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Abstract 27 

Mountain regions harbor unique and rich biodiversity, forming an important part of our 28 

global life support system. This rich biodiversity underpins the ecological intactness 29 

and functioning of mountain ecosystems, which are imperative for the provision of key 30 

ecosystem services. A considerable amount of data are required to assess ecological 31 

intactness and ecosystem functioning and, given the profound anthropogenic 32 

pressures many mountain regions are being subjected to, are urgently needed. Yet 33 

data on mountain biodiversity remain lacking. The Essential Biodiversity Variables 34 

(EBVs) framework can help focus efforts related to detecting, investigating, predicting, 35 

and managing global biodiversity change, but has not yet been considered in the 36 

context of mountains. Here, we review key biological processes and physical 37 

phenomena that strongly influence mountain biodiversity and ecosystems, and seek 38 

to elucidate their associations with potential mountain EBVs. We identify seven 39 

mountain-relevant EBVs of high relevance: Species composition, Species abundance, 40 

Species distribution, Ecosystem fragmentation, Ecosystem extent, Ecosystem 41 

heterogeneity and Ecosystem functional type. Our proposed set of mountain-relevant 42 

EBVs can help ensure that the most critical drivers and responses of mountain 43 

biodiversity change are well tracked and understood. If implemented, the selected 44 

EBVs can contribute to relevant information for management and policy interventions 45 

that halt mountain biodiversity loss and maintain functional mountain ecosystems. 46 
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Introduction 50 

Biodiversity loss and its impact on ecological intactness is a global challenge. 51 

Repeated calls have been made to generate and share relevant data to monitor 52 

changes and support the effective conservation, management, and sustainable use of 53 

ecosystems worldwide. To respond effectively to biodiversity loss, the harmonization 54 

of biodiversity monitoring approaches and improving access to the corresponding 55 

datasets have been recognized as being of great importance, leading to the concept 56 

of Essential Biodiversity Variables (EBVs) (Geijzendorffer et al. 2016, Hoffmann et al. 57 

2014, Jetz et al. 2019, Pereira et al. 2010). In short, EBVs can be considered a 58 

minimum set of fundamental biodiversity measurements that are required to detect 59 

and report on biodiversity change (O'Connor et al. 2020, Pereira et al. 2013, Pettorelli 60 

et al. 2016).  61 

EBV datasets take the form of spatio-temporal layers (or data cubes) that characterise 62 

the state of biodiversity, and from which specific biodiversity indicators or metrics can 63 

be computed (Hardisty et al. 2019, Schmeller et al. 2017). Besides their use in science 64 

and for the visualization and communication of change in biodiversity, such indicators 65 

are extremely useful and regularly applied in policy-oriented biodiversity assessments. 66 

Two global biodiversity initiatives, the Intergovernmental Science-Policy Platform for 67 

Biodiversity and Ecosystem Services (IPBES) (Intergovernmental Science-Policy 68 

Platform on Biodiversity and Ecosystem Services 2019, Schmeller and Bridgewater 69 

2021), and the Kunming-Montreal Global Biodiversity Framework of the United 70 

Nations – aim to identify and address the key drivers of biodiversity loss. For that policy 71 

related work, a strategy on how the complex ecological processes and the resulting 72 

biodiversity changes can be more effectively monitored and communicated to policy 73 

makers is needed (Geijzendorffer et al. 2016).  74 
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EBVs were initially conceived to be globally applicable, with no distinction between 75 

domains (terrestrial, freshwater, and coastal/marine) or ecological settings (e.g. 76 

mountains, wetlands, tundra, and deserts). Whilst this brings clear benefits of 77 

consistency and comparability, generic EBVs may not be well suited to provide 78 

relevant information on biodiversity and its changes within specific domains and 79 

ecological settings. Here we explore the relevance of the EBV concept in a mountain 80 

context, where both the need for biodiversity data collection and the associated 81 

difficulties are well established.  82 

Nevertheless, there are several reasons why more and well-targeted biodiversity data 83 

from mountain environments are still needed. First, because of the sharp change in 84 

climatic and life conditions in mountains they host a uniquely high diversity of species 85 

(Körner 2004), of which a high proportion are endemic (Rahbek et al. 2019) as a result 86 

of the biogeographic isolation under which mountain populations of plants and animals 87 

have evolved. Second, mountain biodiversity fulfils many important functions, 88 

including slope stabilisation or drinking water storage and hydrological regulation 89 

(Körner 2004). Third, mountain biodiversity is essential to sustainable development 90 

(Payne et al. 2020c) and repeated calls have been made to recognize the importance 91 

of mountain biodiversity and its protection in international agendas. However, despite 92 

political commitments towards the safeguarding of mountains (e.g. the 2030 Agenda 93 

for Sustainable Development and its 17 Sustainable Development Goals (SDGs), 94 

including mountain-specific SDG targets: https://sdgs.un.org/topics/mountains), 95 

mountains and their biodiversity continue to be subjected to multiple anthropogenic 96 

pressures. These pressures include climate and land-use change, pollution, the rapid 97 

spread of invasive species, the over-exploitation of natural resources, and 98 

demographic change (Comer et al. 2022, Payne et al. 2020a, Schmeller et al. 2022, 99 
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Thornton et al. 2022a). Their impacts have already induced major responses across 100 

mountain socio-ecological systems (Mayer et al. 2022, Payne et al. 2020c) and are 101 

associated with high risks for ecosystem health as well as human health and well-102 

being (Adler 2022, Schmeller et al. 2020, 2022).  103 

The challenges associated with biodiversity data collection in mountains arise primarily 104 

from remoteness and topography. Remoteness affects accessibility, logistics, and 105 

costs. Accordingly, despite the development of certain successful in situ observation 106 

programmes and networks such as GLORIA (Grabherr et al. 2000), MIREN (Haider et 107 

al. 2021), and the iLTER (Haase et al. 2016), the coordinated coverage of in situ 108 

biodiversity monitoring efforts in mountains remains limited. Despite recent 109 

improvements in remote sensing technologies, the spatial resolutions of the resultant 110 

products are often insufficient in mountains (Pettorelli et al. 2016, Randin et al. 2020, 111 

