machine capacity of two.

We continue by analyzing the problem’s hardness depending on the number of machines, and show in Section 3.2 that
MISMA is NP-complete already for three machines, and, consequently, also for any greater fixed number of machines. The
hardness proof consists of two steps. First, in Lemma 2, we show that MISMA, and therefore FlexMISMA, is at least as hard
as a specific partition permutation problem (PPP), introduced in the same section. PPP is related to the similar problem on
permutation composition that was introduced by Garey et al. [14] in order to show the NP-hardness of Circular-Arc-Graph
Coloring. We then show in Lemma 3 that PPP is NP-hard. While the main ideas of the proof were already used by Garey
et al. [14], we have to take care of some small but important differences.

In Section 4, we present various special cases that are solvable in polynomial time and provide corresponding
algorithms. In Section 4.2, we show that both MISMA and FlexMISMA can be solved in polynomial time if the number of
machines is at most two. The general idea is to first compute a schedule for only one machine, which is done by using
a MaxFlow Algorithm to find vertex-disjoint paths in a special graph. In a second step, the found paths are transformed
to a feasible solution for both machines. Furthermore, in Section 4.3 we provide a polynomial algorithm for FlexMISMA
with a constant number of threads, extending an analogous known result for MISMA. Finally, in Section 4.4 we consider
the special case of FlexMISMA with uniform jobs, i.e., with jobs of identical length, for which the aforementioned relation
between MISMA and FlexMISMA does not hold. We propose a linear-time algorithm for jobs of length two, and discuss
why our approach does not work for job length of three or greater.

2. Problem formulation

Throughout this work, we denote by [n] the set {1, 2, . . . , n} ⊆ N for any n ∈ N.
Interval Scheduling with Machine Availabilities (ISMA) incorporates a machine availability constraint into the Interval

Scheduling problem, thus ISMA assumes that every machine has a fixed availability period. Kolen et al. define ISMA as
follows [20].
232

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

D
i
t

f

D
i
a

I
h

D
(
(
a
a
a
a

i
m
H
t

a
p

i
e

i
c
t
c
b

(a) start and end times (b) processing periods of jobs (c) feasible solution with τ (2) = 3
and τ (3) = 2

Fig. 1. An exemplary FlexMISMA instance with m = 3 machines of C = 2.

efinition 1 (ISMA). Given m machines that are available in periods [si, fi) for i ∈ [m] and n jobs that require processing
n the periods [aj, bj) for j ∈ [n], ISMA asks for a schedule that respects the availability of each machine and schedules no
wo jobs with overlapping processing intervals onto the same machine.

ISMA assumes that every machine processes at most one job at a time. We extend the problem formulation to allow
or multithread machines that can process several jobs simultaneously.

efinition 2 (Multithread ISMA (MISMA)). Given m machines that are available in periods [si, fi) and have capacity Ci for
∈ [m], and n jobs that require processing in the periods [aj, bj) for j ∈ [n], MISMA asks for a schedule that respects the
vailability period of each machine and schedules at all times no more than Ci jobs simultaneously per machine i ∈ [m].

If all machines have equal capacity, they can be considered to be equivalent, and their end times as interchangeable.
nterchangeability of the machines’ end times leads to the following variant of Interval Scheduling where each machine
as an assigned start time, and the end times are fixed but not preassigned to the machines.

efinition 3 (The Flexible Multithread ISMA Problem (FlexMISMA)). An instance of the Flexible Multithread ISMA
FlexMISMA) problem is given by m machines, their capacity C ∈ N, start times (si)i∈[m] for every machine, m end times
fi)i∈[m] that still have to be assigned to a machine, n jobs, and the jobs’ processing intervals [aj, bj) for j ∈ [n]. FlexMISMA
sks for two assignments: a bijective assignment τ : [m] → [m] of machines to end times with si ≤ fτ (i) for all i ∈ [m], and
n assignment α : [n] → [m] of jobs to machines such that every machine i ∈ [m] processes at most C jobs simultaneously
nd only between its start and end time, i.e.,

⏐⏐{j ∈ α−1(i) | t ∈ [aj, bj)}
⏐⏐ ≤ C for all t ∈ [si, fτ (i)), and si ≤ aj < bj ≤ fτ (i) for

ll j ∈ α−1(i).

We assume all input values to be integers. Without loss of generality, we assume that the earliest start time is 1, that
s, 1 = mini∈[m] si, and we denote the latest end time by T := maxi∈[m] fi. Observe that we can consider every multithread
achine of capacity C as a group of C single-thread machines that are required to have the same start and end times.
ence, FlexMISMA is an extension of ISMA in which the machines are partitioned into groups by availability periods, and
he end times must be equal within each group but can be permuted between the groups.

Fig. 1 shows an exemplary instance of FlexMISMA. This instance is given by three machines with capacity C = 2,
nd by the job set with start and end times as displayed in the figure. One feasible solution for the example instance is
resented in Fig. 1(c).
Note that we can check in polynomial time whether, at some point in time, more jobs need to be processed than there

s machine capacity available, as the number of available machines at a time point can be computed from the start and
nd times: the number of machines available at time point t is

mt := |{i ∈ [m] | si ≤ t}| − |{i ∈ [m] | fi ≤ t}| .

If at some point in time more than mt ·C jobs need to be processed, then the instance is trivially infeasible. We thus assume
n the following that at no point in time more jobs need to be processed than there are machine threads available; we
all the latter number available capacity. Having sufficient available capacity is, in general, not sufficient for feasibility, as
he following small example demonstrates. Consider the instance of FlexMISMA shown in Fig. 2, with two machines of
apacity two. The set of four jobs displayed in the figure satisfies the available capacity limit at any time point, but cannot

e assigned to machines so that the start and end times are respected.

233

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

o
t
a
a

i
o
t
s
d

3

i
I

P
w

s
L

Fig. 2. An infeasible instance of FlexMISMA that respects the available machine capacity.

Observe further that if there exist i, k ∈ [m] so that si = fk, we can remove these two values and reduce the number
f machines by one, obtaining an equivalent instance. Indeed, without reducing the number of machines, depending on
he assignment of end times τ , we obtain either one machine with an empty availability period or two machines with
djoining availability periods. In the latter case, we can then combine those two machines to one machine with a longer
vailability period. Thus, we assume in the following si ̸= fk for all i, k ∈ [m].
Finally, we assume without loss of generality that all start and end times are integers no greater than 2n + 2m,

.e., T ≤ 2n + 2m. Note that 2n + 2m is the maximum number of distinct time points which are start or finish times
f jobs or machines. If some time point t ∈ [1, T] is neither start nor end point of a job or a machine (as, for instance, the
ime point 5 in the instance in Fig. 1), then it can be merged with the next time point t + 1, and the time scale can be
hortened by one. This transformation preserves the overlap relation between jobs and machine availability periods and
oes not change the solution space.

. Complexity results for FlexMISMA and MISMA

The size of an instance of FlexMISMA is defined by three variables: the number of jobs n, the number of machines m
and the machine capacity C. If the number of jobs is smaller than the total number of machine threads, then the instance
is easily solvable via first-fit approach. Hence, in the non-trivial instances the number of jobs is bounded from below by
the total machine capacity: n ≥ m · C. We observe that the number of jobs is the main determinant of the size of an
instance of FlexMISMA. In the following complexity study, we will focus on cases differentiated by values of parameters
m and C, while the number of jobs remains unbounded. If the number of jobs is bounded by a constant, then the instance
is trivially solvable in polynomial time via enumeration.

3.1. Constant machine capacity

In this section, we study MISMA and FlexMISMA in the case of a fixed machine capacity C . We show that the problem
s already NP-complete for fixed capacities C ≥ 2. To this end, we first investigate the relation between the problems
SMA, MISMA and FlexMISMA.

We start with the correspondence of ISMA and MISMA: on the one hand, we can interpret every ISMA instance as a
MISMA instance with machines of capacity one; on the other hand, we can interpret every MISMA instance as an ISMA
instance by treating every thread as a separate machine. Thus, ISMA and MISMA are equivalent. Next, we establish the
less obvious relation to FlexMISMA.

Lemma 1. For every MISMA instance with n jobs and m machines of capacities Ci, i ∈ [m], there exists an equivalent
FlexMISMA instance with m machines of capacity C ′

:= 1 + maxi∈[m] Ci and with n′
:= n + mC ′

+
∑

i∈[m]
Ci jobs.

roof. Suppose that an instance of MISMA with m machines with capacities Ci available in periods [si, fi) for i ∈ [m] and
ith n jobs with processing intervals [aj, bj) for j ∈ [n] is given. We denote the total capacity of this MISMA instance by

k :=
∑

i∈[m]
Ci and the time horizon by T := maxi∈[m] fi.

We construct an instance of FlexMISMA with m machines with start times s′i := i for i ∈ [m]. We set the capacity of
all machines to C ′

:= 1 + maxi∈[m] Ci, and define end times f ′

i := T + 2m + 1 − i for i ∈ [m]. Note that by construction all
tart (end) times are pairwise different, and every machine has at least one thread more than its counterpart in MISMA.
et k′

:=
∑

i∈[m]
(C ′

− Ci) denote the number of additional threads in the instance of FlexMISMA. We further construct
n′

:= n+ k′
+ 2k jobs with the following processing intervals. We first shift the periods of all jobs of the MISMA instance

by m, obtaining jobs [a′

j, b
′

j) := [aj + m, bj + m) for j ∈ [n]. Then, we add k′ long jobs with processing periods [s′i, f
′

i),

i ∈ [m], to fully occupy the additional threads. Finally, we add 2k jobs, two for each thread in the original instance, to pad

234

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

A

i
F
a
a

w

s
j
R
[

t
h
c
α

M

e
L

T

w

3

T
u

(a) MISMA instance with C1 = 1, C2 = 2 (b) the resulting FlexMISMA instance with C ′
= 3

Fig. 3. Transformation of MISMA to FlexMISMA for an instance with two machines.

the increased availability periods of machines. Overall, we obtain the set of n′ jobs defined as follows:

[a′

j, b
′

j) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[aj + m, bj + m), j ∈ [n],

[s′i, f
′

i), i ∈ [m], n +
∑i−1

l=1(C
′
− Cl) < j ≤ n +

∑i
l=1(C

′
− Cl),

[s′i, si + m), i ∈ [m], n + k′
+

∑i−1
l=1(Cl) < j ≤ n + k′

+
∑i

l=1(Cl),

[fi + m, f ′

i), i ∈ [m], n + mC ′
+

∑i−1
l=1(Cl) < j ≤ n + mC ′

+
∑i

l=1(Cl).

n example of this transformation is given in Fig. 3.
It remains to prove that the constructed FlexMISMA instance is feasible if and only if the original MISMA instance

s feasible. Let α : [n] → [m] be a feasible solution to the MISMA instance. We extend this solution to a solution for
lexMISMA as follows: choose the end time assignment τ = id, where id : [m] → [m] denotes the identity mapping,
nd extend assignment α to α′

: [n′
] → [m] by filling the additional threads and extended availability periods with the

dditionally created jobs. By construction, the assignment

α′(j) :=

{
α(j), j ∈ [n],

i ∈ [m], a′

j = s′i or b
′

j = f ′

i ,

ith time assignment τ = id yields a feasible solution for the FlexMISMA instance.
Conversely, let α′

: [n′
] → [m] and τ : [m] → [m] represent a solution for the FlexMISMA instance. By construction, all

tart and end times of machines are distinct. Moreover, for each i ∈ [m] there are C ′ jobs in [n′
] starting at time si, and C ′

obs finishing at time fi. Therefore, all jobs j with a′

j = s′i or b
′

j = f ′

τ (i) for an i ∈ [m] are necessarily assigned to machine i.
emark that, by construction, these are exactly the jobs j ∈ [n′

] \ [n]. In particular, the long jobs with availability periods
s′i, f

′

i) guarantee that τ = id. Note that there exists at least one such job for every i ∈ [m]. Furthermore, long jobs occupy
heir assigned machine during its complete availability period. After all the jobs in [n′

]\[n] are assigned, a machine i ∈ [m]

as remaining capacity of C ′
− (C ′

− Ci) = Ci threads, which are still unoccupied only in the period [si + m, fi + m). This
orresponds one to one to the availability periods and machine capacities and jobs of the original MISMA instance. Thus,
′
|[n] is a feasible solution for the MISMA instance. □

As the transformation in the proof of Lemma 1 can be computed in polynomial time, FlexMISMA is at least as hard as
ISMA.
Observe that MISMA with all machine capacities equal to one is equivalent to the original ISMA problem. Kolen

t al. proved that ISMA is NP-complete [20]. Thus, setting all machine capacities to one in the instance of MISMA in
emma 1 immediately proves the following result.

heorem 1. FlexMISMA is NP-complete if machine capacity is equal to 2.

