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Abstract

Monoclonal antibodies are biotechnologically produced proteins with various applications in research, therapeutics and diagnostics.
Their ability to recognize and bind to specific molecule structures makes them essential research tools and therapeutic agents. Sequence
information of antibodies is helpful for understanding antibody–antigen interactions and ensuring their affinity and specificity. De novo
protein sequencing based on mass spectrometry is a valuable method to obtain the amino acid sequence of peptides and proteins
without a priori knowledge. In this study, we evaluated six recently developed de novo peptide sequencing algorithms (Novor, pNovo
3, DeepNovo, SMSNet, PointNovo and Casanovo), which were not specifically designed for antibody data. We validated their ability to
identify and assemble antibody sequences on three multi-enzymatic data sets. The deep learning-based tools Casanovo and PointNovo
showed an increased peptide recall across different enzymes and data sets compared with spectrum-graph-based approaches. We
evaluated different error types of de novo peptide sequencing tools and their performance for different numbers of missing cleavage
sites, noisy spectra and peptides of various lengths. We achieved a sequence coverage of 97.69–99.53% on the light chains of three
different antibody data sets using the de Bruijn assembler ALPS and the predictions from Casanovo. However, low sequence coverage
and accuracy on the heavy chains demonstrate that complete de novo protein sequencing remains a challenging issue in proteomics
that requires improved de novo error correction, alternative digestion strategies and hybrid approaches such as homology search to
achieve high accuracy on long protein sequences.
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Introduction
Monoclonal antibodies (mAbs) are immunoglobulins of unique
specificity generated artificially in laboratories to mimic antibod-
ies produced by the immune system [1]. Their reproducibility
under certain conditions and high binding affinity to target
molecules make them essential to various diagnostic and
analytical applications in immunology, clinical chemistry, food
chemistry, environmental analysis, biochemistry, therapeutics
and medicine [2–4]. Recently, multiple authors reported how anti-
bodies lack proper classification and identification as research
tools, thereby causing a so-called reproducibility crisis [5]. The
results of multiple landmark papers could not be replicated
because mAbs often lacked crucial quality control steps for
correct characterization [6, 7]. One essential step for improving
the research quality includes the confirmation of the amino acid
sequence [8, 9]. In addition, retrieving sequence information of
antibodies is crucial for understanding the structural basis of
antibody–antigen binding, recognition and interaction [10]. The
structural basis for the specificity in protein–protein interactions
lies in the sequence diversity of antibodies. The majority of
sequence diversity focuses on the hypervariable loops within

the variable regions of antibodies, called complementarity-
determining regions (CDRs), which are mainly responsible for
the interaction between the antibody and their target structures
[10, 11]. Most established methods for antibody de novo sequencing
rely on sequencing mRNA from hybridoma cells. However, these
approaches all depend on the availability of pure clones of
antibody-producing cells [12]. Moreover, crucial posttranslational
modifications, which affect antigen binding, developability and
effector functions, cannot be detected by DNA sequencing [3].
Hence, approaches to sequence the antibody on protein level are
necessary.

Tandem mass spectrometry (MS/MS) is a powerful method
for retrieving the amino acid sequence of peptides. Typically,
in standard shotgun proteomics, protein samples are digested
with proteolytic enzymes into shorter peptides, which are
more suitable for analysis by MS/MS [13]. To obtain sequential
information from novel or unknown proteins, de novo peptide
sequencing is commonly used, which identifies peptides directly
from MS/MS spectra without relying on a sequence database [14].
Here, each amino acid is derived by computing mass differences of
ions from a fragmented peptide. As the manual characterization
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of peptides using de novo sequencing can be very time consuming
and challenging, a variety of algorithms have been developed
to differentiate signal ion peaks from noise peaks to predict
the correct peptide sequence [14–16]. Recent advances in deep
learning (DL) have marked an important milestone for database-
independent prediction of peptide sequences from MS/MS data
[16]. The encoder–decoder architecture was designed to solve
specific tasks in sequence-to-sequence learning [17]. Tran et al.
[18] employed convolutional neural networks (CNNs) to encode
mass spectra while using recurrent neural networks (RNNs)
as a decoder to predict the amino acids of peptide sequences
one by one. Their method DeepNovo outperformed state-of-
the-art methods at that time. Multiple methods have been
published based on the network architecture of DeepNovo,
namely, DeepNovo-DIA [19], SMSNet [20] and PointNovo [21]. More
recently, the transformer-based framework Casanovo showed
promising results for the prediction of peptide sequences [22].