Rumpf et al. 2022). Additional challenges associated with data collection arise from 112 

the fact that many responses of mountain species and ecosystems to drivers may be 113 

non-linear or involve tipping points. For instance, biodiversity declines are likely to 114 

accelerate when different drivers are mutually amplifying, e.g. rising temperatures 115 

coupled with drought (Chen et al. 2011), or fish introduction and chemical pollution in 116 

aquatic ecosystems (Machate et al. 2022), calling for the adaptation of monitoring 117 

schemes. Likewise, species-specific traits such as body size (Brose et al. 2008, 2006) 118 

and phenology (Barnosky et al. 2012), as well as shifts in species distributions 119 

(Parmesan and Yohe 2003, Steinbauer et al. 2018, Balint et al. 2011, Engler et al. 120 

2011), may provide early indications of critical changes in biodiversity and ecosystems 121 

(Schmeller et al. 2018); appropriate monitoring is required if such changes are to be 122 

detected in a timely fashion (Figure 1).  123 
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In summary, given past and ongoing changes in mountain ecosystems and their 124 

biodiversity as well as predicted future changes, there is an urgent need to improve 125 

their monitoring and assessment. The numerous challenges associated with 126 

biodiversity data collection in mountain environments call for the identification and 127 

prioritization of biodiversity-related variables for the world’s mountains that are 128 

possible to be measured in such settings. By enabling the detection of biodiversity 129 

change (Pereira et al. 2010, Schmeller et al. 2015, 2017), EBVs can serve as an early 130 

warning of irreversible changes in ecosystems (Schmeller et al. 2018) and provide a 131 

useful initial reference framework from which to prioritize the measurement of 132 

biodiversity variables that hold particular importance in a mountain context. A set of 133 

mountain EBVs could therefore increase the relevance and efficiency of biodiversity 134 

data collection, while considering local requirements (Kühl et al. 2020), improve 135 

coordination, collaboration and information exchange. It will further improve reporting 136 

and forecasting of biodiversity change, and hence enhancing mitigation and 137 

adaptation efforts (Thornton et al. 2021b). At the same time, mountain EBVs must 138 

accommodate diverse data collection efforts and stakeholder groups (Bingham et al. 139 

2017, Kühl et al. 2020), and evolve with ongoing progress in measurement 140 

technologies (Randin et al. 2020).  141 

The establishment of a globally applicable and coherent approach that harmonizes 142 

existing approaches and data, identifies future monitoring priorities, and meets 143 

mountain-specific observational requirements should help considerably to address 144 

existing deficiencies in data coverage and biodiversity assessment-relevant 145 

information (Figure 1). 146 
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Key biological and biophysical processes that determine or 147 

influence mountain biodiversity 148 

Our contribution builds upon a workshop hosted by the Mountain Research Initiative 149 

as a contribution to the Global Earth Observation (GEO) Network on Observations and 150 

Information in Mountain Environments (GEO Mountains), held in February 2020. At 151 

the workshop, extensive discussions were held amongst 23 global experts, following 152 

a similar approach taken to identify and propose relevant Essential Climate Variables 153 

ECVs in mountains (Thornton et al 2021). For EBVs, we first identify and review 154 

several key processes and associated phenomena which determine or strongly 155 

influence mountain biodiversity. We then proceed to explore the extent to which 156 

candidate mountain EBVs could provide information pertaining to those key 157 

processes. Importantly, the candidate EBVs were not limited to those already included 158 

in the general framework (Pereira et al. 2013), but additions were made where deemed 159 

necessary, such as EBVs on community productivity, treeline position, 160 

evapotranspiration and soil carbon stock. Finally, a subset of high-priority mountain-161 

relevant EBVs was selected based on their combined informativeness in relation to 162 

the key processes (Figure 2). 163 

Ultimately, we identified 12 biological, biophysical, and abiotic key processes that exert 164 

a strong influence on mountain ecosystems. These key mountain processes are 165 

changes in: 1) species distribution; 2) biotic interactions; 3) species traits; 4) genetic 166 

processes; 5) taxonomic composition; 6) functional composition; 7) soil erosion; 8) 167 

disturbances; 9) nutrient dynamics; 10) water quantity and quality dynamics; 11) 168 

carbon dynamics; and 12) ecosystem distribution. We then proceeded to assess the 169 
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relationship of these key processes on distribution, composition, and condition of 170 

mountain biodiversity at genetic, species, and ecosystem levels. 171 

Changes in species distribution areas 172 

The geographic ranges of species and their changes through time are fundamental 173 

ecological characteristics (Gaston and Fuller 2009). From a conservation perspective, 174 

information on species distributions underlies almost every aspect of biodiversity 175 

management (Franklin 2010), with geographic range, for example, being used as a 176 

predictor of extinction risk in the International Union for Conservation of Nature (IUCN) 177 

