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Abstract
In order to identify changes of gait patterns, e.g. due to prolonged occupational kneeling, which might be a major 
risk factor for the development of knee osteoarthritis, we develop confidence tubes for curves following a 
perturbation model on SO(3) using the Gaussian kinematic formula which are equivariant under gait 
similarities and have precise coverage even for small sample sizes. Applying them to gait curves from eight 
volunteers undergoing kneeling tasks and adjusting for different walking speeds and marker replacement at 
different visits, allows us to identify at which phases of the gait cycle the gait pattern changed due to kneeling.
Keywords: functional data analysis, Gaussian kinematic formula, Gaussian perturbation models, Lie groups, modulo 
group actions, two-sample tests
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1 Introduction
There is overwhelming evidence that prolonged occupational kneeling (POK), e.g. floor tile laying, 
constitutes a major risk factor for the development of knee osteoarthritis, e.g. Cooper et al. (1994), 
Coggon et al. (2000), and Rytter, Egund, et al. (2009). Also, POK is a risk factor for the develop
ment of degenerative tears in medial menisci, e.g. Rytter, Jensen, et al. (2009). In order to identify 
hypothesised underlying changes of gait patterns, kneeling workers’ and controls’ gait has been 
compared by Gaudreault et al. (2013) and prolonged kneeling has been simulated and gait changes 
compared by Kajaks and Costigan (2015) and L. M. Tennant et al. (2018). Also, dependence of 
kneeling effects due to footwear has been investigated by L. Tennant et al. (2015) and kneeling 
effects have been studied on cadavers with total knee arthroplasty (Wilkens et al., 2007).

In order to assess the specifics of changes of gait patterns, the three-dimensional rotational path 
in SO(3) of the relative motion of the tibia (larger lower leg bone) w.r.t. the femur (upper leg bone) 
is usually represented by the three Euler angles flexion/extension, adduction/abduction, and in
ternal/external rotation. This is the output experimenters get from proprietary camera systems 
such as Plug-In Gait (Vicon, Oxford Metrics, London, UK). Using the relative motions, 
Gaudreault et al. (2013), Kajaks and Costigan (2015), and L. M. Tennant et al. (2018) have found, 
among others, for each angle, loci of significant gait changes, without, however, addressing the 
issue of multiple testing, correlation of the sequential data, and the effect of marker replacement.

In our approach, we address all of these issues, and in consequence, are able to test for subject- 
specific changes of gait pattern. In application, we do this for pre- and post-kneeling, the method, 
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however, is applicable for any change of condition (e.g. onset of otheoathritis) over a period of 
time, in particular it corrects for marker replacement. To this end, we recall a Gaussian perturb
ation model from Telschow et al. (2020) for curves on Lie groups, apply it to SO(3) and build an 
oracle simultaneous confidence tube (SCT) for the centre curve (Theorem 3.4). We call it an oracle 
SCT, since the unknown quantile to calibrate the covering of the SCT depends on the true centre 
curve and therefore cannot be computed immediately. Building on the work (Rancourt et al., 
2000), assuming that the variance of the error process in the Gaussian perturbation (GP) model 
is small, we show that the unknown quantile can be approximated by the quantiles of an 
Hotelling statistic and that the unknown quantile can be estimated by the Gaussian kinematic for
mula (GKF), see J. E. Taylor (2006) and J. Taylor and Worsley (2008). An important feature of the 
developed SCTs is that they are equivariant with respect to the group action describing the marker 
replacement and the different walking speeds (Theorem 3.6).

In application to gait analysis, our method, relying on curves on the rotational group, takes ad
vantage of simultaneously involving all three Euler angles in a canonical way and can be motivated 
by the actual data generation (Section 5). Moreover, as the multiple testing issue is resolved by pro
viding SCTs over entire gait cycles, the sequential correlation is naturally modelled within the GKF 
approach, the SCTs are equivariant with respect to the effect of marker replacements, which is im
portant in our application to gait analysis (Section 5), and our simulations mimicking and going 
beyond the use case of low variance and high smoothness typical in gait analysis show that our 
approximations of the oracle SCTs have precise covering rates even for small sample sizes 
(Section 4), our SCTs are well applicable in gait analysis.

We report their application to an experiment conducted in the School of Rehabilitation 
Science at McMaster University (Canada) in Section 5. Here, we can identify for six out of eight 
healthy volunteers changes of their gait patterns after kneeling tasks by identifying time points 
where the SCTs do not overlap. We find that after kneeling, deviation from normal gait is stron
ger, in particular for older aged male volunteers. Our analysis also involves correcting for differ
ent walking speeds and marker replacement, at a subsequent patient’s visit, since it is well known 
that Euler angle curves may change considerably after marker replacement and simple ap
proaches subtracting average angles over gait cycles (cf. Kadaba et al., 1989) have remained 
questionable, e.g. Delval et al. (2008), McGinley et al. (2009), Noehren et al. (2010), and 
Røislien et al. (2012). This has lead to the longstanding open problem of gait reproducibility, 
see Duhamel et al. (2004). We also explain in detail the effect of the marker replacement on 
the observed relative rotation curves and use the method, which we developed in a recent pub
lication (Telschow et al., 2020), to correct for this effect. The main challenge here is that the pro
prietary software reports only the Euler angles of the observed relative rotations of the knee 
joint. Since volunteers will have different comfortable walking speeds at different visits, we 
also have corrected for this sample-specific time warping effect using the methodology described 
in Telschow et al. (2020).

The biomechanical gait analysis tool chain developed in this contribution, sketched in Figure 1, 
is available under www.stochastik.math.uni-goettingen.de/KneeMotionAnalytics as an 
R-package, including all data and code used in this paper.

