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ABSTRACT: Atomic force microscopy (AFM) is a powerful
technique for imaging molecules, macromolecular complexes, and
nanoparticles with nanometer resolution. However, AFM images
are distorted by the shape of the tip used. These distortions can be
corrected if the tip shape can be determined by scanning a sample
with features sharper than the tip and higher than the object of
interest. Here we present a 3D DNA origami structure as fiducial
for tip reconstruction and image correction. Our fiducial is stable
under a broad range of conditions and has sharp steps at different
heights that enable reliable tip reconstruction from as few as ten
fiducials. The DNA origami is readily codeposited with biological and nonbiological samples, achieves higher precision for the tip
apex than polycrystalline samples, and dramatically improves the accuracy of the lateral dimensions determined from the images. Our
fiducial thus enables accurate and precise AFM imaging for a broad range of applications.
KEYWORDS: atomic force microscopy, AFM, DNA origami, image correction, tip reconstruction

Atomic force microscopy (AFM) is a powerful technique
to visualize nano- to micrometer-scale structures with

subnanometer resolution.1 Consequently, AFM imaging is
frequently used in a broad range of applications, ranging from
solid-state physics, to nanofabrication, photonics, material
science, and life sciences.2−8 In particular, AFM imaging has
provided unprecedented insights into the structure of bio-
logical macromolecules and their complexes.9−16 For the
interpretation and modeling of the imaged structures, high-
resolution AFM images that reflect the true sample dimensions
are desirable. However, AFM images are distorted due to the
finite size of the AFM tip, resulting in a dilation of image
features similar to the convolution of optical images by the
point-spread function of the imaging system.5 In general, as
long as the tip is much sharper than the feature under
observation, the measured profile will closely resemble the true
shape. Yet, if the sample contains features whose aspect ratio is
comparable to that of the tip, distortions due to the finite size
of the tip become significant. To correct for the distortions
introduced by the tip one can, in principle, estimate the tip
geometry and use it to correct the image and estimate the true
specimen shape.17−20 Unfortunately, the exact shape of most
commercial AFM tips is not precisely known. Moreover, the
tip shape is variable, even within the same batch of tips, and
can also change during the measurement due to wear or
contamination of the tip while imaging.
There are several approaches to determining the AFM tip

shape. Villarrubia showed mathematically that the best possible

estimate of the tip shape is achieved using a method called
“blind tip reconstruction”.17 The approach is based on
exploiting features of the AFM image as broadened, inverted
replicas of the tip. The fidelity and quality of this tip
reconstruction depend on the calibration sample containing
features with similar or greater sharpness than those of the tip.
There are commercially available calibration samples, for
example, polycrystalline or silicon standards, with features
sharper than the tip21 or nanofabricated tip characterizers.22

Inconveniently, these types of calibration samples must be
measured either before or after the actual measurement of
interest. In addition, since these types of calibration samples
are typically very hard, the shape of the tip is prone to change
due to wear when the sample is scanned, which will deteriorate
or invalidate the resulting tip reconstruction.18,20 In addition,
measuring separate calibration samples cannot correct for
changes in tip shape during measurement.
Consequently, it is desirable to use an internal marker, i.e., a

reference sample, that is codeposited with the sample of
interest. Using an internal reference sample has the advantage
that the tip can be characterized during the measurement,
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which is experimentally convenient and ensures that the
reference sample and the sample of interest are imaged with
identical parameters since, e.g., molecular deformations depend
on the AFM imaging mode, the applied force, and the imaging
medium. A common internal marker for biological samples is
double-stranded DNA13,23,24 since it is easy to prepare and
handle, biocompatible, and well characterized. However, using
DNA as a reference sample only works well for samples with a
maximum height similar to DNA (1−2 nm depending on the
measurement method and force), whereas for higher structures
the tip is not sufficiently characterized since the tip
reconstruction requires calibration features of the same height
as the sample of interest. Another choice for internal,
nondestructive markers is virus particles, e.g., the rod-shaped
tobacco mosaic virus (TMV),25 or inorganic nanoparticles.26,27