This result concludes the discussion of the hardness of FlexMISMA with fixed machine capacity. In the next subsection,
e consider the case where the number of machines is constant.

.2. Constant number of machines

In the previous section we have seen that FlexMISMA is NP-complete even for a constant machine capacity of two.
his section is devoted to FlexMISMA’s complexity in the case that the number of machines is constant, and their capacity
nbounded.
235

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

c

p

L

P
h
n
t
s
l
e
t
p

w
a

More specifically, we show that MISMA, and thus also FlexMISMA, are NP-complete for three or more machines, even
if the capacities of all machines are equal. We prove the NP-completeness by a two-staged reduction. First, we show that
MISMA is at least as hard as the Partition Permutation problem (PPP). Next, we prove the NP-completeness of PPP with
three partition classes by a reduction from the Directed Vertex-Disjoint Paths problem. As we already proved in Lemma 1
that FlexMISMA is at least as hard as MISMA with the same number of machines, the NP-completeness of FlexMISMA
for m ≥ 3 follows.

Beforehand, we present the Partition Permutation problem, which is a decision problem on symmetric groups and is
inspired by the Word Problem for Products of Symmetric Groups introduced by Garey et al. [14]. In the following, we denote
the symmetric group on k elements by Sk. We denote the point-wise stabilizer of a subset U ⊆ [k], i.e., the subgroup of
all permutations from Sk that keep every element from U fixed, by Stab(U) := {π ∈ Sk | π (i) = i for all i ∈ U}. We also
onsider all groups to be left multiplicative and we use the common notation G2 ◦ G1 := {τ ◦ π | π ∈ G1, τ ∈ G2} ⊆ Sk
for the multiplication of subgroups G1,G2 ≤ Sk.

Definition 4 (Partition Permutation Problem (PPP)). Let m integers Ci ∈ N, i ∈ [m], a target partition R := {R1, . . . , Rm} of
[k], where k =

∑
i∈[m]

Ci and |Ri| = Ci, as well as r arbitrary subsets Pu ⊆ [k] for u ∈ [r] be given. We define the start
artition L := {L1, . . . , Lm} of [k] via

Li := {x ∈ N |

i−1∑
l=1

Cl < x ≤

i∑
l=1

Cl} ⊆ [k]

for i ∈ [m]. Finally, we define the embedded permutation groups Gu := Stab([k] \ Pu) ⊆ Sk for u ∈ [r]. PPP then asks
whether there exists a permutation π ∈ Gr ◦ . . . ◦ G1 such that π (Li) = Ri for all i ∈ [m].

Remark that a permutation from Gu, u ∈ [r], operates only on the elements of Pu and keeps all other elements fixed.

emma 2. PPP polynomially reduces to MISMA.

roof. Given a PPP instance in the above notation, we construct a MISMA instance with m machines. Machine i ∈ [m]

as capacity Ci and an availability period [si := i, fi := 2m + r + 1 − i). We construct k job sequences with a total of
:= k+

∑
u∈[r] |Pu| jobs. Every sequence consists of jobs with pairwise disjoint but adjacent processing periods. The start

imes of the first jobs and the end times of last jobs in the sequences represent the two partitions L and R: The first job of
equence number l ∈ [k] has start time si for index i ∈ [m] such that l ∈ Li. Respectively, the last job of sequence number
∈ [k] has end time fi′ for i′ ∈ [m] such that l ∈ Ri′ . The intermediate jobs’ start and end times represent the sets Pu: for
very u ∈ [r] and every l ∈ Pu, we construct a job in sequence l that ends at time point m + u. For easier enumeration of
he jobs, let Al

:= (u)u∈[r], l∈Pu be the ascending sequence of indices of P-sets that contain l ∈ [k] , which become the end
oints of the jobs in the sequence l. Note that

∑
l∈[k]

⏐⏐Al
⏐⏐ =

∑
u∈[r] |Pu|. Then we define an index mapping

I :
{
(l, z) | l ∈ [k], z ∈

[⏐⏐Al
⏐⏐ + 1

]}
↠ [n], I(l, z) :=

l−1∑
λ=1

(1 + |Aλ|) + z,

hich allows us to formalize the constructed jobs as follows: for all l ∈ [k] and z ∈
[⏐⏐Al

⏐⏐ + 1
]
the MISMA instance contains

job with processing interval

[aI(l,z), bI(l,z)) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[si, fi′), i, i′ ∈ [m] : l ∈ Li, l ∈ Ri′ , if

⏐⏐Al
⏐⏐ = 0,

[si,m + (Al)z), i ∈ [m] : l ∈ Li, if
⏐⏐Al

⏐⏐ > 0 and z = 1,

[m + (Al)z−1,m + (Al)z), if 2 ≤ z ≤
⏐⏐Al

⏐⏐ ,
[m + (Al)z−1, fi′), i′ ∈ [m] : l ∈ Ri′ , if

⏐⏐Al
⏐⏐ > 0 and z =

⏐⏐Al
⏐⏐ + 1.

We show constructively that this MISMA instance is feasible if and only if the original PPP instance is feasible. In
this proof, we consider α as an assignment of jobs not to machines but rather to specific threads, which are numbered
consecutively, see Fig. 4. Such a more detailed assignment can be easily derived from an assignment to machines using a
first fit interval scheduling algorithm that assigns jobs assigned to a machine to single machine threads.

First, assume that a solution π = πr ◦ . . .◦π1 ∈ Gr ◦ . . .◦G1 for the PPP instance is given. Then assignment α : [n] → [k],
defined for all l ∈ [k] and z ∈

[⏐⏐Al
⏐⏐ + 1

]
as

α(I(l, z)) :=

{
l, if z = 1,

(πu ◦ . . . ◦ π1)−1(l), u = aI(l,z) − m, if 2 ≤ z ≤
⏐⏐Al

⏐⏐ + 1,

is a feasible assignment of jobs to machines. Before we give a formal technical proof, let us provide the intuition behind the
construction above. We constructed a job sequence for each thread such that the start times of the first jobs fit the start

times of the corresponding machines, which are given by the partition L. Each permutation πu, for u ∈ [r], operates only

236

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

f
(
A

r

f
b

b

a
h

i

H

j
w
a
t
t

a

d
H

(a) PPP instance with m = 2 (b) resulting MISMA instance with a color-coded job assignment

Fig. 4. Transformation of PPP to MISMA.

on those sequences where a job ends at the corresponding time unit m + u, and represents the fact that the remainders
of those sequences are moved to threads according to πu. Thus, the machines’ capacities are respected at all times, and
Ri = π (Li) ensures that all threads of machine i ∈ [m] finish at the same time.

Observe that, by construction, every originally constructed sequence contains a unique job processed at time m + u,
or u ∈ [r]. Clearly, all jobs processed at time m + u have to be assigned to pairwise different threads. Remark that
πu ◦ . . . ◦ π1)(l) gives us the number of the job sequence that contains the job processed on thread l at time m + u.
ccordingly, (πu ◦ . . . ◦ π1)−1(l) is the thread to which the job of sequence l at time m + u is assigned.
Now, we formally show that the thread assignment α is feasible. Clearly, every job is assigned to exactly one thread. It

emains to show that the jobs assigned to the same thread do not overlap, and that the availability periods are respected.
First, let j = I(l, z) and j′ = I(l′, z ′) be two jobs with α(j) = α(j′) = h for some thread h ∈ [k]. We denote (Al)0 := si −m

or any l ∈ [k] and i ∈ [m] such that l ∈ Li. With this notation, we have aj −m = (Al)z−1 =: u and aj′ −m = (Al′)z′−1 =: u′

y construction of jobs, and

l = (πu ◦ . . . ◦ π1)(h), l′ = (πu′ ◦ . . . ◦ π1)(h)

y the definition of the assignment α.
Assume that the jobs j and j′ start simultaneously, i.e., aj = aj′ . Then u = u′, and consequently l = l′ due to the equations

bove. Moreover, from the equality of the sequence elements (Al)z−1 = (Al)z′−1 follows the equality of the indices, and
ence z = z ′ and j = j′. Thus, no two distinct jobs assigned to the same thread start simultaneously.
Next, let aj < aj′ and assume that the jobs overlap, i.e., aj′ < bj. For the corresponding elements of the index sequences

t follows that

(Al)z−1 < (Al′)z′−1 < (Al)z .

ence, for any w ∈ [u + 1, u′
] we have l /∈ Pw , so πw(l) = l. Consequently,

l′ = (πu′ ◦ . . . ◦ πu+1)
(
(πu ◦ . . . ◦ π1)(h)

)
= (πu′ ◦ . . . ◦ πu+1)(l) = l.

So sequences Al and Al′ coincide, and between two consecutive elements of the sequence Al there is a further element
(Al)z′−1, which leads to a contradiction. Therefore, no two jobs assigned to the same thread overlap.

Next, we show that the assignment α respects the availability periods of the machines. It suffices to show that for any
machine i ∈ [m] and for each thread h ∈ Li of the machine, there is a job with start time si and a job with end time fi
assigned to the thread h. Then the rest of the jobs assigned to h start after time m and finish before time r + m, and so
no job violates the availability period of the thread.

Let job j ∈ [n] be such that aj = si for some machine i ∈ [m]. Then j = I(l, 1) for some l ∈ Li, and thus α(j) ∈ Li; that is,
ob j is assigned to one of the threads of machine i. Next, consider job j ∈ [n] with bj = fi for some i ∈ [m]. Then j = I(l, z)
ith l ∈ Ri and z =

⏐⏐Al
⏐⏐ + 1. If

⏐⏐Al
⏐⏐ = 0, then z = 1 and α(j) = l. Furthermore, since in this case the set Al is empty, for

ny u ∈ [r] we have l /∈ Pu, and thus π−1(l) = l. In particular, from l ∈ Ri follows α(j) = l ∈ Li. Otherwise, if
⏐⏐Al

⏐⏐ > 0,
hen, by the definition of the assignment, α(j) = (πu ◦ . . . ◦ π1)−1(l) holds for u = (Al)|Al|. Since u is the last element of
he sequence Al, for all w > u we have l /∈ Pw and π−1

w (l) = l. Hence,

α(j) = (πu ◦ . . . ◦ π1)−1(l) = (πu ◦ . . . ◦ π1)−1((π−1
u+1 ◦ . . . ◦ π−1

r)(l)
)

= (πr ◦ . . . ◦ π1)−1(l) = π−1(l),

nd since l ∈ Ri, we obtain that α(j) ∈ Li. So, also every job ending at time fi is assigned to a thread of machine i.
Since all first (last) jobs of the sequences overlap pairwise, and since we have shown that jobs on the same thread

o not overlap, we conclude that every machine i gets assigned exactly the Ci jobs that start at time si (end at time fi).
ence, assignment α respects the machine capacity and is thus a feasible solution for MISMA.
237

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

w
s
a

A

p
t

H

t
[

t
t

p

L

P
v
a
a
d
e

k
L
n

w
N
s
V
t
t

L
w

t
a

Second, assume that a solution α : [n] → [k] for the constructed MISMA instance is given. Without loss of generality,
e further assume that the first job of sequence l is assigned to thread l, i.e., α(I(l, 1)) = l for all l ∈ [k], as otherwise we
imply renumber the sequences. We then define τu(l) ∈ [k] for u ∈ [r] as the thread to which the job of sequence l ∈ [k]
t time point m + u is assigned, i.e., τu ∈ Sk with

τu(l) :=

{
τu−1(l), if l /∈ Pu,

α(I(l, v + 1)), if l ∈ Pu, with v ∈ [
⏐⏐Al

⏐⏐] s.t. u = (Al)v.

dditionally, we set τ0 := id ∈ Sk.
Now define πu := τ−1

u ◦ τu−1 for u ∈ [r]. Then πu(l) = τ−1
u (τu−1(l)) = l for any l /∈ Pu, and thus πu ∈ Gu. It remains to

rove that π (Li) = Ri. By construction, exactly the jobs I(l,
⏐⏐Al

⏐⏐ + 1) with l ∈ Ri have the same end time and are assigned
o threads in Li, i.e., τr (Ri) = Li. Thus,

π (Li) = (πr ◦ . . . ◦ π1)(Li) =
(
τ−1
r ◦ τr−1 ◦ τ−1

r−1 ◦ . . . ◦ τ−1
1 ◦ τ1

)
(Li) = τ−1

r (Li) = Ri.

ence, the instances are equivalent.
To obtain an instance of MISMA with machines of equal capacity, we proceed as in the proof of Theorem 1: we set

he desired machine capacity to C = maxi∈[m] Ci, and add C − Ci threads and C − Ci dummy jobs with processing periods
si, fi) for every machine i. Clearly, the obtained MISMA instance with constant machine capacity is feasible if and only if
he original MISMA instance is feasible, since in any feasible solution, the dummy jobs will be assigned to the machines
hey correspond to.

