
Sex-related Differences in Patient Outcomes after SAVR

Summary

In the propensity-score matched cohort of 433 males and 243 females undergoing first-time SAVR ± root replacement/CABG using a bioprosthetic valve, there were no sex-related differences at 2 years post surgery, indicating safety of SAVR and good valve performance in both sexes.

Legend: CABG, coronary artery bypass graft; SAVR, surgical aortic valve replacement

Sex-related Differences among Patients Undergoing Surgical Aortic Valve Replacement - A Propensity Score Matched Study

3

1

2

- 4 Andreas Zierer¹, MD; Ruggero De Paulis², MD; Farhad Bakhtiary³, MD; Ali El-Sayed Ahmad³, MD; Martin
- 5 Andreas⁴, MD; Rüdiger Autschbach⁵, MD; Peter Benedikt¹, MD; Konrad Binder⁶, MD; Nikolaos Bonaros⁷,
- 6 MD; Michael Borger⁸, MD; Thierry Bourguignon⁹, MD; Sergio Canovas¹⁰, MD; Enrico Coscioni¹¹, MD;
- 7 Francois Dagenais¹², MD; Philippe Demers¹³, MD; Oliver Dewald¹⁴, MD; Richard Feyrer¹⁴, MD; Hans-
- 8 Joachim Geißler¹, MD; Martin Grabenwöger¹⁶, MD ; Jürg Grünenfelder¹⁷, MD; Sami Kueri¹⁸, MD; Ka Yan
- 9 Lam¹⁹, MD; Thierry Langanay²⁰, MD; Günther Laufer⁴, MD; Wouter van Leeuwen²¹, MD; Rainer Leyh²²,
- 10 MD; Andreas Liebold²³,MD; Giovanni Mariscalco²⁴, MD; Parwis Massoudy²⁵,MD; Arash Mehdiani^{26,38},
- 11 MD; Renzo Pessotto²⁷, MD; Francesco Pollari²⁸, MD; Gianluca Polvani²⁹, MD; Alessandro Ricci², MD;
- 12 Jean-Christian Roussel³⁰, MD; Saad Salamate³, MD; Matthias Siepe^{18, 31}, MD; Pierluigi Stefano³², MD;
- 13 Justus Strauch³³, MD; Alexis Theron³⁴, MD; Andreas Vötsch³⁵, MD; Alberto Weber³⁶, MD; Olaf
- 14 Wendler³⁷, MD; Matthias Thielmann³⁸, MD; Matthias Eden³⁹, MD; Beate Botta⁴⁰, PhD; Peter Bramlage⁴⁰,
- 15 MD; Bart Meuris⁴¹, MD

16

- 17 1. Department of Cardiac, Vascular and Thoracic Surgery, Kepler University Hospital Linz, Linz; and
- Hospital Wels-Grieskirchen, Wels, Austria; email: andreas.zierer@kepleruniklinikum.at;
- 19 <u>peter.benedikt@kepleruniklinikum.at; hansjoachim.geissler@klinikum-wegr.at</u>
- 20 2. Department of Cardiac Surgery, European Hospital, Rome, Italy; email: depaulis58@gmail.com;
- 21 <u>ric.ale@hotmail.it</u>
- 22 3. Department of Cardiac Surgery, University Hospital Bonn, Bonn, Germany; email:
- 23 <u>farhad.bakhtiary@ukbonn.de</u>; <u>ali.assayed@gmail.com</u>; <u>saad.salamate@ukbonn.de</u>
- 24 4. Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria; email:
- 25 <u>martin.andreas@meduniwien.ac.at</u>; <u>guenther.laufer@meduniwien.ac.at</u>
- 26 5. Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen,
- 27 Germany; email: <u>rautschbach@ukaachen.de</u>
- 28 6. Department of Cardiac Surgery, University Hospital St. Poelten, St. Poelten, Austria; email:
- 29 konrad.binder@stpoelten.lknoe.at
- 30 7. Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria; email:
- 31 nikolaos.bonaros@i-med.ac.at
- 32 8. Division of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany; email:
- 33 <u>michael.borger@helios-gesundheit.de</u>
- 9. Department of Cardiology and Cardiac Surgery, Tours University Hospital, Tours, France; email:
- 35 bourguignon@univ-tours.fr
- 36 10. Cardiovascular Surgery Department, Hospital University Virgen de la Arrixaca, Murcia, Spain;
- 37 email: sjcanovas@gmail.com
- 38 11. Division of Cardiac Surgery, University Hospital San Giovanni di Dio e Ruggi d'Aragona, Salerno,
- 39 Italy; email: enrico.coscioni@sangiovannieruggi.it
- 40 12. Department of Cardiac Surgery, Institut Universitaire de Cardiologie et de Pneumologie de
- 41 Québec, Université Laval, Quebec City, Québec, Canada; email:
- 42 Francois.Dagenais@fmed.ulaval.ca

