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Abstract
The global health burden associated with exposure to heat is a grave concern and is projected to
further increase under climate change. While physiological studies have demonstrated the role of
humidity alongside temperature in exacerbating heat stress for humans, epidemiological findings
remain conflicted. Understanding the intricate relationships between heat, humidity, and health
outcomes is crucial to inform adaptation and drive increased global climate change mitigation
efforts. This article introduces ‘directed acyclic graphs’ (DAGs) as causal models to elucidate the
analytical complexity in observational epidemiological studies that focus on humid-heat-related
health impacts. DAGs are employed to delineate implicit assumptions often overlooked in such
studies, depicting humidity as a confounder, mediator, or an effect modifier. We also discuss
complexities arising from using composite indices, such as wet-bulb temperature. DAGs
representing the health impacts associated with wet-bulb temperature help to understand the
limitations in separating the individual effect of humidity from the perceived effect of wet-bulb
temperature on health. General examples for regression models corresponding to each of the
causal assumptions are also discussed. Our goal is not to prioritize one causal model but to discuss
the causal models suitable for representing humid-heat health impacts and highlight the
implications of selecting one model over another. We anticipate that the article will pave the way
for future quantitative studies on the topic and motivate researchers to explicitly characterize the
assumptions underlying their models with DAGs, facilitating accurate interpretations of the
findings. This methodology is applicable to similarly complex compound events.

1. Introduction

The year 2023 marked the hottest year till date
on record, with respect to global mean temperat-
ure data going back to 1850 [1]. The emergence
of such record-breaking heat anomalies poses sig-
nificant public health challenges, given the well-
established association between heat and mortality,
andmorbidity burden [2, 3]. A recent study spanning
750 cities across 43 countries found that between 2000
and 2019, there were nearly seven heat-related deaths

per 100,000 people per year [4]. Climate change
is already playing a substantial role in exacerbating
this burden, accounting for nearly 37% of all warm-
season heat-related deaths between 1991 and 2018,
across multiple countries [5]. While some studies
project a slight decrease in non-optimal temperature-
related mortality in certain areas and under spe-
cific warming scenarios [6–8], owing to a reduc-
tion in cold-related mortality, accounting for popu-
lation aging trends could nullify or even reverse this
reduction [9, 10]. Regardless, without adaptation or
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mitigation measures, heat-related mortality is expec-
ted to significantly increase across populations [7,
11]. Therefore, quantification of past and projec-
tion of future heat-related health burden is crucial to
inform adaptation and drive increased global climate
change mitigation efforts.

The accurate quantification of health impacts
associated with heat is often challenging in epi-
demiological research as there are numerous factors
and caveats, such as confounding variables, effect
modifiers etc., to be accounted for. The role of
humidity in heat-related health impacts is one such
important, not yet fully resolved question. To delin-
eate the roles of temperature and humidity in heat-
stress, throughout this article, we use the term
‘heat-related mortality/morbidity’ to exclusively refer
to the health impacts associated with temperature
exposures higher than the temperature at which the
population experiences the lowest risk of impact
(referred to as minimum mortality/morbidity tem-
perature [MMT]) [3, 4]. And by ‘humidity’, we
refer to the moisture content in the ambient air,
irrespective of whether it is expressed as absolute
humidity (total mass of water vapour in a given
volume of air), specific humidity (total mass of water
vapour per unit mass of air), or relative humid-
ity (RH) (percentage of water vapour partial pres-
sure in the air to the saturation water vapour pres-
sure at the same temperature) [12], unless otherwise
specified.

In a recent commentary, Baldwin et al [13]
highlighted how epidemiological studies deal with
humidity in heat-related health impact research. They
hypothesised that issues in epidemiological analyses,
limitations in health and weather data, and physiolo-
gical factors that might restrict the impact of humid-
ity during real heat waves, as possible reasons for the
divergence between physiological research and epi-
demiological studies around humidity. This manu-
script aims to shed light on the issue of analytical
complexity in epidemiological research pertaining to
humid-heat and health, from a conceptual perspect-
ive, by introducing ‘directed acyclic graphs’ (DAGs)
as causal models [14, 15]. The goal is to system-
atically characterise, albeit in a simplified manner,
the complex nature of potential associations between
heat, humidity, health outcomes and other relev-
ant climate variables using DAGs. While we provide
conceptual examples for the modelling premise per-
taining to each illustrative DAG, further quantitative
assessments with real and simulated data are invited.
We believe that this conceptual overview will aid
researchers in systematically addressing the complex-
ity pertaining to the problem, and encourage more
studies aimed at explicitly addressing current know-
ledge gaps.