We conclude the proof by observing that the reduction can be constructed in polynomial time. □

Next, we prove that PPP is also NP-complete by a polynomial reduction from the Directed Vertex-Disjoint Paths
roblem, which is inspired by the NP-hardness proof by Garey et al. [14].

emma 3. PPP with three partition sets is NP-complete.

roof. An instance of the directed Vertex-Disjoint Paths problem is given by a pair of directed graphs (G,H) over the same
ertex set V , where H is a multigraph. The task is to find a set of internally vertex-disjoint paths {Pa ⊆ V | a = (t, s) ∈ A(H)
nd Pa is an s-t path in G}. The directed Vertex-Disjoint Paths problem is known to be NP-hard even if graph G is acyclic
nd the set A(H) contains only arcs between two different pairs of vertices [11]. Let such an instance (G,H) of the vertex-
isjoint paths problem on an acyclic graph G be given. Further, let H consist of k1 parallel edges (t1, s1) and k2 parallel
dges (t2, s2), with s1, s2, t1, t2 all distinct.
We begin by constructing an auxiliary graph G′ in two steps. First, we replace the vertices s1 and t1 with exactly

1 copies of themselves including all in- and outgoing arcs, and vertices s2, t2 respectively with k2 copies. We set
i := {s1i , . . . , s

ki
i } and Ri := {t1i , . . . , t

ki
i } for i ∈ {1, 2}. Second, we subdivide every arc a in the resulting graph with a

ew vertex va. We obtain G′
:= (V ′, A′) with

V ′
:=

(
V \ {s1, s2, t1, t2}

)
∪ L1 ∪ L2 ∪ R1 ∪ R2

∪
{
va | a ∈ A(G − {s1, s2, t1, t2})

}
∪

{
va | a ∈ (Li × N+(si)) ∪ (N−(ti) × Ri), i ∈ {1, 2}

}
, and

A′
:=

{
(v, va), (va, w) | a = (v, w) ∈ A(G − {s1, s2, t1, t2})

}
∪

{
(s, va), (va, w) | a = (s, w) ∈ Li × N+(si), i ∈ {1, 2}

}
∪

{
(w, va), (va, t) | a = (w, t) ∈ N−(ti) × Ri, i ∈ {1, 2}

}
,

here N+(si) := {v ∈ V (G) | (si, v) ∈ A(G)} denotes the outgoing neighborhood of si in the original graph G and
−(ti) := {v ∈ V (G) | (v, ti) ∈ A(G)} the ingoing neighborhood, respectively. Remark that any set of k1 + k2 pairwise
trictly vertex disjoint paths that start in Li and end in Ri, for i ∈ {1, 2}, translates directly to a solution for the original
ertex-Disjoint Paths instance. Moreover, as G′ is also acyclic, we can enumerate the k :=

⏐⏐V ′
⏐⏐ vertices of G′ according to

he topological order, i.e., so that v < u for all (v, u) ∈ A′, see Fig. 5. In the following, we identify vertices of graph G′ with
heir numbers in [k].

Next, we construct a PPP instance with m = 3 as follows. Let C1 := k1, C2 := k2, and C3 := k− k1 − k2. We keep L1 and
2, as well as R1 and R2 as defined in the graph construction. We set L3 := [k] \ (L1 ∪ L2) and R3 := [k] \ (R1 ∪ R2). Further,
e set r = k and define

Pu := {u} ∪ {v ∈ [k] | (v, u) ∈ A′
} for u ∈ [k].

We claim that the constructed PPP instance is feasible if and only if the Vertex-Disjoint Paths instance is feasible. On
he one hand, let a set {P j

i | i ∈ {1, 2}, j ∈ [ki], P j
i is an sji-t

j
i path} of pairwise vertex-disjoint paths be given. We construct

family of permutations {π } as follows. For each path P = (v , . . . , v) in the solution of the Vertex-Disjoint Path
u u∈[k] 1 r

238

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

p

F
t
M
p

w
f

a
a

r

f
a

P
t
h
t
h
a
B

(
a
S

f

a
c
(
h

(a) original graphs G and H (b) resulting graph with subdivided arcs

Fig. 5. Transformation of a Disjoint Paths instance.

roblem and for each vertex vl on the path, we define permutations

πvl :=

{
id, if l = 1,
(vl−1, vl), if 2 ≤ l ≤ r,

∈ Gvl := Stab([k] \ Pvl).

or all u ∈ [k] that are not part of any vertex-disjoint path, we also set πu = id. Then, (πvl ◦ . . . ◦ πv1)(v1) = vl gives us
he l-th vertex on the path from v1 to vr ; in particular, also for the terminal vertex we have vr = (πvr ◦ . . . ◦ πv1)(v1).
oreover, an additional composition with any other permutation πu has no effect on this property, as every vertex on
ath P is kept fixed by any πu with u /∈ P . Thus, for

π := πk ◦ πk−1 ◦ . . . ◦ π2 ◦ π1

e have π (sji) = t ji for all i ∈ {1, 2} and j ∈ [ki]. Hence π (Li) = Ri for i ∈ {1, 2}, and, since π is bijective, also π (L3) = R3
ollows. Therefore, the constructed permutations πu, u ∈ [k], are a feasible solution for the PPP instance.

On the other hand, let a feasible solution π = (πk ◦ . . .◦π1) of the PPP instance be given. Without loss of generality, we
ssume that π (sji) = t ji . Otherwise, we simply rename the target vertices accordingly, as all t j1 are equivalent for j ∈ [k1],
s well as all t j

′

2 , respectively.
First, we prove that the sequence

(
sji, π1(s

j
i), (π2 ◦ π1)(s

j
i), . . . , π (sji) = t ji

)
represents an sji-t

j
i path (after a deletion of

epeating vertices). To this end, we show by induction over u ∈ [k] that

(πu ◦ . . . ◦ π1)(s
j
i) =

{
πu(v) ∈ [k] with (v, πu(v)) ∈ A′, or

(πu−1 ◦ . . . ◦ π1)(s
j
i)

(1)

or all i ∈ {1, 2} and j ∈ [ki]; that is, the nodes number u − 1 and u in the sequence are either identical or connected by
n arc in A′.
We start with the case u = k. We already know that π (sji) = (πk ◦ . . . ◦ π1)(s

j
i) = t ji . Furthermore, πk ∈ Gk with

k = {k} ∪ {j | (j, k) ∈ A′
}. Moreover, by construction of the vertex enumeration, vertex k has no outgoing edges and is

hus not a subdivision vertex. Now, consider two cases: If t ji ̸= k, then (t ji , k) /∈ A′ since both are not subdivision vertices;
ence t ji /∈ Pk, and thus πk(t

j
i) = t ji . Therefore, already the last but one vertex of the sequence, (πk−1 ◦ . . . ◦ π1)(s

j
i), equals

j
i and (1) is satisfied. If t ji = k, then π (sji) = k, and so π (k) ̸= k. By construction, for any u ∈ [k] and for any w ∈ Pu we
ave w ≤ u. Consequently, k /∈ Pu for any u ̸= k, since u < k; hence k is a fixed point of any permutation πu for u ̸= k,
nd (πk−1 ◦ . . . ◦ π1)(k) = k. Therefore, π (k) ̸= k implies πk(k) ̸= k; so there exists a vertex v ∈ Pk \ {k} with πk(v) = k.
y definition of Pk, we have (v, k) ∈ A′ and, since π (sji) = k, also v = (πk−1 ◦ . . . ◦ π1)(s

j
i).

Next, let (1) be true for all u < l ≤ k, and let v = (πu−1 ◦ . . . ◦ π1)(s
j
i). By the induction hypothesis, the sequence

πu(v), πu+1(πu(v)), . . . , (πk ◦ . . . ◦ πu+1)(πu(v)) = t ji) represents a path from πu(v) to t ji in G′. We prove that (1) holds
lso for u, which would imply that the sequence (v, πu(v), (πu+1 ◦ πu)(v), . . . , t

j
i) represents a path from v to t ji in G′.

pecifically, we have to show that either πu(v) = v or πu(v) = w ∈ [k] with (v, w) ∈ A′.
To begin with, recall that, by construction, for any x, y ∈ [k] from y ∈ Px follows y ≤ x. If v /∈ Pu, then it immediately

ollows that πu(v) = v, and thus (1) holds for u. So suppose v ∈ Pu, and thus either v = u or (v, u) ∈ A′.
If v = u, then for any w < u we have v /∈ Pw . In particular,

sji = (πu−1 ◦ . . . ◦ π1)
−1 (v) = v,

nd, since then u = v = sji has no ingoing arcs, we have Pu = {u} and πu(v) = v, so (1) again holds for u. It remains to
onsider the case v ∈ Pu and (v, u) ∈ A′. Consider the node πu(v) ∈ Pu. If πu(v) = v or πu(v) = u, we are done. Otherwise,
v, u) and (πu(v), u) are two distinct arcs in A′. Then, vertex u with two ingoing edges is not a subdivision vertex, and
ence v and π (v) are both subdivision vertices by construction of G′. Since subdivision vertices have only one outgoing
u

239

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

i

r

v
(
g
p

i

T

4

H

4

c
t

T

P
C
C
(

o
g
i

p
i

4

c
a

g
m
a
a
o
l
i

a
f
t

edge and are in the ingoing neighborhood of vertex u, for any w > u we have v /∈ Pw and πu(v) /∈ Pw . Hence,

t ji = (πk ◦ . . . ◦ πu+1) (πu(v)) = πu(v),

s a contradiction to πu(v) being a subdivision vertex, and the case v ∈ Pu and (v, u) ∈ A′ cannot occur.
In conclusion, (1) is true for all u ∈ [k] by the principle of induction, and the sequence (sji, π1(s

j
i), . . . , (πk ◦ . . .◦π1)(s

j
i))

epresents a path from sji to t ji .
Second, we prove that all paths represented by π are vertex disjoint. We observe that if two paths have a common

ertex, they also have a common vertex v of in-degree at least two such that the two paths enter v over different arcs
u, v) and (w, v) with u, w < v. However, we have either πv(u) = v or πv(w) = v for permutation πv . Without loss of
enerality, let πv(u) = v and thus πv(w) =: w′ < v. Since u, w and w′ are all subdivision vertices, none of them can be
art of any Px with x > v. Thus, w cannot be contained in an sji-t

j
i path. So all the constructed paths are vertex disjoint. □

The NP-hardness of MISMA already for three machines follows directly from Lemma 2 and Lemma 3. Thus, FlexMISMA
s also NP-complete by Lemma 1. In summary, we obtain the following theorem.

heorem 2. Both MISMA and FlexMISMA are NP-complete if the number of machines is fixed and greater than two.