2 Gaussian perturbation models on SO(3)
The Lie group SO(3) = {R ∈ R3×3 : RT = R−1, det(R) = 1} comes with the Lie algebra so(3) = {A ∈
R3×3 : AT = −A} of 3 × 3 skew symmetric matrices which is isomorphic to R3 by the map ι : R3 →

so(3) given by

ι(a) =
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎛

⎝

⎞

⎠

for a = (a1, a2, a3)T ∈ R3. The isomorphism ι satisfies the following useful relation:

Qι(a)QT = ι(Qa) for all a ∈ R3 and Q ∈ SO(3). (1) 
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On R3×3 we use the scalar product 〈A, B〉 := trace(ABT)/2 which induces the rescaled Frobenius 
norm ‖A‖F =

����������������
trace(AAT)/2

􏽰
= ‖a‖ on R3×3 and satisfies 〈A, B〉 = aTbfor A, B ∈ so(3)with 

ι−1(A) = aand ι−1(B) = b.
As usual, the unit matrix will be denoted with I3×3and A 7! Exp(A)denotes the matrix exponen

tial which is identical to the Lie exponential of SO(3)and gives a surjection so(3)→ SO(3). Due to 
skew symmetry, the matrix exponential satisfies the so-called Rodriguez formula, i.e.

Exp(A) = I3×3 +
sin (‖A‖F)
‖A‖F

A +
1 − cos (‖A‖F)
‖A‖2F

A2, (2) 

which shows that Expis bijective on Bπ(0) = {A ∈ so(3) : ‖A‖F < π}, compare Chirikjian (2000, 
p. 121) for further details.

For I = [0, 1], we denote with Γ = Cp(I, G), p ∈ N, the space of p times continuously differenti
able curves on SO(3). As in Telschow et al. (2020), we assume that the observed SO(3)-valued 
curves are generated by the following Gaussian perturbation model.

Definition 2.1 We say that a random curve γ ∈ Γfollows a GP around a centre curve 
γ0 ∈ Γif there is an R3-valued zero-mean Gaussian process atwith almost
surely Cppaths such that

γ(t) = γ0(t)Exp ι(at)
( 􏼁

(3) 

for all t ∈ I. The Gaussian process atwill be called the generating process.

This model, which is based on right multiplication with the exponential of the generating pro
cess is equivalent to a model based on left multiplication and asymptotically (as the variance goes 
to zero) equivalent to a model based on two-sided multiplication, cf. Telschow et al. (2020). 
Moreover, it is invariant under the spatial action of SO(3) × SO(3)on Γ given point-wise by 
(Q, P) ◦ γ(t) = Qγ(t)P, t ∈ I, and under the temporal action

ϕ ∈ Diff+( I ) = {ϕ ∈ C∞(I, I) : ϕ′(t) > 0 for all t ∈ I} 

of strictly monotone time warpings. We call S = (SO(3) × SO(3)) × Diff+( I )the space of gait simi
larities and write (ψ, ϕ) ◦ γ = ψ ◦ γ ◦ ϕfor the corresponding action on Γ which is defined by 
(ψ ◦ γ ◦ ϕ)(t) = ψ(γ(ϕ(t)))for all t ∈ I.

For independent i.i.d. samples χ1 = {γ1, . . . , γN}and χ2 = {η1, . . . , ηM}, N, M ∈ N, of GP models 
γ and η with centre curves γ0and η0, respectively, we have developed in Telschow et al. (2020) a 

Figure 1. Exemplifying one Euler angle from our tool chain to compare two samples of three-dimensional rotatonal 
curves. The two samples and their corresponding measures are have different colors (red and blue). The left panel 
shows the raw data, while the middle panel visualizes the point-wise extrinsic mean (PEM) curves. The spatio- 
temporal aligned  PEMs, samples and the corresponding simultaneous confidence tubes (SCT) are found in the third 
panel. Here the non-overlap of the SCT which indicates significant deviation of the gait pattern is highlighted by a 
black interval with end points being the black dashed lines.
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two-sample rank permutation tests for the hypotheses

H0 : ∃(ψ, ϕ) ∈ S : γ ∼ ψ ◦ η ◦ ϕ vs. H1 : ∀(ψ, ϕ) ∈ S : γ ∕ ∼ ψ ◦ η ◦ ϕ (4) 

at a given significance level α ∈ (0, 1). In contrast to classical shape analysis which corrects for a 
group action on individual measurements, this test corrects for a common sample-specific group 
action. Since this test is a global test, it cannot identify time points at which the centre curves γ0and 
η0of the tested samples differ, it only indicates whether the samples come from the same GP model 
up to the group action of Son Γ.

3 Confidence tubes for centre curves of GP models on SO(3)
In applications such as the biomechanical data presented in Section 5, which studies the effect of a 
kneeling intervention on the gait pattern of different subjects, it is often of interest to identify at 
which time points the centre curves of two samples differ. In order to achieve this, we now con
struct an SCT for γ0in a GP model on SO(3).

As in Telschow et al. (2020), we estimate γ0by the point-wise extrinsic mean (PEM) curve ̂γN(t)of 
a sample γ1, . . . , γN

i.i.d.∼ γ ∈ Γwhich is defined for each t ∈ [0, 1]by

γ̂N(t) ∈ ÊN(t) = argmin
μ∈SO(3)

1
N

􏽘N

n=1

‖μ − γn(t)‖2F. (5) 

It computes the PEM, cf. Bhattacharya and Patrangenaru (2003), of SO(3) ⊂ R3with respect to the 
norm ‖ · ‖F. The PEM fulfils the following uniqueness and convergence properties for GP models 
proven in Telschow et al. (2020).

Theorem 3.1 Let γ1, . . . , γNbe a sample of a random curve γ ∈ Γfollowing a GP model 
around a centre curve γ0and let t 7! γ̂N(t)be a measurable selection of 
ÊN(t)for each time point t ∈ I. If the generating Gaussian process atsatisfies

E max
t∈[0,1]

‖∂tι(at)‖F

􏼔 􏼕

< ∞, (6) 

then the following hold: 

(i) There is Ω′ ⊂ Ωmeasurable with P(Ω′) = 1such that for every
ω ∈ Ω′there is Nω ∈ Nsuch that for all N ≥ Nω, every ÊN(t)has a
unique element γ̂N(t)for all t ∈ Iand γ̂N ∈ Γ;

(ii) maxt∈[0,1] ‖γ̂N(t) − γ0(t)‖F → 0for N→∞almost surely.

Corollary 3.2 With the notations and assumptions of Theorem 3.1, we have

lim
N→∞

P t 7! γ̂N(t) ∈ Γ
􏼈 􏼉

= 1.