2. Current state of research

According to physiological studies, health impacts of
heat stress are not restricted to specific levels of tem-
perature alone. Humidity has been shown to play
a crucial role in how heat affects the human body
[16, 17]. The mechanisms by which heat impacts
human health are complex. In brief, the human body
has its own cooling system that allows its core tem-
perature to remain constant around a safe range of
36.8 ◦C ± 0.5 ◦C, regardless of changes in ambi-
ent conditions [18]. Heat stress is the physiological
response to increasing heat load on humans, whether
that load is environmentally and/or metabolically
derived [19]. When heat is not efficiently dissipated,
core temperatures will rise, causing heat strain. This is
manifested by dangerous physiological responses and
pathways, potentially leading to severe organ dam-
age and eventually to death [20, 21]. Temperature
and humidity are considered to be the most import-
ant contributors to heat stress, as the body cannot
release excess heat through evaporation of sweat dur-
ing hot and humid conditions [20]. Another import-
ant factor is solar radiation, a potential confounder
associated with both exposure and outcome. Wind
also plays an important role through displacement of
humid air with less saturated air and thus facilitating
evaporative cooling.

Based on this physiological understanding, sub-
sequently, numerous combined indices including
temperature and humidity were developed over the
past century [22] for use in specific disciplines
(e.g. military, occupational, or sports medicine)
under close-to-experimental conditions [23]. These
indices range from complex models focused on the
non-linear changes in specific humidity to easy-to-
compute metrics focused on RH, to characterize dan-
gerousweather conditions for health in specific popu-
lation subgroups [24, 25]. One such importantmetric
is the psychrometric or aspirated wet-bulb temperat-
ure (TW). TW is the temperature measured using a
standard thermometer with its bulb wrapped in a wet
cloth exposed to constant airflow and shielded from
solar radiation [26, 27]. TW can be considered as the
lowest temperature attainable through water evap-
oration alone, under ambient conditions. The nat-
ural wet-bulb temperature (Tnwb), however, is meas-
ured with a wet-wick thermometer that sits in a water
reservoir unshielded from both solar radiation and
wind. Tnwb thus provide a closer approximation for
cooling that can naturally occur through perspiration
in the human body [26, 27].

Using a simple energy balance model, Sherwood
and Huber [16] proposed that continuous exposure
to TW of 35 ◦C for more than four hours represents
the upper limit to human survivability. Alarmingly,

2



Environ. Res. Lett. 19 (2024) 074069 S Sivaraj et al

a global survey of quality-controlled station-based
data indicated numerous occurrences of TW surpass-
ing 31 ◦C and 33 ◦C globally, with two stations
already recording multiple daily maximum TW val-
ues exceeding 35 ◦C, primarily for durations ran-
ging from 1 to 2 h [28]. These instances of ‘crit-
ical’ TW exceedances were reported for stations in
South Asia, the coastal regions of the Middle East,
and coastal areas of southwest North America [28]. In
fact, more recent empirical and physiological studies
suggest that the ‘critical’TW threshold in reality could
be well below the proposed theoretical maximum of
35 ◦C [17, 29]. This implies that human susceptibility
to heat stress may be greater than previously thought.
However, physiology-based studies are yet to be soph-
isticated enough to yield reliable global results, which
highlights the importance of epidemiological studies
concerning humid-heat.

Environmental epidemiology studies how vari-
ous physical, biological, and chemical factors in
the external environment, when broadly considered,
impact health of human populations [30]. While
there is a strong consensus regarding the harm-
ful effects of high temperatures on health in envir-
onmental epidemiology [31–34], until recently, the
health impacts associated with humid-heat had rarely
been studied in this field. A limited number of epi-
demiological studies have focused on examining the
distinct impact of humidity on health, and these stud-
ies have produced conflicting results. For instance, in
a large, multi-location study, Armstrong et al [35]
identified a minor but protective effect on mortal-
ity risk linked to higher humidity levels. Conversely,
a separate study in the United States [36] reported a
positive association between high humidity andmor-
tality risk for populations. Furthermore, time series
regression studies showed that no composite heat
stress index (e.g. wet-bulb temperature, heat index
etc.) is consistently superior to other indices or dry-
bulb temperature in predicting population-level heat-
related mortality impacts [37, 38]. The best predictor
varied across different age groups, seasons, and cities
[37, 38], which may indicate the role of humid-
ity in heat-related health impacts may vary across
populations.