Although peptide de novo sequencing has improved in recent
years, the full-length assembly of protein sequences poses
another challenging task. In most cases, database search
algorithms, such as MSGF+ [23], infer the correct proteins from
identified peptide sequences [24]. However, the determination
of protein sequences, which are not part of public databases,
limits the feasibility of this approach. In the case of unknown
antibodies, the variable sequence is not available and cannot
be derived from database search algorithms [25]. Hence, de
novo peptide sequencing and the assembly of the predicted
peptides are necessary for assessing the amino acid sequence of
unknown antibodies. Currently, only a few developed methods
were reported for database-independent full-length antibody
de novo sequencing and assembly, for instance, meta-SPS [26],
ALPS [27], pTa [25] and MuCS [28]. Meta-SPS utilized overlapping
fragment ion peaks from different spectra to construct meta-
contigs before de novo sequencing. Across six diverse proteins and
the aBTLA antibody, the authors observed a sequence coverage
between 68 and 99%. Nonetheless, meta-SPS faces multiple
limitations and is not combinable with recently developed de novo
sequencing algorithms [26]. Tran et al. analyzed antibodies using
PEAKS de novo [29], PEAKS DB [30] and the homology software
SPIDER [31] in a complementary way. The results from these three
algorithms serve as input for their de Bruijn assembler ALPS.
Still, despite using homology and database search algorithms,
the authors inspected a fragmented and incomplete assembly of
long antibody sequences, particularly at the variable region of the
heavy chain [27]. Thus, de novo sequencing of proteins remains a
challenging and important problem to date.

Most publications regarding new de novo peptide sequenc-
ing approaches include a performance comparison of recently
developed tools [14, 32, 33], yet, to our knowledge, there is no
published independent evaluation of different de novo sequencing
algorithms on antibody data sets. Moreover, newly developed de
novo peptide sequencing tools rarely include antibodies for bench-
marking their method in comparison to already existing tools
[20–22]. Only the authors of DeepNovo used antibodies as an
example application for their tool [18]. De novo sequencing studies
involving antibody data mostly deal with validating antibody-
specific assembly tools [25–27] or introducing alternative exper-
imental methods [12, 34]. In this study, we present a perfor-
mance evaluation of six recently developed de novo sequencing
algorithms (Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and
Casanovo), which we chose based on their availability and perfor-
mance in previous studies [14, 21, 22, 33]. In contrast to previous
studies, we evaluate de novo peptide sequencing tools on various

enzymatic antibody data sets. Furthermore, we investigate com-
mon error types, the impact of noisy spectra and missing frag-
mentation ions. To compare the ability of previously mentioned
tools to reconstruct full-length protein sequences without addi-
tional database algorithms, we employed the de Bruijn assembler
ALPS. Finally, we discuss possible solutions and the demanding
challenges of de novo antibody sequencing.

Materials and methods
Antibody data sets
We analyzed data from three publicly available antibody data sets.
The data sets were downloaded from the proteomics MS data
repositories PRIDE [35] and MassIVE [36]. Table 1 gives an overview
of the three evaluated antibody data sets, showing the reference,
available digestion, mass instrument, ionization type and frag-
ment ion resolution. The Glu-C file of IgG1-Human-LC and the
trypsin file of WIgG1-Mouse-LC were corrupted and therefore not
included in our analysis. In total, we analyzed 25 different MS/MS
experiments (Supplementary Figure S1).

Data processing
De novo sequencing methods
Table 2 provides an overview of the evaluated de novo peptide
sequencing algorithms. Furthermore, it provides information
about the algorithmic paradigm, the project website and the
corresponding reference.

Description of de novo sequencing algorithms used

Novor [37] is based on a decision tree scoring function to select
peptide predictions. pNovo 3 [38] employs a learning-to-rank
framework using gap features and predictions from pDeep [39]
to improve the scoring of peptide sequences. Novor and pNovo
3 were developed based on the spectrum-graph approach while
using extensive machine-learning algorithms for an enhanced
scoring function. DeepNovo [18] was the first approach to
incorporate the encoder–decoder paradigm for de novo peptide
sequencing. SMSNet [20] uses a similar CNN- and RNN-based
framework but additionally includes optional post-processing
and a shift layer in the encoder module. PointNovo [21] adopts
an order-invariant network structure for the prediction process
of higher-resolution data. Casanovo [22] employs a transformer-
based framework to process and predict sequences of amino acids
instead of using RNNs.

Preprocessing

Each instrument vendor uses its own file formats to store results
from MS/MS experiments. These raw files need to be converted
to open-format files to be compatible with de novo sequencing
tools [40]. We reformatted the raw MS/MS data files from the
previously mentioned data sets to Mascot Generic Format (MGF)
using ProteoWizard [41]. A MGF file stores the m/z and intensity
pairs of multiple mass spectra in a single text format. De novo
sequencing tools predict amino acid residues by accessing the
mass differences between the MS/MS peaks [14].

Parameters for de novo sequencing algorithms

We executed Novor (v.1.05) via the DeNovoGUI command-line
interface (v.1.16.6) [42]. We ran pNovo 3 (v.3.1.3) via its executable
GUI, which included pre-trained models for specific enzymes. To
perform a fair comparison between spectrum-graph-based tools
like Novor and pNovo 3, which are released only with pre-trained
models, and the DL algorithms, DeepNovo (v.PNAS), SMSNet,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac542/6955273 by R

obert Koch-Institut user on 20 Septem
ber 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac542#supplementary-data


Comprehensive evaluation | 3

Table 1. Overview of evaluated antibody data sets. For each data set, we provided the name of the data set, the ID, the mass
instrument, the ionization type, the fragment ion resolution in FWHM, a reference and the number of proteolytic enzymes in the
data set