However, these are significantly higher than many biologically
relevant samples and do not exhibit sharp features, which limits
the quality of a blind tip reconstruction.
To overcome these limitations, we present a DNA origami

fiducial that provides a 3D reference sample for AFM tip
reconstruction with defined, sharp steps of different heights
and a height profile well matched for use with a broad range of
macromolecular complexes (up to 18 nm). The DNA origami
technique enables the self-assembly of large numbers of
identical nanostructures at the molecular scale,28,29 with
customized geometry and almost atomistic structural de-
tail.30,31 The resulting nanostructures have been shown to be
robust and stable in a variety of conditions and are used in a
large range of applications.32−39 In particular, DNA origami
structures have been used as molecular rulers40 for
fluorescence41,42 and super-resolution microscopy.43 For
AFM imaging, a single-layer rectangular sheet DNA structure
has been used as a size reference and positioning plat-
form.32,44,45 Yet, the previous structures are not suitable for tip
characterization because of their low height and lack of sharply
defined features in the z-dimension.
Our DNA origami fiducial combines several characteristics

that make it well-suited for blind tip reconstruction: the
structural features of DNA origami structures have been
characterized with high resolution, and their designed structure
contains flat faces in the x−y direction and sharp edges in the z
direction, creating a four-step staircase from 1 to 2 to 15−20

nm, well matched to typical macromolecular complexes. The
fact that it consists of DNA makes it fully biocompatible and
enables straightforward surface deposition alongside other
biological macromolecules. In addition, we show that our
fiducial can be deposited on various surfaces including bare
mica, poly-L-lysine (PLL)-coated mica, and aminopropylsila-
trane (APS)-coated mica and imaged both dry and in liquid.
Taken together, our fiducial enables straightforward AFM
image correction for a wide range of nanostructures.
Design of the DNA Origami Fiducial Structure. We

designed the staircase-like nanostructure built of eight layers of
parallel helices arranged on a square lattice31,46 (Figure 1a and
Supporting Figure S1). The designed length (L1) of the
structure is 200 base pairs (bp); the maximum height (H4) is
eight helices; and the width (W) is ten helices. For design
purposes, we model DNA helices as a cylinder with a diameter
of 2 nm (helix diameter in B-form DNA is 2 nm) and a length
of 0.34 nm per bp. Using these parameters and assuming close
packing, the approximate size of the designed structure is 68 ×
20 × 16 nm3 (L1 × W × H4).
We vary the number of DNA helices in the layers to obtain

four discrete steps with equal areas and heights of one, two,
five, and eight helices. Therefore, the fiducial structure features
different heights between 2 and 18 nm, which cover a height
range suitable for a broad range of samples, including other
DNA origami structures31,47,48 and biological sam-
ples.11,13,49−51 Critically, the structure provides sharp and
defined vertical edges, which is desirable for a reliable AFM tip
estimation via blind tip reconstruction.
Confirmation of Correct Folding and Visualization of

the Fiducial Structures. We folded the fiducial structures in
Tris/EDTA/MgCl2 buffer, purified excess DNA staple strands,
and imaged them with negative-stain transmission electron
microscopy (TEM; Figure 1b). The fiducial structures appear
as rectangular four-“stair” structures with visible striations
running along the length of the fiducial, confirming the
direction of the DNA helices. The observed structures lay in
different orientations on the surface, while defective or
deformed fiducials were not observed, which confirms
successful and high-yield assembly of our fiducial structures.
Using the TEM images, we analyze the dimensions of the
fiducial structures (Supporting Figure S2) and find L1 = (71.7

Figure 1. Design of the 3D DNA origami structure used as a fiducial for AFM imaging and visualization by TEM and AFM imaging. (a) Schematic
of the designed 3D structure including the design dimensions. The colors represent the different levels. (b) Negative-stain TEM images of the
fiducial structures confirm the correct assembly and dimensions (a detailed dimension analysis is shown in Supporting Figure S2). The lower
images are zoom-ins of two exemplary structures. (c) AFM height image of the fiducial structures obtained by imaging on APS mica after drying.
The upper and lower image both have a resolution of 0.5 pixel/nm. The lower image is a zoom-in of the upper image (white box). (d) AFM height
image of the fiducial structures obtained by imaging on APS mica in liquid. Both images have a resolution of 1 pixel/nm. The lower image is a
zoom-in of the upper image (white box). The scale bars in all panels are 50 nm. z-ranges are indicated in nm by the scale bars on the right.
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± 3) nm, H4 = (19 ± 1.2) nm, and W = (23 ± 1.2) nm,
indicating an effective diameter of the DNA helices of (2.3 ±
0.1) nm (Supporting Table S1). The effective diameter of
DNA helices in 3D DNA origami may vary significantly
depending on the DNA origami design, type of packing of the
adjacent helices in lattices, number of connecting crossovers,
and position of nicks.52−54 In addition, the spacing of helices
depends on solution conditions, like pH, temperature, and in
particular ion concentration, as the highly negatively charged
helices tend to repel each other electrostatically,55 resulting in
“swelling” of the structures.53,54 Our value from TEM analysis
is in good agreement with the value determined previously
under similar conditions for a multilayer origami also by TEM
(2.25 nm)52 and is close to but slightly smaller than the values
determined by SAXS in free solution (∼2.7 nm)53 and cryo-
EM structure modeling (∼2.6 nm).56
Next, we imaged the fiducial structures by AFM both in situ