The commentary by Baldwin et al [13] high-
lighted the importance of clarifying the role of
humidity in heat-related health impacts for robust
projection of future climate risks as well as for
developing well-informed health adaptation meas-
ures. Additionally, we also argue that epidemiolo-
gical studies provide insights that physiological stud-
ies often cannot provide, concerning the generaliz-
ability of the findings to different population sub-
groups (i.e. children, elderly population, etc.) and
assessment of local/regional impacts. In particular,
it has been shown that heat-related health impacts
are highly variable within and between countries

primarily due to differential vulnerability and expos-
ure across populations [39, 40]. Such differences may
also exist across populations for humid-heat vul-
nerability and existing measures (e.g. social, behavi-
oural, institutional etc.) to counter the vulnerability.
Therefore, understanding and clarifying the reason(s)
behind the lack of consensus between physiological
and epidemiological studies is of great significance.

However, themain challenge that epidemiologists
face is the inherently complex relationship between
heat, humidity, and health due to the multifaceted
nature of these factors and their interplay in influen-
cing human well-being. There exists significant vari-
ation in the association between temperature and
humidity across the planet, which is driven by com-
plex climate drivers, including large-scale circulation
patterns, local geographical features, topography,
vegetation patterns, soil moisture, oceanic influences
etc [41–43]. Moreover, heat and humidity can impact
health through various direct and indirect mechan-
isms, such as heat stress, dehydration, exacerbation
of pre-existing health conditions, and the prolifera-
tion of vector-borne diseases [44–47]. These factors
often interact with socio-economic, environmental,
and demographic variables, making it challenging to
establish causal relationships and disentangle indi-
vidual effects of temperature and humidity. Such
complexity often means that epidemiological stud-
ies either ignore humidity altogether while consider-
ing the heat-related health impacts [48, 49] or resort
to finding associations between composite heat-stress
indices and health impacts [50, 51]. However, neither
approach clarifies the exact role played by humid-
ity. Even studies that particularly looked at the role
of humidity in heat stress often ‘adjust’ for tem-
perature as a confounder in the regression model
without explicitly bringing forth the associated causal
diagrams [35].

With DAGs, we aim to explicitly depict the causal
assumptions underlying different observational epi-
demiological study settings that can be used to
explore the role of humidity in health outcomes
related to heat stress. In such a complex causal net-
work, it is important for researchers to clarify the
causal assumptions employed in the models and
for readers to incorporate them while interpreting
the results. There are numerous precedents even
within environmental epidemiology for DAGs being
employed to this effect, particularly as an aid for con-
founder identification [52, 53].

3. The causal problem

The question of identifying the role played by humid-
ity in the causal pathway between heat and health
impacts is, as the framing suggests, a causal question.
Within epidemiology, there exist strong disagree-
ments on the philosophical and methodological
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foundations for the practice of inferring causation
from data [54, 55]. On the one hand, following
the ‘causal revolution’ pioneered by Judea Pearl [14]
‘the formal approach to quantitative causal infer-
ence’, relies on potential outcomes (i.e. counterfactual
reasoning) primarily in interventional study settings
[15, 56]. This framework imposes restrictions on the
nature of queries to mostly causal effects of manip-
ulable variables, through deliberate human interven-
tion, on the outcome of interest [54, 57]. However,
for environmental exposures such as temperature and
humidity, such deliberate manipulation of exposures
through an interventionist study design is inconceiv-
able at population levels.