Data set name Database ID Mass instrument Ionization type Resolution Ref. Enzymes

IgG1-Human MSV000079801 LTQ Orbitrap HCD 17 500 [27] Trypsin, chymotrypsin, asp-N,
lys-C, glu-C, proteinase K

WIgG1-Mouse MSV000079801 LTQ Orbitrap HCD 17 500 [27] Trypsin, asp-N, chymotrypsin
Herceptin PXD023419 Orbitrap Fusion Stepped HCD and

EThcD
30 000 [12] Trypsin, thermolysin, lys-N, lys-C,

glu-C, asp-N, aLP, chymotrypsin,
elastase

Table 2. Overview of all de novo sequencing tools used in this study. For each algorithm, the name of the tool, the algorithmic
paradigm, the year of the publication, the reference and the project website of the corresponding method are displayed

Software Algorithmic paradigm Year Ref. Project website

Novor Spectrum graph, machine learning, decision tree 2015 [37] rapidnovor.com/
pNovo 3 Spectrum graph, machine learning, SVM 2019 [38] i.pfind.org/
DeepNovo DL, CNN + RNN 2017 [18] github.com/nh2tran/DeepNovo/
SMSNet DL, CNN + RNN 2019 [20] github.com/cmb-chula/SMSNet/
PointNovo DL, PointNet+RNN 2021 [21] github.com/volpato30/PointNovo/
Casanovo DL, transformer 2022 [22] github.com/Noble-Lab/casanovo

PointNovo (v.0.0.1) and Casanovo (v.3.0.0), we trained all DL-based
tools on high-resolution MS/MS data from the human proteome
using the HCD library from MassIVE, which consists of 1 114 503
different peptides [36]. Training them on specific antibody data
would give DL programs an unfair advantage compared with pre-
trained software. We split the spectra into training, validation
and test sets at a ratio of 98:1:1 while making sure that the split
data sets did not share any common peptides. Each model was
trained for 10 epochs using pre-defined parameters from each
tool. We executed all tools at a precursor tolerance of 10 ppm
and fragment mass tolerance of 0.02 Da. For each algorithm,
carbamidomethylation of cysteine (C + 57.02 Da) was set as
a fixed modification. Oxidation of methionine (M + 15.99 Da)
and deamidation of asparagine and glutamine (N + 0.98 Da and
G + 0.98 Da) were set as variable modifications. DeNovoGUI and
the DL tools were executed on a Linux server machine (100 cores,
64GB RAM). We executed pNovo 3 on a Windows 64-bit computer
since the software was not supported by a Linux operating system.

Assembly of identified peptides
The predicted peptides were further processed by the de Bruijn
sequence assembler ALPS [27] to evaluate the ability of differ-
ent de novo sequencing tools to reconstruct complete protein
sequences. As described by the authors, a k-mer size of 7 ensures
a sufficiently high coverage of the amino acid sequence while
preventing repetitiveness of the resulting contigs at the same
time. ALPS takes the de novo confidence score into consideration
for the assembly, but it could generate incorrect results using
a high amount of low-confidence k-mers. The authors of Deep-
Novo recommend removing sequence contaminants from de novo
sequencing results by excluding peptides with a confidence score
below 50 to improve the quality of the assembly [18]. Since every
single de novo sequencing algorithm calculates its confidence
score in a different manner, we chose the threshold for the confi-
dence score based on the amino acid-level precision. We removed
peptide sequences below the confidence score of each tool for

which the AA precision was below 50%. This aims to filter out
low-quality predictions and, at the same time, ensures that we do
not miss correctly predicted peptides, which have been assigned
a low confidence score by the corresponding tool. We aligned the
target contigs with the ground truth antibody sequence to classify
the assembly results using BLAST [43]. Based on the alignments of
the top contigs, we calculated the protein coverage and accuracy.
The target sequence was regarded as being covered in case a
contig was aligned to the target (sub)sequence. We calculated the
accuracy by the number of correct sequence calls, which were
aligned to the target sequence.

Evaluation metrics
Database search
For validating de novo sequencing algorithms, we compared each
prediction to a pseudo-ground truth, which is commonly obtained
by database search [14,44]. Since the evaluated data sets do not
include a labeled ground truth for each spectrum, we performed
a database search using the antibody sequences as our protein
database. We used the combined results of the database algo-
rithms MS-GF+ [23] and X!Tandem [45], which were both executed
via SearchGUI (v.4.1.7) [46] and post-processed via PeptideShaker
(v.2.2.2) [47] on a 64-bit Windows computer. We filtered all result-
ing peptide-spectrum matches (PSMs) using a false discovery rate
(FDR) of 1%. The combined results of two database algorithms
and an FDR rate of 1% would generate a reliable pseudo-ground
truth for the evaluation of the de novo sequencing tools. We chose
the cleavage parameters according to the enzyme used in the
provided input file. Furthermore, the search parameters included
the same modifications and mass tolerance that we selected for
the de novo sequencing algorithms.