(i.e., fully hydrated under buffered solution) and after drying in
air. For dry AFM measurements (Figure 1c), we investigated
different surface deposition strategies: bare mica, APS mica,
and PLL mica. All surface deposition strategies result in overall
similar images, however, with slight differences in the exact
dimensions (Supporting Figure S3). Notably, almost all
fiducials have the expected shapes and are oriented with
their large flat face on the substrate’s surface, exposing the
staircase feature to the AFM tip, which is also the preferred
orientation for our purposes (Supporting Figure S3d). The
heights of the steps are almost a factor of 2 lower compared to
the heights obtained via TEM (Supporting Figure S4 and
Table S1), which is expected for dry AFM measurements.57

Furthermore, it is apparent from the AFM images that the
lateral x−y dimensions are distorted; in particular, the higher
features of the staircase appear wider than the lower features
(Figure 1c), which is expected due to the finite size and conical
shape of the tip. In AFM images obtained in liquid (Figure
1d), we see different orientations of the fiducial structure on
the surface; however, the flat side of the staircase is still
attached to the bottom most frequently (Supporting Figure
S3d). Compared to the dry measurements, the structures are

significantly higher and appear less distorted, resulting in
dimensions closer to those measured in the TEM images.
Overall, the images obtained in liquid appear “crisper”, with
higher resolution, which is likely due to the lower interaction
forces between the tip and the sample.19,58

Fiducial Structures Enable AFM Tip Characterization
via Blind Tip Reconstruction and Subsequent Correc-
tion for the Finite AFM Tip Size. To test the performance
of our DNA origami fiducial structure for estimation of the 3D
shape of the AFM tip during measurement, we deposited DNA
origami fiducial structures on APS mica and imaged a large
field of view (Supporting Figure S3c). We then use the features
of the DNA origami fiducials to perform blind tip
reconstruction following the protocol of Villarrubia17 imple-
mented in the image analysis software SPIP or Gwyddion
(Figure 2a; see Supporting Information for details, including
an example image and step-by-step instructions on how to
perform the image reconstruction). We note that the blind tip
reconstruction does not require exact knowledge of the
reference structure shape, but only requires the fiducial to
have sharp and high enough features. In a next step, we use this
tip estimate to correct a zoom-in of the same AFM image
scanned with the same tip (Figure 2b,c). To assess the
effectiveness of this method, we determine the width of the
fiducial structure before and after correction and find that the
width is reduced from 32.3 to 23.3 nm (Figure 2e), which is
much closer to the width of the origami design (Figure 1a) and
the width measured in TEM images (Supporting Figure S2).
To highlight the finite tip size correction, we also calculate a
difference image of the corrected image and the original image
(Figure 2d), which shows that especially the widths of the
higher steps of the staircase are significantly overestimated in
the original image. We note that while the tip size correction
procedure does reduce the measured width of the structures
imaged in liquid, the final size is still wider than what is
observed from corrected AFM images in air or from TEM
imaging, but in agreement, within experimental error, with the
helix spacing from solution X-ray scattering (∼2.7 nm)53,54
(Table S1). The difference in observed lateral width per helix,

