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Abstract
We study a temporal step size control of explicit Runge-Kutta (RK) methods for com-
pressible computational fluid dynamics (CFD), including the Navier-Stokes equations and 
hyperbolic systems of conservation laws such as the Euler equations. We demonstrate that 
error-based approaches are convenient in a wide range of applications and compare them 
to more classical step size control based on a Courant-Friedrichs-Lewy (CFL) number. Our 
numerical examples show that the error-based step size control is easy to use, robust, and 
efficient, e.g., for (initial) transient periods, complex geometries, nonlinear shock captur-
ing approaches, and schemes that use nonlinear entropy projections. We demonstrate these 
properties for problems ranging from well-understood academic test cases to industrially 
relevant large-scale computations with two disjoint code bases, the open source Julia pack-
ages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc.

Keywords Explicit Runge-Kutta (RK) methods · Step size control · Compressible fluid 
dynamics · Adaptivity in space and time · Shock capturing
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1 Introduction

Hyperbolic conservation laws are at the heart of many physical models in science and 
engineering, e.g., fluid dynamics describing the airflow around an airplane, acoustics, and 
space plasma modeling. Usually, the systems need to be solved numerically. A common 
approach is to apply the method of lines, i.e., to apply a spatial semi-discretization first and 
solve the resulting ordinary differential equation (ODE) numerically. For this task, explicit 

 * Hendrik Ranocha 
 mail@ranocha.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00264-y&domain=pdf
http://orcid.org/0000-0002-3456-2277


 Communications on Applied Mathematics and Computation

1 3

Runge-Kutta (RK) methods are among the most commonly used schemes because of their 
efficiency and parallel scalability [48, 53, 55].

Since demanding simulations require a significant amount of compute resources, there is 
a strong interest in developing efficient numerical methods. Here, the efficiency can be meas-
ured by the required compute time, energy, and human time. The time- and energy-to-solution 
depend on the algorithms and their implementation as well as the hardware [4, 41, 93] and 
are often a focus of high performance computing (HPC) studies. The required human time 
depends on the robustness of the overall numerical method and the sensitivity with respect 
to parameters that may need to be tuned to ensure the robustness and/or the efficiency. In this 
article, we study an error-based step size control for compressible flow problems to demon-
strate that it is efficient in all three aspects.

We use entropy-dissipative semi-discretizations to ensure the robustness [29, 31, 83, 86]  
but do not investigate specific implementation techniques discussed elsewhere  [33, 61, 77]. 
Instead, we focus on the step size control of time integration methods applied to ODEs result-
ing from spatial semi-discretizations of compressible flow problems. The goal is to adapt 
the time step size Δt such that it is as big as possible while still satisfying the accuracy and 
stability requirements. For explicit RK methods applied to (high-order) semi-discretizations, 
the stability requirements are usually more restrictive. Thus, a commonly used approach is to 
adapt the time step size according to a Courant-Friedrichs-Lewy (CFL) number chosen by the 
user. This involves estimating local wave speeds and mesh spacing, which can be demanding 
for complex systems and curved high-order meshes in multiple space dimensions required in 
practice. The optimal CFL number depends on the space and time discretizations and possibly 
on the specific problem [14, 58, 84]. An alternative, widely used in the context of general-pur-
pose ODE solvers, is an error-based step size control. There, a local error estimate is obtained 
from an embedded method and fed into a controller adapting the time step size according to 
user-specified tolerances. This approach has also been used successfully for partial differential 
equations [6, 51, 74, 94] but appears to be less-widely applied in the CFD community.

In this article, we systematically study an error-based step size control for compressible 
CFD problems and compare it to CFL-based approaches. Specifically, we use the RK methods 
and controllers developed in [74] in two different software environments. Most of the exam-
ples use the open source packages OrdinaryDiffEq.jl [73] for ODE solvers and Trixi.jl [78, 
85] for spatial semi-discretizations implemented in Julia [7]. Some large-scale, industrially rel-
evant CFD simulations are implemented in SSDC [67], which is built on top of the Portable 
and Extensible Toolkit for Scientific computing (PETSc) [3], its mesh topology abstraction 
(DMPLEX) [51], and its scalable ODE/DAE solver library [1]. All source code and instruc-
tions required to reproduce the numerical experiments using open source packages are avail-
able online in our reproducibility repository [79].

In the following, we briefly review RK methods and step size control techniques in Sect. 2. 
Afterwards, we study the robustness and the sensitivity to user-supplied parameters under a 
change of mesh structure of both step size control approaches in Sect. 3. Section 4 focuses 
on the effect of nonlinear shock capturing schemes. In Sect. 5, we discuss the impact of an 
initial transient period, e.g., in the cold start of a simulation initialized with free stream values. 
Thereafter, we study the step size control in the presence of a change of variables in Sect. 6. 
Next, we discuss the convenience of the error-based step size control for exploratory research 
of new systems in Sect. 7. Finally, we summarize and discuss our findings in Sect. 8.
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2  Runge‑Kutta (RK) Methods and Step Size Control

We use the method of lines approach and first discretize a conservation law in space. In 
particular, we focus on spatial semi-discretizations using collocated discontinuous Galer-
kin (DG) methods (and related shock capturing schemes); see, e.g., [29, 31, 83, 86]. The 
resulting ODE

is then solved using numerical time integration methods. Here, we use explicit RK meth-
ods with an embedded error estimator of the form [12, 38]

Here, un+1 is the numerical solution of the main method, ûn+1 is the embedded methods 
solution used to obtain the local error estimate un+1 − ûn+1 , and yi are the stage values. RK 
methods are parameterized by their Butcher tableau

where A = (aij)
s
i,j=1

∈ ℝ
s×s is strictly lower triangular for explicit methods, b, c ∈ ℝ

s , and 

b̂ ∈ ℝ
s+1 . If b̂s+1 ≠ 0 , the RK pair (2) uses the so-called first-same-as-last (FSAL) idea 

to include the predicted value at the new time in the embedded error estimator [27]. This 
can increase the performance of the embedded method and comes at no additional cost if 
the step is accepted, since f (tn+1, un+1) must be computed as the first stage of the next step 
anyway.

All methods considered in this article are applied in the local extrapolation mode, 
i.e., a main method of order q is coupled with an embedded error estimator of order 
q̂ = q − 1 . Whenever possible, we make use of low-storage formats such as 3S*+ [50, 
74]. We use the same naming convention of RK methods as in [74], i.e., NAMEq(q̂)s 
indicates an s-stage method of order q with the embedded error estimator of order q̂ . 
This base name is followed by additional information on low-storage properties and a 
subscript “F” for FSAL methods.

(1)

⎧
⎪
⎨
⎪
⎩

d

dt
u(t) = f (t, u(t)), t ∈ (0, T),

u(0) = u0

(2)

⎧
⎪
⎨
⎪
⎩

yi = un + Δtn
∑i−1

j=1
aij f (tn + cjΔtn, yj), i ∈ {1,⋯ , s},

un+1 = un + Δtn
∑s

i=1
bi f (tn + ciΔtn, yi),

ûn+1 = un + Δtn
∑s

i=1
b̂i f (tn + ciΔtn, yi) + b̂s+1f (tn+1, u

n+1).

(3)
c A

bT

b̂T
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2.1  Time Integration Loop and Callbacks

We use implementations of the time integration methods available in OrdinaryDiffEq.jl 
[73] in Julia or PETSc/TS [1]. The basic steps for the time integration loop are given in 
Algorithm  1. At first, a preliminary time step is performed with the given RK method. 
If the error-based step size control is activated, the embedded error estimator is also 
computed; it is used to update the time step size and determine whether the time step is 
rejected. After accepting a time step, callbacks are activated. We use these callback mecha-
nisms for adaptive mesh refinement (AMR) and, if activated, CFL-based step size control.