On the other hand, historically, epidemiology
has relied on a more pluralistic approach to causal
inference, that relies on the triangulation of evid-
ence from different sources, and studies with unre-
lated sources of bias, including clinical, physiolo-
gical, pathophysiological and observational research
[58–60]. The pluralistic viewpoint necessitates con-
sensus between physiological studies and observa-
tional studies on the role of humidity in heat-
health impacts. Under this view, while there is debate
regarding the extent to which DAGs should be
incorporated in causal inference, there is still over-
whelming consensus that they can be an extremely
valuable way of illustrating the context in which
causal questions are being asked; in particular, they
can illustrate the assumptions being made in ana-
lyses, which helps us question the validity of the
assumptions [14, 15, 61].

In this article, we do not address the philosophical
question of whether observation based studies can
provide answers to causal queries regarding the role
of humidity in heat-related health impacts.We intend
to use DAGs primarily as illustrations of often impli-
cit causal assumptions behind the analytical models
employed in observational study settings in environ-
mental epidemiology, which have a significant effect
in how the results are interpreted, irrespective of the
validity of the results themselves in the larger context
of causal inference.

4. Causal diagrams: heat, humidity and
health

There are many research methodologies employed
in environmental epidemiology to characterise the
association between exposures (e.g. environmental
stressors such as temperature, humidity, pollution,
etc.) and responses (e.g. health outcomes such as total
mortality, number of hospital admissions, etc.). They
include time-series regression studies, case-crossover
studies, case-only study designs, cohorts, etc [62].
Irrespective of the methodology, regression models

are often employed in such studies to characterise the
association of interest. Let

Y= Intercept+ f(X;θX)+ f(Z;θZ)

+ residualX+ residualZ (1)

be the simplified general form of a regression model
representing the association between an outcome Y
(corresponding to the health impact measure in our
case) and exposures X (e.g. temperature) and Z (e.g.
humidity). Here, f(X; θX) corresponds to the associ-
ation between the exposure variable X and the health
outcome Y, characterised by the parameter(s) θX,
given residualx and residualz are independent. We do
not impose any constraints on f to be linear or non-
linear.

4.1. Confounding andmediation
The DAG in figure 1(A) characterises the assump-
tion that temperature T (proxy for heat) and humid-
ity H have causal effects on the health outcome Y.
i.e. changes in T ‘causes’ changes in Y if all else is held
constant. Also same for H and Y. These assumptions
are indicated by the presence and direction of arrows
from T and H to Y in figure 1(A). However there is
no relationship between T and H, indicated by the
lack of arrow between T and H. Under this scenario,
one can use the regression models in equations (2)
and (3), respectively, to individually assess the associ-
ation between temperature and health outcome f(T;
θT), and humidity and health outcome f(H; θH). We
omit the residual and the intercept terms from the
regression models for ease of representation,

Y= f(T; θT) (2)

Y= f(H; θH) (3)

Now consider figure 1(B). This DAG corresponds
to the assumption that T has a causal effect onH (not
vice-versa) and health outcome Y. Moreover, H has
no causal effect on Y. This assumption would also
allow one to assess the association between T and Y
using equation (2). Regression model in equation (3)
has no physical significance in this scenario as our
prior causal model assumesH having no causal effect
on Y.

Whereas the examples above correspond to the
scenarios where the individual effects of exposures on
the outcome are assessed, the more common practice
is to consider humidity as a confounder in the rela-
tionship between temperature and health outcomes
in epidemiological studies [63–65]. Figure 1(C) cor-
responds to the causalmodel underlying this assump-
tion. In this DAG, the arrow fromH to T corresponds
to the assumption that changes in H ‘causes’ changes
inT, andnot vice-versa (which is indicated by a lack of
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Figure 1. DAGs representing direct causal effects,
confounding and mediation. (A) Temperature (T) and
humidity (H) have direct causal effects on health outcome
(Y). T and H have no causal effects on each other. (B) T has
direct causal effects on Y and H. H has no causal effect on Y.
(C) H is a confounder of the causal relationship between T
and Y. T is a mediator in the causal relationship between H
and Y. (D) T is a confounder of the causal relationship
between H and Y. H is a mediator in the causal relationship
between T and Y.

arrow from T toH). In addition, we also assume that
H andT have direct causal effects onY. The simplified
regression model with this implicit causal assump-
tion assumes the multiple linear regression form of
equation (4):

Y= f(T;θT)+ f(H;θH) (4)