Figure 2. AFM tip characterization and finite tip size correction using the fiducial. (a) Estimate of the AFM tip shape obtained by blind
reconstruction using the image shown in Supporting Figure S3c. (b) Top: AFM height image of the fiducial structures on APS mica imaged dry
with a resolution of 1 pixel/nm. Bottom: height profile of one exemplary molecule, averaged along the fiducial’s long axis (as indicated in the AFM
image). Arrows indicate the fwhm;64 the apparent width is significantly larger than the expected width from the design of ∼22.5 nm and the width
measured in negative stain TEM, (23.0 ± 1.2) nm. (c) The same image as in panel b after reconstruction based on the tip shape in panel a from
blind tip reconstruction. The apparent width now is much closer to what is expected from the design. (d) Difference image visualizing the effect of
image deconvolution. Scale bars are 50 nm, and z-ranges are indicated in nm on the right. (e) Width distribution from AFM images before
(turquoise) and after (orange) image reconstruction. The solid lines are Gaussian fits. The width of (32.3 ± 1.6) nm (mean ± std) is corrected to
(23.3 ± 1.4) nm after correcting for the finite tip size. The corrected value is in excellent agreement with the designed width and the width
measured in negative stain TEM indicated by a dark gray vertical line and std in light gray (see Supporting InformationTable S1 for a detailed
dimension comparison).
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(2.33 ± 0.14) nm vs (2.88 ± 0.29) nm/helix after tip shape
correction for images in air and in liquid, respectively, is
consistent with the view that origami structures swell in
solution, due to electrostatic repulsion.53,54

Evaluation of the Number of Fiducial Structures
Required for Reliable Tip Reconstruction. We next
investigate how many fiducial structures are sufficient to get
a good estimate of the AFM tip shape. From an image with 114
fiducial structures in total (Figure 3a), we selected between 1

and 100 structures for the blind tip reconstruction. For each
number of structures, we randomly selected (with repeats) 20
sets of fiducial structures as inputs for the tip reconstruction.
The resulting x- and y-profiles of the estimated tip shape
(Figure 3b,c) converge toward the final tip shape result (100
fiducial structures, dark red line) for ≥10 fiducials (Figure 3d).
The results suggest that using a minimum of 10 fiducials for
blind tip reconstruction is sufficient for an acceptable tip
estimate; for example, for a 1 × 1 μm2 image this requires a
fiducial concentration of ∼1 nM.
Comparison of Tip Characterization Using Our

Fiducial or a Polycrystalline Sample. Having established
an effective method of finite-size tip correction using a DNA
origami fiducial structure, we compare our method to
correction using an external polycrystalline tip characterization
sample (PA01 AFM Tip Evaluation Sample, NanoAndMore
GmbH, Germany). We characterized five different AFM
cantilevers (FASTSCAN-A, Bruker, USA; which are used
throughout the study), using both our fiducial as well as a
polycrystalline sample (Supporting Figure S5). Interestingly,
we find that for a sharp tip (Supporting Figure S5a−c) we get

an extremely good estimate of the very edge of the tip when
using the DNA fiducial, almost identical with the vendor
specifications and better than the estimate obtained with the
polycrystalline sample. The advantage of the polycrystalline
sample is that it can characterize a larger z-range of the tip
(20−30 nm instead of 5−10 nm for the fiducial sample). For a
contaminated or blunt tip (Supporting Figure S5d,e), both
samples give equally poor results. The results highlight
significant tip-to-tip variation even for fresh tips from the
same batch. While the polycrystalline sample has the advantage
of presenting features with a greater range of heights, for the
height that is accessible with our DNA origami fiducial, the
DNA fiducial provides a higher-resolution tip reconstruction.
Codeposition of Fiducial Structures Allows Recon-

structing the Size of a 24-Helix Bundle DNA Origami
Structure. We next test the application of our fiducial in situ
by codeposition with another structure of interest. We
deposited an equimolar mixture of the fiducial sample and a
24-helix bundle DNA origami (24-HB; Figure 4a). In a 1 × 1
μm2 image (1024 × 1024 pixels), we select 25 fiducial
structures for blind tip reconstruction to ensure convergence of
the tip estimate (Figure 4b,c). We then use the tip to correct
the dimensions of the 24-HBs (Figure 4d−f). The width of the

Figure 3. AFM tip characterization using different numbers of
fiducials. (a) AFM height image of fiducial structures (114 in total)
imaged in dry AFM mode on APS mica with a resolution of 1 pixel/
nm. The scale bar is 50 nm, and the z-range is indicated in nm on the
right. (b) Estimate of the AFM tip shape x-profile obtained by using
between 1 and 100 fiducials for the blind tip reconstruction in the
image shown in panel a. For each graph, 20 sets of fiducials were
randomly selected, with repeats. (c) AFM tip shape y-profile,
analogous to panel b. (d) χ2 of the x- and y-profiles shown in panels
b and c as a function of the number of selected fiducials compared to

the estimate using 100 fiducials with i
2 (profile profile )

profile
i 100

2

100
= . The

symbols and error bars are the mean ± std over the 20 sets of
randomly chosen fiducials. Error bars are smaller than symbols in
some cases.