Algorithm 1 High-level overview of a time integration step in the Julia
package OrdinaryDiffEq.jl

i: Compute preliminary time step update u
n+1 and the embedded solution

û
n+1 if the error-based step size control is activated using (2).

ii: If the error-based step size control is activated:

let the step size controller update the time step size;
if the time step is rejected, repeat step i with the updated time step size.

iii: Accept the new time step and update internal caches.
iv: Activate callbacks.
v: Proceed to the next time step (i.e., increment the time step numbern and

go to step i).

A more detailed overview of the time integration loop is given below in Algorithm 2, 
discussed after introducing the step size control mechanisms.

2.2  CFL‑Based Step Size Control

Explicit time integration methods for first-order hyperbolic conservation laws are subject 
to a CFL time step restriction of the form Δt ⩽ CΔx∕�max [22]. However, it is non-trivial 
to provide sharp estimates of the terms in this restriction, e.g., an appropriate value for Δx 
on curved meshes for high-order DG methods in multiple space dimensions. In general, 
the CFL-based step size control requires user estimates of the maximal local wave speeds 
�max(u

n
i
) at the degree of freedom un

i
 and the corresponding local mesh spacing Δxi . Then, 

the time step is determined as

where � is the desired CFL number. For DG methods using polynomials of degree p on 
(possibly) curved grids for the linear advection equation �tu + (a ⋅ �x)u = 0 , we follow [2, 
74] and use the estimate

(4)Δtn = � min
i

Δxi

�max(u
n
i
)
,
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where d is the number of spatial dimensions, Ji the determinant of the grid Jacobian �x� at 
node i, (J�x�j)i the contravariant basis vector in direction j at node i [54, Chapter 6], and 
2 is the size of the reference element. For nonlinear conservation laws, a is replaced by 
appropriate estimates of the local wave speeds.

2.3  Error‑Based Step Size Control

We perform the error-based step size control based on controller ideas from digital signal 
processing [36, 37, 88–90]. In particular, we use PID controllers that select a new time step 
based on

where k = min(q, q̂) + 1 , q is the order of the main method, and q̂ is the order of the 
embedded method. Because q̂ = q − 1 in our case, we have that k = q̂ + 1 = q . Moreover, 
�i are the controller parameters, � is a step size limiter, and

where m is the total number of degrees of freedom in u, and �a, �r are the absolute and 
relative error tolerances. In OrdinaryDiffEq.jl, ũ = un , while PETSc uses ũ = ûn+1 . Unless 
stated otherwise, we use equal tolerances �a = �r = ��� and the default step size limiter 
�(a) = 1 + arctan(a − 1) [91].

The decision whether the step shall be accepted or rejected is determined by the size of 
the factor multiplying the time step size Δtn in (6). The default option used for all numerical 
experiments is to accept a step whenever the limited factor is at least 0.92 . Otherwise, the 
step is rejected and the time step size Δtn is set as the new predicted step size (6). Another 
common strategy is to decide whether a step should be rejected based only on the current 
local error estimate. Söderlind and Wang [89, 91] argued why the approach we described 
here can be beneficial to reduce the amount of (unnecessary but expensive) step rejections.

To make the step size control fully automatic, we use the estimate of the initial step 
size implemented in OrdinaryDiffEq.jl from the algorithm described by Hairer et al. [38, 
p. 169]. �n and �n−1 are initially set to one (for n = 0).

A more detailed overview of the time integration loop including additional aspects 
about the step size control and step rejections is shown in Algorithm 2. Parameters such 
as the threshold 0.92 used to determine whether a step should be accepted or the limiting 
threshold wmin used in Algorithm 2 are based on recommendations in reference works such 
as [38, Sect. IV.2] and [12, Sect. 371]; we always use their default values and do not con-
sider them as user-facing parameters that need to be chosen manually.

(5)
Δxi

�max(u
n
i
)
=

2

p + 1

Ji
∑d

j=1
�(J�x�j)i ⋅ a�

,

(6)Δtn+1 = �
(
�
�1∕k

n+1
��2∕k
n

�
�3∕k

n−1

)
Δtn,

(7)�n+1 =
1

wn+1

, wn+1 =

⎛
⎜
⎜
⎝

1

m

m�

i=1

�
un+1
i

− ûn+1
i

�a + �r max{�un+1
i

�, �ũi�}

�2⎞
⎟
⎟
⎠

1∕2

,
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Algorithm 2 High-level overview of a time integration loop using explicit
RK methods with embedded error estimator and PID controllers in
OrdinaryDiffEq.jl and deviations in PETSc/TS

i: Initialize time t ← 0, time step number n ← 0, and initial state u .
0

ii: Initialize PID controller with ε0 ← 1, ε−1 ← 1.
iii: Initialize ∆t0 = ∆̃t with a given value or the algorithm of [38, p. 169].
iv: Initialize accept step ← false
v: while t < T do
vi: if accept step then � callbacks can change accept step
vii: accept step ← false � prepare for the next step
viii: t ← t̃
ix: ∆tn+1 ← ∆̃t
x: n ← n+ 1
xi: else
xii: ∆tn ← ∆̃t
xiii: end if
xiv: if t+∆tn > T then
xv: ∆tn ← T − t
xvi: end if
xvii: Compute u

n+1 and û
n+1 with time step ∆tn

xviii: wn+1 ←

√√√√ 1
m

m∑

i=1

(
u
n+1
i −û

n+1
i

τa+τr max
{∣∣un+1

i

∣∣,
∣∣ũi

∣∣}
)2

xix: � ũ = u
n in OrdinaryDiffEq.jl, ũ = û

n+1 in PETSc
xx: wn+1 ← max{wn+1, wmin}
xxi: � wmin ≈ 2.2× 10−16 in OrdinaryDiffEq.jl, = 1.0× 10−10 in PETSc
xxii: εn+1 ← 1/wn+1

xxiii: dt factor ← κ
(
ε
β1/k
n+1 ε

β2/k
n ε

β3/k
n−1

)
� default κ(a) = 1 + arctan(a− 1)

xxiv: ∆̃t ← dt factor ·∆tn
xxv: if dt factor accept safety then � default accept safety = 0.81
xxvi: accept step ← true
xxvii: else
xxviii: accept step ← false
xxix: end if
xxx: if accept step then
xxxi: t̃ ← t+∆tn
xxxii: if t̃ ≈ T then � within 100 units in last place in OrdinaryDiffEq.jl
xxxiii: t̃ ← T
xxxiv: end if
xxxv: Apply callbacks � AMR, CFL-based control in OrdinaryDiffEq.jl
xxxvi: end if
xxxvii: end while
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2.4  Importance of Controller Parameters

The RK pair (2) and the PID controller (6) must be developed together to obtain good 
results. In particular, semi-discretizations of conservation laws limited by stability should 
be integrated using a combination of RK pair and controller leading to a stable step size 
control, based on the test equation [40]; see also [39, Sect. IV.2] and [49]. This has been 
demonstrated for spectral element discretizations for compressible flows in [74]. In this 
article, we use the optimized controllers of [74].

2.5  Representative Runge‑Kutta (RK) Methods Used in This Article

There is a vast amount of literature on RK methods. Many schemes have been designed as 
general-purpose methods for low- or high-tolerance applications or even specifically for 
hyperbolic conservation laws. While we have performed numerical experiments with vari-
ous schemes, we restrict this article to the following representative set of methods. First, 
we consider the general-purpose method:

• BS3(2)F , the third-order, three-stage method of [8] (BS3() in OrdinaryDiffEq.jl, 3bs 
in PETSc).

This method has been shown to be among the most efficient—if not the most efficient—
general-purpose method for the CFD problems in which we are interested [74]. Next, we 
consider methods optimized for spectral element semi-discretizations of compressible 
CFD, namely,

• RDPK3(2)5F[3S
∗
+] , the third-order, five-stage method of [74] (RDPK3SpFSAL35() 

in OrdinaryDiffEq.jl);
• RDPK4(3)9F[3S

∗
+] , the fourth-order, nine-stage method of [74] (RDPK3SpFSAL49() 

in OrdinaryDiffEq.jl).