Under the prior causal assumption in figure 1(C),
from equation (4), we can interpret f(T; θT) as the
magnitude of the association between T and Y con-
ditioned on the confounder H. When we condition,
i.e. adjust for humidity in the regression model in
equation (4), we eliminate the effect that humidity
has on temperature and the health outcome. This can
be thought of as creating a hypothetical scenario, i.e. a
counterfactual world, where humidity and temperat-
ure are considered independent with respect to their
effects on health outcomes. It is important to note
that under this assumption, it is better to use mass-
based measures of humidity, such as specific humid-
ity or absolute humidity, as opposed to RH. Since
RH exhibits strong temperature-driven diurnal cycles
[25], there is an increased chance of our assumption
of lack of arrow from T to H in figure 1(C) being
violated if we use RH. Also, note that T mediates
the association between H and Y according to this
DAG. Therefore, if we assume the causal model in
figure 1(C) prior to analysis, we cannot interpret f(H;
θH) from equation (4) directly as the magnitude of
the association between H and Y. Because by condi-
tioning on T, we block part of the effect of H on Y

that is mediated through T in this case. Therefore,
given the causal model figure 1(C), other analytical
techniques such as mediation analysis should be util-
ised to interpret the total direct (H→ Y) and indirect
(H → T → Y) effects of H on Y separately [66].

However, we can also have a prior causal model,
where temperature is the confounder in the associ-
ation between humidity and health outcome. This is
depicted by the DAG in figure 1(D). Here, we assume
that the changes in T ‘causes’ changes inH levels and
not vice-versa. Under the causal model figure 1(D),
we can directly interpret f(H; θH) from equation (4)
as the magnitude of the association betweenH and Y
conditioned on the confounder T. Under this causal
assumption, in a study spanning multiple countries
and cities, Armstrong et al [35] showed that the over-
all mortality experienced a slight decrease in compar-
ison to the usual mortality following days with elev-
ated RH levels, after accounting for the confounder
temperature.

From figures 1(C) and (D), it becomes evident
that incorporating both T and H into a single mul-
tivariable regressionmodel, when they are highly cor-
related with each other, can give rise to multicollin-
earity issues. Multicollinearity can result in coeffi-
cients that are estimated with ambiguity. This may
lead to incorrect conclusions, such as humidity (or
temperature) does not impact health outcomes [13].

4.2. Effect-modification and interaction
In certain studies, researchers explore the role of H
in modifying the health effects of T. This is achieved
by incorporating an interaction term that accounts
for the combined influence of T and H in the regres-
sion form. While the terms ‘interaction’ and ‘effect
modification’ are often used interchangeably, they
can hold slightly distinct meanings in the context
of causal inference [67]. In practice, effect modific-
ation is when we look at how one variable modi-
fies the causal effect of another variable on the out-
come. i.e. our interest is in the causal effect of only
a single exposure. Whereas with interaction, we are
looking for causal effects of both variables on the
outcome [68].

Attia et al [68] proposed a novel DAG struc-
ture that explicitly represents the causal assumptions
inherent to interaction and effect modification. The
DAG in figure 2(A) depicts the assumption that each
of the exposures, i.e. T and H, has a direct causal
effect on Y, but it can also be easily understood that
when T and H are present together, there is an addi-
tional effect H × T on Y. The assumptions encoded
in the DAG is encapsulated in the regression form in
equation (5),

Y= f(T; θT)+ f(H; θH)+ f(H×T; θH×T) (5)
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Figure 2. DAGs representing (A) interaction: humidity (H) and temperature (T) have direct causal effects on health outcome (Y).
There is an additional interaction effect H × T on Y when both H and T are present together. (B) Effect modification: T has
direct causal effects on Y. H has no direct causal effect on Y. Modification of the causal effects of T on Y by specific exposure levels
of H is represented by the H × T node.

The DAG in figure 2(B) depicts the causal
assumption thatH ‘modifies’ the association between
T and Y. Here, the lack of an arrow fromH to Y indic-
ates the assumption thatH has no direct causal effect
on Y. Moreover, the causal relationship of H with Y
is only important in order to obtain the adjustment
sets j of the bivariate exposure; {(Hj × T)}. With the
inclusion of theH × T node, the direct arrow from T
to Y now represents the average causal effect ofT for a
subpopulation with specific exposure values ofH and
T (which is referred to as stratification) [64, 65].