The inverse of the Lie exponential Expis well defined on Exp(Bπ(0))and, since the Lie exponential 
is a surjection, its inverse on Exp(Bπ(0))can be extended to a bijective, right inverse 
Log : SO(3)→ so(3)which is continuous on Exp(Bπ(0))but has discontinuities on SO(3) \ Exp(Bπ(0)).

Definition 3.3 Let γ1, . . . , γNbe a sample of a random curve γ ∈ Γfollowing a GP model 
around a centre curve γ0and let γ̂Nbe an estimator for γ0and L = ι−1 ◦ Log. 
Then

xN
t = L γ̂−1

N (t)γ0(t)
( 􏼁

and xN,n
t = L γ̂−1

N (t)γn(t)
( 􏼁

are called intrinsic population and sample residuals, respectively.
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If we assume that the sample covariance matrix Ŝx
t = (N − 1)−1􏽐N

n=1 xN,n
t (xN,n

t )Tderived from
the sample residuals is non-singular for all t ∈ I, we can define the one-dimensional oracle process

Ĥx
t = N xN

t

( 􏼁T
Ŝx

t

􏼐 􏼑−1
xN

t , (7) 

as it is not directly observable, since it depends on γ0. Nevertheless, it allows us to construct sim
ultaneous (1 − α)confidence tubes for γ0stated in our next theorem by introducing for any 
α ∈ (0, 1)the quantile

ĥγ0,N,α = inf h ∈ R ∣ P sup
t∈I

Ĥx
t ≤ h

􏼚 􏼛

≥ 1 − α
􏼚 􏼛

and the set

Vα γ1, . . . , γN; t
( 􏼁

= a ∈ Rm ∣ NaT Ŝx
t

􏼐 􏼑−1
a ≤ ĥγ0,N,α

􏼚 􏼛

.

Theorem 3.4 (Oracle Confidence Tubes). Let γ1, . . . , γNbe a sample of a random curve 
γ ∈ Γfollowing a GP model around a centre curve γ0. Let γ̂Nbe an estimator 
for γ0and assume Ŝx

t to be non-singular for all t ∈ I. Then

P γ0(t) ∈ γ̂N(t)Exp(ι(Vα(γ1, . . . , γN; t))) for all t ∈ I
􏼈 􏼉

≥ 1 − α.

The process Ĥx
t from equation (7) depends on γ0and therefore the quantile ĥγ0,N,αis not directly

computable. Using ideas from Rancourt et al. (2000) and extending them to Gaussian processes, 
we show in the next section for observations γn(t) = γ0Exp(ι(at)

n)for 1 ≤ n ≤ N, t ∈ Iand
E[ι(an

t )] = 0, and σ small enough that the process Ĥx
t can be approximated by the genuine 

Hotelling process obtained from the generating process of the GP model, i.e.

Ha
t = Na̅T

t Sa
t

( 􏼁−1a̅t, (8) 

with

a̅t =
1
N

􏽘N

n=1

an
t , Sa

t =
1

N − 1

􏽘M

n=1

an
t − a̅t

( 􏼁
an

t − a̅t
( 􏼁T

. (9) 

Remark 3.5 At first glance, this approximation seems not helpful, since the process Ha
t is 

not observable either. The benefit though is that it has a Hotelling 
T2-distribution for each t ∈ I. Therefore, the quantiles of the maximum 
over I of Ha

t can be approximated using the Gaussian kinematic formula or 
bootstraps based on the observed residuals xN,n

t if the maximal variance along
γ(t)is sufficiently small compared to the injectivity radius of SO(3)as will be 
discussed in the next section.

Our next theorem establishes the equivariance property of the SCTs with respect to the group 
action of Son Γ.
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Theorem 3.6 Let γ1, . . . , γNbe a sample of a random curve γ ∈ Γfollowing a GP model 
around a centre curve γ0with PEM curve γ̂N. Moreover, let 
(ψ, ϕ) = ((Pψ, Qψ), ϕ) ∈ Sbe arbitrary, acting on Γ point-wise by 
(ψ ◦ γ ◦ ϕ)(t) = Pψγ(φ(t))Qψ, t ∈ Iand define the sample ηn = ψ ◦ γn ◦ ϕ, 
n ∈ {1, . . . , N}of the GP ψ ◦ γ ◦ ϕwith centre curve η0 = ψ ◦ γ0 ◦ ϕand 
PEM curve η̂N. Then, for every 0 ≤ α ≤ 1, the SCTs for ψ ◦ γ0 ◦ ϕcomputed 
from η1, . . . , ηNsatisfy

η̂N(t)Exp ι Vα η1, . . . , ηN; t
( 􏼁( 􏼁( 􏼁

= (ψ◦ γ̂N ◦ϕ)(t)Exp ι QψVα γ1, . . . , γN; ϕ(t)
( 􏼁( 􏼁( 􏼁

, 

i.e. they can be derived from the SCTs for γ0using only γ1, . . . , γNand
(ψ, ϕ) ∈S.

3.1 Approximating confidence tubes on SO(3)
The main result of this section is that the residual processes xN

t and xN,n
t from Definition 3.3 are in

the case of concentrated errors approximately the residuals of the generating Gaussian process (9) 
of the GP model. This implies, in particular, that for concentrated errors the unobservable process 
Ĥx

t is approximately a Hotelling T2process. Making such concentrated error approximations is 
justified in biomechanics, since the generating error process atof the error in the movements of 
the joints is usually small compared to the injectivity radius of SO(3), compare also Section 5
for an explanation of the physical source of the error process. Rancourt et al. (2000) used the 
same ‘small variance’ approximation and our result can be viewed as an extension of their results 
to random curves. In particular, an inspection of our proof of the next theorem reveals that it does 
not require that the generating process in the Lie algebra is Gaussian.