Figure 4. Fiducials enable accurate AFM measurements of a 24-helix
bundle DNA origami structure. (a) AFM height image of the fiducial
structures codeposited with a DNA origami 24-helix bundle (24-HB)
structure, both at a concentration of 1 nM, deposited on APS mica
and measured dry with a resolution of 1 pixel/nm. (b) Same image as
in panel a, with the 25 fiducial structures highlighted by red boxes.
The image sections highlighted by the boxes are used for blind tip
shape reconstruction. (c) Tip shape obtained from blind tip
reconstruction using the fiducial samples marked in panel b. (d)
Top: zoom-in on a different spot of the same sample shown in panel
a. The resolution is 2 pixel/nm. Bottom: height profile of the raw
AFM image of an exemplary 24-HB. Arrows indicate the fwhm; the
apparent width of 22.2 nm is significantly larger than the expected
width from the design of ∼15.5 nm. (e) Top: the same image as in
panel d, after reconstruction based on the tip shape from blind tip
reconstruction shown in panel c. All scale bars are 50 nm, and z-
ranges are indicated in nm on the right. Bottom: height profile of the
reconstructed AFM image of the same 24-HB. (f) Width distribution
from AFM images before (turquoise) and after (orange) image
reconstruction. The solid lines are Gaussian fits. The width of (22.1 ±
1.8) nm (mean ± std) is corrected to (16.3 ± 1.6) nm by finite tip
size correction. This value is in excellent agreement with the designed
width of (15.5 ± 1.0) nm, indicated by a dark gray vertical line and
std in light gray.
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24-HB is (22.1 ± 1.8) nm (mean ± std; Figure 4f) in the
original image, which is significantly larger than the expected
width from the design of (15.5 ± 1.0) nm. In contrast, in the
corrected image, we find a width of (16.3 ± 1.6) nm, very close
to the value expected from the design. The results suggest that
codeposition of our fiducial provides a convenient and
straightforward way to obtain accurate, high-resolution, tip-
corrected images.
In Situ Image Correction for DNA−Protein Com-

plexes. To demonstrate the applicability of our method to
macromolecular complexes beyond DNA origami, we
codeposit our fiducial with double-stranded DNA and a
DNA-interacting protein (HIV-1 integrase). We find that the
fiducial is biocompatible and preserves its shape despite the
presence of DNA-interacting proteins (Figure 5a). Here again,

we observed that the widths of DNA, protein, and protein−
DNA complexes are reduced after image reconstruction. As a
proof of principle, we compared the DNA width before and
after reconstruction and find that it reduces significantly from
∼5.1 nm to ∼2.9 nm (Figure 5b,c), which is much closer to 2
nm, the crystallographic width of double-stranded DNA.
Height and Width Analysis of Inorganic Nano-

particles. Next, we test our fiducial structure for in situ
image reconstruction of inorganic nanoparticles. We codepos-

ited SiO2 nanoparticles with our fiducial. Similar to that for the
biological samples, the apparent widths of the silica nano-
particles are significantly larger than the widths in the corrected
image (Figure 5d−f). After image reconstruction, the width is
reduced from (25.6 ± 3.7) nm (mean ± std) to (15.5 ± 2.1)
nm, which is much closer to the width measured in TEM
images (11.5 ± 1.2) nm (Supporting Figure S6a,b) and also to
the height of the particles measured in AFM, (12.6 ± 1.4) nm
(Supporting InformationFigure S6c,d). After image correction,
the AFM-determined width and height measurements and the
TEM-derived widths are in overall approximate agreement, as
would be expected for spherical particles. The fact that the
dimensions from the TEM analysis are still slightly smaller
than AFM-derived values might be due to the fact that the
ultrahigh vacuum used during TEM imaging leads to a small
reduction in particle size.58 The remaining small difference
between AFM-determined width and height might stem from
imperfections in the image correction, from slight compression
of the particle by the AFM cantilever, or could be due to the
fact that particles are not perfectly spherical and tend to adhere
to the surface with their larger side. Additionally, we observe
that the width distribution becomes smaller after image
reconstruction (Figure 5f), while the height distribution stays
the same within error (Supporting InformationFigure S6d).
The reduction in the variance of the width distribution is likely
due to an asymmetry of the tip, such that the widths of the
particles are distributed wider in the original image than in the
reconstructed image.
In conclusion, we have established a method to correct for