When incorporating an interaction term or strat-
ifying based on humidity and temperature, it is vital
to take into account the primary research objective
i.e. whether it is focused on causation, description,
or prediction, whether the interaction is assumed to
be in multiplicative or additive scale and the poten-
tial impact on policy decisions [13]. Explicitly dis-
tinguishing between interaction and effect modific-
ation using DAGs this way will aid the researchers
in clarifying their assumptions regarding the role of
humidity.

4.3. Composite metrics
Many composite indices are designed to assess the
effect of humidity on human health in conjunc-
tion with other environmental stressors [22]. We
intend to highlight the complexity of the causal
models associated with using such composite indices
in regression models through the example of wet-
bulb temperature. It also serves as an insightful
example of why it becomes difficult to learn about
the role of humidity in particular from such an
analysis.

For example, the regressionmodel in equation (6)
could correspond to a study analysing the effect
of natural wet-bulb temperature (Tnwb) on health
outcomes without accounting for any confound-
ing. Here, we make an assumption that Tnwb meas-
ured with a natural wet-bulb thermometer is entirely
determined by four variables; temperature (T), solar
radiation (SR), humidity (H) and wind speed (W).
Figure 3(A) could be a causal model justifying

the implicit assumption inherent to the model in
equation (6),

Y= f(Tnwb;θTnwb) (6)

Here in figure 3(A), we interpret the lack of arrows
from T, W, SR and H directly to Y as the assumption
that all relevant effects of these exposures are medi-
ated through Tnwb by virtue of how Tnwb is determ-
ined, and no additional individual effects are omit-
ted during such a characterisation. The effects that SR,
T, W and H have on each other are irrelevant under
this assumption as we are interested only in the ‘com-
bined’ effect of all the variables on Y. However, if one
wishes to assess the total indirect effect of H on Y
throughmediation analysis in this scenario, it is com-
plicated becauseT confounds the association between
H and Tnwb. Moreover, Tnwb is a ‘collider’ [14] in
this causal pathway, controlling for which will intro-
duce bias. Therefore, using a composite index mostly
limits the possible interpretations to the combined
effect of components on the outcome, even under
simple causal assumptions. However, in reality, it is
too simplistic to assume that Tnwb could completely
mediate all effects that the component variables have
on health outcome. Under the assumption that only
temperature has some direct causal effect on health
outcomes not fully mediated through Tnwb, which is
still simplistic, as portrayed by theDAG in figure 3(B),
equation (6) can no longer be justified as temperature
is a confounder in this new causal model. To over-
come this, suppose we condition on temperature, as
shown below in equation (7),

Y= f(Tnwb;θTnwb)+ f(T;θT) (7)

f(Tnwb; θTnwb) from the regression model in
equation (7) cannot be interpreted as the magnitude
of the combined effect of all relevant variables (SR,
T, H and W) on Y anymore, under the prior causal
model figure 3(B). This is because by conditioning
on T, we block part of the effect of T on Y that is
mediated through Tnwb in this case.
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Figure 3. DAGs representing causal assumptions concerning how Tnwb affects health outcomes (A) relevant causal effects of
temperature (T), humidity (H), wind speed (W) and solar radiation (SR) on health outcome (Y) are completely mediated
through the composite index natural wet-bulb temperature (Tnwb). (B) Relevant causal effects of H andW on Y are completely
mediated through Tnwb. T has direct causal effect on Y in addition to causal effect mediated through Tnwb. SR has causal effects
on Y mediated through T and Tnwb.

Figure 4. DAG representing causal assumptions concerning psychrometric wet-bulb temperature (TW). Temperature (T) and
humidity (H) have causal effects on health outcome (Y) mediated through TW. While wind speed (W) and solar radiation (SR)
do not directly influence TW, they have potentially relevant causal effects on Y through other pathways.

In practice, however, studies tend to use the
psychrometric wet-bulb temperature (TW) to ana-
lyse the association between humid-heat and health
impacts. This is partly due to the presence of imple-
mented algorithms to compute TW from temper-
ature and humidity measurements [69]. Figure 4
represents the potential associations between rel-
evant variables in such a characterisation. From
the DAG in figure 4, it is evident that the direct

interpretation of f(TW; θTW) from an equation such
as equation (6) (with Tw in place of Tnwb) becomes
even more muddled. Therefore, the use of com-
posite indices in observational epidemiological stud-
ies should be subject to careful consideration and
under the strict assumption that the interpretation
of the association obtained is strictly constrained on
the limitations within which the combined index is
constructed.