© The Author(s) 2024. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

- 43 13. Department of Surgery, Montreal Heart Institute, University of Montreal, Montreal, Canada;
- 44 email: philippe.demers@icm-mhi.org
- 45 14. Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Erlangen, Germany; email:
- 46 oliver.dewald@uk-erlangen.de
- 47 15. Department of Cardiac Surgery, Clinic for Cardiovascular Surgery, Central Military Hospital,
- 48 Koblenz, Germany; email: richardfeyrer@bundeswehr.org
- 49 16. Department of Cardiovascular Surgery, Clinic Floridsdorf, Vienna, Austria; email:
- 50 <u>martin.grabenwoeger@wienkav.at</u>
- 51 17. Department of Cardiac Surgery, Heart Clinic Zurich, Hirslanden Klinik, Zurich, Switzerland; email:
- 52 <u>juerg.gruenenfelder@hirslanden.ch</u>
- 18. Department of Cardiovascular Surgery, University Heart Center Freiburg Bad Krozingen, Bad
- Krozingen, Germany; email: sami.kueri@universitaets-herzzentrum.de; matthias.siepe@insel.ch
- 19. Department of Cardiothoracic Surgery, Catharina Hospital Eindhoven, Eindhoven, Netherlands;
- 56 email: <u>kayan.lam@catharinaziekenhuis.nl</u>
- 57 20. Thoracic and Cardiovascular Surgery, Rennes University Hospital Center, Rennes, France; email:
- 58 <u>thierry.langanay@chu-rennes.fr</u>
- 59 21. Department of Cardiothoracic Surgery, Erasmus MC University Medical Center, Rotterdam,
- Netherlands; mail: <u>w.j.vanleeuwen@erasmusmc.nl</u>
- 61 22. Department of Thoracic and Cardiovascular Surgery, University of Wuerzburg, Wuerzburg,
- 62 Germany; email: <u>leyh_r@ukw.de</u>
- 63 23. Department of Cardiac Surgery, University of Ulm Medical Center, Ulm, Germany; email:
- 64 <u>andreas.liebold@uniklinik-ulm.de</u>
- 65 24. Department of Cardiac Surgery, National Institute for Health Research Leicester Biomedical
- 66 Research Centre, Glenfield Hospital, Leicester, United Kingdom; email: Giovanni.Mariscalco@uhl-
- 67 <u>tr.nhs.uk</u>
- 68 25. Department of Cardiac Surgery, Klinikum Passau, Passau, Germany; email:
- 69 <u>parwis.massoudy@klinikum-passau.de</u>
- 70 26. Department of Cardiac Surgery, University Hospital Duesseldorf, Duesseldorf, Germany; email:
- 71 <u>arash.mehdiani@uk-essen.de</u>
- 72 27. Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom; email:
- 73 Renzo.Pessotto@nhslothian.scot.nhs.uk
- 74 28. Department of Cardiac Surgery, Klinikum Nürnberg-Paracelsus Medical University, Nuremberg,
- 75 Germany; email: <u>francesco.pollari@klinikum-nuernberg.de</u>
- 76 29. Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy; email:
- 77 <u>gianluca.polvani@ccfm.it</u>
- 78 30. Service de chirurgie thoracique et cardiovasculaire, CHU Nantes, Nantes, France; email:
- 79 jeanchristian.roussel@chu-nantes.fr
- 80 31. Department of Cardiac Surgery, University Hospital Bern, University of Bern, Switzerland; email:
- 81 <u>matthias.siepe@insel.ch</u>

82 83	 Division of Cardiac Surgery, Careggi University Hospital, Florence, Italy; email: <u>pierluigi.stefano@unifi.it</u>
84 85 86	33. Department of Cardiothoracic Surgery, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum, Nordrhein-Westfalen, Germany; email: justus.strauch@bergmannsheil.de
87 88	34. Cardio-Thoracic Surgery Department, Hospital de la Timone, Marseille, France; email: alexis.theron@ap-hm.fr
89 90	35. Department of Cardiovascular and Endovascular Surgery, Paracelsus Medical University, Salzburg, Austria; email: a.voetsch@salk.at
91 92	36. Department of Cardiovascular Surgery, Heart Center Hirslanden, Zurich, Switzerland; email: weber@herzzentrum.ch
93 94	37. Department of Cardiothoracic Surgery, King's College Hospital NHS Foundation Trust, London, United Kingdom; email: olaf.wendler@nhs.net
95 96 97	38. Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; email: matthias.thielmann@uk-essen.de ; arash.mehdiani@uk-essen.de
98 99	39. Department of Medicine III: Cardiology, Angiology, and Pneumology, Heidelberg University, Heidelberg, Germany; email: matthias.eden@med.uni-heidelberg.de
100 101	40. Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany; email: beate.botta@ippmed.de ; peter.bramlage@ippmed.de
102 103	41. Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium; email: bart.meuris@uzleuven.be
104	Correspondence (for submission)
105	Prof. Dr. Peter Bramlage
106	Institute for Pharmacology and Preventive Medicine
107	Bahnhofstrasse 20, 49661 Cloppenburg, Germany
108	Email: peter.bramlage@ippmed.de
109	Tel.: +49 4471 8503331
110	
111	
112	

113	Meeting presentation
114	The included data were presented at EACTS 2023 on 07.10.2023.
115	
116	Word count
117	4496
118	Graphical abstract
119	Caption: Sex-related Differences in Patient Outcomes at 2 years after SAVR
120	Legend: CABG, Coronary artery bypass graft; SAVR, surgical aortic valve replacement.
121	
122	Trial registration ClinicalTrials.gov NCT04053088 / - NCT03666741
123	Highlights:
124	Key question
125	What is the role of sex in clinical presentation and clinical outcomes after SAVR?
126	Key findings
127	Despite a worse baseline profile of females, there were no differences in 2-year outcomes after SAVR
128	between males and females.
129	Take-home message
130	SAVR appears similarly effective and safe for males and females as no sex-specific differences were
131	observed.
132	

133	ABSTRACT
134	Objectives: We investigated the sex-related difference in characteristics and 2-year outcomes after
135	surgical aortic valve replacement (SAVR) by propensity-score matching (PSM).
136	Methods: Data from two prospective registries, INDURE and IMPACT, were merged, resulting in a
137	total of 933 patients: 735 males and 253 females undergoing first-time SAVR. PSM was performed to
138	assess the impact of sex on the SAVR outcomes, yielding 433 males and 243 females with comparable
139	baseline characteristics.
140	Results : Females had a lower body mass index (BMI; median 27.1 vs 28.0 kg/m²; p=0.008), fewer
141	bicuspid valves (52% vs 59%; p=0.036), higher EuroSCORE II (mean 2.3 vs 1.8 %; p<0.001) and STS
142	score (mean 1.6 vs 0.9 %; p<0.001), were more often in NYHA class III/IV (47% vs 30%; p<0.001) and
143	angina CCS III/IV (8.2% vs 4.4%; p<0.001), but had a lower rate of myocardial infarction (1.9% vs 5.2%;
144	p=0.028) compared to males. These differences vanished after PSM, except for EuroSCORE II and STS
145	scores, which were still significantly higher in females. Furthermore, females required smaller valves
146	(median diameter 23.0 vs 25.0 mm, p<0.001). There were no differences in the length of hospital stay
147	(median 8 days) or ICU stay (median 24 vs 25 hours) between both sexes. At two years, post-SAVR
148	outcomes were comparable between males and females, even after PSM.
149	Conclusions: Despite females presenting with a significantly higher surgical risk profile, 2-year

outcomes following SAVR were comparable between males and females.