Red List. Although climate is often considered to be the main determinant of species 178 

distribution (Thomas et al. 2006, Woodward 1987), geographic distributions are also 179 

locally structured by extinction and colonization events arising from spatial variation 180 

and interactions between demographic rates, local population persistence, the 181 

distribution of suitable habitats, dispersal and interspecific interactions (Pulliam 2000). 182 

Many species outposts, which in mountain environments often are located at their cold 183 

limits, are reacting strongly to climate warming and are thus acting as sentinels of 184 

climate change impacts.  185 

In the short term, rapid changes in species abundance and distribution are likely to 186 

result from the direct effects of climatic factors on species phenology, growth rate and 187 

demography (Chuine 2010). In the longer term, altered temperature and precipitation 188 

regimes will also offer (temporally limited) opportunities for some species to shift their 189 

range and colonize new, higher elevation areas, thereby altering the community 190 

compositions, functions and services of mountain ecosystems (Alexander et al. 2018, 191 

2015). In accordance with general distribution trends, range shifts and declines of 192 

species in mountain habitats have already been observed (Freeman et al. 2018, Lenoir 193 

et al. 2010, Rumpf et al. 2018). However, many of these changes occur at rates that 194 
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lag expected rates, and there is considerable variation in change rates between 195 

species (Alexander et al. 2018). Changes in species distribution with different 196 

strategies within and among montane belts inevitably lead to considerable changes in 197 

community functional trait composition that might have major consequences for 198 

montane ecosystem functioning (Winfree et al. 2015). This is especially relevant in 199 

mountains, since functional redundancy is considered to be lower than in lowland 200 

ecosystems (Körner 2004).  201 

Changes in community taxonomic composition 202 

The composition of a biotic community is the assemblage of taxa and their abundance 203 

within a given area. Community composition depends on both abiotic habitat 204 

conditions (i.e., abiotic filtering) and biotic interactions between co-occurring 205 

individuals of the same species, different species, or organism groups. Beyond tropical 206 

mountains, with increasing elevation and in topography-influenced habitats such as 207 

ridges and snow beds, abiotic factors, especially climatic ones like temperature, 208 

increase in relative importance over biotic ones as drivers of community composition 209 

(Normand et al. 2009, Randin et al. 2009). The composition of alpine and subnival 210 

ecosystems is strongly determined by low-temperature stress. The relaxation of this 211 

abiotic filter, therefore, leads to a change in species abundance and compositional 212 

community changes (Nagy and Grabherr 2009, Pauli and Halloy 2019, Rumpf et al. 213 

2018, Steinbauer et al. 2018).  214 

Because animal and plant communities in mountains are composed of species with 215 

different climatic niches, shifts in species composition can indicate directional 216 

changes, for example shifts towards more warmth-demanding communities (i.e. 217 

thermophilization; Gottfried et al. 2012) following changes in thermal or soil moisture 218 
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conditions. Besides such abiotic drivers, which also include disturbances and nutrient 219 

dynamics, changes in community composition are strongly related to biotic processes 220 

such as biotic interactions, adaptation, and species range shifts. Changes in 221 

community composition are expected to occur more rapidly than species’ range shifts 222 

since species turnover over time is preceded by changes in the abundance of resident 223 

species (Lamprecht et al. 2018, Rumpf et al. 2018). 224 

Changes in genetic and phenotypic diversity 225 

Species are composed of genetically differentiated populations that can evolve and 226 

change over time. Genetic diversity – the variation in genetic composition within and 227 

across populations – is therefore a fundamental dimension of biodiversity, determining 228 

species composition and ecosystem functioning. How contemporary genetic diversity 229 

is maintained and partitioned within species depends primarily on the movement 230 

among populations (gene flow), the emergence of new mutations, random 231 

demographic processes (e.g. genetic drift), and adaptive processes (e.g. natural 232 

selection). As high-elevation ecosystems are more isolated than low-elevation ones, 233 

genetic differentiation between isolated populations of the same species might be 234 

more pronounced in mountains as compared to lowlands (Steinbauer et al. 2016, 235 

Valbuena-Ureña et al. 2018).  236 

The steep environmental gradients in mountains can impose strong selection on 237 

populations to adapt to local conditions despite being connected by gene flow 238 

(Halbritter et al. 2018, Keller et al. 2013, Clausen et al. 1948). The great spatial 239 

heterogeneity of mountain landscapes means that local adaptation can occur at fine 240 

scales (Fischer et al. 2011, Hamann et al. 2016). Mountains can thus host high levels 241 

of (adaptive) genetic diversity within small areas. In increasing the fitness of local 242 
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populations, adaptation is important for population persistence and the extent of 243 

species distributions, especially in a mountain context under strong climate change 244 

impacts. By affecting the performance of populations and their capacity to persist or 245 

spread to new habitats, the capacity for plasticity is an important trait for coping with 246 

environmental heterogeneity in mountains (Gruber et al. 2013, Ligarreto et al. 2011). 247 

Phenotypic plasticity also plays a crucial role in adaptation and functional diversity 248 

within communities (Körner 2004), and consequently in the survival and competitive 249 

abilities of species and the functioning of ecosystems in the context of rapid climate 250 

change (Schmeller et al. 2022).  251 

Changes in species interactions 252 

Species are embedded in more or less complex ecosystems in which they interact 253 

with various competitors, natural enemies, mutualists, and commensalists. These 254 

interactions are key regulators of population sizes and dynamics, and strongly govern 255 

individual species’ distributions as well as the composition of local communities. 256 

Species interactions are also the basis for ecosystem functioning (Tylianakis et al. 257 