Theorem 3.7 (Approximations for Concentrated Errors). Let N ∈ Nbe fixed and 
γ1, . . . , γNbe a sample of a random curve γ ∈ Γfollowing a GP model 
around a centre curve γ0. Additionally, assume that the generating 
Gaussian process atsatisfies E[ maxt∈I ‖ι(∂tat)‖F] < ∞and 
maxt∈I ‖ι(at)‖F =Op(σ)with 0 < σ→ 0. Let γ̂N(t)be a measurable selection 
of sample PEM curves. Then, for xN

t and xN,n
t from Definition 3.3 it holds

xN
t = a̅t +Op σ2( 􏼁

, xN,n
t = an

t − a̅t +Op σ2( 􏼁
, (10) 

where Op(σ2)is uniform over I.

Corollary 3.8 (Asymptotically genuine Hotelling process). Under the assumptions and 
notations of Theorem 3.7 and assuming cov[at] = σ2Σtwith a non-singular 
Σtfor all t ∈ I, we have that Ha

t = Ĥx
t +Op(σ), where Op(σ)holds uniformly

over I.

By the above corollary, the process Ha
t which is Hotelling-T3,N−1-distributed is approximately 

equal to the oracle process Ĥx
t for small σ. The intuition is that if the variance of the process is 

not too large, then all sample paths γ̂−1
N (t)γ0(t)and γ̂−1

N (t)γn(t), n ∈ {1, . . . , N}, are with high prob
ability completely contained in Exp(Bπ(0))and therefore the discontinuity of Lon the boundary 
does not cause problems when inverting to get the residuals.

3.1.1 The GKF
Corollary 3.8 states that for concentrated errors, the statistic Ha

t , which is the Hotelling T2statistic 
of a sample of size N of the generating Gaussian process a, approximates the oracle statistic Ĥx

t , cf. 
Remark 3.5. Thus, in order to estimate the quantiles ĥγ0,N,αfor the process Ĥx

t , derived from a GP 
model γ, we use the expected Euler characteristic (EC) heuristic, for example, J. Taylor et al. 

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5 1359



(2005), i.e. that for h > 0large enough the following approximate identity holds:

P max
t∈I

Ĥx
t > h

􏼒 􏼓

≈ E x t ∈ I|Ĥx
t ≥ h

􏼈 􏼉( 􏼁􏼂 􏼃
≈ E x t ∈ I|Ha

t ≥ h
􏼈 􏼉( 􏼁􏼂 􏼃

. (11) 

Here, x(U)denotes the EC of U ⊆ I. Although we cannot rigorously justify this approximation, our 
simulations in Section 4 show that this procedure works very well even for small sample sizes.

Under the assumption that the generating Gaussian process athas C2-sample paths and some addition
al weak technical assumptions given in J. E. Taylor (2006), it is shown in J. Taylor and Worsley (2008)
that the expected EC of the excursion set {t ∈ I ∣ Ha

t ≥ h}can be computed explicitly by the formula

E x t ∈ I ∣ Ha
t ≥ h

􏼈 􏼉( 􏼁􏼂 􏼃
= ρ0(h) + L1[at]ρ1(h). (12) 

Here, the so-called Lipschitz-Killing curvature L1[at]is given by the functional

L1[at] = ∫10

�������������

var
da
dt

(t)
􏼔 􏼕􏽳

dt, 

with atbeing the generating Gaussian process of the GP model. Moreover, the Euler characteristic dens
ities ρj, j ∈ {0, 1}, of a T3,N−1process appearing in the GKF (12) can be computed from the EC densities 
of a Students tN−1-process via Roy’s union intersection principle [cf. J. Taylor and Worsley (2008, 
Section 3.1)] resulting in the formula

ρj(h) =
􏽘3

d=0

μd S2( 􏼁
ρs

j+d

��
h
√􏼐 􏼑

, j = 0, 1.

Here, μd(S2)denotes the d-dimensional intrinsic volume of the two-sphere S2

μ0 S2( 􏼁
= 2, μ1 S2( 􏼁

= 0, μ2 S2( 􏼁
= 4π, μ3 S2( 􏼁

= 0 

as in J. Taylor and Worsley (2008, p. 23), recalling that the Hotelling process can be viewed as living on 
S2, since we divide by the variance. In relation to Stochastic Geometry literature [e.g. Mecke and Stoyan 
(2000, p. 100)], μ0gives twice the number of connected components and μ2gives the surface area of S2. 
Moreover, the EC densities of a random process with Student’s tN−1distributed marginals have the ex
plicit representations

ρs
0(h) = ∫∞h

Γ
N
2

􏼒 􏼓

���������
N − 1π
√

Γ
N − 1

2

􏼒 􏼓 1 +
u2

N − 1

􏼒 􏼓−N/2

du

ρs
1(h) = 2π( )−1 1 +

h2

N − 1

􏼒 􏼓1−N/2

ρs
2(h) = 2π( )−3/2

Γ
N
2

􏼒 􏼓

��������
N − 1

2

􏽲

Γ
N − 1

2

􏼒 􏼓 h 1 +
h2

N − 1

􏼒 􏼓1−N/2

ρs
3(h) = 2π( )−2 N − 2

N − 1
h2 − 1

􏼒 􏼓

1 +
h2

N − 1

􏼒 􏼓1−N/2

, 

given in J. E. Taylor and Worsley (2007, p. 915).
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3.1.2 Estimation of the quantile
Using the GKF for Hotelling T2-processes together with the EC heuristic (11) yields

P max
t∈I

Ĥx
t > h

􏼒 􏼓

≈ 2ρs
0(

��
h
√

) − 4πρs
2(

��
h
√

) − L1[at] 2ρs
1(

��
h
√

) + 4πρs
3(

��
h
√

)
􏼐 􏼑

, 

which could be used to approximate the value ĥγ0,N,αfor low probabilities α if L1[at]is known by 
solving

2ρs
0

��
h
√􏼐 􏼑

− 4πρs
2

��
h
√􏼐 􏼑

− L1[at] 2ρs
1

��
h
√􏼐 􏼑

+ 4πρs
3

��
h
√􏼐 􏼑􏼐 􏼑

= 1 − α. (13) 

Thus, it remains to estimate L1[at]. This has been achieved for Gaussian processes in 
RD, D ∈ N, in J. E. Taylor and Worsley (2007, Section 4) and J. Taylor and Worsley (2008), where 
they also proved that their estimator is consistent. Since the estimator of J. Taylor and Worsley 
(2008, equation (18)) is based only on the Gaussian residuals, we adapt their estimator by re
placing their residuals by the intrinsic residuals to obtain an estimator of L1[at]. This is justified, 
since the intrinsic residuals of a sample from a GP model γ are, in case of concentrated errors, close 
to the residuals of the generating Gaussian process At = ι(at)by Theorem 3.7. For convenience we 
state the resulting estimator explicitly.