Keywords: Aortic stenosis; Surgical aortic valve replacement; sex disparities

150

151

152	LIST OF ABBREVIATIONS
153	AS – aortic stenosis
154	BMI – body mass index
155	CABG – coronary artery bypass surgery
156	CCS – Canadian Cardiovascular Society
157	MI – myocardial infarction
158	NYHA – New York Heart Association
159	PSM – propensity score matching
160	SAVR – surgical aortic valve replacement
161	STS – Society of Thoracic Surgeons
162	TIA – transient ischaemic attack
163	
164	

INTRODUCTION

Surgical aortic valve replacement (SAVR) has been the gold standard treatment for aortic stenosis (AS) for decades [1]. However, a precise understanding of specific sex-related differences in baseline characteristics and post-SAVR long-term outcomes and safety remains debated [2, 3]. Although women and men share a similar prevalence of AS, SAVR is less often performed in female patients. Specific anatomical characteristics peculiar to women's hearts, such as smaller valvular size, aortic annulus/root, and left ventricular outflow tract dimensions, make it technically more complicated and challenging for SAVR in women [4]. Besides, factors such as advanced age, greater frailty, lower body size, and the presence of more non-atherosclerotic comorbidities place females in a high-risk category for SAVR [3, 5, 6].

Several studies indicated that women undergoing SAVR experience worse short-term outcomes, including higher in-hospital and 30-day mortality, vascular complications, blood transfusion and increased length of hospital stay [2, 7] compared to men [2, 3, 6, 8]. Although a comparable long-term survival after SAVR was observed among both sexes [8, 9], extensive research is imperative to elucidate the male-female differences in the baseline characteristics and clinical outcomes to optimize the treatment for aortic valve diseases.

PATIENTS AND METHODS

In the present analysis, we combined data from two prospective, observational, multicentre registries

- INDURE and IMPACT [10, 11], to study the sex-related difference in SAVR outcomes. We aimed to
report 2-year follow-up data of male and female patients undergoing SAVR by propensity score
matching (PSM).

Ethics statement

The study was approved by the institutional review board/ethics committee at each participating centre (**Supplementary Tabe 1**). A written informed consent was obtained from every patient before enrolment.

Patient population

Adult patients over 18 years of age undergoing SAVR and receiving Edwards INSPIRIS RESILIA bioprosthesis were enrolled in the registries. In addition, patients undergoing a planned native valve replacement with or without combined aortic root replacement and/or coronary artery bypass surgery (CABG) based on the pre-procedural evaluation were included. Exclusion criteria included prior myocarditis within three months before SAVR and a double valve procedure (replacement and repair). Additionally, when valve implantation was not possible as per device instruction for use, individuals with a life expectancy <12 months and pregnant patients at the time of the surgery were excluded.

Objectives

The primary objective of the analysis was to compare baseline and procedural characteristics of male and female patients undergoing SAVR.

The secondary objective was to compare the sex-related difference in post-SAVR clinical outcomes defined by Valve Academic Research Consortium-2 [12] at 2-year follow-up, which includes incidence of all-cause mortality, prosthetic endocarditis, thromboembolic events (stroke /transient ischaemic attack [TIA]), life-threatening valve-related bleeding, repeated procedure requirement and permanent pacemaker implantation (PPI).

Statistical analysis

Data were analyzed using descriptive statistics, with categorical variables presented as absolute values and frequencies (%) and the continuous variables presented as means (standard deviation [SD]) and/or median (interquartile range [IQR]). The percentages were calculated based on the number of patients with valid data per parameter, i.e. excluding patients with missing information.

Comparisons were performed using a t-test or Mann-Whitney U-test for continuous variables, depending on distribution, and a Fisher's exact or Chi-square test for categorical variables. Propensity scores (PS) were calculated using a Generalized Linear Model to assess the sex-specific effects (male

vs. female). The following covariates were selected to calculate the PS: body mass index (BMI), valve morphology, New York Heart Association (NYHA) III/IV, Canadian Cardiovascular Society (CCS) angina III/IV, diabetes mellitus, hypertension, left ventricular ejection fraction (LVEF), mean transvalvular pressure gradient, previous percutaneous intervention, pacemaker, chronic obstructive pulmonary disease (COPD), dialysis, aortic valve regurgitation (moderate/severe), myocardial infarction (MI), TIA/stroke, peripheral arterial disease, and coronary artery disease. The 1:2 ratio matching was performed using nearest neighbour matching with a caliper width equal to 0.2 times the standard deviation of the PS logit. Post-matching, standardized mean differences were analyzed for all covariates included in the PS calculation. The mean differences for all covariates post-matching were within a desirable threshold (±0.1), indicating adequate balance. Statistical analyses were performed using R version 4.3 (https://www.R-project.org/).

RESULTS

A total of 993 patients, 735 males and 253 females, who underwent SAVR using INSPIRIS RESILIA between 2019 and 2021 were included in the entire cohort. To assess the impact of sex on SAVR outcomes, a PSM cohort was created, resulting in a total of 676 matched pairs of 433 males and 243 females (**Figure 1**).

Patient characteristics

In the entire cohort, female patients had a lower BMI (median 27.1 [IQR 23.4-31.0] vs 28.0 kg/m² [IQR 25.2-31.0]; p=0.008) and were less likely to have bicuspid valves (52% vs 59%; p=0.036) compared to male patients (**Table 1**). Additionally, females exhibited a higher prevalence of advanced NYHA class III/IV symptoms (47% vs 30%; p<0.001) and angina CCS class III/IV symptoms (8.2% vs 4.4%; p=0.019), indicating a higher symptomatic burden at baseline. However, after PSM, the differences were not significant in any cases.