Finally, we consider the strong stability preserving (SSP) method:

• SSP3(2)4[3S∗+] , the third-order, four-stage SSP method of [57] with embedded method 
of [21] and efficient implementation and step size controller of [74] (SSPRK43() in 
OrdinaryDiffEq.jl).

3  Robustness Under Change of Mesh Structure

Both CFL- and error-based step size controls come with parameters that must be chosen by 
the user, either a CFL factor � or a tolerance ��� . However, the sensitivity with respect to 
these parameters differs significantly. The CFL factor � influences the time step sizes—and 
thus the efficiency—linearly, while the tolerance ��� has roughly a logarithmic influence. 
Thus, it is arguably easier to choose an appropriate tolerance than an optimal CFL factor.



 Communications on Applied Mathematics and Computation

1 3

Moreover, in the stability limited regime, it is often convenient to use the error-based 
step size control, since there is usually a range of tolerances resulting in the same number 
of right-hand side (RHS) evaluations a manually optimized CFL-control could achieve at 
best. Furthermore, an optimal CFL factor � depends on the mesh. Thus, it can vary when 
introducing curved coordinates compared to a uniform grid. This was already demonstrated 
for a 2D linear advection equation in [74, Sect. 3]. Here, we extend this demonstration to 
the nonlinear compressible Euler equations of an ideal gas in d = 3 space dimensions given 
by

where � is the density, v the velocity, �e the total energy, and p the pressure given by

with the ratio of specific heats � = 1.4 . Specifically, we consider the classical inviscid Tay-
lor-Green vortex with the initial data1

where Ma = 0.1 is the Mach number. We consider the domain [−π, π]3 with periodic bound-
ary conditions and meshes with 8 elements per coordinate direction. We apply entropy-
dissipative DG methods with polynomials of degree p = 3 using a local Lax-Friedrichs 
flux at interfaces and the flux of [75, 80, 81] in the volume terms. We integrate the semi-
discretizations in the time interval [0, 10].

We consider two meshes, a uniform Cartesian mesh and a curved mesh that heavily 
warps the Cartesian reference coordinates (�, �, � ) ∈ [−1, 1]3 to the desired mesh in physi-
cal coordinates (x, y, z) with the mapping

which has been adapted from [17]. The curved mesh and the initial pressure are visualized 
in Fig. 1.

(8)�t

⎛
⎜
⎜
⎝

�

�vi
�e

⎞
⎟
⎟
⎠
+

d�

j=1

�xj

⎛
⎜
⎜
⎝

�vj
�vivj + p�ij
(�e + p)vj

⎞
⎟
⎟
⎠
= 0,

(9)p = (� − 1)
(
�e −

1

2
�v2

)
,

(10)

{
�0 = 1, v0

1
= sin(x1) cos(x2) cos(x3), v

0

2
= − cos(x1) sin(x2) cos(x3), v

0

3
= 0,

p0 =
�0

Ma2�
+ �0

cos(2x1) cos(2x3)+2 cos(2x2)+2 cos(2x1)+cos(2x2) cos(2x3)

16
,

(11)

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

y = � +
Ly

8

�
cos(3π(� − cx)∕Lx) cos(π(� − cy)∕Ly) cos(π(� − cz)∕Lz)

�
,

x = � +
Lx

8

�
cos(π(� − cx)∕Lx) cos(4π(y − cy)∕Ly) cos(π(� − cz)∕Lz)

�
,

z = � +
Ly

8

�
cos(π(x − cx)∕Lx) cos(2π(y − cy)∕Ly) cos(π(� − cz)∕Lz)

�
,

Lx = Ly = Lz = 2π, cx = cy = cz = 0,

1 We use a superscript 0 to denote the initial data.
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The required number of RHS evaluations for the selected, representative RK methods 
is shown in Fig.  2, for CFL-based and error-based step size controls. All RK meth-
ods show the same qualitative behavior on both grids. The step size for this problem 
is largely limited by the stability, resulting in a range of tolerances yielding the opti-
mal number of RHS evaluations one can also achieve by tuning the CFL factor manu-
ally (maximizing � to three significant digits so that the simulations do not crash). This 
range of tolerances spans up to five orders of magnitude. For looser tolerances, the sim-
ulations may crash due to positivity issues, typically in the first few time step. Stricter 
tolerances let the controller detect an accuracy-limited regime and increase the number 
of RHS evaluations accordingly. This happens at looser tolerances for SSP3(2)4[3S∗+] 
than for the other methods, since SSP3(2)4[3S∗+] is only optimized for the SSP coeffi-
cient, while the other methods are also constructed to minimize the principal truncation 
error. Since all methods are of the same order of accuracy, the slope of the increasing 
number of RHS evaluations is the same.

Fig. 1  Initial pressure of the 
compressible Euler equations for 
the inviscid Taylor-Green vortex 
on a slice of the curved mesh

(a) Cartesian mesh (b) Curved mesh

Fig. 2  Number of ODE RHS evaluations for representative RK methods using error-based (markers) and 
CFL-based (lines) step size control. The CFL factors were tuned manually to be as large as possible with-
out crashing the simulation. Note that the optimized CFL factors are between 55% and 74% larger on the 
curved grid
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However, there is a significant difference between CFL-based and error-based step size 
controls when switching the mesh types. Indeed, the CFL factor can be increased between 
55% (for BS3(2)3F ) and 74% (for SSP3(2)4[3S∗+] ) on the curved mesh compared to the 
equivalent Cartesian mesh. In particular, choosing an optimized CFL factor from the uni-
form mesh results in the same amount of efficiency loss when the CFL factor is not tuned 
again manually from scratch. In contrast, basically, the same range of tolerances can be 
used to get the optimal number of RHS evaluations on both grids for the error-based step 
size control.

4  Change of Linear Stability Restrictions in Nonlinear Schemes

There are many shock capturing approaches for DG methods, e.g., artificial viscosity [35, 
72], replacing DG elements by finite volume subcells [28, 87], modal filtering [63, 76], or 
specially constructed invariant domain preserving methods [34, 59, 71]. Here, we use the 
a priori convex blending of high-order DG elements with finite volume subcells described 
in [42].

4.1  Linear CFL Restrictions

Shock capturing approaches in nonlinear schemes will typically change the linear CFL 
restriction on the time step for explicit time integration schemes. Here, we demonstrate this 
for some third-order schemes of the representative RK methods introduced in Sect. 2.5.

We consider the linear advection equation

in the domain [−1, 1]2 with periodic boundary conditions and velocity a = (1, 1)T∕
√
2 . 

We discretize the domain using 82 uniform elements with polynomials of degree p = 3 
on Legendre-Gauss-Lobatto nodes. We choose a fixed blending parameter � = 0.5 in the 
shock capturing scheme of [42] with the standard DG collocation spectral element method 
(DGSEM), e.g., [54], and local Lax-Friedrichs flux for the finite volume subcells. We com-
pute the spectra of the standard DGSEM scheme and the shock capturing scheme. Due 
to the fixed choice of the blending parameter, both semi-discretizations are linear and we 
compute their spectra numerically.

The spectra embedded into the stability regions of the representative RK methods are 
visualized in Fig. 3. To make it easier to compare the RK methods, the stability regions are 
scaled by the effective number of RK stages, taking the FSAL property into account. The 
spectra of the semi-discretizations are scaled by the maximal factor, so that the standard 
DGSEM spectrum is in the region of absolute stability of the RK method. Clearly, the 
(scaled) spectra of the shock capturing semi-discretizations are partially outside of the sta-
bility regions. Thus, one can expect a more restrictive CFL condition than for the standard 
DGSEM schemes.

These linear CFL restrictions predict an approximately one-quarter bigger CFL num-
ber for standard DGSEM discretizations compared to the shock capturing variants for 
BS3(2)3F and RDPK3(2)5F[3 S

∗
+] . For these time integration methods, the SC spectra 

extend significantly to the left-half of the complex plane outside of the stability regions, in 

(12)�tu(t, x) +

2∑

j=1

aj�ju(t, x) = 0
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particular near the negative real axis. The effect is qualitatively similar but quantitatively 
less pronounced for SSP3(2)4[3S∗+] (ca. 5% instead of more than 20%).