Let γ1, . . . , γNbe a sample of a GP model γ and assume the curves are observed at times 
0 = t1 < t2 < · · · < tK = 1. Using the xN,n

t from Definition 3.3, we define the matrix

Rtk = xN,n
tk

, . . . , xN,n
tk

􏼐 􏼑T
∈ RN×3 

and denote with Rd
tk

the dth column of Rtk . The normalised residuals are given by R̂d
tk

= Rd
tk
/‖Rd

tk
‖for

d ∈ {1, 2, 3}and k ∈ {1, . . . , K}. The estimator of L1is then given by

􏽤L1[at] =
1
3

􏽘K−1

k=1

􏽘3

d=1

R̂d
tk+1

− R̂d
tk

􏼍
􏼍
􏼍

􏼍
􏼍
􏼍. (14) 

4 Simulations of covering rates
In this section, we study the actual covering rate of the proposed SCTs’ construction which is based 
on approximating the quantile ĥγ0,N,αfor concentrated error processes.

4.1 GP models used for simulation
Without loss of generality we may assume that our centre curves satisfy γ0(t) = I3×3for all t ∈ I, 
since we can multiply the sample with γ0(t)−1from the left and use Theorem 3.6. In our simulations,
we construct the generating Gaussian process for the used GP models from the error processes

ε1,l
t = fl(t) b1 sin

π
2

t
􏼐 􏼑

+ b2 cos
π
2

t
􏼐 􏼑􏼐 􏼑

ε2,l
t = fl(t)

􏽐10

i=1
bie

−

(
t−

i−1

9

􏼁2

0.2
�������������������

􏽐10
i=1 e

−2

(
t−

i−1

9

􏼁2

0.2

􏽶
􏽵
􏽵
􏽴

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

ε3,l
t = fl(t) b0e−5t +

���
10
√

∫t0 e5(s−t)dWt

􏼐 􏼑

(15) 

with i.i.d. bi ∼ N (0, 1)for i ∈ {0, . . . , 10}, {Wt}t∈Ia Wiener process, and for l ∈ {1, 2, 3}we set

f1(t) = 1, f2(t) = 4, f3(t) = sin (4πt) + 1.5.

J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 5 1361



These processes satisfy var[εν,l
t ] = fl(t)

2for all t ∈ I, l ∈ {1, 2, 3}and ν ∈ {1, 2, 3}. Furthermore, the
sample paths of the processes ε1,land ε2,lhave C∞sample paths, whereas the sample paths of ε3,l, 
which is a Ornstein-Uhlenbeck process [e.g. (Iacus, 2009, p. 43)], are only continuous, which im
plies that the GKF is not applicable for this process. In our simulations, we use

Ai,l,j,σ
t = ι Mj σεi,l

1,t, σεi,l
2,t, σεi,l

3,t

􏼐 􏼑T
􏼒 􏼓

, (16) 

for i ∈ {1, 2, 3}, j ∈ {1, 2}, l ∈ {1, 2, 3}, and σ ∈ R>0as the generating Gaussian process 
At = ι(at)for our GP models. Here, we denote with εi,l

s,tfor s = 1, 2, 3independent realisations of

the processes εi,l
t . The matrices

M1 =
1 0 0
0 1 0
0 0 1

⎛

⎝

⎞

⎠, M2 =
1 0 0
1
2

1
2 0

1��
3
√ 1��

3
√ 1��

3
√

⎛

⎜
⎝

⎞

⎟
⎠.

are introduced to include correlations among the coordinates. Moreover, equation (16) introduces 
different variances in the coordinates, since for j = 2the second component has half the variance of 
the other two components.

4.2 Design of simulation of SCTs for centre curves of GP models
First, N ∈ {10, 15, 30}realisations of the process Ai,l,j,σ

t on the equidistant time grid T with
Δt = 0.01of I for i ∈ {1, 2, 3}, j ∈ {1, 2}, l ∈ {1, 2, 3}, and σ ∈ {0.05, 0.1, 0.6}are simulated. We 
only report small sample sizes here, since the asymptotic behaviour has been studied intensely 
in Telschow and Schwartzman (2022) and small simulation studies for higher sample sizes did 
not reveal departures from correct covering rates.

For a sample of a GP model, we construct (1 − α)-SCT using Theorem 3.4 and estimate the 
quantile ĥγ0,N,αby equation (13) using the Lipschitz-Killing curvature estimator (14). Afterwards 
it is checked whether γ0 ≡ I3×3is contained in the SCT for all t ∈ T . This procedure is repeated 
M = 5,000times. The true covering rate is approximated by the relative frequency of the numbers 
of simulations, in which the constructed SCT contained the true centre curve γ0for all t ∈ T .

4.3 Results of simulation of SCT for centre curves of GP models
The results are reported in Table 1 and they convey a positive message: For a variance σ = 0.05, 
which is that of the data of the application in Section 5, the simulated covering rate is very close 
to 1 − α. The covering rates are only for the Ornstein-Uhlenbeck error process slightly too high. 
For higher variance (σ = 0.6), we underestimate the covering rate. This is expected, since the pro
posed estimator is designed for concentrated data and the map v 7! Log(Exp(v))is only the identity 
on ‖v‖ < πand we have the inequality

Log Exp ι(v)
( 􏼁( 􏼁􏼍

􏼍
􏼍
􏼍

F ≤ ‖v‖. (17) 

This implies that our estimated covariance matrix has smaller eigenvalues then the covariance ma
trix of the sample and hence our confidence sets will become smaller. This effect is more visible if 
the sample size is large, since more curves cross the cut locus.