Compared to males, female patients in both cohorts exhibited significantly higher surgical risk with higher EuroSCORE II (2.3±3.1% vs 1.8±2.0%; p<0.001) and Society of Thoracic Surgeons (STS) score (1.6±2.2% vs 0.90±2.5%; p<0.001). Notably, these differences persisted after PSM (EuroSCORE II: 2.4±3.0% vs 1.6±1.7% in; p<0.001 and STS score: 1.7±2.0% vs 1.0±2.3%; p<0.001). In the entire cohort, females had a lower history of MI (1.9% vs 5.2%; p=0.028) than males.

In baseline echocardiography, females exhibited a lower prevalence of moderate to severe aortic valve regurgitation (27% vs 35%; p=0.015), along with better LVEF (60±10% vs 58±10%; p<0.001) and slightly higher mean transvalvular pressure gradient (46±21 vs 43±20 mmHg; p=0.249) compared to males. This trend did not persist after PSM.

Procedural characteristics

In our study, both females and males had distinct AS aetiology (p=0.047), primarily showing congenital AS (51.6% in females vs 59.8% in males) followed by degenerative AS (44.6% vs 37.1%) (Supplementary Table 2).

In the total cohort, minimally invasive surgery (MIS) was more frequent in females (46.5% vs 38.6%; p=0.027) with less concomitant CABG (10.9% vs 16.3%; p=0.034) (**Supplementary Table 2**). Notably, these differences disappeared after PSM (**Table 2**). Females required smaller valves (median 23.0 mm [IQR 21.0-23.0]) compared to males (median 25.0 mm [IQR 23.0-27.0]), which was significant in both total and PSM cohorts (p<0.001). The majority of female patients received either 23 (44.4%) or 21 (39.9%) mm valves, while male patients received either 25 (37.2%) or 23 (30.7%) mm valves. There were no differences in the the overall procedural time (skin-to-skin) between males and females in the matched cohort (p=0.170). The first implantation attempt was successful in both sexes (>99.0%), with no intraprocedural mortality.

Discharge characteristics

The overall hospital stay during SAVR was similar between female and male patients in the matched cohort (median 8.0 [IQR 6.0-10.0] vs 8.0 [IQR 7.0-11.5] days, p=0.144; **Table 3**). There was no

difference in the LoS in intensive care unit (ICU) and duration of mechanical ventilation in both groups. A similar proportion of patients were discharged alive (females 99.6% and males 99.3%;

Supplementary Table 3). The majority of patients were discharged to home after surgery, followed by discharge to a rehabilitation unit or another hospital.

Both in the entire and PS-matched cohorts, no significant differences were observed in the incidence

Clinical outcomes

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

of clinical outcomes at 2 years, including endocarditis, thromboembolic events, valve-related dysfunction, repeated procedure, permanent pacemaker implantation, and valve-related bleeding between males and females undergoing SAVR ± CABG/root replacement (Supplementary Table 4; Table 4) as well as in patients undergoing isolated AVR (Supplementary Table 5). The 2-year survival rate in the PS-matched cohort was 96.2% (95% CI: 94.3-98.1%) in males and 96.3% (95% Confidence Interval [CI]: 93.9–98.9%) in females (p=0.920); no differences were observed in the total cohort either (Figure 2, Supplementary Figure 1). Athough the rate of valve thrombosis at 2 years seemed to be higher in females (1.3% vs. 0.4% in the PS-matched cohort), the difference did not reach statistical significance (p=0.093). The majority of patients requiring a repeated procedure at the 2-year follow-up in our study did so due the presence of the endocarditis; in 1 patient repeated procedure was due to valve thrombosis while another one had a moderate paravalvular leakage. One patient underwent valve-in-valve procedure due to AS. Furthermore, all patients reporting a prosthetic valve thrombosis at 2 years in our study either initiated or changed anticoagulation therapy and had a regression and good prosthesis function as showed by the decreased mean pressure gradient at the follow-up echocardiography. For 1 patient, the valve thrombosis was reverted despite the absence of anticoagulant therapy. Therefore, the presence of the valve thrombosis was mostly sublinical and did not lead to detrimental clinical consquences after SAVR using a biosprosthetic valve.

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

DISCUSSION

Key findings of this propensity-score matched study on 2-year data from INDURE and IMPACT registries were: 1) Females exhibited higher surgical risk (EuroSCORE II and STS score), had higher symptomatic burden (NYHA class III/IV and angina CCS III/IV) than males with similar comorbidity prevalence; 2) Females received smaller valves than males with a median diameter of 23 mm compared to 25 mm in males; 3) Both male and female patients experienced similar hospital LoS and ICU stay after SAVR; 4) Patients demonstrated comparable outcomes at 2 years after SAVR, suggesting that sex-related differences observed at baseline did not impact clinical outcomes. In the overall population (n=993), the proportion of female patients undergoing SAVR from 2019 to 2021 was lower compared to male patients (258 [26.0%] vs 735 [74.0%]). This disparity suggests a lower incidence of SAVR in females than males, consistent with findings reported in prior literature [2, 3, 7]. Despite a similar AS prevalence in AS [13], the specific factors contributing to the lower rate of SAVR in women remain unclear. Several studies have proposed potential explanations, such as the insidious onset of the disease in females, delayed diagnosis, conservative management, less frequent referrals to specialists, and fewer diagnostic tests conducted among women [2, 14, 15]. However, it is important to note that our study did not focus on the male-female disparity in the incidence of SAVR, the time that elapsed between diagnosis and intervention or the urgency of SAVR, which represents a limitation of our findings. Several previously published studies [2, 9, 16-18] have investigated sex-related differences in patients undergoing SAVR. These studies consistently report that females undergoing SAVR tend to be older, exhibit advanced NYHA symptoms and angina symptoms, and have higher surgical risks compared to males. Our study aligns with these findings, as females exhibited significantly higher EuroSCORE II and STS scores in both cohorts (p<0.001), indicating a greater surgical risk profile in females. Nevertheless, there was no significant difference in age between males and females in our study, and