. Polynomially solvable cases

As demonstrated in the previous section, MISMA and FlexMISMA are NP-complete in a wide range of special cases.
owever, there are still cases in which FlexMISMA can be solved efficiently. These cases are presented in this section.

.1. Machines with unit capacity

In Section 3.1, we saw that FlexMISMA with machines having two or more threads is NP-complete. It remains to
onsider FlexMISMA with machine capacity equal to one. We show that in this case, the problem can be solved in linear
ime.

heorem 3. FlexMISMA with unit machine capacity is solvable in time linear in the number of jobs.

roof. In the case that every machine can process only one job at a time, FlexMISMA can be formulated as the Interval
oloring problem. Given a FlexMISMA instance with n jobs and m machines, we transform it into an instance of Interval
oloring with N := n + 2m intervals by representing start times si with intervals (0, si) and end times fi with intervals
fi, T + 1) for all i ∈ [m].

Interval Coloring is solved by a greedy algorithm in time linear in the number of intervals, provided that the endpoints
f the intervals are sorted [7]. All interval endpoints in the instance of Interval Coloring are non-negative integers not
reater than T + 1. Therefore, the counting sort with runtime in O(2N + T + 1) = O(n) can be applied to sort the
ntervals [9]. □

Remark that FlexMISMA with single-thread machines differs from ISMA only by the fact that we are allowed to
ermute the end times of machines. We observe that weakening this one constraint transforms the NP-complete ISMA
nto a polynomially solvable problem.

.2. Two machines of arbitrary capacity

In this section, we present a further complementary result to a hardness proof from the previous section, this time
onsidering the number of machines. Having seen that FlexMISMA is NP-complete for three machines, we now present
polynomial algorithm for solving the problem with two machines.
Beforehand, we introduce an additional assumption on the problem input, which can be made without loss of

enerality. We assume that all machines are utilized to full capacity; that is, at any point in time there are exactly as
any jobs to be processed as threads available. This property can be verified in linear time. If for some time period there
re fewer jobs than available machine threads, then, following the technique in [20], we transform the instance by adding
uxiliary jobs with processing intervals of length one for the respective time periods. This transformation has no influence
n the feasibility of a solution and needs only polynomially many auxiliary jobs. Thus, in this section we assume without
oss of generality that every machine is utilized to full capacity in its availability period. In the following, this assumption
s called the full-load assumption.

The full-load assumption implies that in any feasible solution for FlexMISMA, every machine processes exactly C jobs
t any time point of its availability period. We call a non-empty subset J of jobs fitting for machine i ∈ [m] and end time
∈ [1, T], if for every time point si ≤ t < f the set J contains exactly C jobs that are in process at time t , i.e., if for all
∈ N holds⏐⏐{j ∈ J | t ∈ [aj, bj)}

⏐⏐ =

{
C, if si ≤ t < f,
0, otherwise.

240

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

f

o
s

P

a
f
t
t

t

F
a

s
f

N

t

m

Note that assigning an end time and a fitting set of jobs for this end time to a machine satisfies all constraints of
FlexMISMA for this machine. In particular, if the instance of FlexMISMA consists of one machine, then the satisfied
ull-load assumption implies feasibility of the instance.

In general, finding a fitting job set for one machine and some end time is not sufficient to solve FlexMISMA, as we
will see in the example in Fig. 7 later. However, it is sufficient if an instance of FlexMISMA has only two machines.

Lemma 4. For a feasible instance of FlexMISMA with m = 2 machines, n jobs and end times (f1, f2), let the subset J1 ⊆ [n]
f jobs be fitting for machine 1 with end time fi ∈ {f1, f2}. Denote by fi′ the unique remaining end time, where i′ ̸= i. Then the
et J2 := [n] \ J1 is fitting for machine 2 with end time fi′ .

roof. By construction, assignment τ : {1 ↦→ i, 2 ↦→ i′} is a bijection and

α : [n] → [m], j ↦→

{
1, if j ∈ J1,

2, if j /∈ J1,

ssigns all jobs to one of the machines. It remains to show that assignments τ and α satisfy the constraints of FlexMISMA
or machine 2, i.e., that J2 is feasible for machine 2 with end time fi′ . To prove the feasibility of the solution, we calculate
he number of jobs from the set J2 that are in process at an arbitrary time point t ∈ N. Throughout this proof, we consider
he following two cases: s2 < f1 and s2 > f1, as s2 = f1 is excluded by the assumptions in Section 2.

Let J(t), J1(t) and J2(t) denote the number of jobs from the sets [n], J1 and J2, respectively, that are in process at time
∈ N. By definition, the job set J1 fully utilizes the availability period of machine 1, that is,

J1(t) =

{
C, if s1 ≤ t < fi,

0, otherwise.
(2)

urthermore, assuming the full utilization of machines, the total number of jobs J(t) in the given instance can be expressed
s follows.

If s2 < f1, then J(t) =

⎧⎪⎨⎪⎩
2C, if t ∈ [s2, f1),

C, if t ∈ [s1, s2) or t ∈ [f1, f2),

0, otherwise.

(3a)

If s2 > f1, then J(t) =

{
C, if t ∈ [s1, f1) or t ∈ [s2, f2),

0, otherwise.
(3b)

Using these equations, we derive the number J2(t) of jobs from the relation J2 = [n] \ J1. First, consider the case
2 < f1. We subtract Eq. (2) from Eq. (3a) and differentiate two subcases with respect to the value of i = τ (1). Specifically,
or t ∈ [f1, f2) the value J1(t) equals 0 if i = 1, and it equals C if i = 2. This yields the following equalities:

J2(t) = J(t) − J1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 − 0, if t < s1 or t ≥ f2,

C − C, if s1 ≤ t < s2,

2C − C, if s2 ≤ t < f1,

C − 0, if f1 ≤ t < f2 and i = 1,

C − C, if f1 ≤ t < f2 and i = 2,

=

⎧⎪⎨⎪⎩
0, if t < s2 or t ≥ f2,

C, if s2 ≤ t < fi′ ,

0, if fi′ ≤ t < f2.

ote that the interval [fi′ , f2) of the last case is empty if i = 1.
In case f1 < s2, Eqs. (2) and (3b), together with the fact that J1(t) ≤ J(t), imply that i = 1 and i′ = 2. We thus obtain

hat

J2(t) = J(t) − J1(t) =

⎧⎪⎨⎪⎩
C − C, if s1 ≤ t < f1,

C − 0, if s2 ≤ t < f2,

0 − 0, otherwise

fi′=f2
=

{
C, if s2 ≤ t < fi′ ,

0, if t < s2 or t ≥ fi′ .

In both cases, assigning the job set J2 and the end time fi′ to machine 2 satisfies the constraints of FlexMISMA. □

Lemma 4 can be generalized to an arbitrary number of machines, as long as the number of available machines mt is
never greater than two. For brevity, we call the maximal number of simultaneously available machines maxt∈[1,T] mt the
maximum overlap.

Lemma 5. Let I be a feasible instance of FlexMISMA satisfying the full-load assumption and with maximum overlap of two.
Let J1 ⊆ [n] be a fitting set for machine 1 and some machine end time f ∈ (fi)i∈[m]. Then instance Ĩ resulting from I by deleting
achine 1, the end time f and the job subset J is also feasible.
1

241

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253
(a) job set, start and end times of machines (b) successor graph

Fig. 6. Successor graph for the FlexMISMA instance with m = 3 and C = 2.

Note that the reverse implication is trivially true.
We provide the complete proof of Lemma 5 in Appendix A. The idea of the proof is as follows: we consider a feasible

solution for instance I, distinguish three cases depending on the end time assigned to machine 1 by this solution, and
show for each case how to transform a solution for instance I to a feasible solution for the reduced instance Ĩ.

As a consequence of Lemma 5, FlexMISMA with maximum overlap of two can be solved by iteratively finding a fitting
job set for one machine and end time and removing the found job set from the instance. Therefore, we continue by
proposing a method for finding fitting job sets, which is based on network flows.

First, observe that the full-load assumption implies that every job is immediately followed by another job, unless the
former ends at some machine’s end time; that is, for a job j ∈ [n] either bj = fi holds for some i ∈ [m], or there exists a
job j′ with aj′ = bj. If the latter is true, we call job j′ a successor of j.

We use the succession relation between jobs to construct a directed graph G = (V , A) that represents the FlexMISMA
instance. The graph is called the successor graph and contains three types of nodes: a source vertex ui for every machine
i, a target vertex wi for every end time fi and a transit vertex vj for every job j; that is,

V := {ui, wi | i ∈ [m]} ∪ {vj | j ∈ [n]}.

The arcs of the network G reflect the succession relationship: For machine i ∈ [m], we construct arcs between the
source vertex ui and all vertices vj whose corresponding jobs start at the same time as the availability period of i, i.e., for
jobs with si = aj. For an end time number i ∈ [m], we construct arcs between the target vertex wi and every vertex vj
whose corresponding job ends at fi, i.e., for jobs j with bj = fi. For every two transit vertices vj and vj′ , we construct an
arc from vj to vj′ if and only if j′ is a successor of j, i.e., bj = aj′ . Therefore,

A :={(ui, vj) | i ∈ [m], j ∈ [n], si = aj}
∪{(vj, wi) | i ∈ [m], j ∈ [n], bj = fi}
∪{(vj, vj′) | j, j′ ∈ [n], bj = aj′}.

An exemplary FlexMISMA instance and its corresponding successor graph are shown in Fig. 6. Remark that the successor
graph is always acyclic and consists of |V | = 2 · m + n vertices and |A| = O

(
n2

+ m · n
)
arcs. Therefore, its construction

requires time polynomial in the size of the underlying FlexMISMA instance.
We use the successor graph to construct fitting job sets for the machines by computing a family of vertex-disjoint

ui-wi′ paths. We use the term disjoint for internally vertex-disjoint paths.

Lemma 6. Let C vertex-disjoint ui-wi′ paths in the successor graph of a FlexMISMA instance be given, where ui is a source
node and wi′ is a target node. Then the set of jobs corresponding to the nodes that are traversed by these paths is a fitting set
for machine i ∈ [m] and end time fi′ . Conversely, if there is a fitting job set for machine i and end time fi′ , then the successor
graph contains C disjoint ui-wi′ paths.

Proof. Let P1, . . . ,PC be C vertex-disjoint ui-wi′ paths in the successor graph, where i, i′ ∈ [m]. For each path Pl with
l = 1, . . . , C, let Jl ⊆ [n] denote the set of corresponding jobs, that is, Jl = {j ∈ [n] | vj ∈ Pl}. Let J denote the union of all
those job sets:

J :=

C⋃
Jl.
l=1

242

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253
We show that the job set J satisfies the conditions of a fitting set for machine i. Since the paths are vertex-disjoint, the
job sets Jl are pairwise disjoint as well. By construction of the successor graph, for each l = 1, . . . , C, the jobs in Jl have
disjoint processing intervals that cover in total exactly the interval [si, fi′), i.e., for all si ≤ t < fi′ there exists exactly one
job j ∈ Jl with t ∈ [aj, bj) and [aj, bj) ⊆ [si, fi′) for all j ∈ Jl. As a result, for the union set J we have⏐⏐{j ∈ J | t ∈ [aj, bj)}

⏐⏐ =

{
C, if si ≤ t < fi′ ,

0, otherwise,

hence J is a fitting set for machine i.
Conversely, let J ⊆ [n] be a fitting job set for machine i ∈ [m] and end time fi′ . We explicitly construct the

corresponding disjoint paths. First, we color the jobs in J with C colors so that jobs with intersecting processing intervals
have different colors. Such a coloring exists by definition of a fitting job set. Next, we color the corresponding transit
vertices in the successor graph accordingly. In addition, for easier notation, we assign all C colors simultaneously to
vertices ui and wi′ .