2011). In mountains, competition with warm-adapted species, rather than warm 258 

temperatures themselves, is thought to restrict many alpine plants to cooler, high 259 

elevation environments (Alexander et al. 2018, Paquette and Hargreaves 2021, Vittoz 260 

et al. 2009). More generally, competition is thought to strongly shape community 261 

assemblies at lower elevations, while positive interactions (“facilitation”) become more 262 

prevalent at higher elevations (Callaway et al. 2002). Facilitation can be especially 263 

important in arid mountain regions, where “nurse plants” provide shelter for more heat- 264 

and drought-sensitive species (Anthelme et al. 2014, Bucher and Rosbakh 2021).  265 

Nonetheless, competition certainly plays a key role for both plant (Brooker 2006, Lyu 266 

and Alexander 2022) and animal populations (Chan et al. 2019) at high elevations. 267 
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Other types of interaction also vary with elevation. For example, herbivory pressure 268 

tends to decline with increasing elevation (Rasmann et al. 2014). As a consequence 269 

some high elevation plants are less able to cope with herbivory (Pellissier et al. 2012), 270 

and hence with grazing pressure from livestock. Similarly, pollinator abundance is 271 

lower at higher elevations, meaning that plants typically rely on a smaller number of 272 

more generalist insects to provide pollination services (Inouye 2020). These 273 

distribution patterns are highly relevant for the future biodiversity of mountains 274 

because they imply that changes in biotic interactions might mediate some impacts of 275 

environmental change on mountain biodiversity (Alexander et al. 2018). The effects of 276 

changing environmental conditions on biodiversity may not be exclusively negative. 277 

For example, novel herbivores might help promote diversity by preferentially feeding 278 

on dominant high elevation plants, and so help subordinate species to persist despite 279 

climate warming (Descombes et al. 2020).   280 

Changes in functional trait composition 281 

Functional trait composition refers to the distribution of intra- and interspecific traits, 282 

life forms and strategies among and between co-occurring species in a community or 283 

food web (McGill et al. 2006). Functional traits comprise any morphological, 284 

behavioural, physiological, or phenological features that define the performance of 285 

individuals under specific environmental conditions (Violle et al. 2007). In mountains, 286 

plants and animals possess specialized traits to survive temperature extremes, the 287 

high fraction of ultraviolet light, short growing periods and frequent strong winds. 288 

These environmental adaptations, via functional traits, are closely linked to niche 289 

partitioning, species interactions and community composition (Villéger et al. 2008). 290 

Therefore, the changes in functional traits can be used to infer mountain species 291 

responses to the changes in their (a)biotic environments, species interactions and 292 
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community assembly process (‘response’ traits; Villéger et al. 2008). Changes in 293 

functional traits also have effects on mountain ecosystem services such as carbon 294 

sequestration and water runoff (‘effect’ traits; Fernandez and Kennedy 2015, Hébert 295 

et al. 2016). Temporal shifts in functional traits at population, species, or community 296 

levels can be used to monitor and predict the effects of global change on alpine 297 

biodiversity (Byamungu et al. 2021, Gallagher et al. 2013, Yin et al. 2020). They allow 298 

changes in crucial mountain ecosystem services and functions such as productivity, 299 

carbon sequestration, resource efficiency and soil stability to be inferred (Lavorel and 300 

Grigulis 2012).  301 

Changes in nutrient dynamics  302 

Due to their essential role in biochemical processes, nutrients constrain the function 303 

and shape of ecosystem community structure. Nutrient influences can be magnified at 304 

higher elevations (Dantas de Paula et al. 2021), and by the high spatio-temporal 305 

variability of nutrients in such settings. In response to the unique challenges posed by 306 

the physical nature of mountain environments, soil-plant systems have developed 307 

various strategies to deal with limited nutrient availability in space and time. Nitrogen 308 

(N) and phosphorus (P) in particular underpin the fundamental processes of 309 

metabolism, growth and reproduction and are therefore required in large amounts by 310 

all organisms.  311 

The apparent scarcity of N and P in alpine systems is rarely due to low abundance, 312 

but is more frequently a consequence of their reduced biological availability. 313 

Competition for these nutrients can be high, as can the range of strategies and 314 

adaptations to access or maximise nutrient uptake. Critical N loads for alpine systems 315 

have rarely been explored (Bowman et al. 2012), and the interactive effects of climate 316 

change are poorly understood (Matteodo et al. 2016). Since high mountain soils are 317 
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commonly nutrient-poor, anthropogenic fertilisation effects, especially when combined 318 

with climate warming, can have a strong impact on species composition (Staude et al. 319 

2022).  320 

Unlike N, phosphorus has no gaseous phase, and so all P in mountain systems is 321 

derived either from local erosion of bedrock or mineral matter (mineral dissolution), 322 

local introduction from livestock, dust or aerosol deposition, or in precipitation. P 323 

dynamics can create high functional diversity within alpine environments and 324 

furthermore have the potential to rapidly alter ecosystem processes through 325 

community turnover induced by climate or land use change. With respect to general 326 

nutrient cycling, snow in particular plays an important role in many mountain 327 

environments (Edwards et al. 2007, Litaor et al. 2005, Venn and Thomas 2021). 328 

Changes in snow cover persistence and snowmelt timing as a consequence of climate 329 

change are likely to increase the nutrient stress on alpine communities (Baptist et al. 330 

2010). Snow and ice-related specialisms may become more limited in extent, and 331 

snow-free periods in winter may enhance nutrient limitations, creating greater temporal 332 

variance in ecosystem processes whilst many systems begin to homogenise in spatial 333 

terms.  334 

Changes in carbon dynamics 335 

Mountain carbon dynamics are strongly heterogeneous in space and time (Fu et al. 336 