they were younger (both sexes) than the population studied earlier [15, 17, 18]. Furthermore, in our cohort, females showed advanced NYHA class III/IV and angina CCS III/IV symptoms than males (p<0.001), indicating a heightened cardiac risk and symptomatic burden than male patients and this trend was consistent with the observations of previous studies [9, 17, 18]. Contrary to the lower comorbidity prevalence observed among female patients undergoing SAVR in the PARTNER trial [15] and the study by Triboulloy et al. [17], our study did not reveal significant differences between males and females. Nonetheless, our study did note a higher prevalence of previous MI among males, aligning with the findings of Hernandez-Vaquero et al. [16] and Tribouilloy et al. [17]. Notably, a significant difference was observed in implanted valve size between the sexes, with females being implanted with smaller valves than males (median diameter 23 vs 25 mm; p<0.001). This is attributed to anatomical differences, with women typically having smaller hearts and aortic annuli [19] than men. Consequently, the need for smaller aortic bioprosthesis in women has been recognized in previous research and is associated with increased risk in SAVR [20]. Therefore, it underscores the importance of selecting valve size based on precise in vivo measurements of the patient's specific annular dimensions. Despite significant differences in baseline characteristics, indicating a high surgical risk among females in our study, the 2-year outcomes after SAVR revealed comparable outcomes in both sexes. However, existing literature shows varied findings. For instance, a study by Kulik et al. comparing long-term outcomes of SAVR over 5.6 years reported a significantly lower reoperation rate in women (comorbidity-adjusted hazard ratio (HR) 0.4; 95% CI: 0.2 to 0.9) and a higher incidence of late stroke (HR 1.7; 95% CI: 1.1 to 2.7) compared to men, indicating sex-related differences in long-term SAVR outcomes exists [21]. Despite these discrepancies, women exhibited better overall long-term survival than men in their study. Similarly, findings from the Simvastatin Ezetimibe in Aortic Stenosis (SEAS) study, with a median follow-up of 4 years, revealed that females exhibited lower total mortality and a reduced rate of ischemic cardiovascular events compared to men, independent of confounding factors, despite similar AS progression and more severity in females based on echocardiographic

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

indices [22]. On the other hand, another baseline-matched retrospective study reported comparable long-term survival benefits in females at a 5-year follow-up. However, men faced a higher risk of bleeding, endocarditis, and early reoperation after SAVR [9]. Thus, collectively, these studies suggest that female sex does not significantly impact the long-term survival of SAVR when preoperative characteristics are adjusted between both sexes.

Limitations

Our study did not capture data on matching-based postoperative ventricular remodelling and prosthetic valve performance following surgery, which could elucidate casual factors impacting the outcome for males and females. Additionally, we did not gather information on the timing of intervention and the urgency of SAVR. Furthermore, our study lacks data on prosthetic-patient mismatch, a common complication of cardiac surgery [23].

CONCLUSION

Women undergo SAVR less frequently and exhibit a higher risk profile, posing unique challenges for cardiac surgery. Nevertheless, our analysis reveals that the 2-year clinical outcomes of SAVR are similar between sexes when baseline characteristics are matched. These findings highlight the importance of considering sex-related factors in evaluating surgical risk and treatment strategies for SAVR patients.

ACKNOWLEDGEMENT

We are thankful to Cornelia Deutsch, Nataliya Trushina, Anjaly Vijayan and Violetta Hachaturyan (Institute for Pharmacology and Preventive Medicine, Cloppenburg) for their excellent research contribution with statistical analysis and manuscript writing.

FUNDING

	This work was supported with a research grant provided by Edwards Lifesciences (Nyon, Switzerland)
364	to the sponsor Institute for Pharmacology and Preventive Medicine, Cloppenburg, Germany.
365	COMPETING INTERESTS
366	AZ, RdP, FB, TB, NB, MB, JS, PBr, and BM have received lecture fees and/or research support from
367	Edwards Lifesciences. RF, AL and AV have received lecture fees/proctoring fees from Edwards
368	Lifesciences. BB received research support from Edwards Lifesciences for their institution. The
369	institutions of all authors representing study centers have received patient inclusion-based funding
370	and have no conflict of interest to disclose.
371	AUTHOR'S CONTRIBUTIONS
372	AZ, RdP, FB, TB, AESA, MB, BB, PBr and BM were involved in the conception, design, data acquisition
373	and interpretation of the study. PB and BB drafted the manuscript and all other authors revised the
374	article for important intellectual content. All authors gave approval of the final version and
375	submission of the manuscript.
376	AVAILABILITY OF DATA AND MATERIALS
376 377	AVAILABILITY OF DATA AND MATERIALS The datasets generated and analyzed during the current study may be available from the
377	The datasets generated and analyzed during the current study may be available from the
377 378	The datasets generated and analyzed during the current study may be available from the corresponding author upon reasonable request.
377 378 379	The datasets generated and analyzed during the current study may be available from the corresponding author upon reasonable request. ETHICAL APPROVAL/PATIENT CONSENT
377 378 379 380	The datasets generated and analyzed during the current study may be available from the corresponding author upon reasonable request. ETHICAL APPROVAL/PATIENT CONSENT The study was approved by the institutional review board/ethics committee at each participating
377 378 379 380 381	The datasets generated and analyzed during the current study may be available from the corresponding author upon reasonable request. ETHICAL APPROVAL/PATIENT CONSENT The study was approved by the institutional review board/ethics committee at each participating
377 378 379 380 381	The datasets generated and analyzed during the current study may be available from the corresponding author upon reasonable request. ETHICAL APPROVAL/PATIENT CONSENT The study was approved by the institutional review board/ethics committee at each participating