Now we show that every color class Jl, where l ∈ [C], yields a ui-wi′ path. Notice that by definition of a fitting set for
machine i, for every time point t between si and fi′ , the set J contains C jobs that are in process at time t , and no other
jobs. Therefore, at any time point of the machine’s availability period and for each color l ∈ [C], there is a job in process
that is colored with color l. Thus, in the successor graph, every transit vertex of color l is adjacent to exactly two other
vertices of color l, to one by an outgoing and to one by an ingoing arc. Additionally, the source vertex ui and the target
vertex wi′ are adjacent to exactly one transit vertex of color l. As a result, the vertices corresponding to job set Jl form a
ui-wi′ path in the successor graph. Since the color classes are pairwise disjoint, so are the paths constructed from distinct
color classes of the set J . □

Lemmas 4 and 6 imply that to solve FlexMISMA with two machines, it suffices to find a family of C disjoint paths
with common source and target vertex in the successor graph, or to show that no such family exists. Analogously, for
FlexMISMA with maximum overlap of two, according to Lemma 5, it suffices to successively find a disjoint collection of
such families for all but one source vertex.

We suggest using a MaxFlow algorithm to search for such families of disjoint paths. Classical MaxFlow computation in
a graph considers only edge capacities; hence, setting edge capacities to 1 and assuming to construct an integer MaxFlow
we obtain a family of merely edge-disjoint paths. To ensure that the paths are also vertex disjoint, we apply a commonly
known graph transformation: we split every transit vertex vj into two vertices v−

j and v+

j connected by an arc (v−

j , v+

j),
and all incoming arcs of the original vertex become incident to v−

j , whereas the outgoing arcs of the original vertex become
incident to v+

j .
After the successor graph is constructed and transformed, the procedure solving FlexMISMA with maximum overlap

of two on instances that are not trivially infeasible works as follows. We use a subroutine that, given two vertices u
and w and an integer C, finds a u-w flow of value exactly C. It can be easily derived from MaxFlow solvers and runs in
polynomial time. Consider the sources in the order of their indices. For the source ui with the currently smallest index,
iterate over the targets that were not yet removed from the graph in the order of their indices. For each target wi′ , ask
for a ui-wi′ flow of value C. If there is no such flow, proceed with the next target. If all targets have been considered and
no flow has been found, abort — the remaining instance is infeasible. Once a ui-wi′ flow φi of value C was found for some
i′ ∈ [m], assign the end time fi′ and all jobs j ∈ [n] for which the corresponding node vj was traversed by the flow φi
to machine i. Finally, remove all vertices of flow φi, including terminals, from the network, and proceed with the next
source.

In this manner, the procedure not only finds disjoint families of disjoint paths in the successor graph, but also directly
constructs a solution for FlexMISMA. The runtime of the procedure for m machines is determined by the runtime of
the MaxFlow subroutine, which is called at most O(m2) times. Hence, the procedure runs in polynomial time, and its
correctness follows from Lemmata 5 and 6.

In Section 3.2 we showed that FlexMISMA is NP-hard for three machines, and thus whenever the maximum overlap
is at least 3. Hence, the presented method cannot be applied to solve FlexMISMA in general. An intuitive reason for
this is the following: in the first iteration, the algorithm may choose a ‘‘wrong’’ fitting job set for the first machine,
making it impossible to assign all remaining jobs to the remaining machines; an example is presented in Fig. 7. Hence,
the procedure would abort, even if the input instance were feasible. In case of the maximum overlap of two, Lemma 5
explicitly guarantees that any fitting set for the first machine is ‘‘correct’’, i.e., does not disrupt possible fitting sets of the
remaining machines, as long as the entire instance is feasible.

4.3. Constant number of threads

To complete the complexity overview with respect to machine parameters, we show that FlexMISMA is linear-time
solvable if both the number of machines and their capacity are fixed. To prove this, we make use of the related result for
ISMA: instances with m machines and n jobs are solvable in O((m + n) · m! · m logm) time [20].
243

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

a
w

o
C
f
h
t

t
t
f

a
T

4

b
l
f

T
i

i

j

w
f

T
E
t
f
r
t

(a) a feasible solution for FlexMISMA (b) the highlighted fitting set disrupts fitting sets for the
remaining machines

Fig. 7. Iterative MaxFlow approach for three machines.

The algorithm for ISMA suggested by Kolen et al. [20] works as follows. First, it considers the machine start times
nd the job set, and enumerates all end time configurations that can be realized with the given job set. Next, it verifies
hether the obtained set of configurations contains the fixed end time configuration given by the instance.
The algorithm can also be used to solve a variant of ISMA that allows for a set of feasible end time assignments instead

f a single fixed configuration, and thus to solve FlexMISMA: given an instance of FlexMISMA with m machines of capacity
and job set [n], we apply the algorithm to an ISMA instance with the same job set [n] and with k := m ·C machines, one

or each thread in FlexMISMA, with the according start times, i.e., for each i ∈ [m] all machines l with 1+C(i−1) ≤ l ≤ Ci
ave the same start time sl = si. Furthermore, we copy each end time exactly C times so that we have k end times in
otal.

After the algorithm determines the set of realizable end time assignments S∗
⊆ Sk, we check if one of them preserves

he correspondence to the original machines, i.e., we check if there exists a permutation τ ∗
∈ S∗ such that for each i ∈ [m],

hreads 1 + C(i − 1) ≤ l ≤ Ci are assigned the same end time fτ∗(l). If this is the case, the found solution is also feasible
or the original FlexMISMA instance. If no such element in S∗ exists, the original FlexMISMA instance is infeasible.

The last check for feasibility can be performed for every element of S∗ in linear time. Thus, the runtime of the entire
lgorithm is still determined by the enumeration procedure, which runs in O((k+n)k!k log k) time, where k = mC is fixed.
herefore, FlexMISMA is solvable in linear time if the number of threads is constant.

.4. Uniform jobs

In this section, we change the perspective and consider the complexity of FlexMISMA not with respect to machines,
ut with respect to jobs. In particular, we consider a further special case of the problem, in which all jobs have equal
ength ℓ ∈ N, which we denote by ℓ-FlexMISMA. Note that if all jobs have length 1, then the problem is solved by a trivial
irst-fit algorithm. Hence, we consider the job length ℓ ≥ 2.

For 2-FlexMISMA, we show the following surprising result.

heorem 4. Any instance of 2-FlexMISMA that satisfies the capacity restriction is feasible, and a solution can be constructed
n linear time.

We prove the theorem by presenting a greedy algorithm that constructs a solution for any not trivially infeasible
nstance. Before we describe the algorithm, let us introduce the necessary notation and definitions.

Let nt be the number of jobs starting at time t . Note that all these jobs finish simultaneously at time t + 2. We call
obs that start and end simultaneously equivalent jobs.

In the following, we distinguish between the time point t , at which the jobs can start or finish, and the time period t ,
hich is the period between time points t and t + 1. We assume that jobs with start time a actually start at time a + ε

or a sufficiently small ε > 0; in other words, at time point t the jobs starting at t are not yet being processed.
The idea of the greedy algorithm described below is to assign identical jobs in groups of size C as often as possible.

he algorithm keeps track of, and updates at each iteration, the following three machine sets: the set of empty machines
, the set of full machines F , and the set of half-full machines H . A machine is called empty at time t if at the beginning of
ime period t no jobs on this machine are in execution. In other words, all jobs that have been assigned to this machine
inished at time t the latest, or will start at time t or later. We say that a machine is full at time t if there are C jobs
unning on this machine at time t . Note that for the uniform job length ℓ = 2, this means that exactly C jobs starting at

ime t − 1 were assigned to the considered machine. If a machine is neither full nor empty, we say it is half-full.

244

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

A
t
c
i
t
h

t
I
I
h
m

m
i
A

e
o

E
c
a

L

P
n
o
s

m
o
e
f

o

L

P
d
O
i

p
p

For the job length ℓ = 2, only the following transitions between the three machine states are possible when proceeding
to the next time period. A full machine cannot be assigned any further jobs in the current iteration. Since its jobs have
been already processed for one time period, at the end of the current period the jobs will end. Hence, every full machine
at time t becomes empty at time t + 1. A half-full machine becomes either empty as well, if no new jobs are assigned
to it, or stays half-full, if new jobs are assigned; in both cases, the currently executed jobs will end by the end of the
next period. An empty machine can stay empty, if no jobs are assigned to it, or become full or half-full depending on the
number of newly assigned jobs.

The algorithm proceeds chronologically and considers every time period between 1 and T . At the beginning of every
time period t , first the set of available machines is updated. The machines with start time t are added to the set E of empty
machines. Next, the number xt of machines that are to be closed, i.e., that become unavailable, by time t is calculated.
rbitrary xt machines are chosen from the set E of currently empty machines and are assigned each an individual end
ime from the set of end times {fi | i ∈ [m], fi = t}. Afterwards, the set J̄ (t) of nt :=

⏐⏐J̄ (t)
⏐⏐ jobs starting at time t is

onsidered. Let nt = kt · C + rt be the result of division with remainder, i.e., rt ∈ [0, C − 1] ∩N. The set J̄ (t) is partitioned
nto kt sets J 1

t , . . . , J kt
t of size C and, if rt > 0, an additional remainder set Rt . Every complete set J l

t , l ∈ [kt], is assigned
o an individual empty machine from set E. These kt machines are full at the beginning of the next time period, and are
ence moved to the set F .
Finally, the remaining rt jobs have to be assigned. If there is a half-full machine h in set H , and if it contains not more

han C−rt jobs, then the jobs of set Rt are assigned to machine h, and this machine remains half-full for the next iteration.
f machine h already processes too many jobs, then the jobs of set Rt are all assigned to a further empty machine e ∈ E.
t makes sense not to split the equivalent jobs of the set Rt , as this ensures that an additional machine – the currently
alf-full one – becomes empty for the next iteration. In the next iteration, machine h will become empty and is hence
oved to set E; machine e, in contrast, is half-full for the next iteration and is thus added to set H .
The iteration is completed by updating the sets of machines. All machines that started the current iteration as full are

oved to set E, since they will become empty by the beginning of the next period. At any step of the described iteration,
f there are not enough empty machines available, then the algorithm aborts. The described steps are summarized in
lgorithm 1. A complete listing is given in Appendix B.
The key property of the algorithm, which is essential to proving its correctness, is the following: at the beginning of

very time period, there is at most one machine that is half-full. To underline this fact, in Algorithm 1 we keep track of
nly one half-full machine h ∈ [m] ∪ {null} instead of a set H .

Clearly, all steps of Algorithm 1 can always be executed, except for choosing a required number of machines in set
. We assume that the algorithm aborts if there are not enough empty machines. Next, we show that Algorithm 1 is
orrect, i.e., it terminates if and only if the underlying instance is feasible, and in that case the constructed assignments
re feasible.

emma 7. If Algorithm 1 terminates, then the constructed assignments are feasible.

roof. The end-time assignment τ is bijective: every machine is assigned at most one end time, as the closed machines
ever enter the set E again, and every end time is considered and assigned at least once, when the algorithm iterates
ver the corresponding time point. Also, end times are assigned only to machines that started until that time point, hence
i ≤ fτ (i) is satisfied for all machines.

The machine assignment α respects machine capacity, since either a group of at most C jobs is assigned to an empty
achine, or the capacity is explicitly verified when assigning to a half-full machine. It also respects the availability periods
f machines, since machines become available by being added to set E only upon their start time, and are closed when
mpty. This argumentation assumes that all machines in the set E are actually empty at any time when some machines
rom E are requested. It is easy to see from the listing that it is indeed the case. □

It remains to show that the algorithm always terminates on feasible instances, that is, it never aborts due to the lack
f required empty machines.

emma 8. If an instance of 2-FlexMISMA is feasible, then in every iteration of Algorithm 1 there are enough empty machines.

roof. Let mt again denote the number of machines available for the time period t . Recall that it can be immediately
erived from the problem input. The number of jobs starting at time t (and hence finishing at time t+2) is denoted by nt .
bserve that the number of jobs in process during the time period t is nt + nt−1; hence, an instance is trivially infeasible,
f for some time period t holds

nt−1 + nt > mt · C.