2015, Körner 2021). Nevertheless, specific adaptations and constraints in mountain 337 

ecosystems make it possible to infer the functioning of mountain carbon cycling. The 338 

net difference between photosynthesis and plant respiration dictates the total carbon 339 

eventually stored in plant biomass. Plants in high mountain regions are often 340 

temperature limited (Li et al. 2018) and therefore often have higher respiration rates 341 
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(Larigauderie and Körner 1995) and slower growth rates (Fu et al. 2015) than lowland 342 

plants.  343 

Generally, particulate organic matter (POM) in mountain soils is structurally complex 344 

and difficult to break-down (Chomel et al. 2016), and consequently constitutes a high 345 

proportion (~20%–60%) of the total organic matter (Budge et al. 2011, Leifeld et al. 346 

2009, Saenger et al. 2015). POM is decomposed by soil microorganisms into 347 

dissolved organic matter. Organic matter decomposition in mountains is also 348 

temperature-limited (Schinner 1982), which contributes to a build-up of soil organic 349 

matter (Hagedorn et al. 2019). However, as mountain soil microbes produce cold-350 

adapted enzymes that work efficiently at low temperatures (Jing et al. 2018, Margesin 351 

et al. 2009), even minor warming could cause a large increase in POM decomposition, 352 

possibly altering mountain soil carbon stocks (Benbi et al. 2014) enhanced nutrient 353 

(e.g., nitrogen) availability (Chen et al. 2020, Kudernatsch et al. 2008) may further 354 

increase decomposition.  355 

Changes in water dynamics and quality 356 

Hydrological conditions in mountainous terrain, both at the surface and in the 357 

subsurface, exhibit considerable spatial and temporal variability across a range of 358 

scales (Thornton et al. 2021b, 2022b). In many regions, snowmelt, ice-melt and 359 

groundwater discharge sustain mountain stream and river flows through dryer and 360 

hotter periods or seasons. As such, these water sources play a crucial role in ensuring 361 

ecological streamflow and supporting in-stream ecosystems (Somers and McKenzie 362 

2020, Thornton et al. 2021a). Many mountain streams and torrents, especially lower 363 

order ones, are ephemeral or intermittent, and host biota that are adapted to or can 364 

tolerate such conditions (Stubbington et al. 2017). Mountain lakes, wetlands, and 365 
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many alpine meadows often hold particularly high ecological importance (Gandarillas 366 

et al. 2016, Hayashi 2020, Ortiz-Álvarez et al. 2018).  367 

Extreme hydrological  events can cause major ecological disturbances (Herbst and 368 

Cooper 2010) via elevated sediment concentrations (Cover et al. 2010), increased 369 

input of micropollutants to acute toxic levels (Machate et al. 2022), or through changes 370 

to channel morphology (Molnar et al. 2010). Outside such extreme events, water 371 

quality is primarily controlled by lithology and subsurface water residence times and 372 

flow pathways. Indeed, certain hydro-chemical conditions can support exceptionally 373 

high levels of biodiversity (Cantonati et al. 2020). Mountain forests are able to sustain 374 

high rates of evapotranspiration under drought conditions (Mastrotheodoros et al. 375 

2020), and spatio-temporal patterns of near-surface soil moisture strongly influence 376 

terrestrial species distributions (Giaccone et al. 2019). Climate change is likely to affect 377 

all aforementioned aspects of mountain hydrological systems. Other crucial 378 

hydrological variables for biodiversity such as water temperatures will likewise respond 379 

(Michel et al. 2020).  380 

Changes in ecosystem distributions 381 

Earth's land- and seascapes are composed of ecosystems. Ecosystems are generally 382 

recognized as comprising distinct physical environments and their associated biota 383 

(Bailey 1996, Sayre et al. 2020b). The organismal makeup of an ecosystem is a 384 

function of both the basic environmental drivers (e.g., climate, substrate type, etc.) that 385 

determine which organisms can occur there based on tolerances and life history 386 

requirements. Other factors such as geographic isolation, disturbance regime, glacial 387 

histories, and evolutionary history also play an important role (Dirnböck et al. 2011, 388 

Hewitt 2001, 2004, Schönswetter et al. 2005). Many topographically isolated mountain 389 

systems only have highly fragmented alpine areas, but outstandingly high proportions 390 
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of small-ranged species, resulting in exceptionally high extinction risks (Mendoza-391 

Fernández et al. 2022).  392 

In mountains, the structuring factors drive rapid modification of macro-climates to 393 

meso- and micro-climates and barriers to dispersal of propagules (Pepin et al. 2015). 394 

Reactions to these changes, however, depend on the temperature and hydrological 395 

tolerance of species. The differences in reaction time and movement abilities will 396 

disassociate existing communities, the basis of ecosystems. Hence, changes through 397 

elevation-dependent climate warming (Palazzi et al. 2019, Pepin et al. 2022, 398 

Rangwala and Miller 2012) and its effects on the cryosphere (e.g. snow phenology; 399 

(Wang et al. 2022) and hydrosphere is predicted to result in changes in ecosystem 400 

distribution (Wang et al. 2022). As ecosystem distribution and redistribution are closely 401 

linked to functional composition and species distribution these processes will see 402 

increased pressures and changes with increasing climate change impacts (Chiang et 403 

al. 2014).  404 

Identifying mountain relevant EBVs 405 

Based on our review of key mountain processes, their interactions, feedback 406 

mechanisms, and major abiotic influences, we proceeded to first identify those existing 407 