5 Application: assessing kneeling effects on gait
5.1 Study design
In a study conducted at the School of Rehabilitation Science (McMaster University, Canada), 8 vol
unteers (4 female, 4 male, for each gender, two aged 20–30 and two aged 50–60) with no previous 
knee injuries (external observation and subjective questioning revealed no obvious knee problems) 
with unremarkable knee kinematics motion have been selected. In the experiment retro-reflective 
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markers were placed onto identifiable skin locations on upper and lower volunteers’ legs by an 
experienced technician according to the modified Helen Hayes marker set (Davis et al., 1991) 
described in the VCM protocol (Vicon, Oxford Metrics, London, UK). Eight cameras recorded 
the position of the markers and from their motions, a moving orthogonal frame 
Eu(t) ∈ SO(3)describing the rotation of the upper leg w.r.t. the laboratory’s fixed coordinate system 

Table 1. Simulated covering rates (right box) of simultaneous (1 − α)confidence tubes for Gaussian perturbation 
models obtained from M = 5, 000simulations for varying error processes (EP)

N σ EP 1 − α i = 1 i = 2 i = 3

10 0.05 Ai,1,1,σ 85/90/95 86.1/91.0/95.0 85.3/90.1/95.6 90.4/93.9/96.6

15 0.05 Ai,1,1,σ 85/90/95 85.0/90.1/95.4 85.7/90.7/94.9 89.4/93.0/96.6

30 0.05 Ai,1,1,σ 85/90/95 85.1/91.0/94.9 86.4/90.6/94.7 90.1/93.5/96.5

10 0.05 Ai,1,2,σ 85/90/95 85.3/89.9/94.6 86.1/90.9/95.4 90.1/93.1/97.2

15 0.05 Ai,1,2,σ 85/90/95 85.4/89.8/95.4 85.9/90.5/94.9 90.3/93.0/96.7

30 0.05 Ai,1,2,σ 85/90/95 85.0/90.2/95.6 85.9/89.8/94.9 90.2/92.9/96.6

10 0.05 Ai,3,1,σ 85/90/95 84.8/90.0/95.3 86.2/90.9/95.5 91.0/93.6/97.1

15 0.05 Ai,3,1,σ 85/90/95 84.3/89.9/95.2 86.2/90.6/95.0 90.3/93.0/96.2

30 0.05 Ai,3,1,σ 85/90/95 84.7/90.1/95.2 86.6/90.8/94.9 90.0/92.6/96.5

10 0.05 Ai,3,2,σ 85/90/95 86.0/90.6/95.0 85.4/90.3/95.5 90.3/93.3/96.9

15 0.05 Ai,3,2,σ 85/90/95 84.9/90.0/94.7 85.4/90.5/95.3 90.1/93.5/97.3

30 0.05 Ai,3,2,σ 85/90/95 85.1/89.7/95.3 85.9/90.7/94.9 89.9/92.9/96.5

10 0.1 Ai,1,1,σ 85/90/95 84.7/90.8/94.9 85.2/91.4/95.4 90.3/93.4/96.7

15 0.1 Ai,1,1,σ 85/90/95 84.9/89.8/95.1 86.1/90.4/95.1 89.5/91.6/96.6

30 0.1 Ai,1,1,σ 85/90/95 85.0/90.5/95.1 85.8/91.1/95.5 89.9/92.7/96.3

10 0.1 Ai,1,2,σ 85/90/95 85.5/90.4/94.5 86.3/90.8/95.1 90.3/93.3/96.4

15 0.1 Ai,1,2,σ 85/90/95 85.4/89.9/94.7 86.1/89.9/95.3 89.9/93.1/95.9

30 0.1 Ai,1,2,σ 85/90/95 85.1/89.6/95.0 85.4/90.7/95.7 89.9/93.1/96.4

10 0.1 Ai,3,1,σ 85/90/95 85.4/90.1/96.0 85.4/90.2/94.6 90.1/93.6/97.0

15 0.1 Ai,3,1,σ 85/90/95 84.1/89.6/94.7 86.0/90.5/95.0 88.9/92.9/96.5

30 0.1 Ai,3,1,σ 85/90/95 85.4/90.3/94.9 85.3/90.1/95.3 88.9/93.4/96.5

10 0.1 Ai,3,2,σ 85/90/95 84.6/90.5/95.1 86.5/91.0/95.3 89.9/93.4/96.3

15 0.1 Ai,3,2,σ 85/90/95 85.2/90.2/95.1 86.2/89.8/95.3 89.8/93.1/96.2

30 0.1 Ai,3,2,σ 85/90/95 85.7/89.6/95.0 85.1/90.6/95.5 90.9/93.2/96.6

10 0.6 Ai,1,1,σ 85/90/95 82.4/87.7/93.9 81.6/87.3/93.6 87.1/91.2/95.5

15 0.6 Ai,1,1,σ 85/90/95 79.9/85.7/92.7 80.7/86.4/92.9 85.2/90.2/94.6

30 0.6 Ai,1,1,σ 85/90/95 79.4/85.5/92.4 78.7/84.8/92.3 82.8/87.6/92.9

10 0.6 Ai,1,2,σ 85/90/95 81.5/87.7/93.8 82.0/88.6/93.8 88.1/92.1/96.0

15 0.6 Ai,1,2,σ 85/90/95 81.9/86.8/93.1 81.0/87.1/93.2 86.3/90.5/94.7

30 0.6 Ai,1,2,σ 85/90/95 80.0/85.7/91.9 80.9/85.6/92.1 85.2/87.6/93.9

10 0.6 Ai,3,1,σ 85/90/95 83.0/88.7/94.7 84.2/88.8/94.2 88.1/91.6/96.0

15 0.6 Ai,3,1,σ 85/90/95 81.9/88.5/93.5 80.9/87.2/93.8 86.0/90.5/95.1

30 0.6 Ai,3,1,σ 85/90/95 80.2/86.7/93.1 80.0/86.3/92.8 85.0/89.5/94.0

10 0.6 Ai,3,2,σ 85/90/95 84.3/89.7/94.4 84.2/89.0/94.9 87.4/92.5/96.2

15 0.6 Ai,3,2,σ 85/90/95 81.5/86.8/93.5 81.6/87.2/94.0 86.2/89.7/95.2

30 0.6 Ai,3,2,σ 85/90/95 81.3/86.6/92.4 81.8/86.7/92.4 85.8/89.2/93.2

Note. Notably, the Ornstein-Uhlenbeck processes (i = 3) do not fulfil the assumptions necessary for application of the 
Gaussian kinematic formula.
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was determined, and one for the lower leg, El(t) ∈ SO(3), each of which was aligned near I3×3when 
the subject stood straight. As is common practice in clinical settings, subjects walked along a pre- 
defined 10-m straight path at comfortable speed. For each of the following four sessions (A, B, 
C, D), for each subject a sample of N ≈ 12(for details on N, see Table 2) repeated walks have 
been conducted and for every walk a single gait cycle γ(t) = Eu(t)TEl(t)about half way through 
has been recorded, representing the motion of the upper leg w.r.t. the lower leg. The resulting curves 
γ(t)are reported in the Euler angle parametrisation within the VCM protocol, compare Rivest 
(2005) for a detailed exposition. After each walk, the volunteers stopped shortly and started again 
for the next 10-m walk. Thus, by design the assumption of independence of recorded gait cycles is 
satisfied.

The study consists of four sessions, each giving, as described above, a sample of walks for the left 
leg of each volunteer. Between samples A and B, the markers were detached and placed again by 
the same technician following the same standard protocol. Hence, the difference between these 
samples reflects the challenge of repeated reproducibility of gait patterns under clinical conditions. 
Before conducting the two sessions, C and D markers were again replaced and the volunteers ful
filled a task of 15 min kneeling prior to data collection of session C and yet another 15 min kneel