We denote by |Et | and |Ft | the cardinality of the sets E and F , respectively, at the beginning of the job assignment
hase in t-th iteration, that is, after adjusting the set of available machines for time period t . Next, we record several
roperties of the machine sets considered by the algorithm.
245

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

P

P

P

t

t
m
a
F
t

Algorithm 1: Greedy algorithm for 2-FlexMISMA
Input: number of machines m, capacity C, start times (si)i∈[m], end times (fi)i∈[m],
jobs [n] with bj = aj + 2 for all j ∈ [n]
Output: machine assignment α : [n] → [m], end time assignment τ : [m] → [m]

Set E := ∅, F := ∅, h := null;
for t = 1, . . . , T do

// 1. adjust the machine set
add machines i with si = t to set E;
let X := {i ∈ [m] | fi = t}; // |X | is the number of machines to be closed
choose |X | machines from set E; if not possible, stop;
assign to each chosen machine an end time fi for a unique i ∈ X;
remove closed machines from E;
// 2. assign starting jobs
let J be the set of jobs starting at t , let nt := |J|;
partition set J into sets of cardinality C and an additional set Rt ;
assign each set of cardinality C to an empty machine; if not possible, stop;
mark chosen machines as "full";
if Rt ̸= ∅ then

if there is a half-full machine h then
if h has rt free threads then

assign jobs in set Rt to h;

else
choose an empty machine e from E; if not possible, stop;
assign jobs in set Rt to e;
mark the former half-full machine h, if existing, as "empty";
h := e; // e is the new half-full machine

else
mark the half-full machine h, if existing, as "empty";
h := null;

// 3. update machine sets
mark all machines that were full before at the start of the iteration as "empty";

P1 At the beginning of any time period, there is at most one half-full machine — this follows immediately from the
algorithm.

P2 For the total number of available machines holds mt ∈ {|Et | + |Ft | , |Et | + |Ft | + 1}, where 1 stands for the optional
half-full machine.

3 If there is a half-full machine at the beginning of iteration t (at time point t), then it contains exactly rt−1 jobs that
are in process; these are exactly the jobs of the remainder set Rt−1 of the previous iteration.

4 Jobs starting at time t occupy at most ⌈nt/C⌉ machines. Jobs in process at time t occupy at most ⌈(nt + nt−1)/C⌉

machines: indeed, either ⌈nt/C⌉+ ⌈nt−1/C⌉ = ⌈(nt + nt−1)/C⌉, or rt + rt−1 ≤ C; in the latter case the remainder sets
of both time periods share one machine (P3), so that only

⌈(nt + nt−1)/C⌉ = ⌈nt/C⌉ + ⌈nt−1/C⌉ − 1

machines are occupied.

5 There are no full machines at the beginning, so |F1| = 0, and for any time period t ≥ 2 we have |Ft | = kt−1, where
kt−1 = ⌊nt−1/C⌋ is the number of job groups of size C starting in the previous period. Indeed, machines that are full
in time period t are exactly those that were assigned a set of C identical jobs in the previous iteration.

Now, we consider an arbitrary iteration t and show that if there are not enough empty machines, then the instance is
rivially infeasible.

First, we show that there are enough empty machines to close. Let x := |{i ∈ [m] | fi = t}| be the number of machines
o close at time t , and hence the required number of empty machines. At the end of time period t − 1, there are mt−1
achines available, and mt machines must be still available during the time period t . As t is not a start time due to the
ssumption that si ̸= fi′ for all i, i′ ∈ [m], no additional machine becomes available, so we have exactly mt−1 = mt + x.
urthermore, at most C · mt jobs can be being processed at time point t without violating the capacity for time period t;
hese jobs occupy at most m machines (P4). Hence, there are at least m − m = x empty machines at time point t .
t t−1 t

246

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

m
s

m
j
T

w
h
E

w

e

Fig. 8. An infeasible instance of 2-MISMA satisfying the capacity restriction.

Next, we show that there are enough empty machines to assign the starting jobs. Since the number of required
achines depends on the number of starting jobs and on the existence of a half-full machine, we have to distinguish
everal cases. We call the jobs of the set Rt remainder jobs.
First, suppose there is a half-full machine h. Then the number of available machines is given by mt = |Et |+|Ft |+1, and

achine h contains rt−1 jobs (P3). If additionally rt−1+rt ≤ C, i.e., if the half-full machine can accommodate the remainder
obs of set Rt , then kt empty machines are required. Suppose there are actually fewer empty machines, i.e., |Et | ≤ kt − 1.
hen we obtain the following relation:

nt−1 + nt = C · (kt−1 + kt) + rt−1 + rt
≥ C · (|Et | + |Ft | + 1) + rt−1 + rt (P5, |Et | ≤ kt − 1)
> C · (|Et | + |Ft | + 1)
= C · mt ,

hich implies the trivial infeasibility of the instance. Otherwise, if the remainder jobs cannot be all assigned to machine
, i.e., if rt−1 + rt > C, then an additional empty machine is required, i.e., kt + 1 machines are needed. Suppose that
t ≤ kt ; then, by an analogous calculation, we obtain

nt−1 + nt ≥ C · (|Et | + |Ft |) + (rt−1 + rt) > C · (|Et | + |Ft |) + C = C · mt ,

hich again implies the infeasibility of the instance.
Conversely, if there is no half-full machine, then mt = |Et | + |Ft |. Again, if there are no remainder jobs, then only kt

mpty machines are necessary. For |Et | < kt we then obtain

nt−1 + nt ≥ C · (|Et | + |Ft | + 1) > C · (|Et | + |Ft |) = C · mt .

If, in contrast, there are rt > 0 remainder jobs, then kt + 1 empty machines are necessary. If now |Et | ≤ kt , then

nt−1 + nt ≥ C · (|Et | + |Ft |) + rt−1 + rt > C · (|Et | + |Ft |).

In both cases, if follows that the input instance is trivially infeasible.
To conclude, for any time period t the set of empty machines contains enough elements to assign the jobs starting at

time t , assuming that the previous jobs were assigned densely according to Algorithm 1. □

Lemmata 7 and 8 show that the linear-time Algorithm 1 finds a feasible solution for any instance of 2-FlexMISMA
satisfying the capacity restriction, and thus prove Theorem 4.

Observe that the relation between MISMA and FlexMISMA established in Lemma 1 does not hold any more for the
uniform case, since the reduction does not preserve the uniformity. Consequently, the existence of a polynomial algorithm
for 2-FlexMISMA unfortunately does not imply any complexity result for the problem version with fixed end times.

Moreover, the property stated in Theorem 4 does not hold for machines with fixed availability periods, as in MISMA:
there are instances of 2-MISMA that satisfy the capacity restriction at all time points but are infeasible, as, e.g., the instance
shown in Fig. 8. In fact, if the job length ℓ is unbounded, then ℓ-MISMA is NP-complete already for unit machine capacity.
This result follows from the proof of NP-completeness of the Precoloring Extension on unit interval graphs [23].

A natural further step is to attempt to generalize the efficient algorithm for 2-FlexMISMA to work on instances with
greater job length. Clearly, our solution approach is not applicable for ℓ > 2 as is: the half-full machines do not become
empty after two time periods, and hence our method produces several, up to ℓ−1, half-full machines. This leads to unused
threads on the half-full machines that cannot be used without splitting the sets of equivalent jobs. For example, consider
an instance of 3-FlexMISMA with two machines of capacity C = 3 and start times 1 and 2, and with two jobs starting
at each time point. In the first two time periods, the new starting jobs will occupy a new machine. At time t = 3, both
machines are half-full, and neither has enough free capacity to accommodate the whole set of the starting jobs.

Moreover, even the main idea consisting in assigning equivalent jobs to a minimal number of different machines turns
out to be misleading for job length ℓ > 2, as an instance shown in Fig. 9 demonstrates: in any feasible solution for this
instance, all pairs of equivalent jobs are split and assigned to different machines.

Consequently, a significantly different approach is necessary for a future study of complexity of ℓ-FlexMISMA for ℓ ≥ 3.
247

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

5

f
i

p

Fig. 9. An instance of 3-FlexMISMA and its feasible solution. All pairs of equivalent jobs are split.

. Conclusion

In this paper, we presented the interval scheduling extensions MISMA and FlexMISMA, and provided a tight classi-
ication of their hardness with respect to the number of machines and their capacity. Additionally, we considered the
nfluence of the jobs’ lengths on the problem’s complexity.

For a fixed number of machines, we have shown that FlexMISMA is NP-complete for three or more machines, and
olynomially solvable for up to two machines. If the machine capacity is fixed, then MISMA is NP-complete for any

machine capacity, whereas FlexMISMA is NP-complete only for proper multithread machines with capacity two or greater.
We have further shown that bounding both the number of machines and their capacity makes FlexMISMA tractable.
Constructive algorithms were provided for all polynomial-time solvable cases. In addition, we introduced the special case
of FlexMISMA with constant job length and provided a polynomial-time algorithm for jobs of length two.

While the complexity ofMISMA and FlexMISMAwith respect to machine parameters was completely analyzed, we only
initiated the study of specific job sets and their influence on the complexity of the problem. For instance, the complexity
of ℓ-FlexMISMA for ℓ ≥ 3, as well as of MISMA with fixed job length, were not covered in this contribution and will be
addressed in future work. Further special job sets are an equally interesting direction for future research. Furthermore,
due to the machine capacities, it is sensible to consider jobs with individual demands, which leads to a new problem
closely related to the Storage Allocation Problem.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Appendix A. Proof of Lemma 5

Lemma 5. Let I be a feasible instance of FlexMISMA satisfying the full-load assumption and with maximum overlap of two.
Let J1 ⊆ [n] be a fitting set for machine 1 and some machine end time f ∈ (fi)i∈[m]. Then instance Ĩ resulting from I by deleting
machine 1, the end time f and the job subset J1 is also feasible.

Before we provide the proof of Lemma 5, let us make the following auxiliary observation.

Remark 1. An instance of FlexMISMA with at most one available machine at any point in time, i.e., with maximum overlap
of 1, is feasible if and only if it is not trivially infeasible.

Proof of Lemma. For any time point t ∈ N, we denote by J (t) the set of jobs in process at time t . First, observe that
since at most two machines are available simultaneously, the start and end times of machines must satisfy fi < si+2 for
any i ≤ m−2. Besides, without loss of generality we can assume that in the time period between s1 and fm there is always
at least one machine available — otherwise the instance can be split at the time point with no machines into two smaller
instances, which can be solved independently. Consequently, we assume that fi > si+1 for all i ≤ m− 1. In particular, this
implies that si ̸= si+1 and fi−1 ̸= fi for 1 < i < m.

Let the fitting end time for machine 1 be f = fi for some i ∈ [m]. Then the instance Ĩ has m − 1 machines, denoted
2, . . . ,m for convenience, with start times s , 2 ≤ µ ≤ m, and end times f , . . . , f , f , . . . , f . Observe that the instance
µ 1 i−1 i+1 m

248

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

˜

o

f

[

e
f
r
ϕ
p

h

a

I has one machine fewer available in period [s1, fi) compared to instance I; denoting the number of available machines
in instance Ĩ by m̃t we write

m̃t =

{
mt − 1, if t < fi,

mt , if t ≥ fi.

Furthermore, the job set J̃ := [n] \ J1 of instance Ĩ is such that Ĩ also satisfies the full-load assumption.
In particular, if 1 < i < m, then for any t ∈ [fi−1, si+1) we have m̃t = 0 and J̃ (t) = ∅, i.e., in instance Ĩ there

are no machines available and no jobs to process in this time period (this can be verified by calculating the number of
start and end times of machines up to time fi−1). Consequently, instance Ĩ can be split into two instances I ′ and I ′′,
containing jobs, start times and end times before the time point fi−1 and after the time point si+1, respectively. Note that
both sub-instances still satisfy the full-load assumption. If i = 1 or i = m, then one of the instances is empty.