7
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Table 1. Summary.

Sr. No. Regression model Causal model

Conditional
independence
assumption(s) based
on causal model

Association measure(s) based on regression
model and causal model

1 Y= f(T; θT) Figure 1(A) 1) T⊥ H 1) f(T; θT): the association between T and Y

2 Y= f(T; θT) Figure 1(B) 1) Y⊥ H |T 1) f(T; θT) : the association between T and Y

3 Y= f(H; θH) Figure 1(A) 1) T⊥ H 1) f(H; θH): the association between H and Y

4 Y= f(T; θT)
+ f(H; θH)

Figure 1(C) None 1) f(H; θH): not a complete measure
2) f(T; θT): the association between T and Y
conditioned on H

5 Y= f(T; θT)
+ f(H; θH)

Figure 1(D) None 1) f(H; θH) : the association between H and Y
conditioned on T
2) f(T; θT): not a complete measure

6 Y= f(T; θT)
+ f(H; θH)
+ f(H×T; θH×T)

Figure 2(A) 1) T⊥ H 1) f(H; θH): the association between H and Y
conditioned on T and additional interaction
effect
2) f(T; θT): the association between T and Y
conditioned on H and additional interaction
effect
3) f(H×T; θH×T): the additional interaction
effect

7 Y= f(T;θT)
+ f(H×T;θH×T)

Figure 2(B) 1) T ⊥ H
2) Y⊥ H |H×T , T

1) f(T; θT): the association between T and Y
conditioned on H and effect modification by H
2) f(H×T; θH×T): effect modification by H

8 Y= f(Tnwb ; θTnwb) Figure 3(A) 1) Y⊥W | Tnwb

2)Y⊥ T | Tnwb

3)Y⊥ H | Tnwb

4) Y⊥ SR | Tnwb

5)W⊥ H |T
6)W⊥ SR |T
7) H⊥ SR |T

1) f(Tnwb ; θTnwb): the association between Tnwb

and Y

9 Y= f(Tnwb;θTnwb)
+ f(T;θT)

Figure 3(B) 1) Y⊥W |T,Tnwb

2) Y⊥ H |T, Tnwb

3) Y⊥ SR |T, Tnwb

4)W⊥ H |T
5)W⊥ SR |T
6) SR⊥ H |T

1) f(Tnwb ; θTnwb): the association between Tnwb

and Y conditioned on T (Implying that the
causal effect of T on Y mediated through Tnwb is
blocked)
2) f(T; θT): not a complete measure

Y : health outcome, T: temperature, H: humidity,W : wind velocity, SR: solar radiation, Tnwb: natural wet-bulb temperature.

5. Summary

The article highlights the challenges associated with
understanding the role of humidity in heat-related
health impacts from an environmental epidemiology
context. We propose to use DAGs as causal models
to clarify the often-implicit causal assumptions made
in observational studies, which can significantly affect
how results are interpreted.

We have provided causal models in the form of
DAGs and the generalised forms of corresponding
regression models employed in study settings, con-
sidering the roles of humidity as a confounder,
mediator, or effect modifier in the relation-
ship between temperature, humidity, and health
outcomes (see table 1). The use of composite indices

like wet-bulb temperature is also examined, high-
lighting the challenges and limitations of interpreting
the combined effects of multiple variables on health
outcomes.

This conceptual overview deals with the causal
assumptions researchers could make, and shape their
modelling framework accordingly, while assessing the
role of humidity in heat-related health impacts. We
are not making comparative statements on the ‘cor-
rectness’ of one framework over the other, rather
explicitly demonstrating the implications of such
choices. Miguel Hernán famously said ‘Draw your
assumptions before drawing your conclusions’ [70]
regarding the utility of causal models. We believe
that the article will contribute to future research by
motivating researchers and readers to characterise
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the assumptions behind models explicitly and to
interpret their results accordingly, not limited to
the question of the role of humidity on heat-health
impacts, but also for other such similarly complex
compound events.
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