ing prior to session D. This allows to study the effect of kneeling and prolonged kneeling on gait 
patterns. Table 3 gives an overview of the four sessions conducted. Sessions A and B have already 
been reported in Telschow et al. (2020).

5.2 Statistical analysis using SCTs
We assume that the samples of relative rotation curves t 7! (EX

u (t))TEX
l (t)and t 7! (EY

u (t))TEY
l (t)for

sessions X and Y are drawn from GP models, and we aim to test whether there is a difference in the 
respective centre curves γX

0 and γY
0 . The assumption can be justified as follows. For sample X, say,

the VICON software computes the orthonormal frames EX
u (t), EX

l (t) ∈ SO(3)at each time point t. 
Marker wobbling due to soft tissue effects during movement and imprecision in the recording de
vice imply that the orthonormal frames for the two limbs are perturbed by random rotations 
Fu(t), Fl(t) ∈ SO(3). We assume that the random rotations are given by Fu(t) = Exp(ι(ϵu(t)))and 
Fu(t) = Exp(ι(ϵl(t)))with ϵland ϵuGaussian processes with zero-mean and variances small com
pared to π/2. The latter assumption is reasonable, since random errors due to soft tissue effects 
and imprecision in the recording device are very unlikely to rotate the orthonormal frames by large 
angles. Moreover, we assume that the sample paths are in C2(R3). Therefore, the orthonormal 
frames can be modelled as EX

u,0(t)Fu(t)and EX
l,0(t)Fl(t)with EX

u,0, EX
l,0 ∈ SO(3)being the true unob

served orthonormal frames and the resulting model for the final output received from the propri
etary software is

FX
u (t)

( 􏼁T
EX

u,0(t)
􏼐 􏼑T

EX
l,0(t)FX

l (t) = FX
u (t)

( 􏼁TγX
0 (t)FX

l (t) ≈ γX
0 (t)Exp ι(ϵ̃(t))

( 􏼁

with γX
0 (t) = (EX

u,0)TEX
l,0 ∈ SO(3)and ϵ̃a Gaussian process with values in R3having the same prop

erties as ϵland ϵu. The approximation of the two-sided GP model by a one-sided GP model is jus
tified by Telschow et al. (2020, Theorem 2) and used because it is easier to derive approximate 
SCTs using the GKF in this model. Before we can compare the SCTs for the centre curves of 
two sessions X and Y, we need to estimate the nuisance effects due to slightly different 

Table 2. Reporting the quartiles of numbers of processed walks (gait cycles) of volunteers for each of the four 
sessions from Table 3

0% 25% 50% 75% 100%

A 11.00 12.00 12.00 13.00 14.00

B 12.00 12.00 13.00 13.25 14.00

C 9.00 11.75 12.00 12.25 14.00

D 9.00 11.00 12.00 12.25 13.00
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experimental effects between these sessions caused by marker replacement and different walking 
speeds.

Again the design of the VICON system implies that replacing markers between two sessions X 
and Y can result in fixed and different rotations of the constructed orthogonal frames for the upper 
and lower leg, conveyed by suitable P, Q ∈ SO(3)such that EY

u,0(t) = EX
u,0(t)PTand 

EY
l,0(t) = EX

l,0(t)Q, compare also Rivest (2005, Section 4). Hence, even if the underlying kinematic
of the knee movement is identical, the imprecision of marker placement causes a distortion of the 
centre curves γX

0 (t)and γY
0 (t)between sessions given by γy

0(t) = PγX
0 (t)QT. This effect can be seen in

Figure 1 from Telschow et al. (2020). Estimation of P and Q and temporal alignment of the sample 
mean curves for two sessions has been done as detailed in Telschow et al. (2020) and Telschow 
(2016). While the estimation of P and Q could also have been done using the spherical regression 
technique for rotation matrices, c.f. Prentice (1989) and Rivest and Chang (2006), applied to the 
sample mean curves of different sessions, the benefit of the approach taken in Telschow et al. 
(2020) is that it is non-iterative and therefore the estimates can be integrated into the permutation 
test from Telschow et al. (2020, Test 2.11). Since this global test is not able to locate changes be
tween gait patterns, we identify such changes between two sessions by computing for each sample the 
SCT of the centre curve and afterwards use the estimated transformations for the temporal alignment 
and the transformation for removing of the marker placement to find time points where the tubes do 
not overlap. Simple algebra shows that rejection of t ∈ I, if the confidence tubes at t do not intersect, 
is a test controlling the family-wise error rate at level at least 1 − (1 − α)2, i.e. at level ≈ 0.9for 
0.95-SCTs. However, in general this is a very conservative bound. Here, it is important that the con
structed SCTs are equivariant with respect to the group action by Sas shown in Theorem 3.6, since 
otherwise the comparison between two sessions, i.e. the areas of non-overlap, depends on whether 
we align Y to X or X to Y using the estimated gait similarity. Note that the estimation of the gait 
similarity between two sessions in Telschow et al. (2020) does not depend on whether we align Y 
to X or X to Y in the sense that the resulting estimated gait similarities are inverse to each other. 
The pipeline for the statistical analysis is visualised in Figure 1, and the equivariance property of 
the SCTs is represented there by the fact that for the resulting SCT it does not depend on whether 
we align session X to Y and then compute the SCT or compute first the SCT and then apply the 
gait similarity to obtain the SCT which can be compared to the SCT of the template session.