387	Figure Titles/Legends:
388	Figure 1: Study flowchart
389 390	Legends: CABG, coronary artery bypass graft; PS, propensity score; SAVR, surgical aortic valve replacement
391 392	*Reasons: Not meeting inclusion/exclusion criteria (n=9); Not receiving INSPIRIS Resilia valve (n=10); Double valve procedure (replacement or repair; n=10), Withdrew from the study (n=2)
393	
394 395	Figure 2: Kaplan-Meier survival curve at 2-year all-cause mortality stratified by sex – PS-matched cohort
396	Legend: PS, propensity score
397	

Table 1: Patient characteristics

	Full cohort					PS matche	d cohort			
Mean±SD or median (IQR) or n (%)	Male, N=735	Female, N=258	SMD	95% CI	p-value	Male, N=433	Female, N=243	SMD	95% CI	p-value
Age, years	58.8±9.2	59.8±9. 5	-0.11	-0.25, 0.03	0.159	59.0±9.7	59.8±9.5	-0.09	-0.24, 0.07	0.430
Body mass index, kg/m ²	28.0 (25.2- 31.0)	27.1 (23.4- 31.0)	0.11	-0.03, 0.25	0.008	27.1 (24.7- 30.2)	27.3 (23.5- 31.3)	-0.05	-0.20, 0.11	0.601
Valve morphology Bicuspid Tricuspid	434 (59) 301 (41)	133 (52) 125 (48)	0.15	0.01, 0.29	0.036	236 (55) 197 (45)	128 (53) 115 (47)	0.04	-0.12, 0.19	0.647
NYHA class III/IV	220 (30)	121 (47)	0.36	0.22, 0.50	< 0.001	169 (39)	110 (45)	0.13	-0.03, 0.28	0.114
Angina CCS III/IV	32 (4.4)	21 (8.2)	0.16	0.02, 0.30	0.019	22 (5.1)	17 (7.0)	0.08	-0.08, 0.24	0.306
EuroSCORE II, %	1.8±2.0	2.3±3.1	-0.18	-0.32, -0.04	< 0.001	1.6±1.7	2.4±3.0	-0.18	-0.32, -0.04	<0.001
STS score, % Medical history	0.9±2.5	1.6±2.2	-0.31	-0.46, -0.17	<0.001	1.0±2.3	1.7±2.0	-0.33	-0.48, -0.17	<0.001
Diabetes mellitus	115 (16)	45 (17)	0.05	-0.09, 0.19	0.500	73 (17)	42 (17)	0.01	-0.15, 0.17	0.888
Systemic hypertension	438 (60)	148 (57)	0.05	-0.10, 0.19	0.531	243 (56)	138 (57)	0.01	-0.14, 0.17	0.866
Coronary artery disease	504 (69)	192 (75)	0.14	-0.01, 0.28	0.068	313 (72)	180 (74)	0.04	-0.12, 0.20	0.616
Myocardial infarction	38 (5.2)	5 (1.9)	0.18	0.03, 0.32	0.028	11 (2.5)	5 (2.1)	0.03	-0.12, 0.19	0.692
Peripheral vascular disease	43 (5.9)	11 (4.3)	0.07	-0.07, 0.21	0.334	21 (4.8)	11 (4.5)	0.02	-0.14, 0.17	0.849
TIA/stroke	36 (4.9)	13 (5.0)	0.01	-0.14, 0.15	0.928	19 (4.4)	11 (4.5)	0.01	-0.15, 0.16	0.933
COPD	52 (7.1)	27 (10)	0.12	-0.02, 0.26	0.083	35 (8.1)	22 (9.1)	0.03	-0.12, 0.19	0.663
PPI	13 (1.8)	4 (1.6)	0.02	-0.12, 0.16	1.000	8 (1.8)	4 (1.6)	0.02	-0.14, 0.17	1.000
Previous PCI	78 (11)	19 (7.4)	0.11	-0.03, 0.26	0.131	35 (8.1)	19 (7.8)	0.01	-0.15, 0.17	0.903
Dialysis	8 (1.1)	2 (0.8)	0.03	-0.11, 0.17	1.000	5 (1.2)	2 (0.8)	0.03	-0.12, 0.19	1.000

Echocardiography										
AV regurgitation	255 (35)	68 (27)	0.18	0.04, 0.32	0.015	128 (30)	66 (27)	0.05	-0.10, 0.21	0.508
(moderate/severe)										
LVEF, %	58±10	60±10	-0.28	-0.43, -0.14	< 0.001	60±9	60±10	-0.04	-0.20, 0.12	0.464
Mean transvalvular	43±20	46±21	-0.16	-0.30, -0.01	0.249	45±18	46±21	-0.05	-0.21, 0.12	0.690
pressure gradient, mmH	g									

Legend: AV, aortic valve; CCS, Canadian Cardiovascular Society; EuroSCORE, European System for Cardiac Operative Risk Evaluation; CI; confidence interval; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; LVEF, left ventricular ejection fraction; PCI, percutaneous intervention; PPI, permanent pacemaker implantation; PS, propensity score; SMD, standard mean difference; STS, Society of Thoracic Surgeons; TIA, transient ischaemic attack