Recall and precision
We compared the predictions of each de novo sequencing algo-
rithm with the pseudo-ground truth peptides, which were iden-
tified by database search. Recall and accuracy were measured at
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the peptide and amino acid level. The performance at the amino
acid level was measured by matching amino acids between the
prediction and the ground truth. We applied the same evaluation
metric adapted by DeepNovo, Novor and PointNovo [18,21,37]:
amino acids were considered as matched ones if their masses
were different by <0.1 Da and if the prefix masses before them
were different by <0.5 Da.

Identification of fragment ions and noise
To evaluate the amount of noise and missing fragment ions in
each spectrum, we labeled each peak as a peptide peak or a noise
peak using the Pyteomics framework [48]. For each cleavage site,
we tried to identify eight different ion types (b, b(2+), b-NH3,
b-H2O, y, y(2+), y-NH3 and y-H2O) since all evaluated de novo
sequencing algorithms take these ion types into consideration for
retrieving the peptide sequence. If possible, we matched these ion
types to corresponding peaks in the spectra within a tolerance of
0.5 Da. Otherwise, we declared the cleavage site as missing. We
only considered noise peaks if their intensity exceeded the median
noise intensity for each data set. The number of noise peaks above
this threshold was used to calculate the noise factor, which is
defined as the ratio of the number of high-intensity peaks and
the number of fragment ion peaks. McDonnell et al. [33] applied
this approach recently in their evaluation of de novo sequencing
algorithms.

Results
Performance of de novo sequencing algorithms on
antibody data at the peptide and amino acid level
We evaluated six state-of-the-art de novo peptide sequencing algo-
rithms, namely, Novor, pNovo 3, DeepNovo, SMSNet, PointNovo
and Casanovo. For this purpose, we used the antibody data sets
described in section Antibody Data sets to measure the accu-
racy across different enzymes using metrics specified in section
Evaluation Metrics. Using three antibody data sets, we relied on
183 873 MS/MS scans, from which 23 844 peptides were identified
with database search. Peptide identifications by database tools
served as ground truth for evaluating the predictions from de
novo sequencing tools. By comparing de novo sequencing results
to this reference, we were able to identify the number of correctly
predicted amino acids and peptides for each tool.

Each algorithm generates a confidence score along the pre-
dicted sequence to reflect its quality. Setting a threshold to the
confidence score outputs different sets of predicted peptides. A
high threshold would show a small number of peptides with
high precision, but it would exclude a large part of the data
set, consequently reducing the recall. Here, we used different
thresholds of the confidence score to draw precision-recall (PR)
curves and used the area under the curve (AUC) as a summary
metric for the accuracy of de novo sequencing results. Figure 1
displays the PR curves (A–C) and the AUC (D) of de novo sequencing
tools across six different enzymes of the IgG1-Human-HC data
set. Casanovo shows the highest AUC value across four enzymatic
data sets because of its high AA precision compared with all
other algorithms. All six evaluated algorithms display an overall
higher AUC on trypsin and lys-C than on other proteases. The
performance is generally lower on the enzymatic data sets of asp-
N and chymotrypsin. The lower efficiency of non-tryptic enzymes
for the prediction of peptide sequences was reported in different
publications and had several reasons [49–51]. First, trypsin shows
a higher number of PSMs, which is caused by a bias of database
search algorithms toward peptides digested with trypsin [52].

Furthermore, peptides digested with trypsin are better suited for
HCD fragmentation since they include at least one positive charge
at each terminus, generating reliable b- and y-ion fragmentation
patterns. In contrast, non-tryptic proteases may lack positive-
charged termini, which makes it more challenging to identify
the correct peptide [53]. The AUC on asp-N, chymotrypsin, glu-
C and proteinase-K is considerably lower across all tools because
of their distinct cleavage patterns. The general low AUC across
all enzymes can be explained by the differences between the
training data and the evaluated antibodies. The DL-based tools
were not trained on antibody-specific data but on peptides from
the human proteome data, which were derived from various
experimental conditions [36]. Moreover, the evaluated data sets
include a smaller number of unique peptides compared with
available benchmarking data sets used in other studies [18, 21,
22]. The high AUC of pNovo 3 on non-tryptic peptides can be
attributed to the pre-trained models for specific enzymes. A pre-
trained enzyme-specific model was not available for proteinase-K,
which explains the low accuracy of pNovo 3 on this data set.