4.2  Application to Nonlinear Magnetohydrodynamics: Orszag‑Tang Vortex

Next, we apply the representative time integration methods to entropy-dissipative semi-
discretizations of the ideal generalized Lagrange multiplier (GLM) magnetohydrodynam-
ics (MHD) equations [9, 25] for the Orszag-Tang vortex setup [66]. Specifically, we use the 
initial condition

in the domain [0, 1]2 with periodic boundary conditions, where � is the density, v the veloc-
ity, p the pressure, B the magnetic field, and � the Lagrange multiplier to control diver-
gence errors. The ideal GLM-MHD equations with ratio of specific heats � = 5∕3 and 
divergence cleaning speed ch = 1 are discretized on a uniform mesh with 26 = 64 elements 
per coordinate direction and polynomials of degree p = 3 . We use the shock capturing 
method of [42] with the entropy-conservative numerical flux of [44] and a local Lax-Frie-
drichs flux at interfaces and for finite volume subcells, both with the nonconservative Pow-
ell source term. We use the product of density and pressure as the shock indicator variable 
with blending parameters �max = 0.5 and �min = 0.001.

As shown in Fig.  4, the flow and its numerical approximation remain smooth in its 
initial phase. Between t = 0.1 and t = 0.2 , the shock capturing indicator detects troubled 
cells and activates the finite volume shock capturing mechanism. At the final time, several 
shocklets are visible in the approximation.

We recorded the time step sizes and effective CFL numbers, i.e., the CFL factor com-
puted a posteriori based on the time step size chosen by the error-based step size con-
troller, after every accepted time step for some representative RK methods. The toler-
ance is set to ��� = 10−4 in all cases with the error-based step size control. For the 
CFL-based step size control, we bisected the maximal CFL number without blow-up 

(13)

{
�0 = 1, v0

1
= − sin(2πx2), v0

2
= sin(2πx1), v0

3
= 0, p0 = 1∕� ,

B0

1
= − sin(2πx2)∕� , B0

2
= sin(4πx1)∕� , B0

3
= 0, �0 = 0,

(a) BS3(2)3F (b) RDPK3(2)5F[3S*+] (c) SSP3(2)4[3S*+]

Fig. 3  Spectra of DGSEM and shock capturing (SC) semi-discretizations of the linear advection equation 
are embedded into the stability regions of some representative RK methods. The stability regions are scaled 
by the effective number of stages of the RK methods (taking the FSAL property into account). The spectra 
of the semi-discretizations are scaled by the maximal factor, so that the standard DGSEM spectrum is in the 
region of absolute stability



 Communications on Applied Mathematics and Computation

1 3

to three significant digits. The results are shown in Fig. 5. Clearly, the time step size of 
the CFL-based approaches does not vary significantly in time. Thus, the estimated CFL 
restriction is nearly constant. However, the nonlinear schemes activate shock captur-
ing mechanisms between t = 0.1 and t = 0.2 . Thus, the estimated linear CFL restriction 
should become more severe as discussed in Sect. 4.1. This can be observed also for the 
error-based step size control; all RK methods use larger time steps initially until the 
shock capturing part is activated. Then, the error-based step size control yields approxi-
mately the maximal step size also used by the CFL-based step size control with manu-
ally tuned CFL number. In particular, the initial time step size is approximately one-
quarter bigger with the error-based step size control (after the controller has adapted 
the time step size from the automated initial guess). During the full simulation, the 
error-based step size control results in the following performance improvements based 
on the number of function evaluations (see also Table 1): 13% for BS3(2)3F , 11% for 
RDPK3(2)5F[3S

∗
+] , and 6% for SSP3(2)4[3S∗+].

While the quantitative numbers for BS3(2)3F and RDPK3(2)5F[3S
∗
+] fit very well to 

the linear analysis, one could expect that the initial advantage of SSP3(2)4[3S∗+] with 
the error-based step size control should be smaller, since the stability region is less opti-
mal for high-order DGSEM and relatively better suited for low-order shock capturing 
methods. First, we do not necessarily expect that such a linear analysis is quantitatively 

Fig. 4  Evolution of the density and the shock capturing indicator (SCI) computed using SSP3(2)4[3S∗+] 
and entropy-dissipative shock capturing semi-discretizations of the ideal GLM-MHD equations for the 
Orszag-Tang vortex
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correct for general nonlinear problems, although it was shown to behave very well in 
applications [70]. Second, the shock capturing mechanism also changes the behavior of 
the ODE RHS, usually reducing the smoothness of the spatially discrete system, which 
also affects step size control.

As expected, the method RDPK3(2)5F[3S
∗
+] optimized for spectral element dis-

cretizations performs better than the general-purpose method BS3(2)3F and uses 15% 
less function evaluations (with the error-based step size control). For this problem 
with a significant amount of shock capturing, SSP3(2)4[3S∗+] with error-based step 
size performs even better and uses additionally 16% less function evaluations than 
RDPK3(2)5F[3S

∗
+].

In summary, the results of this section demonstrate that the error-based step size 
control can react robustly and efficiently to varying linear CFL restrictions in nonlinear 

(a) BS3(2)3F (b) RDPK3(2)5F[3S*+] (c) SSP3(2)4[3S*+]

(d) BS3(2)3F (e) RDPK3(2)5F[3S*+] (f) SSP3(2)4[3S*+]

Fig. 5  Effective CFL numbers (first row) and time step sizes (second row) of some representative RK meth-
ods applied to entropy-dissipative shock capturing semi-discretizations of the ideal GLM-MHD equations 
for the Orszag-Tang vortex

Table 1  Performance of representative RK methods with default error-based and manually tuned CFL-
based step size controllers: number of function evaluations (#FE), accepted steps (#A), and rejected steps 
(#R) for the Orszag-Tang vortex with entropy-dissipative shock capturing semi-discretizations

Scheme � ���/� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) ��� = 10−4 2 187 724 4
� = 0.69 2 506 835

RDPK3(2)5F[3S
∗
+] (0.70, − 0.23, 0.00) ��� = 10−4 1 863 368 4

� = 1.38 2 091 418
SSP3(2)4[3S∗+] (0.55,− 0.27, 0.05) ��� = 10−4 1 550 384 3

� = 1.40 1 648 412
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schemes. In particular, they usually require less parameter tuning while still achieving 
optimal performance. For this problem with a significant amount of shock capturing 
mechanisms, the strong stability preserving method SSP3(2)4[3S∗+] performs well.

5  Initial Transient Period: Cold Start of a Simulation

When performing a cold start of a demanding CFD simulation, e.g., by initializing the flow 
around objects with free stream values, the initial transient period often requires smaller 
time steps than the fully developed simulation. For demanding simulations with positivity 
issues for high-order spatial schemes used in this section, we apply SSP time integration 
methods.

5.1  Double Mach Reflection of a Strong Shock

First, we consider the double Mach reflection of Woodward and Colella [97]. We set up an 
initial grid with 80 uniform elements that is adaptively refined during the simulation using 
p4est [11]. We use the shock capturing approach of [42] with DG elements using poly-
nomials of degree p = 4 and the entropy-conservative numerical flux of  [75, 80, 81]  in 
the volume terms and a local Lax-Friedrichs flux at interfaces and finite volume subcells. 
AMR is triggered every two time steps and the positivity-preserving limiter of [99] for 
density and pressure is applied after every RK stage. We apply SSP3(2)4[3S∗+] to inte-
grate the system in time t ∈ [0, 0.2] . The complete setup can be found in the reproducibility 
repository [79]. Figure 6 shows the density and the mesh at the final time.

Figure 7 shows the evolution of the time step sizes and the effective CFL number. There 
is an initial transient period of ca. 100 time steps where both the time step size and the 
effective CFL number are much smaller than in the remaining simulation. This small ini-
tial step size is selected by the automatic detection algorithm and the error-based step size 
control, and no manual intervention is necessary. The same simulation setup run with the 
CFL-based step size control crashes in the first few time steps, even with a small CFL 
number of � = 0.01 . The initial transient period can be captured with even smaller CFL 
numbers, but running the simulation afterwards in a reasonable amount of time required 
adapting the CFL factor. In contrast, the error-based step size control can be used with the 
same parameters throughout the simulation.