EBVs that hold high relevance in mountains (Figure 2). We then identified several 408 

additional candidate EBVs that could help advance our understanding of mountain 409 

biodiversity change. We thus considered the following 15 variables as candidate EBVs 410 

in a mountain context: Allelic Diversity, Species Abundance, Species Distribution, 411 

Species Growth (Morphology), Movement, Phenology, Species Composition, 412 

Community Productivity (Net Primary Production), Ecosystem Composition by 413 

Functional Type, Ecosystem Extent, Ecosystem Fragmentation, Ecosystem 414 
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Heterogeneity, Evapotranspiration, Soil Carbon Stock and Treeline Position (Table 1). 415 

Thereafter, we developed a consensus ranking that represents the perceived 416 

importance of each EBV with respect to the information content that their 417 

corresponding datasets could cumulatively provide with respect to all key biological 418 

processes and their abiotic influences. 419 

To relate the 12 key mountain processes with our 15 candidate mountain EBVs, we 420 

constructed a table characterising the strength of their bi-directional pairwise 421 

dependencies. In this way, we were able to distinguish between EBVs that are related 422 

to individual or multiple processes (Figure 2). From this, we derived an aggregated 423 

information power (AIP) score, thus prioritizing those candidate EBVs which support 424 

the understanding of multiple processes over those more specific EBVs that are 425 

associated to a smaller number of processes. In this expert elicitation approach, we 426 

sought parsimony in the selection of variables for presumed reduction in monitoring 427 

costs. The 12 biological, biophysical and abiotic processes were weighted equally. 428 

The selected processes that drive the functioning of mountain ecosystems through 429 

their impacts on biodiversity on the different biological levels (from genetic to 430 

ecosystem) formed the basis of our scoring system. As alluded above, we assigned 431 

scores based on the perceived importance of the information that could be provided 432 

by each candidate mountain EBV to understand the key mountain processes and 433 

influences. We applied four categories: no importance (Score 0), low importance 434 

(Score 1), medium importance (Score 2) and high importance (Score 3). Below, using 435 

allelic diversity as an example, we illustrate this scoring system: 436 
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Low importance (Score 1): Allelic diversity contributes to the key ecological/biophysical 437 

process, but low allelic diversity may not have a negative impact on the process and 438 

in turn it itself is impacted little by the key process in question; 439 

Medium importance (Score 2): Allelic diversity contributes to the key process, but does 440 

not drive it alone, nor is allelic diversity solely driven by the key process in question; 441 

High importance (Score 3): Allelic diversity is imperative for the key process to operate, 442 

and the key process under question is itself strongly driving allelic diversity. 443 

Our reasoning follows the logic that, for instance, levels of allelic diversity strongly and 444 

directly result from population genetic processes, and equally allelic diversity itself 445 

shapes population genetic processes (and so the combination received a score of 3). 446 

On the other hand, population genetic processes are one of many factors influencing 447 

species abundance (Score 2), and will therefore also influence community 448 

composition, but the contribution of population genetic processes relative to other 449 

processes is likely to be much weaker at the community scale (Score 1). Biotic 450 

interactions can strongly regulate species abundances at local scales (Score 3), and 451 

therefore also influence biodiversity patterns at larger scales and regulate ecosystem 452 

processes to a greater or lesser extent. However, the contribution of biotic interactions 453 

at larger scales, for example to species distributions, may be reduced relative to other 454 

factors (Score 2), or might not need to be considered to understand some ecosystem 455 

properties such as ecosystem fragmentation (Score 1). We followed the same 456 

approach and logic throughout our assessment (i.e., for the other candidate variables). 457 

These importance scores were added to the count of the number of processes to which 458 

a candidate mountain EBV contributes information, leading to the enumeration of the 459 

AIP score. 460 
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We subsequently selected the highest AIP scoring EBVs and checked their 461 

interdependence to assess whether some EBVs themselves inform other EBVs 462 

(Figure 2). For this we used a second scoring system, from 0 to 4. A score of 4 would 463 

indicate that two EBVs are entirely redundant, a score of 3 highly redundant, 2 464 

redundant, 1 little redundant, 0 not redundant (i.e. fully independent). 465 

The consensus building process 466 

Our assessment was based on the consensus agreement of all experts (N = 23). 467 

Based on the AIP distribution (Figure 3), we identified the seven most informative 468 

candidate mountain EBVs. A noticeable step in the AIP distribution was observed at 469 

the value of 29, and therefore this was chosen as the importance or informativeness 470 

threshold for a candidate variable to be considered a priority mountain EBV. The seven 471 

variables are: Species composition, Species abundance, Ecosystem fragmentation, 472 