Figure 2 displays the total peptide recall (A), amino acid recall
(B) and amino acid precision (C) across all six enzymatic cleavages
of IgG1-Human-HC. In contrast to the results shown in Figure 1,
we used all predictions from each tool regardless of their confi-
dence score. Here, either SMSNet or PointNovo shows the highest
amino acid recall in comparison to other tools on proteinase-
K, asp-N, glu-C and lys-C (Figure 2B). Regarding the recall on
peptide level, Casanovo exhibits the highest number of correct
peptide predictions compared with all other de novo algorithms
across all enzymes demonstrating the advantage of using trans-
formers for peptide sequencing. Furthermore, Casanovo predicts
amino acids with overall superior precision (Figure 2C). As Yilmaz
et al. explained, the precursor m/z filter of Casanovo results in a
prioritization of predicting full peptide sequences over partially
correct subsequences [22]. Hence, Casanovo displays a very high
AA precision and peptide recall, whereas its recall on amino acid
level is comparable to PointNovo and SMSNet. The high accuracy
of PointNovo can be attributed to its order-invariant networks,
which have been applied for 3D recognition tasks and showed
superior performance compared with state-of-the-art methods
[54]. SMSNet profits from its shift layer, which helps to derive
amino acids from MS/MS peaks [20]. Besides differences in the
network structures, the number of fragment ions for predicting
each amino acid residue plays another important role. While
Novor and DeepNovo use eight ion types for predicting each posi-
tion (y, y(2+), y-NH2, y-H2O, b, b(2+), b-NH2 and b-H2O), SMSNet
and pNovo 3 take nine ion types into consideration for inferring
peptides from spectrum peaks. Moreover, PointNovo examines 12
ion types to calculate theoretical m/z values at each prediction
step. In contrast, the transformer-based framework of Casanovo
processes the entire set of spectrum peaks at once. pNovo 3
predicted a similar or even higher number of correct peptides
of the non-tryptic data sets asp-N and chymotrypsin than the
DL tools because of its enzyme-specific models. Furthermore,
pNovo 3 shows high accuracy on amino acid level compared
with PointNovo, SMSNet and DeepNovo (Figure 2C) because of its
extensive reranking process. Nonetheless, pNovo 3 cannot predict
amino acids with the same precision as Casanovo.

Evaluation of error types
Following the performance on peptide and amino acid level, we
evaluated the source of incorrect predictions of the different de
novo sequencing algorithms. McDonell et al. [33] reported previ-
ously that missing fragment ions and noise peaks pose a challenge
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Figure 1. The PR curves of Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo for glu-C (A), lys-C (B) and trypsin (C) of the IgG1-Human-HC
data set. The AUC of the six algorithms for each PR curve and each enzyme of IgG1-Human-HC (D).

for de novo sequencing algorithms. We observed that 90.51% of
all 23 227 validated spectra were missing at least one fragment
ion. Furthermore, we detected that 84.32% of all peaks from these
spectra were classified as noise peaks. In Figure 3, we show the
peptide recall for different numbers of missing cleavage sites and
different noise factors of all validated spectra. As expected, de
novo sequencing algorithms tend to identify a higher number of
correct peptides from spectra with a lower amount of missing
fragment ions (Figure 3A). Missing fragment ions decrease the
overall performance of all de novo sequencing tools. Nonetheless,
Casanovo displays a superior performance on spectra with up to
eight missing cleavage sites. On spectra with at least four missing
cleavage sites, all other DL-based tools show a low peptide recall
of 9.56–14.62%, whereas Casanovo performs considerably better.
Novor shows a noticeably lower performance compared with all
other algorithms.

When viewed alone, the noise factor of different spectra does
not have a strong effect on the accuracy of the de novo sequencing
algorithms (Figure 3B). As McDonell stated, this is because of the
stronger influence of the number of missing fragmentation sites
on the peptide recall of each tool. Supplementary Figure S7 shows
the impact of both the noise factor and the number of missed
cleavages on the accuracy of pNovo 3, SMSNet, PointNovo and
Casanovo. This demonstrates how a noise factor of at least 4 is
already decreasing the prediction accuracy on spectra with no
missing cleavage sites across all evaluated tools.

Furthermore, we investigated the relationship between pep-
tide length, the number of missing cleavage sites and prediction
accuracy (Figure 4). The prediction accuracy decreases from short
peptides with few missing fragmentation sites to long peptides

with a high number of missing cleavages for each algorithm. The
DL-based tools Casanovo, SMSNet and PointNovo show a higher
prediction accuracy for peptides of a greater length compared
with pNovo 3. PointNovo and SMSNet are able to learn sequence
patterns of amino acids using their long short-term memory
networks, which can overcome the issue of missing cleavage
sites [18, 21]. The transformer-based approach allows Casanovo
to process spectrum peaks as a whole and learn relationships
between amino acids because of its self-attention mechanism.
Spectrum graph-based methods show a lower peptide recall since
missing fragmentation sites increase the complexity of possi-
ble peptide predictions [14]. McDonnell et al. [33] reported that
the spectrum graph-based approach of Novor can correctly pre-
dict short subsequences of present fragment ions, in contrast to
DeepNovo, which correctly predicts more complete peptides but
fewer correct subsequences. However, even with all cleavage sites
present, the evaluated algorithms only rarely identified correct
peptides with a length of at least 18 amino acids. As expected,
the number of correct predictions was higher for peptides below
a size of 14 amino acids. Miscleavages lead to peptides of greater
length, which would overall lower the prediction accuracy.