the finite size of the AFM tip and its specific shape while
scanning a sample, employing a DNA origami staircase
structure as a fiducial for AFM image calibration. We
demonstrate that our fiducial structures are versatile and
biocompatible, can be deposited on various surfaces including
bare mica, APS mica, and PLL mica, and can be imaged in
liquid or dry. This allows straightforward surface codeposition
with samples of interest. We demonstrate the broad
applicability of the method by imaging DNA origami
structures, DNA−protein complexes, and silica nanoparticles.
In all cases, the blind tip reconstruction using our fiducial
allows for subsequent correction of images for finite tip size,
which enables much more accurate determination of sample
dimensions than uncorrected images. We show that as few as
10 fiducial structures are sufficient for a good tip estimate.
Also, we demonstrate that to characterize the very edge of the
tip of FASTSCAN-A cantilevers the fiducial sample gives a
better estimate of the effective tip shape than a commercial
polycrystalline characterization sample (Supporting Figure S5).
In addition, we provide a detailed step-by-step protocol on
how to perform the analysis with SPIP or Gwyddion (Methods
and Supporting Figure S7). Taken together, our method
enables accurate, straightforward, and user-friendly AFM image
correction.
We anticipate many new applications coming within reach

by using DNA origami structures as fiducials for 3D AFM
image calibration. We note that the design of the DNA origami
structure could be altered or extended for specific purposes, for
example, by addition of additional steps or attachment of
fluorescent dyes. A combination with fluorescent markers has
the potential to enable simultaneous use of the fiducial for tip
shape and fluorescence calibration.40−43,59,60 Another research
direction would be to go beyond imaging and to use the
fiducial as a mechanical stiffness marker to study the

Figure 5. Fiducials enable accurate AFM measurements of DNA
protein complexes and inorganic nanoparticles. (a) AFM height image
of the fiducial structures codeposited with DNA−protein complexes
(DNA length 4.8 kbp; protein HIV−I integrase) deposited on APS
mica and measured dry with a resolution of 0.4 pixel/nm. (b) Zoom-
in on a different spot of the same sample shown in panel a. The
resolution is 1.4 pixel/nm. The apparent DNA width of 5.1 nm is
significantly larger than the expected DNA width of 2 nm. (c) The
same image as in panel b, after reconstruction based on the tip shape
from blind tip reconstruction. The DNA width in the reconstructed
AFM image is much closer to the expected DNA width of 2 nm. The
scale bars are 10 nm, and z-ranges are indicated in nm on the right.
(d) AFM height image of the fiducial structures codeposited with
SiO2 nanoparticles, both at a concentration of 1 nM, deposited on
APS mica and measured dry with a resolution of 1 pixel/nm. (e) The
same image as in panel d, after reconstruction based on the tip shape
from blind tip reconstruction using the codeposited fiducials. The
scale bars are 50 nm, and z-ranges are indicated in nm on the right. (f)
Width distribution from AFM images before (turquoise) and after
(orange) image reconstruction. The solid lines are Gaussian fits. The
width of (25.6 ± 3.7) nm (mean ± std) is corrected to (15.5 ± 2.1)
nm by finite tip size correction. This value is much closer to the AFM
imaged height (12.6 ± 1.4) nm (mean ± std), indicated with a dark
gray vertical line and the standard deviation in light gray, and also to
the width measured in TEM, (11.5 ± 1.2) nm, indicated by a dark
blue vertical line and the standard deviation in light blue.
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compliance of biomolecules to indentation forces,61 e.g., to
probe the effects of silicification62,63 or other functionaliza-
tions. Soft biological materials are deformed by interactions
with the AFM tip, and our fiducial structure could provide a
convenient reference to take these effects into account while
correcting images. Further, structures on or within the fiducial
could be used to quantify and optimize the resolution of AFM
images, in addition to concurrently correcting the lateral
dimensions. We, therefore, anticipate that our fiducial marker
will provide a multimodal calibration platform for a range of
applications.
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