5.2  Astrophysical Mach 2 000 Jet

Next, we consider a simulation of an astrophysical Mach 2 000 jet using the ideal com-
pressible Euler equations with ratio of specific heat � = 5∕3 based on the setup of [60]. 
Specifically, we use the initial condition

in the domain [−0.5, 0.5] equipped with periodic boundary conditions in the y-direction 
and Dirichlet boundary conditions using the initial data in the x-direction except for t > 0 , 
x =− 0.5, and y ∈ [− 0.05, 0.05], where we use boundary data (denoted by a superscript b)

(14)�0 = 0.5, v0
1
= 0, v0

2
= 0, p0 = 0.417 2
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(a) Density

(b) Mesh

Fig. 6  Density and mesh at the final time of the simulation of the Woodward-Colella double Mach reflec-
tion using SSP3(2)4[3S∗+] applied to entropy-dissipative shock capturing semi-discretizations with positiv-
ity-preserving limiters and adaptive mesh refinement

(a) Dependence on time step number (b) Dependence on time

Fig. 7  Time step sizes and effective CFL numbers of SSP3(2)4[3S∗+] applied to entropy-dissipative shock 
capturing semi-discretizations with positivity-preserving limiters and adaptive mesh refinement for the dou-
ble Mach reflection problem
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We use an initially uniform mesh with 64 elements per coordinate direction and polynomi-
als of degree p = 3 . We use the shock capturing approach of [42] with the entropy-conserv-
ative numerical flux of [75, 80, 81]  in the volume terms and a local Lax-Friedrichs flux at 
interfaces and finite volume subcells. After every time step, we apply adaptive mesh refine-
ment. Moreover, we apply the positivity-preserving limiter of [99] for density and pressure 
after every RK stage. We integrate the semi-discrete system in time using SSP3(2)4[3S∗+] 
for t ∈ [0, 10−3] . The complete setup can be found in the reproducibility repository [79].

Figure 8 shows a snapshot of the numerical solution and the adapted grid at the final 
time t = 10−3 . While the initial condition is given by uniform free stream values, the 
boundary condition (15) changes the numerical approximation rapidly in time. Conse-
quently, the mesh is refined over time and adapts to the solution structures.

Figure 9 shows the evolution of the time step for this demanding simulation. The initial 
time step must be very small—of the order Δt ≈ 10−12—to allow the simulation to run. 
For this setup, we set Δt = 10−12 initially; other choices are also possible and are adapted 
to similar values automatically by the controller, but the fully automatic initial guess is not 
sufficient in this case.

(15)�b = 5, vb
1
= 800, vb

2
= 0, pb = 0.417 2.

(a) Density (b) Mesh

Fig. 8  Density and mesh at the final time of the simulation of an astrophysical Mach 2 000 jet using 
SSP3(2)4[3S∗+] applied to entropy-dissipative shock capturing semi-discretizations with positivity-preserv-
ing limiters and adaptive mesh refinement

(a) Dependence on time step number (b) Dependence on time

Fig. 9  Time step sizes and effective CFL numbers of SSP3(2)4[3S∗+] applied to entropy-dissipative shock 
capturing semi-discretizations with positivity-preserving limiters and adaptive mesh refinement for the 
astrophysical Mach 2 000 jet
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The initial transient period lasts for ca. 100 time steps where the error-based step size 
controller increases the time step size gradually. Afterwards, the time step size plateaus. 
Handling such an initial transient period is difficult for standard CFL-based step size con-
trollers. Initially, a CFL factor of � ≈ 10−9 is required; � = 10−8 results in a blow-up of the 
simulation. One could implement a more complicated CFL-based controller adapting the 
CFL factor in the initial transient period or restart the simulation after ca. 100 time steps 
with a larger CFL factor. However, no such additional techniques are required for the error-
based step size control, making it easier to use in this case.

5.3  Delta Wing

The next test case setup approximates the solution of the compressible Navier-Stokes equa-
tions. We consider an industrially relevant simulation of a 65◦ swept delta wing at a Mach 
number Ma = 0.9 , a Reynolds number Re = 106 (based on the mean aerodynamic chord), 
and setting the angle of attack to AoA = 13

◦ . The geometry was proposed by Hummel and 
Redeker [47] for the Second International Vortex Flow Experiment (VFE-2) and manu-
factured based on an NASA wing geometry that served as reference configuration [20]. 
We consider the flow past the leading-edge configuration with a medium radius leading 
edge rLE∕c̄ = 0.001 5 , where c̄ = 0.653m . The delta wing has a mean aerodynamic chord 
of � = 0.667m , a root chord length of cr = 1.47� , and a wing span of b = 1.37� . The sting 
present in the wind tunnel testing is kept downstream as part of the geometry up to the 
position x1∕cr = 1.758 , where the x1 Cartesian coordinate points in the streamwise direc-
tion, as shown in the left part of Fig. 10.

For this test, we use the hp-adaptive entropy-stable solver SSDC [67], which is able 
to deliver numerical results in good agreement with experimental data. Entropy-stable 
adiabatic no-slip wall boundary conditions [23] are applied to the wing and sting sur-
faces, whereas freestream far-field boundary conditions are applied at the inlet and out-
let planes. Due to the symmetry of the problem in the span-wise direction, half span of 
the flow is modeled through a symmetry boundary condition. On the rest of the bound-
ary planes, entropy-stable inviscid wall boundary conditions [69] are prescribed. The 

Fig. 10  Solution polynomial degree distribution, p, computational domain and boundary mesh elements for 
the 65◦ swept delta wing test case [67]
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grid consists of ≈ 9.2 × 104 hexahedral elements. It is subdivided into three blocks, as 
shown in the right part of Fig. 10, with each block corresponding to a different solu-
tion polynomial degree p. In particular, we use p = 2 in the far-field region, p = 5 in 
the region surrounding the delta wing and its support, and p = 3 elsewhere. Given the 
degree of the solution and the number of elements in each block, the total number of 
degrees of freedom (DOFs) is ≈ 1.435 × 107.

The flow around a delta wing is peculiar. When the angle of attack exceeds 7 ◦ , typi-
cally, flow separation occurs at the leading edge. The roll-up of the leading-edge vor-
tices induces low pressure on the upper surface of the wing and enhances the lift. Fig-
ure 11 shows the instantaneous pressure coefficient distribution and streamlines colored 
by the velocity magnitude at t = 0.05.

Results of simulations using some representative RK methods are shown in Fig. 12. 
For this cold start of the simulation with free stream values, all methods begin with 
a conservative estimate of the time step size. The error-based step size controllers 
increase the time step size in the first few time steps and reach an asymptotically con-
stant step size after a few hundred time steps.

The effective CFL number shown in Fig. 12 is basically proportional to the time step 
size itself. Running SSDC with the CFL-based step size control requires a CFL factor 
that is (at least initially)

Fig. 11  Instantaneous pressure coefficient distribution and streamlines colored by the velocity magnitude at 
t = 0.05 for the 65◦ swept delta wing test case [67] (left: top view; right: bottom view)
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• 13% smaller for BS3(2)3F,
• 21% smaller for RDPK3(2)5F[3S

∗
+],

• 32% smaller for SSP3(2)4[3S∗+],

than the asymptotic CFL factor to avoid a blow-up of the simulation. The required number 
of RHS evaluations and rejected steps are listed in Table 2.