Ecosystem extent, Ecosystem heterogeneity, Species distribution and Ecosystem 473 

functional type (Figure 3). 474 

Among these seven selected mountain EBVs, our interdependence analysis shows 475 

some redundancy of species abundance, species composition, ecosystem 476 

composition by functional type and ecosystem heterogeneity (Table 2). Ecosystem 477 

heterogeneity depends on nearly all other EBVs and could easily be deduced from 478 

other EBVs, once their corresponding data are available and standardised. 479 

The policy relevance of mountain EBVs – ways forward 480 

Our assessment yielded seven mountain-relevant EBVs, three of which relate to 481 

species and community levels (Species abundance, Species distribution, Species 482 

composition), and four to the ecosystem level (Ecosystem composition by functional 483 

type, Ecosystem extent, Ecosystem fragmentation, Ecosystem heterogeneity). We 484 
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suggest that data collection regarding these EBVs should be prioritized to effectively 485 

document and evaluate on-going and extensive changes in mountain biodiversity and 486 

key mountain processes. Among the proposed set of EBVs, ecosystem heterogeneity 487 

captures a particularly high number of mountain processes (N = 11/12), and is highly 488 

linked with six other EBVs. This variable has a high potential to be monitored by remote 489 

sensing, which would allow large scale and relatively rapid data acquisition and high 490 

temporal resolution (Rocchini et al. 2016, Turner et al. 2015). 491 

The three species-level EBVs (composition, distribution and abundance) are globally 492 

applicable and are also of high interest in a mountain context. In lowlands, these EBVs 493 

are generally well informed (Schmeller et al. 2018) and efforts need to be stepped up 494 

in mountains to provide equally high-quality data (Jetz et al. 2019). The three 495 

ecosystem structure related EBVs (extent, fragmentation, and heterogeneity), and the 496 

EBV in the ecosystem function class (ecosystem composition by functional type) are 497 

intended to provide standardized characterizations of different dimensions of 498 

ecosystem extent and condition. These EBVs can be informed by remote sensing, and 499 

in light of the continued increase of the spatial resolution of remote sensing data 500 

(Pettorelli et al. 2016, Skidmore et al. 2021), we recommend to increase efforts to 501 

quickly operationalize these EBVs to document environmental changes in mountains. 502 

Although most of the EBVs in our mountain set are universal, specific requirements or 503 

attributes of the respective measurements may differ considerably between 504 

mountainous and non-mountainous terrain, as well as within individual mountainous 505 

areas. Data from those approaches might be difficult to compare and compile over 506 

larger spatial scales, potentially introducing substantial biases in mountain biodiversity 507 

assessments. In particular, higher spatial resolution is typically required in 508 

mountainous terrain to capture the dominant scale of variability due to the spatial 509 
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compression of climate life zones. As such, mountain EBVs may not provide a one-510 

fits-all solution to the urgent need to inform environmental governance about ongoing 511 

threats to global mountain ecosystems.  512 

Recent years have seen major developments in the global landscape with regards to 513 

biodiversity and conservation policy. Perhaps most notably, the 15th Conference of 514 

Parties to the UN Convention on Biological Diversity in 2022 saw the adoption of the 515 

Kunming-Montreal Global Biodiversity Framework (GBF). The GBF, as well as the 516 

ecosystem accounting framework of the United Nations System for Environmental and 517 

Economic Reporting (UNSEEA), require national level reporting of some of our 518 

proposed mountain EBVs, such as ecosystem extent and condition.  519 

The set of mountain-relevant EBVs proposed here can thus potentially be seen as a 520 

part of a broader framework which includes variables related to both climate (Thornton 521 

et al. 2021b) and society. Datasets corresponding to these complementary variables 522 

that explicitly consider the specificities of mountain areas and could eventually 523 

represent potentially powerful information pools to identify the status and predict the 524 

evolution of mountain systems more broadly. In this sense, we hope that our proposed 525 

mountain EBVs will encourage collective reflection on both “establishing a culture of 526 

integration in biodiversity monitoring” (Perino et al. 2022), and considering biodiversity 527 

as a key component of mountain social-ecological systems. To realise this vision, 528 

further convergence and agreement is needed, and new monitoring programs may 529 

need to be co-designed to elucidate the integrated nature of mountain system 530 

dynamics.  531 

This integration should not merely be data-oriented in purpose, but rather should 532 

recognise, work with, and interrelate the monitoring efforts made by diverse groups of 533 

stakeholders, where different motivations, resources, agendas, and mandates 534 
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inevitably shape the legacies of these efforts (Kühl, et al 2020). As a network initiative, 535 

GEO Mountains is working towards this integration goal for the multiple and diverse 536 

components of mountain social-ecological systems. In addition, the Global Mountain 537 

Biodiversity Assessment (GMBA) links experts and data regarding all aspects of 538 

mountain biodiversity, contributing also to GEOSS and GEO Mountains. These 539 

scientific community-led efforts are, in turn, consistent with and respond to the Group 540 

on Earth Observations’ own priorities in support of societal benefit areas, whereby 541 

Earth observations play a key role in decision making at all scales (Pettorelli et al. 542 

2016). Such efforts are therefore well placed to ensure that the necessary 543 

specifications and/or translations of global agendas to guide appropriate coordinated 544 

monitoring efforts in mountains, including data integration and interoperability, are 545 

taken up at all levels. Meanwhile, our existing relationships with other networks, such 546 

as the World Network of Mountain Biosphere Reserves 547 

(https://www.mountainbiosphere.org) could provide an excellent opportunity for the 548 

framework to be implemented and refined.  549 

Ultimately, the common language and means for data integration that can be facilitated 550 

through mountain EBVs should not only facilitate important scientific advances and 551 

monitoring efforts, but also support the science-policy dialogues upon which this type 552 

of collaborative work depends. 553 
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Table 1: The full set of candidate mountain EBVs. The table gives the name of 984 

the candidate EBV, its definition, the EBV class as defined by GEO BON (Pereira 985 

Henrique Miguel et al. 2013), and important references for the EBV definition. 986 

  Definition EBV class References 

Allelic diversity The average number of 
alleles per locus in a 
population of a given 
species and is an indicator 
of genetic differentiation. 