First, consider the instance I ′. Since m̃t = mt − 1 ≤ 1 for all time points t ≤ fi−1, the instance I ′ is feasible by
Remark 1. It remains to show that instance I ′′ also has a feasible solution. In that case also the composed instance Ĩ is
clearly feasible.

Let the pair of assignments (τ , α) be a feasible solution for the instance I. We distinguish three cases by the value
of the end time τ (1) assigned to machine 1 by this solution, and explicitly construct solutions (ϕ, β) to the instance I ′′,
where

ϕ : {i + 1, . . . ,m} → {i + 1, . . . ,m} and
β :J ′′

→ {i + 1, . . . ,m} with J ′′
:= {j ∈ [n] \ J1 | aj ≥ si+1}

are the end time assignment and the machine assignment, respectively.
Beforehand, recall that a feasible end time assignment τ ensures that sµ < fτ (µ) for all machines µ ∈ [m]; from the

bservations at the beginning of the proof it follows that

τ (µ) ≥ µ − 1

or all machines µ ∈ [m].
Case 1: τ (1) = i. We define

ϕ := τ |{i+1,...,m}, β : j ↦→

{
α(j), if bj > fi,

i + 1, if bj ≤ fi.

Both mappings are well-defined. Since τ (µ) ≥ µ−1 and τ−1(i) = 1, the mapping τ is bijective on the set {i+1, . . . ,m} =

m] \ [i]; hence, ϕ has range {i + 1, . . . ,m} and is bijective and feasible for FlexMISMA. Assignment β assigns each job
xactly once, and for any job j holds β(j) ≥ i+1: if bj > fi, then machine α(j) should have an end time later than fi, that is
τ (α(j)) ≥ fi+1 and τ (α(j)) ≥ i + 1, and, since the mapping τ is bijective on the set {i + 1, . . . ,m}, we obtain α(j) ≥ i + 1. It
emains to show that assignment β satisfies the capacity constraint and machine availability period given by assignment
. To this end, analogously to the proof of Lemma 4, we consider the set of jobs assigned to a machine µ that are in
rocess at time t , denoted by β−1(µ) ∩ J (t), and show that⏐⏐β−1(µ) ∩ J (t)

⏐⏐ =

{
C, if sµ ≤ t ≤ fϕ(µ),

0, otherwise,
(⋆)

olds for all machines µ ∈ [m] \ [i] and all time points t ∈ N.
For µ > i+1, we have β−1(µ) = α−1(µ), and hence the property (⋆) follows from the feasibility of the solution (τ , α).

For µ = i + 1, we have

β−1(µ) =
(
α−1(i + 1) ∩ {j ∈ J ′′

| bj > fi}
)

∪̇ {j ∈ J ′′
| bj ≤ fi}.

For t ≥ fi, the jobs in process are only those with bj > t , i.e., with bj > fi. Hence, in this case we have

β−1(i + 1) ∩ J (t) ⊆ α−1(i + 1) ∩ J (t).

On the other hand, for any job j ∈ [n], from bj > fi it follows that j ∈ J ′′ and j /∈ J1. Hence for t ≥ fi we have

α−1(i + 1) ∩ J (t) = β−1(i + 1) ∩ J (t)

nd ⏐⏐β−1(i + 1) ∩ J (t)
⏐⏐ =

⏐⏐α−1(i + 1) ∩ J (t)
⏐⏐ =

{
C, if t < fτ (i+1) = fϕ(i+1),

0, if t ≥ fϕ(i+1).

Next, consider a time point t ∈ [si+1, fi) (note that the interval is not empty). If job j is in process at time t , then it
ends later than at time fi−1, so j /∈ J ′ and thus j ∈ J1 ∪̇J ′′; that is, J (t) ⊆ J1 ∪̇J ′′. Furthermore, for the job’s start time
we have a < s , hence α(j) ≤ i + 1.
j i+2

249

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

P
a
h

b

T

f
T
µ

w
f
s

a
h
C

w
w

F

H

Now consider the subset β−1(i + 1) ∩ J (t) of jobs assigned to machine i + 1 and in process at time t . By definition of
β , we have

β−1(i + 1) ∩ J (t) =
{
j ∈ J ′′

∩ J (t) | bj ≤ fi
}

∪̇
{
j ∈ J ′′

∩ J (t) | bj > fi and α(j) = i + 1
}
.

Since we have α(j) ≥ i + 1 for any j with bj > fi and α(j) ≤ i + 1 for any j ∈ J (t), we conclude that for any j ∈ J ′′
∩ J (t)

from bj > fi follows α(j) = i + 1. Hence

β−1(i + 1) ∩ J (t) =
{
j ∈ J ′′

∩ J (t) | bj ≤ fi
}

∪̇
{
j ∈ J ′′

∩ J (t) | bj > fi
}

= J ′′
∩ J (t).

As J (t) =
(
J1 ∩ J (t)

)
∪̇

(
J ′′

∩ J (t)
)
, we have⏐⏐β−1(i + 1) ∩ J (t)

⏐⏐ =
⏐⏐J ′′

∩ J (t)
⏐⏐

= |J (t)| − |J1 ∩ J (t)|
= C · mt − C (full-load assumption, set J1 is fitting)
= C. (mt = 2 for si+1 ≤ t < fi)

Finally, for t < si+1, the jobs in process at time t do not belong to set J ′′ per definition; hence
⏐⏐β−1(i + 1) ∩ J (t)

⏐⏐ = 0
for t < si+1. Overall, property (⋆) is satisfied for the assignments ϕ and β constructed for Case 1.

Case 2: u := τ (1) > i. We define assignments

ϕ : µ ↦→

{
u, if µ = i + 1,

τ (µ), if µ > i + 1,
β : j ↦→

{
α(j), if α(j) ̸= 1,

i + 1, if α(j) = 1.

To show that these assignments respect the indicated codomains, we first make the following observation.

Remark 2. If τ (1) = u > 1, then for all machines k ∈ {2, . . . , u} we have τ (k) = k − 1.

roof. For any machine index µ ∈ [m] we have that sµ+2 > fµ; hence, machine µ can only be assigned end times that
re greater than fµ−2, i.e., τ (µ) ≥ µ − 1 and conversely τ−1(µ) ≤ µ + 1. Consequently, for the first u − 1 machines we
ave

τ−1({1, . . . , u − 1}) ⊆ {1, . . . , u},

ut since τ−1(u) = 1 and τ is bijective, it follows that

τ−1({1, . . . , u − 1}) ⊆ {2, . . . , u}.

hus τ−1(1) = 2 and, by induction, τ−1(k) = k + 1 for all k ≤ u − 1. ■

We verify that assignment ϕ has values only in the set [m]\[i]. By Remark 2, τ (µ) = µ−1, and thus τ (µ) ≥ i+1 holds
or any µ with i+ 1 < µ ≤ u. Furthermore, Remark 2 implies that for µ > u also τ (µ) > u, so in particular τ (µ) > i+ 1.
o sum up, ϕ(µ) ≥ i + 1 for any µ > i + 1. In addition, ϕ(i + 1) = u ≥ i + 1, since u > i. Hence, ϕ(µ) ≥ i + 1 for all
≥ i + 1.
Since τ is bijective, τ (1) = u implies that τ (µ) ̸= u for all µ ≥ i+1, and thus ϕ is injective and hence bijective. Finally,

e show that ϕ is a feasible end time assignment, i.e., sµ < fϕ(µ) for all µ ≥ i + 1. For µ > i + 1 this property follows
rom the feasibility of the assignment τ ; for µ = i + 1, we have ϕ(µ) ≥ i + 1, and so fϕ(µ) ≥ fi+1 > si+1. Overall, we have
hown that assignment ϕ is well-defined, bijective and feasible for the FlexMISMA instance I ′′.
For the assignment β , we also first show that the image of β is included in the set [m] \ [i]. To this end, we recall that

ny job j ∈ J ′′ starts at time aj ≥ si+1 or later, and thus machine α(j) should have an end time fτ (α(j)) > si+1, or fτ (α(j)) ≥ fi,
ence τ (α(j)) ≥ i. By Remark 2 implies that τ (µ) = µ − 1 < i for 1 < µ < i + 1. Hence α(j) = 1 or α(j) ≥ i + 1.
onsequently, for any job j ∈ J ′′ we have β(j) ≥ i + 1.
Next, we show feasibility of β and ϕ as a solution for FlexMISMA, by again verifying property (⋆). For µ /∈ {1, i + 1},

e have β−1(µ) = α−1(µ) and ϕ(µ) = τ (µ), so (⋆) follows from the feasibility of the assignments τ and α. For µ = i+ 1
e have

β−1(i + 1) =
(
α−1(i + 1) ∪̇ α−1(1)

)
∩ J ′′.

or any time point t ≥ si+1, if j ∈ J (t), then j ∈ J ′′
∪̇J1, so J ′′

∩ J (t) = J (t) \ J1. Therefore

β−1(i + 1) ∩ J (t) =
(
α−1(i + 1) ∪̇ α−1(1)

)
∩ J ′′

∩ J (t)

=
((

α−1(i + 1) ∪̇ α−1(1)
)
∩ J (t)

)
\ J1.

ence, the cardinality can be expressed as⏐⏐β−1(i + 1) ∩ J (t)
⏐⏐ =

⏐⏐(α−1(i + 1) ∪̇ α−1(1)
)
∩ J (t)

⏐⏐ −
⏐⏐J ∩ J (t) ∩

(
α−1(i + 1) ∪̇ α−1(1)

)⏐⏐ .
1

250

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

S

t

a

f

F

s

Next, we simplify the second term by showing that J1 ∩ J (t) ⊆ α−1(i + 1) ∪̇ α−1(1). Recall that for any job j ∈ J (t), the
job is present after the time point si+1 or later; hence α(j) = 1 or α(j) ≥ i + 1. On the other hand, any job j ∈ J1 ends
before the time point fi < si+2, hence α(j) ≤ i + 1. Overall, for any job j ∈ J1 ∩ J (t) holds α(j) ∈ {1, i + 1}. Hence, for
t ≥ fi+1 we obtain⏐⏐β−1(i + 1) ∩ J (t)

⏐⏐ =
⏐⏐(α−1(i + 1) ∪̇ α−1(1)

)
∩ J (t)

⏐⏐ − |J1 ∩ J (t)|

=
⏐⏐α−1(i + 1) ∩ J (t)

⏐⏐ +
⏐⏐α−1(1) ∩ J (t)

⏐⏐ − |J1 ∩ J (t)| .

Recalling that the instance satisfies the full-load assumption, and so every job set assigned to a machine is a fitting set,
we obtain⏐⏐α−1(i + 1) ∩ J (t)

⏐⏐ =

{
C, if t ∈ [si+1, fτ (i+1)) = [si+1, fi),

0, otherwise;⏐⏐α−1(1) ∩ J (t)
⏐⏐ =

{
C, if t ∈ [s1, fτ (1)) = [s1, fu),

0, otherwise;

|J1 ∩ J (t)| =

{
C, if t ∈ [s1, fi),

0, otherwise.

Adding the three expressions, we obtain

⏐⏐β−1(i + 1) ∩ J (t)
⏐⏐ =

⎧⎪⎨⎪⎩
C, if t ∈ [si+1, fi),

C, if t ∈ [fi, fu),

0, otherwise.

For t < si+1 clearly holds that β−1(i + 1) ∩ J (t) = ∅, so property (⋆) holds for assignments ϕ and β for all machines in
[m] \ [i] and all time points t ∈ N.