(a) BS3(2)3F (time step number) (b) BS3(2)3F (physical time)

(c) RDPK3(2)5F[3S*+] (time step num-
ber)

(d) RDPK3(2)5F[3S*+] (physical time)

(e) SSP3(2)4[3S*+] (time step number) (f) SSP3(2)4[3S*+] (physical time)

Fig. 12  Effective CFL numbers and time step sizes depending on the time step index (left column) and 
physical time (right column) of some representative RK methods applied to entropy-dissipative semi-discre-
tizations of the compressible Navier-Stokes equations for the delta wing setup
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5.4  NASA Common Research Model

The NASA common research model (CRM) was conceived in 2007. Its aerodynamic 
design was completed in 2008, responding to needs broadly expressed within the US and 
international aeronautics communities for modern/industry-relevant geometries coupled 
with advanced experimental data for applied computational fluid dynamic validation stud-
ies [82]. Here, we consider the compressible Navier-Stokes equations for a flow over the 
NASA CRM at an angle of attack of 10◦ , a Mach number Ma = 0.85 , and a Reynolds num-
ber Re = 5 × 106.

The computational domain contains 12.8 × 106 hexahedral elements with a maximum 
aspect ratio of approximately 105. Entropy-stable adiabatic no-slip wall boundary condi-
tions [23] are applied to the aircraft, whereas freestream far-field boundary conditions are 
applied at the inlet and outlet planes. We set a solution polynomial degree p = 3 in the 
whole domain. Given the degree of the solution and the number of cells, the number of 
DOFs is ≈ 7.68 × 108 . A zoom of the mesh near the surface of the right wing and the 
nacelle is shown in Fig. 13.

Results of simulations using some representative RK methods are shown in Fig.  14. 
Again, all methods use a conservative estimate of the initial time step size Δt , which then 
increases Δt monotonically in the first few hundred time steps and reaches an asymptoti-
cally approximately constant step size afterwards. The effective CFL number shown in 
Fig. 14 is, again, basically proportional to the time step size itself. Running SSDC with the 
CFL-based step size control requires a CFL factor that is (at least initially)

Table 2  Performance of representative RK methods with error-based step size controllers: number of func-
tion evaluations (#FE), accepted steps (#A), and rejected steps (#R) for the delta wing setup up to time 
t = 0.015

Scheme � ��� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) 10−8 17 641 5 875 4
RDPK3(2)5F[3S

∗
+] (0.70, − 0.23, 0.00) 10−8 14 963 2 989 3

SSP3(2)4[3S∗+] (0.55, − 0.27, 0.05) 10−8 13 392 3 344 4

Fig. 13  Zoom of the mesh for 
the NASA CRM generated at 
KAUST
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(a) BS3(2)3F (time step number) (b) BS3(2)3F (physical time)

(c) RDPK3(2)5F[3S*+] (time step num-
ber)

(d) RDPK3(2)5F[3S*+] (physical time)

(e) SSP3(2)4[3S*+] (time step number) (f) SSP3(2)4[3S*+] (physical time)

Fig. 14  Effective CFL numbers and time step sizes depending on the time step index (left column) and 
physical time (right column) of some representative RK methods applied to entropy-dissipative semi-discre-
tizations of the compressible Navier-Stokes equations for the NASA common research model

Table 3  Performance of representative RK methods with error-based step size controllers: number of func-
tion evaluations (#FE), accepted steps (#A), and rejected steps (#R) for the NASA common research model 
up to time t = 0.004

Scheme � ��� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) 10−8 5 874 1 958 0
RDPK3(2)5F[3S

∗
+] (0.70, − 0.23, 0.00) 10−8 4 610 922 0

SSP3(2)4[3S∗+] (0.55, − 0.27, 0.05) 10−8 5 920 1 480 0
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• 16% smaller for RDPK3(2)5F[3S
∗
+],

• 9% smaller for SSP3(2)4[3S∗+],

than the asymptotic CFL factor to avoid a blow-up of the simulation. For BS3(2)3F , the 
asymptotic CFL factor from the error-based step size control can be chosen for the complete 
simulation. The required number of RHS evaluations and rejected steps are listed in Table 3.

To conclude this test case, we highlight that the error-based controller yields a substantially 
higher level of robustness for this industry-relevant test case under a change of mesh structure. 
To verify that, we simulate the same flow problem using the mesh illustrated in Fig. 15. This 
new mesh is one of the grids provided for the fifth high-order workshop held at Ceneaero, Bel-
gium, and it corresponds to the mesh tagged as “CRM-WB-a2.75-Coarse-P2A”. When the 
CFL-based controller is used, the target CFL number is set to the effective asymptotic value 
obtained from the previous simulations with the mesh shown in Fig. 13, i.e., approximately 
3.6 for all three RK methods (see Fig. 14). The simulations run successfully to the final time 
for all the three time integration methods tested, i.e., BS3(2)3F , RDPK3(2)5F[3S

∗
+] , and 

SSP3(2)4[3S∗+] , when the error-based time step controller is used. On the contrary, all simula-
tions fail when we choose the CFL-based time step controller. The reason is simple, the effec-
tive asymptotic value of the CFL number for this new mesh is approximately a factor of three 
smaller than the value set, i.e., ≈ 1.2 . This indicates that the CFL-based controller is not suf-
ficiently robust under a change of mesh. In many cases, we could mitigate the instability by 
choosing a “very small value” for the target CFL number, but this would yield a very inefficient 
and computationally expensive time advancement of the simulation.

6  Change of Variables: Dissipative Methods Using an Entropy 
Projection

Whenever a semi-discretization is not strictly a collocation method, there are some trans-
formations between the basic solution variables evolved in time and nodal values required 
to compute fluxes, e.g., methods using modal coefficients [16, 62], entropy variables as 
primary unknowns [43, 46], staggered grid methods [56, 68], and DG difference methods 
[98]. Here, we apply entropy-stable Gauss methods [17] available in Trixi.jl [78, 85] with 
efficient implementations [77]. While these schemes are more complex than collocation 

Fig. 15  Zoom of the CRM-WB-
a2.75-Coarse-P2A mesh for the 
NASA CRM provided by the 
fifth high-order workshop [13]
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methods due to the entropy projection, they also possess favorable robustness properties for 
multidimensional simulations of under-resolved compressible flows with variable density 
and small-scale features [18].

We consider a Kelvin-Helmholtz instability of the 2D compressible Euler equations of 
an ideal gas with ratio of specific heats � = 1.4 as in [18]. The domain [−1, 1]2 is equipped 
with periodic boundary conditions and the simulation is initialized with

where A is the Atwood number parameterizing the density contrast and

is a smoothed step function. We apply Gauss methods with 32 elements per coordinate 
direction and polynomials of degree p = 3 . We choose the entropy-conservative flux 
of [75, 80, 81]  for the volume terms and a local Lax-Friedrichs flux at surfaces. We apply 
several representative RK methods to evolve the resulting entropy-dissipative semi-discre-
tizations in time t ∈ [0, 5].

6.1  Mild Initial Conditions with Low Atwood Number

Table  4 shows a summary of the performance statistics of some representative RK 
methods for a low Atwood number A = 3∕7 . The CFL number � was maximized man-
ually up to three significant digits (so that the simulations did not crash). We used 
time integration methods with controllers recommended in [74] and a default tolerance 
��� = 10−4 ; we set ��� = 10−5 for RDPK4(3)9F[3S

∗
+] , since the simulation crashed for 

the looser default tolerance.
The total number of function evaluations and time steps is always smaller with 

the error-based step size control in this example, usually around 5%. In addition, the 

(16)

⎧
⎪
⎨
⎪
⎩

�1 = 1, �2 = �1
1 + A

1 − A
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sin(2πx),

(17)B(x, y) = tanh(15y + 7.5) − tanh(15y − 7.5)

Table 4  Performance of representative RK methods with default error-based and manually tuned CFL-
based step size controllers: number of function evaluations (#FE), accepted steps (#A), and rejected steps 
(#R) for the Kelvin-Helmholtz instability with low Atwood number A = 3∕7 and entropy-dissipative Gauss 
collocation semi-discretizations using entropy projections

Scheme � ���/� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) ��� = 10−4 7 542 2 511 2
� = 0.57 7 801 2 600

RDPK3(2)5F[3S
∗
+] (0.70, − 0.23, 0.00) ��� = 10−4 6 403 1 278 2

� = 1.10 6 856 1 371
RDPK4(3)9F[3S

∗
+] (0.38, − 0.18, 0.01) ��� = 10−5 6 537 722 4

� = 1.85 6 922 769
SSP3(2)4[3S∗+] (0.55, − 0.27, 0.05) ��� = 10−4 5 478 1 367 2

� = 1.03 5 672 1 418
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manual optimization of the CFL factor � required several simulation runs. Note that 
the optimal CFL factors are different from the ones used for the Orzsag-Tang vortex 
while the same tolerances were used. For this setup, SSP3(2)4[3S∗+] is the most effi-
cient method, followed by RDPK3(2)5F[3S

∗
+].