Following the influence of peptide length on the predictive
performance, we compared the frequency of certain error types
across multiple tools. We categorized incorrect peptide sequence
predictions into 11 different error types and compared their rela-
tive amount between pNovo 3, SMSNet, PointNovo and Casanovo
across all data sets (Table 3). We observed that for pNovo 3,
SMSNet and PointNovo most errors were caused because of more
than six wrongly assigned amino acids. Among the error types
under 6 AAs, the inversion of the last 3 amino acids (PointNovo)
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Figure 2. Total recall and precision of Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo across different enzymes on IgG1-Human-HC. (A)
Recall at peptide level. (B) Recall at amino acid level. (C) Precision at amino acid level.

and the replacement of 1 AA by 1 or 2 AAs (SMSNet, pNovo 3)
appear as the most frequent origins of incorrect peptide predic-
tions. Conversely, Casanovo generated fewer predictions with a
smaller number of mismatches in relation to pNovo 3, SMSNet
and PointNovo. Again, this can be attributed to Casanovo’s precur-
sor filter, which results in a smaller fraction of errors, where more
than 6 AAs were incorrectly predicted. The number of inversions
was slightly lower on pNovo 3, demonstrating the advantage of a
re-ranking framework for improved accuracy.

Database-independent assembly of predicted
peptide sequences
To validate the predictions of different peptide de novo sequencing
tools on assembly level, we used the de Bruijn graph assembler
ALPS, which generates several contiguous sequences (contigs)
based on the de novo peptide results and their confidence
scores [27]. We compared the longest constructed contig, the
overall sequence coverage and the sequence accuracy for
three antibody samples. As described in section Assembly of
identified peptides, we considered only aligned contigs for the
calculation of sequence accuracy. The light chains are 210–219
AAs long, whereas the heavy chains of our evaluated antibodies
include over 440 AAs, which present a challenge for a complete
sequence assembly. The longest constructed contig for the
heavy chain of WIgG1 was generated by Casanovo, covering
only 83 AAs (18.82%) of the protein sequence. On the light

chain of WIgG1, the results of Casanovo were concatenated
to a contig, which covered 110 AAs (50.23%) of the entire
sequence.

Since single contigs only cover a small region of the full-
length protein, we evaluated the protein sequence coverage
using a higher number of contigs for the light chain of IgG1-
Human (Table 4). Here, we only evaluated SMSNet, PointNovo and
Casanovo, since these three tools showed a higher AA recall and
peptide recall across various enzymes and data sets compared
with DeepNovo, Novor and pNovo 3. Combined with Casanovo,
we were able to assemble 97.69% (IgG1) to 99.53% (Herceptin) of
the whole antibody sequence with an accuracy of 94.47–95.26%.
We observed a similar high sequence coverage for SMSNet (90.74–
97.20%) and PointNovo (93.15–99.07%). Interestingly, we were able
to achieve high coverage and accuracy on the light chain of WIgG1,
although we only used the enzymatic data sets of chymotrypsin
and asp-N.

Furthermore, we evaluated the assembly method on the heavy
chains of our evaluated data sets (Supplementary Table S3). Here,
we observed a lower sequence coverage and accuracy across all
tools. Using Casanovo and ALPS, we achieved a sequence coverage
of 76.39% (Herceptin) up to 93.72% (IgG1). We encountered mul-
tiple short overlapping contigs, which would make a full-length
assembly more difficult without using additional tools. Moreover,
these contigs include multiple mismatches, gaps, and were only
partly aligned to the target sequence. Still, on the light chain
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Figure 3. Total peptide recall of Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo across all data sets for different number of cleavage sites
missing (A) and different noise factors (B) of the specific spectra.

Table 3. Error types made by de novo sequencing algorithms tools pNovo 3, SMSNet, PointNovo and Casanovo on the data sets of
IgG1-Human, WIgG1-Mouse and Herceptin. Shown are the total number of predictions, total number of errors and the relative amount
of 11 different error types for each algorithm. ‘Other’ includes errors that do not fall into any other categories, e.g. ‘2 AAs replaced by 4
AAs’

Type of sequencing error pNovo 3 SMSNet PointNovo Casanovo

Number of total predictions 16 170 23 227 22 417 10 907
Number of total errors 14 860 20 554 19 240 5118
Inversion first 3 AAs (%) 5.5 5.3 5.0 11
Inversion last 3 AAs (%) 2.4 4.4 6.7 14
Inversion first and last 3 AAs (%) 0.2 0.4 1.0 0.8
1 AA replaced by 1 AA or 2 AAs (%) 10 5.4 5.6 27
2 AAs replaced by 2 AAs (%) 7.0 4.5 4.2 9.4
3 AAs replaced by 3 AAs (%) 6.1 3.7 3.6 6.1
4 AAs replaced by 4 AAs (%) 2.5 3.2 2.8 4.8
5 AAs replaced by 5 AAs (%) 2.6 2.6 2.1 2.3
6 AAs replaced by 6 AAs (%) 3.1 2.3 2.2 2.1
More than 6 AAs wrong (%) 44 57 55 10
Other (%) 14 10 10 9.9

of Herceptin, we achieved a sequence coverage of 99.53% using
Casanovo.

Despite the challenges of full de novo protein sequencing, we
were able to correctly assemble functionally important subre-
gions, namely the variable region and the CDRs, with the use of
Casanovo and ALPS (Supplementary Table S5). We identified the
corresponding CDRs for each antibody using the Natural Antibody
database [55]. The CDRs were 100% correctly predicted on the light
chain of IgG1. The heavy chain was correctly assembled except
for a single misidentification on CDR3. The incorrect sequence

assignment included mismatches between amino acids with an
identical mass (e.g. Q & GA; deamidated N & D; deamidated
Q & E). The results on the variable regions and CDRs highlight
the potential of DL-based de novo sequencing to identify unique
antibody sequences.