Case 3: u := τ (1) < i.
We start with observing that any job j ∈ J ′′ finishes later than at time fi−1. This implies that τ (α(j)) ≥ i, so

α(j) ∈ τ−1({i, i + 1, . . . ,m}).

ince τ is a bijection with τ (µ) ≥ µ − 1, we conclude that there exists an ℓ ∈ [m] with ℓ ≤ i such that

τ−1({i, i + 1, . . . ,m}) = {ℓ} ∪̇ {i + 1, . . . ,m}. (A.1)

To define the assignments for instance I ′′, we distinguish two cases τ (i + 1) = i vs. τ (i + 1) > i. If τ (i + 1) > i, then
he set {i + 1, . . . ,m} is closed under τ and τ (ℓ) = i. Otherwise, τ (i + 1) = i and hence τ (ℓ) ≥ i + 1. We define

ϕ : µ ↦→

⎧⎪⎨⎪⎩
τ (i + 1), if µ = i + 1 and τ (i + 1) ≥ i + 1,

τ (ℓ), if µ = i + 1 and τ (i + 1) = i,

τ (µ), if µ > i + 1,

β : j ↦→

{
α(j), if α(j) ≥ i + 1,

i + 1, if α(j) = ℓ.

Feasibility of assignment ϕ follows from the feasibility of τ . The image of assignment β is clearly in the set [m] \ [i],
nd from (A.1) follows that β is defined for all jobs in J ′′.
The proof of feasibility is similar to that in Case 1. For machines µ > i + 1 property (⋆) follows immediately from the

easibility of the solution (τ , α). For µ = i + 1, we express the set of assigned jobs as

β−1(i + 1) =
(
α−1(i + 1) ∩ J ′′

)
∪̇

(
α−1(ℓ) ∩ J ′′

)
.

or t ≥ fi we have J (t) ⊆ J ′′; hence,

β−1(i + 1) ∩ J (t) =
(
α−1(i + 1) ∩ J (t)

)
∪̇

(
α−1(ℓ) ∩ J (t)

)
=

{
α−1(i + 1) ∩ J (t), if τ (ℓ) = i,

α−1(ℓ) ∩ J (t), if τ (i + 1) = i,

ince for µ with τ (µ) = i we have α−1(µ) ∩ J (µ) = ∅. Therefore, for t ≥ fi we have⏐⏐β−1(i + 1) ∩ J (t)
⏐⏐ =

{⏐⏐α−1(i + 1) ∩ J (t)
⏐⏐ , if τ (ℓ) = i,⏐⏐ −1

⏐⏐
α (ℓ) ∩ J (t) , if τ (i + 1) = i

251

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

α

Algorithm 2: Greedy algorithm for 2-FlexMISMA
Input: number of machines m, capacity C, start times (si)i∈[m], end times (fi)i∈[m],
jobs [n] with bj = aj + 2 for all j ∈ [n]
Output: assignments α : [n] → [m], τ : [m] → [m]

E := ∅, F := ∅, h := null;
foreach t = 1, . . . , T do

E := E ∪ {i ∈ [m] | si = t};
// close machines:
X := {i ∈ [m] | fi = t};
if X ̸= ∅ then

[i1, . . . , i|X |] := get(E, |X |);
foreach l = 1, . . . , |X | do

τ (il) := Xl;

// assign starting jobs:
J̄ (t) := {j ∈ [n] | aj = t};
nt :=

⏐⏐J̄ (t)
⏐⏐;

kt , rt := ⌊nt/C⌋, nt mod C; // nt = kt · C + rt
let J̄ (t) =

⋃̇kt
l=1J

l
t ∪̇ Rt , s.t.

⏐⏐J lt ⏐⏐ = C for all l ; // partition the set of starting jobs
N := [e1, . . . , ekt] := get(E, kt);
foreach l = 1, . . . , kt do

α(j) := el for all j ∈ J lt ;

if Rt ̸= ∅ then
if h ̸= null then

if
⏐⏐α−1(h) ∩ J(t)

⏐⏐ ≤ C − rt ; // half-full machine has enough space for rt jobs
then

α(j) := h for all j ∈ Rt ;
else

[e] := get(E, 1);
α(j) := e for all j ∈ Rt ;
E := E ∪ {h};
h := e;

else
[e] := get(E, 1);
α(j) := e for all j ∈ Rt ;
h := e;

else
if h ̸= null then

E := E ∪ {h};
h := null;

// prepare for next iteration:
E := E ∪ F ; // machines that were full will become empty
F := N; // machines that were assigned new jobs

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C, if τ (ℓ) = i and t < fτ (i+1),

0, if τ (ℓ) = i and t ≥ fτ (i+1),

C, if τ (i + 1) = i and t < fτ (ℓ),

0, if τ (i + 1) = i and t ≥ fτ (ℓ)

=

{
C, if t < fϕ(i+1),

0, if t ≥ fϕ(i+1).

For t ∈ [si+1, fi) we make the following observation for the set J ′′
∩ J (t): any job j ∈ J (t) starts before time point si+2,

hence α(t) ≤ i + 1; simultaneously, for any job j ∈ J ′′ we have α(j) ∈ {ℓ} ∪ {i + 1, . . . ,m}. Overall, we conclude that
(j) ∈ {i + 1, ℓ} holds for any j ∈ J ′′

∩ J (t). Hence

J ′′
∩ J (t) = {j ∈ J ′′

∩ J (t) | α(j) = i + 1} ∪̇ {j ∈ J ′′
∩ J (t) | α(j) = ℓ}
252

M. Anapolska, T. Brandt, C. Büsing et al. Discrete Applied Mathematics 358 (2024) 230–253

h
L

A

=
(
α−1(i + 1) ∩ J ′′

∩ J (t)
)

∪̇
(
α−1(ℓ) ∩ J ′′

∩ J (t)
)

= β−1(i + 1) ∩ J (t).

Analogously to Case 1, we conclude that
⏐⏐β−1(i + 1) ∩ J (t)

⏐⏐ =
⏐⏐J ′′

∩ J (t)
⏐⏐ = C for t ∈ [si+1, fi). For t < si+1, we again

ave β−1(i + 1) ∩ J (t) = ∅. This shows that (⋆) holds for assignments ϕ and β in Case 3, which finalizes the proof of
emma 5. □

ppendix B. Algorithm for 2-FlexMISMA

A greedy algorithm for 2-FlexMISMA is given in Algorithm 2. For better readability, we use an operator get(S, k) that
receives a set S and a number k ∈ N as input and returns a list of k distinct elements of S, and simultaneously removes
the elements of the list from S. If the set S contains less than k elements, the algorithm aborts.

References

[1] E. Angelelli, N. Bianchessi, C. Filippi, Optimal interval scheduling with a resource constraint, Comput. Oper. Res. 51 (2014) 268–281.
[2] E. Angelelli, C. Filippi, On the complexity of interval scheduling with a resource constraint, Theor. Comput. Sci. 412 (29) (2011) 3650–3657.
[3] R. Bar-Yehuda, M. Beder, D. Rawitz, A constant factor approximation algorithm for the storage allocation problem, Algorithmica 77 (4) (2017)

1105–1127.
[4] M. Bender, C. Thielen, S. Westphal, Online interval scheduling with a bounded number of failures, J. Sched. 20 (5) (2017) 443–457.
[5] M. Biró, M. Hujter, Z. Tuza, Precoloring extension. I. Interval graphs, Discret. Math. 100 (1–3) (1992) 267–279.
[6] P. Brucker, L. Nordmann, The k-track assignment problem, Computing 52 (2) (1994) 97–122.
[7] M.C. Carlisle, E.L. Lloyd, On the k-coloring of intervals, Discrete Appl. Math. 59 (93) (1995) 225–235.
[8] Z.-L. Chen, Integrated production and outbound distribution scheduling: Review and extensions, Oper. Res. 58 (1) (2010) 130–148.
[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, second ed., MIT Press, Cambridge, 2001, Ch. 8.2.

[10] A. Darmann, U. Pferschy, J. Schauer, Resource allocation with time intervals, Theor. Comput. Sci. 411 (49) (2010) 4217–4234.
[11] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (4) (1976) 691–703.
[12] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir, S. Zaks, Minimizing total busy time in parallel scheduling with

application to optical networks, Theor. Comput. Sci. 411 (40–42) (2010) 3553–3562.
[13] I. Fridman, M.Y. Kovalyov, E. Pesch, A. Ryzhikov, Fixed interval scheduling with third-party machines, Networks 77 (3) (2020) 361–371.
[14] M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou, The complexity of coloring circular arcs and chords, SIAM J. Algebraic Discret. Methods

(1980).
[15] M.C. Golumbic, Algorithmic graph theory and perfect graphs, in: Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980, pp.

171–202, Ch. 8 – Interval Graphs.
[16] S. Goyal, D. Gupta, The online reservation problem, Algorithms 13 (2020) 241.
[17] F. Grandoni, T. Mömke, A. Wiese, H. Zhou, A (5/3+ ϵ)-approximation for unsplittable flow on a path: Placing small tasks into boxes, in: STOC,

ACM, 2018, pp. 607–619.
[18] D. Katz, B. Schieber, H. Shachnai, Flexible resource allocation to interval jobs, Algorithmica 81 (8) (2019) 3217–3244.
[19] A.W. Kolen, L.G. Kroon, License class design: Complexity and algorithms, European J. Oper. Res. 63 (3) (1992) 432–444.
[20] A.W. Kolen, J.K. Lenstra, C.H. Papadimitriou, F.C. Spieksma, Interval scheduling: A survey, Naval Res. Logist. 54 (5) (2007) 530–543.
[21] M. Kovalyov, C. Ng, T.C.E. Cheng, Fixed interval scheduling: Models, applications, computational complexity and algorithms, European J. Oper.

Res. 178 (2007) 331–342.
[22] M. Krishnamoorthy, A. Ernst, The personnel task scheduling problem, Optim. Methods Appl. (2001) 343–368.
[23] D. Marx, Precoloring extension on unit interval graphs, Discrete Appl. Math. 154 (6) (2006) 995–1002.
[24] G.B. Mertzios, M. Shalom, A. Voloshin, P.W. Wong, S. Zaks, Optimizing busy time on parallel machines, Theor. Comput. Sci. 562 (2015) 524–541.
[25] T. Mömke, A. Wiese, Breaking the barrier of 2 for the storage allocation problem, in: ICALP, in: LIPIcs, vol. 168, Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2020, pp. 86:1–86:19.
[26] S. Olariu, An optimal greedy heuristic to color interval graphs, Inform. Process. Lett. 37 (1) (1991) 21–25.
[27] H. Shachnai, A. Voloshin, S. Zaks, Optimizing bandwidth allocation in elastic optical networks with application to scheduling, J. Discrete

Algorithms 45 (2017) 1–13.
[28] M. Shalom, A. Voloshin, P.W.H. Wong, F.C.C. Yung, S. Zaks, Online optimization of busy time on parallel machines, Theor. Comput. Sci. 560

(2014) 190–206.
[29] M. Shalom, P.W.H. Wong, S. Zaks, Profit maximization in flex-grid all-optical networks, in: Structural Information and Communication

Complexity, Springer International Publishing, 2013, pp. 249–260.
[30] P. Winkler, L. Zhang, Wavelength assignment and generalized interval graph coloring, in: Proceedings of the Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA, 2003, pp. 830–831.
253

http://refhub.elsevier.com/S0166-218X(24)00282-8/sb1
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb2
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb3
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb3
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb3
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb4
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb5
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb6
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb7
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb8
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb9
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb10
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb11
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb12
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb12
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb12
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb13
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb14
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb14
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb14
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb15
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb15
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb15
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb18
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb19
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb20
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb21
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb21
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb21
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb22
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb23
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb24
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb25
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb25
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb25
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb26
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb27
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb27
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb27
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb28
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb28
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb28
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb29
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb29
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb29
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb30
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb30
http://refhub.elsevier.com/S0166-218X(24)00282-8/sb30

	Multithread interval scheduling with flexible machine availabilities: Complexity and efficient algorithms
	Introduction
	Related work
	Our contribution

	Problem formulation
	Complexity results for FlexMISMA and MISMA
	Constant machine capacity
	Constant number of machines

	Polynomially solvable cases
	Machines with unit capacity
	Two machines of arbitrary capacity
	Constant number of threads
	Uniform jobs

	Conclusion
	Declaration of competing interest
	Data availability
	Appendix A. Proof of Lemma 5
	Appendix B. Algorithm for 2-FlexMISMA
	References