6.2  Demanding Initial Conditions with High Atwood Number

Increasing the density contrast makes this under-resolved test case more demanding [18]. 
Violations of positivity are more likely to occur and the sensitivity of the entropy variables 
for near-vacuum states can cause issues [98, 15]. In particular, the basic variables evolved 
in time for the Gauss methods violate positivity properties of the density/pressure around 
t ≈ 3 even for strict CFL factors such as � = 0.05 for SSP3(2)4[3S∗+] , so that a standard 
CFL-based step size control is not possible. Similar problems occur for other RK methods.

In contrast, the error-based step size control works directly in most cases, as shown in 
Table  5. We only needed to use a stricter tolerance ��� = 10−6 for RDPK4(3)9F[3S

∗
+] . 

This RK method has more stages than the other methods, making it more difficult to adapt 
quickly to changing conditions. Again, SSP3(2)4[3S∗+] is the most efficient method, fol-
lowed by RDPK3(2)5F[3S

∗
+].

7  New Systems: Convenient Exploratory Research

A key feature of error-based time stepping methods is that they require no knowledge of 
the maximum eigenvalues to select a stable explicit time step. This feature is particularly 
convenient when one wants to apply the existing numerical methods to new equation sys-
tems. To illustrate this, we consider the shallow water equations augmented with an Exner 
equation to account for interactions between the bottom topography and the fluid flow. The 
coupled system of equations in two spatial dimensions is
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Table 5  Performance of representative RK methods with default error-based and manually tuned CFL-
based step size controllers: number of function evaluations (#FE), accepted steps (#A), and rejected steps 
(#R) for the Kelvin-Helmholtz instability with high Atwood number A = 0.7 and entropy-dissipative Gauss 
collocation semi-discretizations using entropy projections

Scheme � ���/� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) 10−4 9 567 3 185 3
RDPK3(2)5F[3S

∗
+] (0.70, − 0.23, 0.00) 10−4 8 173 1 621 13

RDPK4(3)9F[3S
∗
+] (0.38, − 0.18, 0.01) 10−6 10 587 1 175 1

SSP3(2)4[3S∗+] (0.55, − 0.27, 0.05) 10−4 6 618 1 640 14
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where h(x, y,  t) is the water height, vvv(x, y, t) = (v1(x, y, t), v2(x, y, t))
T is the velocity field, 

b(x, y, t) is the evolving bottom topography, and g is the gravitational constant.
The last line in (18) is the Exner equation for the time evolution of the bottom topogra-

phy b. It contains the constant � = 1∕(1 − �) where � ∈ (0, 1) is the porosity of the bottom 
material, and the solid transport discharge qqq = (q1, q2)

T as a function of the flow velocity vvv . 
A closure model is required to describe how the bottom topography couples to the flow and 
defines the form of the qqq terms. This closure depends on the characteristics of the bottom 
material and flow, e.g., the grain size or Froude number. There exist many closure models 
for the solid transport discharge proposed and studied (analytically as well as numerically) 
in the literature; see e.g., [10, 30, 32, 64]. For the present study, we consider the simple and 
frequently used model due to Grass [32] that models the instantaneous sediment transport 
as a power law on the velocity field

In (19), the constant Ag ∈ [0, 1] accounts for the porosity of the bottom sediment layer 
as well as the effects of the grain size and is usually determined from experimental data. 
When Ag is zero, there is no sediment transport and (18) reduces to the standard two-
dimensional shallow water equations. The interaction between the bottom and the water 
flow is weak when Ag is small and strong as Ag approaches one. The factor m ∈ [1, 4] in 
the Grass model may also be determined from data; however, if one considers odd integer 
values of m, then (19) can be differentiated and the model remains valid for all values of 
the velocity field vvv . For the remainder of this discussion, we will take m = 3 and the solid 
transport discharge will take the form

For the particular closure model (20), we investigate the flux Jacobian of the governing 
system of equations (18). This is because the choice of a stable explicit time step under a 
CFL condition requires knowledge of the fastest wave speed of the underlying system. For 
this, we compute the flux Jacobian in the x-direction, which incorporates non-conservative 
terms from the right-hand side of (18), to be

Note that the analysis and results in the y-direction are analogous, so we will only consider 
(21) for this eigenvalue analysis for time step purposes. With the chosen Grass closure 
model, it has been shown that all the eigenvalues of (21) are real and the governing system 
(18) is hyperbolic [19, 26]. The eigenvalues of the Jacobian in the x-direction are v1 and the 
three roots of the characteristic polynomial

It is possible, although unwieldy, to apply Cardano’s formula to determine the real, distinct 
roots of (22). However, an accurate estimate to the maximum wave speed from (22) is nec-
essary for the traditional CFL-based time stepping methods.
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For many applications of interest, the characteristic flow speed of the water is much 
faster than the speed of the bottom topography [19, 45, 92]. In particular, for subcritical 
flow, the value of v1 is relatively small, so it is possible to use a loose bound of the flow 
speeds with v1 ±

√
gh where 

√
gh is the surface wave speed. However, this loose bound 

applied to a CFL time step condition can result in excessive numerical diffusion that acts 
on the computed (slowly moving) bottom topography.

To approximate the solution of the shallow water equations with an Exner model (18), 
we use a DG spectral element method in space to create the semi-discretization and apply 
explicit time integration; see [95] for details. To couple the moving bottom topography 
b(x, y,  t), we use an unsteady approach where the water flow and riverbed are calculated 
simultaneously. That is, the water flow can be either steady or unsteady and the changes 
in the bed update are considered to be significant, i.e., the wave speed of the bed-updating 
equation is of a similar magnitude to the wave speeds of the water flow. For this approach, 
the system of flow and bottom evolution equations are discretized simultaneously. This 
high-order DG method applied to the shallow water equations is well balanced for static 
and subcritical moving water flow [95, 96].

As an exemplary test case, we consider the evolution of a smooth sand hill bottom 
topography in a uniform flow governed by the shallow water equations. This test case 
is a two-dimensional numerical simulation that was first proposed and analyzed by de 
Vriend [24]. It has become a common test case for benchmarking purposes in the moving 
bottom topography literature, e.g., [5, 19, 26, 45, 92], as it is easy to set up and demon-
strates the ability of a numerical scheme to capture the morphology of a bottom topogra-
phy governed with (18).

It involves the evolution of a conical sand dune in a channel with a non-erodible bottom 
on a square domain with dimensions 1 000 m × 1 000 m. The initial conditions of the flow 
variables for this test case given in conservative variables are

and the initial form of the sediment layer is given by

We set the gravitational constant to be g = 9.8m∕s2 . The porosity of the sediment material 
is � = 0.4 and the free parameter from the Grass model (20) is Ag = 0.001 . The parameter 
Ag corresponds to the coupling strength and speed of interaction between the sediment and 
the water flow [5, 45]. Taking a small value for Ag models, weak coupling and a simula-
tion must be run for a longer time period to observe significant variations in the sediment 
layer. Therefore, we take the final time of this simulation to be t = 100 h (360 000 s). The 
discharge value hv1 = 10 m2∕s from (23) gives the Froude number
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Thus, the flow is in the subcritical regime and we must set boundary conditions accord-
ingly; see, e.g., [65]. For this test case, the boundary conditions are taken to be walls on the 
top and bottom of the domain, the left is a subcritical inflow, and the right is a subcritical 
outflow. The complete setup can be found in the reproducibility repository [79].