Table 2: Procedural details – PS-matched cohort

Mean±SD or median (IQR) or n (%)	Male, N=433	Female, N=243	p-value
Etiology of valve pathology		•	0.769
Congenital	239 (55.3)	128 (52.7)	
Degenerative	183 (42.4)	106 (43.6)	
Endocarditic	1 (0.2)	1 (0.4)	
Rheumatic	2 (0.5)	2 (0.8)	
None (no aortic stenosis)	7 (1.6)	6 (2.5)	
Isolated AVR	259 (59.8)	149 (61.3)	0.702
MIS	178 (41.1)	114 (46.9)	0.144
Concomitant procedures			
CABG	67 (15.5)	27 (11.1)	0.116
Root replacement	31 (7.2)	11 (4.5)	0.174
Supracoronary tube graft	58 (13.4)	31 (12.8)	0.814
Total operation time (skin-to-skin),	198.3±62.9	191.1±59.0	0.170
min	190.0 (155.0, 233.5)	184.5 (148.0, 224.0)	
Cross-clamp time, min	75.0±26.8	71.7±26.3	0.111
	70.0 (56.0, 92.0)	68.0 (54.0, 88.0)	
Cardiopulmonary bypass time, min	103.9±39.3	102.1±38.1	0.542
	98.0 (76.0, 126.0)	94.0 (77.0, 121.0)	
Final valve size, mm	25.0 (23.0, 25.0)	23.0 (21.0, 23.0)	<0.001
	24.7±2.1	22.3±1.5	
19	0 (0.0)	8 (3.3)	
21	32 (7.4)	97 (39.9)	
23	133 (30.7)	108 (44.4)	
25	161 (37.2)	27 (11.1)	
27	75 (17.3)	3 (1.2)	
29	32 (7.4)	0 (0.0)	
Implantation details			
1 st implantation success	432 (99.8)	242 (99.6)	1.000
2 nd implantation with INSPIRIS	1 (0.2)	1 (0.4)	1.000
Resilia			
Paravalvular leak (final)	5 (1.2)	1 (0.4)	0.427
Intraprocedural mortality	0 (0.0)	0 (0.0)	1.000

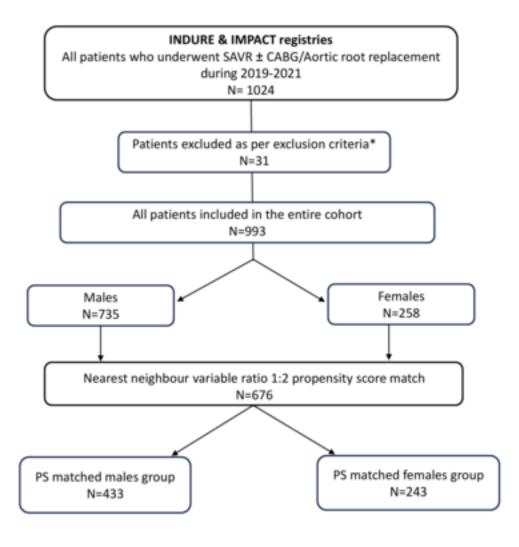
Legend: CABG; coronary artery bypass graft; IQR, interquartile range; MIS, minimally invasive surgery; PS, propensity score; SD, standard deviation

Table 3: Discharge details – PS-matched cohort

Mean±SD or Median (IQR) or n (%)	Male, N=433¹	Female, N=243	p-value
Hospital stay, days	9.0±4.5 8.0 (6.0, 10.0)	9.9±6.5 8.0 (7.0, 11.5)	0.144
Discharged alive	428 (99.3)	242 (99.6)	1.000
Discharge to			0.428
Home	257 (59.6)	151 (62.1)	
Other hospital	33 (7.7)	25 (10.3)	
Rehabilitation unit	135 (31.3)	66 (27.2)	
Other	3 (0.7)	0 (0.0)	
Death	3 (0.7)	1 (0.4)	
ICU stay, hours	46.4±54.7 24.0 (21.0, 48.0)	52.0±59.0 25.0 (22.0, 62.0)	0.449
Mechanical ventilation, hours	11.9±39.5 7.0 (4.0, 10.0)	10.1±15.0 7.0 (5.0, 10.0)	0.609

Legends: ICU; intensive care unit; IQR, interquartile range; LoS, length of stay; PS, propensity score; SD, standard deviation

Table 4: Two-year clinical outcomes – PS-matched cohort


	Early (≤30 days)		Late (>30 d	ays to 2 year)	Freedom from event %(95%CI)		
n (%)	Male, N=433	Female, N=243	Male, 732 vy	Female, 400 vy	Male	Female	p-value
All-cause mortality	5 (1.2)	1 (0.4)	10 (1.4)	7 (1.8)	96.2 (94.3, 98.1)	96.3 (93.9, 98.9)	0.920
Cardiovascular-related	5 (1.2)	1 (0.4)	7 (1.0)	3 (0.8)	97.0 (95.4, 98.7)	98.1 (96.3, 100.0)	0.365
Valve-related	2 (0.5)	0 (0)	5 (0.7)	2 (0.5)	98.3 (97.0, 99.6)	98.9 (97.5, 100.0)	0.394
Valve-related - Unknown	1 (0.2)	0 (0)	2 (0.3)	4 (1.0)	99.1 (98.2, 100.0)	98.1 (96.2, 100.0)	0.233
Prosthesis endocarditis	0 (0)	0 (0)	4 (0.5)	2 (0.5)	99.0 (98.0, 100.0)	99.0 (97.5, 100.0)	0.909
Thromboembolic events	11 (2.5)	4 (1.6)	4 (0.5)	4 (1.0)	95.9 (93.8, 97.9)	95.8 (93.0, 98.7)	0.967
Stroke	7 (1.6)	4 (1.6)	0 (0)	1 (0.3)	98.1 (96.7, 99.5)	97.4 (95.2, 99.7)	0.594
Valve thrombosis	0 (0)	0 (0)	3 (0.4)	5 (1.3)	99.7 (99.1, 100.0)	98.0 (96.0, 100.0)	0.093
Valve-related dysfunction	1 (0.2)	0 (0)	3 (0.4)	5 (1.3)	99.5 (98.8, 100.0)	98.6 (97.1, 100.0)	0.196
Repeated procedure	1 (0.2)	0 (0)	0 (0)	3 (0.8)	99.8 (99.3, 100.0)	99.0 (97.5, 100.0)	0.096
Permanent pacemaker	18 (4.2)	9 (3.7)	2 (0.3)	2 (0.5)	95.2 (93.2, 97.3)	95.4 (92.7, 98.1)	0.944
Valve-related bleeding	43 (9.9)	29 (11.9)	2 (0.3)	3 (0.8)	89.5 (86.7, 92.5)	86.6 (82.4, 91.1)	0.282