Discussion
In this study, we reviewed state-of-the-art de novo sequencing
algorithms and applied them to the assembly of mAbs. We
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Figure 4. Heatmap showing peptide recall for different number of missing cleavages (y-axis) and peptide lengths (x-axis). Higher peptide recall is shown
in green for pNovo 3 (A), yellow for SMSNet (B), orange for PointNovo (C) and red for Casanovo (D). Lower peptide recall is displayed in white. Spectra
are not distributed uniformly and the squares on the right and top of the plots include fewer spectra, since combinations of long peptides and a high
number of missing cleavages (top right) occur less likely.

compared the performance of six recently developed and
commonly used de novo peptide sequencing tools, namely, Novor,
pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo.

Statistical analysis on amino acid and peptide levels revealed
that the recently developed tools SMSNet, PointNovo and
Casanovo achieved a high peptide recall on different enzymatic
data sets (Figures 1 and 2; Supplementary Figures S2–S4). Similar
to previous observations [21,56], DL-based algorithms predict
a higher amount of correct peptide sequences compared with
conventional spectrum-graph-based methods. A crucial factor
for retrieving the correct peptide sequence is the resolution of
the mass instrument and, consequently, the ability of de novo
sequencing tools to make use of such high-resolution spectra [21].
For example, ambiguities between amino acids with similar mass
(e.g. Q & K; oxidized M & F; AG & Q) cannot be resolved correctly
on mass spectra with a wide fragment ion error tolerance of
0.1 Da and this makes MS/MS of higher resolution necessary
[57]. As Qiao et al. pointed out, high-resolution spectra led to
increased computational complexity for analyzing MS/MS data
with de novo sequencing algorithms. DeepNovo and SMSNet

need to discretize spectra with a higher resolution parameter,
which increases the computation and memory demand, whereas
PointNovo and Casanovo can handle high-resolution spectra
without increasing their computational complexity [21]. However,
particular amino acids cannot be resolved even with spectra and
tools with higher resolution (e.g. I & L; Q & AG; deamidated N &
D). Here, additional methods are necessary to retrieve the correct
amino acid sequence. Discrimination of the isomeric residues
isoleucine and leucine cannot be achieved via MS/MS but require
MS3 fragmentation [58,59].

Cross-enzyme performance is an important quality feature of
de novo sequencing methods in bottom-up proteomics. Yet, most
publications regarding de novo sequencing tools rarely address the
predictive abilities of non-tryptic proteolytic enzymes and focus
on tryptic data sets because of their wide availability and well-
established usage [19,38]. Qiao et al. [21] observed that enzyme-
specific models had a notable influence on the performance
and recommended training a separate model for each enzyme.
However, training different models for over six enzymes can be
a demanding task, especially if the data are only partly available
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Table 4. Summary of de novo assembly results on light chains of three antibody data sets using the de novo peptide sequencing tools
SMSNet, PointNovo, Casanovo, and the de Bruijn assembler ALPS (k = 7). We used the Top 20 contigs to compare the length, coverage
and accuracy of mapped contigs. Mapped contigs must be aligned to the reference protein sequence. The longest contig describes the
maximum length of all generated contigs. Sequence coverage was calculated as the percentage of amino acids of the complete protein
sequence that was covered by at least one contig. Accuracy was calculated as the percentage of all protein sequence calls that were
labeled correctly

IgG1 LC (216 AA) WIgG1 LC (219 AA) Herceptin LC (214 AA)

SMSNet
Mapped contigs 10 5 8
Longest contig 51 (23.61%) 61 (27.86%) 67 (31.30%)
Sequence coverage 196 (90.74%) 200 (91.32%) 208 (97.20%)
Sequence accuracy 171 (87.24%) 190 (95.00%) 183 (87.98%)
PointNovo
Mapped contigs 7 3 6
Longest contig 51 (23.61%) 108 (49.32%) 75 (35.05%)
Sequence coverage 205 (94.91%) 204 (93.15%) 212 (99.07%)
Sequence accuracy 187 (91.22%) 191 (93.63%) 190 (89.62%)
Casanovo
Mapped congis 7 4 4
Longest contig (AA) 65 (30.09%) 110 (50.23%) 105 (49.07%)
Sequence coverage (%) 211 (97.69%) 217 (99.09%) 213 (99.53%)
Sequence accuracy (%) 201 (95.26%) 205 (94.47%) 202 (94.84%)

or come from various sources with unequal experimental setups.
Although our training data included mainly tryptic peptides, a
relatively high number of non-tryptic peptides were identified
by Casanovo, PointNovo, SMSNet and DeepNovo (Figure 2 and
Supplementary Figure S3). Karunratanakul et al. [20] made a
similar observation, where SMSNet was able to discover a large
number of non-tryptic HLA-antigens, whereas 95% of its training
data consisted of tryptic peptides. We conclude that DL tools can
still be applied to different enzymatic data sets, although the
performance will vary based on the cleavage pattern of the trained
data set. In our opinion, the deployment of a higher number of
enzyme-specific data sets and models would be beneficial for
successfully applying de novo sequencing in proteomics. Further-
more, multienzyme DL models show the potential to improve the
assembly of protein sequences [60].