Genetic 
composition 

(Allendorf 1986, 
Pereira et al. 2013, 
Schmeller et al. 
2018) 

Species abundance The number of individuals, 
the biomass or surface 
coverage of a species 
within a local population or 
a biological community at a 
given point in time.  

Species 
populations 

(Jetz et al. 2019, 
Schmeller et al. 
2018, Turak et al. 
2017) 

Species 
distribution 

The arrangement of a 
biological taxon in time and 
space. 

Species 
populations 

(Jetz et al. 2019) 

Species Growth The variation in species 
growth over space and 
time. 

Species traits (Cunningham and 
Read 2003) 

Movement Behaviour related to the 
spatial mobility of 
organisms, such as 
dispersal and migration. 

Species traits (Hawkes 2009) 

Phenology The presence, absence, 
date of appearance, or 
duration of seasonal 
recurring activities of 
organisms. 

Species traits (Schmeller et al. 
2018, Tang et al. 
2016) 

Species 
Composition 

The presence/absence and 
abundance of species in 
ecological assemblages. 

Community 
composition 

(Jetz et al. 2019) 

Community 
productivity (Net 
Primary 
Production) 

The rate at which energy is 
transformed into organic 
matter, primarily through 
photosynthesis. 

Ecosystem 
functioning 

(Melillo et al. 1993) 

Ecosystem 
composition by 
functional type 

The diversity of the 
functional traits in 
ecological assemblages. 

Ecosystem 
functioning / 
Community 
composition 

(Paruelo et al. 
2001)  
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Ecosystem extent The horizontal (spatial) 
distribution of discrete 
ecosystem units. 

Ecosystem 
structure 

(Payne et al. 
2020b, Sayre et al. 
2020a) 

Ecosystem 
fragmentation 

A measure of the 
emergence of spatial 
discontinuities 
(fragmentation) in an 
ecosystem. 

Ecosystem 
structure 

(Reed et al. 1996, 
Saunders et al. 
1991, Sayre and 
Hansen 2017) 

Ecosystem 
heterogeneity 

The degree of variability of 
the ecosystem in space and 
time. 

Ecosystem 
structure 

(Cadenasso et al. 
2006, Schmeller et 
al. 2018) 

Treeline position The spatial position of the 
low-temperature 
determined treeline.  

Ecosystem 
structure/traits 

(Bader et al. 2021, 
Paulsen and 
Körner 2014) 

Evapotranspiration  Net flux in water from the 
land surface to the 
atmosphere, including 
evaporation from water 
bodies, bare soil, and 
leaves, as well as 
transpiration by vegetation.  

Ecosystem 
traits 

(Goulden and 
Bales 2014) 

Soil carbon stock Organic and inorganic 
carbon stored in the soil, 
resulting from the balance 
between soil carbon inputs 
and outputs. 

Ecosystem 
traits 

(Sjögersten et al. 
2011) 
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Figure legends: 989 

Figure 1: The conceptual framework of the present study, linking the different 990 

levels of biodiversity to key mountain processes. The different biodiversity 991 

levels, from genes to ecosystem, can be measured with a variety of Essential 992 

Biodiversity Variables (EBVs) through space and time (Pereira et al. 2013). These 993 

EBVs can provide information on several key mountain processes, such as water or 994 

nutrient dynamics, population genetic processes, and ecosystem redistribution, 995 

because these processes change ecosystems and biodiversity. We elucidate the 996 

relationships between EBVs and key mountain processes to define a set of EBVs 997 

that are most relevant for mountain contexts. Such an EBV set will improve data 998 

coverage and biodiversity assessment-relevant information for mountain biodiversity 999 

and will aid the global policy arena in decision making (e.g. the United Nations 1000 

Environmental Programme). 1001 

Figure 2: Approach in evaluating candidate mountain EBVs. We first reviewed 1002 

which key mountain process exist (see the review section of our article), identified 1003 

relevant EBVs from the list put forward by Pereira et al. (2013) and complemented 1004 

this list with additional candidate mountain EBVs. We then crossed the information of 1005 

key mountain processes and the ability of candidate EBVs to inform those 1006 

processes. By calculating the AIP (see Material and Method section for details), we 1007 

selected the seven most informative candidate mountain EBVs. The final step of our 1008 

work was to understand how the different EBVs are interrelated and which ones 1009 

might be most useful to operationalize with priority. Find more details in the main 1010 

text. 1011 

Figure 3: List of Essential Biodiversity Variables and the key mountain 1012 

processes they inform. The table illustrates the main conclusions of our expert-1013 
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based assessment of importance of the candidate variables to provide information 1014 

regarding the key biological, biophysical, and abiotic processes. This assessment 1015 

yields two important results: 1) the importance of each candidate mountain EBV in 1016 

providing information regarding every key mountain process (no importance (Score 1017 

0), low importance (Score 1), medium importance (Score 2), high importance (Score 1018 

3)), and 2) the degree to which individual candidate EBVs inform multiple processes 1019 

(defined as N processes). These two dimensions of information power are captured 1020 

as an aggregate importance score (AIP) for each candidate EBV, where the 1021 

importance score is added to the number of processes each candidate EBV informs. 1022 

 1023 
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Figure 1:  1024 
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Figure 2:  
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Figure 3:  
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Table 2: Interdependence of the candidate mountain EBVs. Impact from top EBV 

on left EBV (upper triangle), impact from left EBV on top EBV (lower triangle). Empty 

circle = no redundancy (=fully independent), one quarter = low redundancy (score = 

1), demi circle = redundant (score = 2), three quarter = highly redundant (score = 3), 

black circle = fully redundant (score = 4). See also Schmeller et al. (2018). 
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