(a) BS3(2)3F (time step number) (b) BS3(2)3F (physical time)

(c) RDPK3(2)5F[3S*+] (time step num-
ber)

(d) RDPK3(2)5F[3S*+] (physical time)

(e) RDPK4(3)9F[3S*+] (time step num-
ber)

(f) RDPK4(3)9F[3S*+] (physical time)

Fig. 16  Time step sizes and effective CFL numbers for three error-based RK methods. Left column: # time 
steps is the x-axis. Right column: time is the x-axis
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For the spatial discretization, we divide the domain � = [0, 1 000]2 into 900 Cartesian 
elements. In each element, we use polynomials of degree p = 5 in each spatial direction 
for the DG approximation. This results in 32 400 DOFs for each equation in (18). The 
classic shallow water equations for water height, momentum, and bottom topography 
terms are discretized with the well-balanced, high-order DG method described by Win-
termeyer et al. [95]. The additional Exner equation for sediment transport is discretized 
with a standard DG spectral element approximation.

We first investigate the use of the error-based time step control for this shallow water 
with sediment transport problem setup. We recorded the time step sizes and effective 
CFL numbers after every accepted time step for three representation RK methods. The 
tolerance is set to ��� = 10−7 for all error-based time stepping methods considered. All 
three time integration techniques work directly for this test case. The behavior of the 
time step size and the effective CFL number are presented in Fig. 16. Initially, the time 
step size of the three methods increases before the time step settles to a stable value as 
the physical problem becomes a quasi-steady flow where the sediment slowly evolves in 
the presence of the background flow.

We further investigate the effectiveness of the three time integrators with the error-
based step size control for this test case, as shown in Table  6. For this quasi-steady-
state configuration, we found that a stricter tolerance ��� = 10−7 for all the integration 
techniques tested performed the best in the sense of requiring a lower number of time 
steps. Here, we find that RDPK4(3)9F[3S

∗
+] is the most efficient method, followed by 

RDPK3(2)5F[3S
∗
+].

Table 6  Performance of representative RK methods with default error-based and step size controllers: num-
ber of function evaluations (#FE), accepted steps (#A), and rejected steps (#R) for a shallow water flow over 
an evolving sand dune

Scheme � ���/� #FE #A #R

BS3(2)3F (0.60, − 0.20, 0.00) 10−7 8 088 687 2 696 226 2
RDPK3(2)5F[3S

∗
+] (0.70, − 0.23, 0.00) 10−7 6 873 513 1 374 701 1

RDPK4(3)9F[3S
∗
+] (0.38, − 0.18, 0.01) 10−7 6 442 851 715 871 1

Fig. 17  Characteristic evolution of a dune-shaped sediment distribution
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We examine the expected solution behavior as well as simulation results for the sedi-
ment transport problem under consideration. As time evolves, the conical dune (24) gradu-
ally spreads into a star-shaped pattern. That is, the sediment will redistribute itself along 
a triangular shape with a particular spreading angle � and the bulk shape of the dune will 
move with a speed c0 as it spreads [24, 45]. This process is illustrated in Fig. 17.

When the Grass model is used and the interaction between the flow and sediment is 
weak, that is Ag < 0.01 , de Vriend [24] derived an analytical approximation for this spread-
ing angle. In particular, when m = 3 in the Grass model (20), this spreading angle of a 
conical dune is

Fig. 18  Projected lateral view of the approximate solution of the bottom topography b(x, y, t) that demon-
strates expected star-shaped structure of the conical sand dune at the final time

Fig. 19  Estimation of the spreading angle �num = 20.4◦ for the numerical approximation of a conical sand 
dune found by examining the iso-level 0.012 5 at the initial and final times. The theoretical prediction of the 
spreading angle for this problem setup is 21.787◦
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Next, we present simulation results obtained using RDPK4(3)9F[3S
∗
+] , which was found 

to be the most efficient. The numerical results from the other two time integration tech-
niques were similar and will not be presented. Figure  18 shows the bottom topography 
at the initial and final times. From this figure, we see that the discretization captures the 
expected star-shaped pattern of the sediment evolution.

We also estimate the spreading angle of a conical sand dune obtained for the numeri-
cal simulation [92]. This is done by examining the angle up to the iso-level 0.012 5 over 
time, as shown in Fig. 19. We are able to numerically estimate the spreading angle to be 
�num = 20.4◦ . The numerical spreading angle of the current method compares well to the 
theoretical angle (26) as well as to similar angle studies done in the literature [5, 26, 45, 
92].

We applied error-based time stepping methods to the shallow water equations aug-
mented with an Exner equation to model sediment transport. This served to demonstrate 
that it is convenient and straightforward to extend the existing code for a new system of 
equations and obtain a first set of numerical results. This was particularly useful for the 
considered shallow water Exner equations, because eigenvalue estimates for a general 
problem setup are unwieldy to obtain [19, 26]. These preliminary results for the evolu-
tion and spreading of a conical sand dune compared well to the theoretical solution behav-
ior as well as results from the literature. The development of high-order DG methods for 
sediment transport problems is the subject of ongoing research. Details about the physical 
problem setup and numerical parameters as well as all code necessary to reproduce the fig-
ures in this section are available in the reproducibility repository for this article [79].

8  Summary and Conclusions

We have compared CFL- and error-based step size controls of explicit RK methods applied 
to DG semi-discretizations of compressible CFD problems. Our numerical experiments 
demonstrate that the error-based step size control is convenient and robust in a wide range 
of applications, including industrially relevant complex geometries with curved meshes in 
multiple dimensions, shock capturing schemes, initial transient periods (cold start of a sim-
ulation), semi-discretizations involving a change of variables, and for exploratory research 
involving new systems of equations.

There are cures for some problems of the CFL-based step size control discussed in this 
article. For example, a cold start requiring an initially smaller CFL factor could run a few 
hundred time steps with a small CFL factor and use a larger CFL factor after a restart—or 
increase the CFL factor based on a user-supplied function in the first time steps. A change 
of linear stability behavior of shock capturing schemes could be handled by including 
the shock capturing indicator in the CFL-based step size control. However, this requires 
sophisticated additional mechanisms as implemented in some in-house codes. On the other 
hand, the error-based step size control worked right out of the box without further modifi-
cations for the problems considered here. It does not require special handling of many edge 
cases and comes with a reduced sensitivity with respect to user-supplied parameters.

(26)� = tan−1

�
3
√
3

13

�

≈ 21.787◦.
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While we have shown that the error-based step size control is convenient and robust in 
many applications, including industrially relevant large-scale computations of compress-
ible CFD problems, it does not come with hard mathematical guarantees. For example, 
some invariant domain preserving methods come with some robustness properties guaran-
teed under certain CFL constraints; the error-based step size control alone can usually not 
be proven to satisfy these constraints in all cases. Nevertheless, based on our experience, it 
is usually robust for suitably chosen shock capturing mechanisms.

As a byproduct of this research, we also compared several time integration methods 
for hyperbolic conservation laws and compressible flow problems. For lower Mach num-
ber flows or problems with positivity issues and/or strong shock capturing requirements, 
SSP3(2)4[3S∗+] is usually the most efficient scheme. Otherwise, RDPK3(2)5F[3S

∗
+
] and 

RDPK4(3)9F[3S
∗
+] are usually the most efficient methods, where RDPK3(2)5F[3S

∗
+] 

tends to be more robust and RDPK4(3)9F[3S
∗
+] tends to be more efficient for stricter tol-

erances. Nevertheless, BS3(2)3F is still one of the best general-purpose ODE solvers for 
problems like the ones considered in this article.

Future research includes the investigation of the error-based step size control with adap-
tive mesh refinement and stabilization techniques such as positivity-preserving limiters 
[99]. These are usually implemented as callbacks outside of the inner time integration loop 
and are thus “not seen” by error estimators. Moreover, we would like to optimize new RK 
methods including error estimators and step size controllers for compressible CFD prob-
lems in other ranges than [2], e.g., focusing on lower Mach flows and dissipative effects.
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