Previous evaluations of de novo sequencing tools have observed
an increased accuracy of these algorithms on simulated MS/MS
spectra compared with real data sets [14, 33], suggesting that the
bottleneck for de novo peptide identification lies in the quality
of the provided data. As shown in our analysis, all evaluated
tools show a higher peptide recall on spectra with fewer missing
fragment ions (Figure 4). We observed that 90.51% of all spectra
lacked at least one fragment ion. While newly developed tools
demonstrate the potential of de novo sequencing, advanced post-
processing steps are necessary to improve their accuracy. The DL-
based tools SMSNet and PointNovo generated a higher number of
completely incorrect peptides in comparison to pNovo 3 (Table 3).
As Yang et al. [38] pointed out, DL models are directly learned from
the MS/MS data and do not rely on well-designed features, which
could help reduce the error frequency. Furthermore, the authors
reported that even DL-based approaches have difficulties in
distinguishing similar peptides with long-gapped subsequences,
concluding that the quality of MS/MS data is a bottleneck of suc-
cessful peptide prediction. However, the DL-based tool Casanovo
displayed a lower number of incorrect predictions compared with
pNovo 3, SMSNet and PointNovo, demonstrating the advantages
of transformer-based models for predicting peptide sequences.
The authors of Casanovo showed how a simple precursor mass
filter yields much higher precision [22]. Moreover, it is worth

mentioning that several methods were published, discussing
how to improve the encoder–decoder paradigm of DL tools in
proteomics [56,61]. Fei pointed out that deep neural networks face
difficulties on tandem mass spectra with incomplete fragment
patterns. Multiple authors have confirmed that a considerable
amount of de novo sequencing errors occurs at the N-terminal
ends because of the absence and low intensity of fragment ions
[62,63]. Hence, Fei developed a retrieve-and-revise framework to
compensate for low-quality spectra. His peptide identification
model, which relies on a reference database, was able to
outperform current state-of-the-art algorithms [56]. Ge et al.
proposed the use of deep residual shrinkage networks for their de
novo sequencing method DePS to improve the accuracy on noisy
spectra with missing fragmentation ions. Their implementation
improved the extraction of features from MS/MS spectra and
outperformed DeepNovoV2 on multiple data sets [64]. Liu et al.
[65] used multiple temporal convolutional network blocks to
improve the current state of de novo sequencing with their
tools PepNet. Recently, the transformer-based approach DPST [66]
showed an increased accuracy in predicting peptide sequences
compared with DeepNovo, while reducing the model complexity
and inference time.

Despite the ongoing effort and progress in de novo peptide
sequencing, reliable protein assembly is still a demanding task.
Our findings show that the ability of database-independent
approaches of full-length protein assembly is limited even when
using multiple contigs and different de novo sequencing tools
(Table 4). The longest generated contig only covers at best 21.82%
of the heavy chain and 50.23% of the light chain. Using Casanovo
and ALPS, we accomplished a sequence coverage of 97.69–
99.53% on the light chains of our evaluated antibodies. However,
additional database tools or homology algorithms are necessary
to correctly assemble multiple short contigs to complete antibody
sequences. Homology search can be combined together with de
novo sequencing to improve the discovery of protein sequence
information and overcome problems caused by mass segment
errors [26,67,68]. Commercial software packages such as PEAKS
AB [27] and Supernovo [11] use antibody germline sequences as a
starting point together with de novo sequencing results to identify
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mAbs. Supernovo employs de novo peptide sequencing, database
search, in silico genetic recombination and a final sequence
assembly for an automatic antibody sequence prediction.
Similarly, the publicly available software tool Stitch maps short
peptide reads to user-defined templates for reconstructing
monoclonal and polyclonal antibody sequences [69]. In addition to
the before-mentioned homology tools, antibody-specific language
models, such as AbLang, can help to restore missing residues
of full protein sequences caused by sequencing errors without
using a germline template sequence [70]. Thus, the development
of publicly available frameworks and pipelines for automated
assembly of de novo peptide sequencing results from recently
developed algorithms would improve the reliable usability of de
novo sequencing for full antibody assembly.

Key Points

• A comprehensive review of de novo sequencing tools in
proteomics is provided that aims to solve the challenge
of antibody sequencing and subsequent assembly.

• Improved sensitivity of deep learning-based tools was
found in comparison to classical de novo sequencing
algorithms, such as spectrum graph-based algorithms,
across various enzymatic data sets of antibodies.

• The number of missing fragmentation sites, noisy spec-
tra and long peptide sequences poses a limit for all de
novo sequencing tools.

• Database-independent assembly of light chains can be
achieved up to a sequence coverage of 99.53% by using
the de Bruijn assembler ALPS together with de novo
peptide predictions from Casanovo.

• Further development of freely available and automa-
tized pipelines for an accurate assembly of peptide pre-
dictions is necessary to successfully retrieve full anti-
body sequences.
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