Legends: CI, confidence interval; vy, valve years

REFERENCES

- [1] Joseph J, Naqvi SY, Giri J, Goldberg S. Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. Am J Med. 2017;130:253-63.
- [2] Chaker Z, Badhwar V, Alqahtani F, Aljohani S, Zack CJ, Holmes DR, et al. Sex Differences in the Utilization and Outcomes of Surgical Aortic Valve Replacement for Severe Aortic Stenosis. J Am Heart Assoc. 2017;6.
- [3] Caponcello MG, Banderas LM, Ferrero C, Bramlage C, Thoenes M, Bramlage P. Gender differences in aortic valve replacement: is surgical aortic valve replacement riskier and transcatheter aortic valve replacement safer in women than in men? Journal of Thoracic Disease. 2020;12:3737-46.
- [4] Onorati F, D'Errigo P, Barbanti M, Rosato S, Covello RD, Maraschini A, et al. Different impact of sex on baseline characteristics and major periprocedural outcomes of transcatheter and surgical aortic valve interventions: Results of the multicenter Italian OBSERVANT Registry. J Thorac Cardiovasc Surg. 2014;147:1529-39.
- [5] Çelik M, Milojevic M, Durko AP, Oei FBS, Bogers AJJC, Mahtab EAF. Comparative study of male and female patients undergoing surgical aortic valve replacement. Interdisciplinary CardioVascular and Thoracic Surgery. 2023;36.
- [6] Elhmidi Y, Piazza N, Mazzitelli D, Wottke M, Lange R, Bleiziffer S. Sex-Related Differences in 2197 Patients Undergoing Isolated Surgical Aortic Valve Replacement. Journal of Cardiac Surgery. 2014;29:772-8.
- [7] López-de-Andrés A, Méndez-Bailón M, Perez-Farinos N, Hernández-Barrera V, de Miguel-Díez J, Muñoz-Rivas N, et al. Gender differences in incidence and in-hospital outcomes of surgical aortic valve replacement in Spain, 2001-15. Eur J Public Health. 2019;29:674-80.
- [8] Dixon LK, Di Tommaso E, Dimagli A, Sinha S, Sandhu M, Benedetto U, et al. Impact of sex on outcomes after cardiac surgery: A systematic review and meta-analysis. Int J Cardiol. 2021;343:27-34.
- [9] Myllykangas ME, Aittokallio J, Gunn J, Sipilä J, Rautava P, Kytö V. Sex Differences in Long-Term Outcomes After Surgical Aortic Valve Replacement: A Nationwide Propensity-matched Study. Journal of cardiothoracic and vascular anesthesia. 2020;34:932-9.
- [10] Meuris B, Borger MA, Bourguignon T, Siepe M, Grabenwoger M, Laufer G, et al. Durability of bioprosthetic aortic valves in patients under the age of 60 years rationale and design of the international INDURE registry. J Cardiothorac Surg. 2020;15:119.
- [11] Bakhtiary F, Ahmad AE, Autschbach R, Benedikt P, Bonaros N, Borger M, et al. Impact of pre-existing comorbidities on outcomes of patients undergoing surgical aortic valve replacement rationale and design of the international IMPACT registry. J Cardiothorac Surg. 2021;16:51.
- [12] Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document. Journal of the American College of Cardiology. 2012;60:1438-54.
- [13] Shan Y, Pellikka PA. Aortic stenosis in women. Heart (British Cardiac Society). 2020;106:970-6.
- [14] Bach DS, Radeva JI, Birnbaum HG, Fournier AA, Tuttle EG. Prevalence, referral patterns, testing, and surgery in aortic valve disease: leaving women and elderly patients behind? The Journal of heart valve disease. 2007;16:362-9.
- [15] Williams M, Kodali SK, Hahn RT, Humphries KH, Nkomo VT, Cohen DJ, et al. Sex-related differences in outcomes after transcatheter or surgical aortic valve replacement in patients with severe aortic stenosis: Insights from the PARTNER Trial (Placement of Aortic Transcatheter Valve). J Am Coll Cardiol. 2014;63:1522-8.
- [16] Hernandez-Vaquero D, Rodriguez-Caulo E, Vigil-Escalera C, Blanco-Herrera O, Berastegui E, Arias-Dachary J, et al. Differences in life expectancy between men and women after aortic valve replacement. European Journal of Cardio-Thoracic Surgery. 2021;60:681-8.
- [17] Tribouilloy C, Bohbot Y, Rusinaru D, Belkhir K, Diouf M, Altes A, et al. Excess Mortality and Undertreatment of Women With Severe Aortic Stenosis. J Am Heart Assoc. 2021;10:e018816.

- [18] Steeds RP, Messika-Zeitoun D, Thambyrajah J, Serra A, Schulz E, Maly J, et al. IMPULSE: the impact of gender on the presentation and management of aortic stenosis across Europe. Open Heart. 2021;8.
 [19] Hamdan A, Barbash I, Schwammenthal E, Segev A, Kornowski R, Assali A, et al. Sex differences in aortic root and vascular anatomy in patients undergoing transcatheter aortic valve implantation: A computed-tomographic study. Journal of cardiovascular computed tomography. 2017;11:87-96.
 [20] Freitas-Ferraz AB, Tirado-Conte G, Dagenais F, Ruel M, Al-Atassi T, Dumont E, et al. Aortic Stenosis and Small Aortic Annulus. Circulation. 2019;139:2685-702.
- [21] Kulik A, Lam BK, Rubens FD, Hendry PJ, Masters RG, Goldstein W, et al. Gender differences in the long-term outcomes after valve replacement surgery. Heart (British Cardiac Society). 2009;95:318-26. [22] Cramariuc D, Rogge BP, Lønnebakken MT, Boman K, Bahlmann E, Gohlke-Bärwolf C, et al. Sex differences in cardiovascular outcome during progression of aortic valve stenosis. Heart (British Cardiac Society). 2015;101:209-14.
- [23] Rayol SDC, Sá M, Cavalcanti LRP, Saragiotto FAS, Diniz RGS, Sá F, et al. Prosthesis-Patient Mismatch after Surgical Aortic Valve Replacement: Neither Uncommon nor Harmless. Braz J Cardiovasc Surg. 2019;34:361-5.