Table 3. Experiments conducted

Session Explanation

A No intervention, walks

B No intervention but marker replacement, walks

C Marker replacement, 15 min of moderate kneeling, walks

D No marker replacement, another 15 min of prolonged kneeling, walks

Table 4. Reporting p-values (significant in bold face) obtained from the permutation test in Telschow et al. (2020, Test 
2.11 in the version of Remark 2.12) correcting for sample-specific group action

Vol A vs. C B vs. C A vs. D B vs. D

1 0.204 0.158 0.029 0.127

2 0.046 0.002 0.0 0.0

3 0.872 0.307 0.191 0.311

4 0.001 0.001 0.0 0.0

5 0.214 0.735 0.559 0.355

6 0.0 0.0 0.001 0.008

7 0.0 0.0 0.027 0.042

8 0.467 0.705 0.102 0.149
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5.3 Results
In Table 4, we report the results of the permutation test from Telschow et al. (2020, Test 2.11) 
which compensates for the variability of estimating the sample-specific group actions, removing 
the marker replacement effect. If we were not to correct for sample-specific group action, we 
would detect significant changes of gait for 6 out of the 8 volunteers, even for ‘A vs. B’, where noth
ing changed but marker placement, cf. Telschow et al. (2020, Table 2). In Table 4, we see signifi
cant (often highly significant) changes of gait of Volunteers 2, 4, 6, and 7 after each of the kneeling 
tasks. Volunteers 3, 5, and 8 show no changes. Remarkably, these findings are consistent over 
marker replacement (‘A vs. *’ and ‘B vs. *’) and only for Volunteer 1 the picture is unclear.

Table 5. Summarizing the gait events where gait patterns changed such that $0.95$ confidence tubes no longer 
overlap. The abbreviations are explained in Figure 2 0.95

Vol. A vs. C B vs. C A vs. D B vs. D Gender Age group

1 MS M 20–30

2 HC TS, HC, HO–TO TS,HC,TO TS, HC, HO–TO, MF M 50–60

3 HC F 20–30

4 TS TS F 50–60

5 M 20–30

6 TO HO HO M 50–60

7 HC F 20–30

8 F 50–60

Figure 2. Depicting standard naming convention for gait events with respect to the flexion–extension angle.
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In Table 5, we report the specific loci where 1 − α = 0.95confidence tubes no longer overlap, us
ing standard naming convention (e.g. Rodgers, 1995), as illustrated in Figure 2. Employing Euler 
angles, which are popular in the field, as a local chart of SO(3), the corresponding curves and spe
cific loci of non-overlapping simultaneous confidence tubes are shown exemplary in Figure 3 for 
Volunteer 2 and in Figure 4 for Volunteer 6. Notably, non-overlapping confidence tubes have been 
determined in SO(3)and not in chart coordinates so that the chart representations only serve as an 
approximate visualisation of the real situation which we cannot visualize. The other volunteers’ 
(1, 3, 4, and 7) curves with loci of non-overlapping confidence tubes are shown in the 
Appendix in Figure A1. Again, we see that Volunteers 5 and 8 feature no changes in gait pattern. 
Volunteer 7 reported physical pain after post-kneeling walking. Indeed, high variation in gait pat
terns corresponding to session D (red, in the left two displays of the bottom row in Figure A1) wid
ened the corresponding confidence tubes such that changes of gait in session D were not detected.

Combining Tables 4 and 5 and taking into account age and gender, we see that older age (vol
unteers with even numbers belong to age group 50–60) favours a kneeling effect over young age 
(volunteers with odd numbers belong to age group 20–30). As a surprise, the effect seems to be 
overall stronger for males. Having established a tool chain to study such effects, this experiment 
warrants larger studies.

6 Discussion
In conjunction with the permutation test and estimation of marker replacement effects from 
Telschow et al. (2020), with the test for simultaneous non-overlapping confidence tubes presented 

Figure 3. Depicting for Volunteer 2 all three Euler angles of sampled gait curves for each of two different sessions. 
Point-wise extrinsic mean curves are fat and vertical lines indicate loci of non-overlapping simultaneous 
0.05confidence tubes in SO(3). The largely varying curves are flexion–extension angles, cf. Figure 2, the middle 
curves with least variation are abduction–adduction and the bottom ones are internal–external angles.
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in this paper, we have developed a tool chain that can be used in clinical practice to assess changes 
of gait patterns and localise these. These are no longer based on (single) Euler angle representa
tions, as are often used in the field, but take advantage of a Gaussian perturbation model defined 
in the Lie group of three-dimensional rotations. Due to the conservation of moment, gait curves of 
relative rotations of the knee joints are naturally smooth, densely sampled and their variation be
tween observed time points as well as over repeated walks is moderate. Hence, approximations via 
Gaussian perturbation models and the GKF are rather accurate, in theory as well as in practice.

In this study, with a small number of participants and a small number of repeated walks, we see 
that short kneeling tasks tend to affect gait patterns and it seems that older age and, possibly, male 
gender, favour this effect. We have made sure that this effect has not been caused by different 
marker placements. While specific loci of gait change depend on individuals, changes seem to oc
cur least at local maxima of dominating flexion–extension, namely at MF and MS.

Future research involves building simultaneous conference tubes for a proper ‘difference’, e.g. 
(γX

0 )TγY
0 , of mean curves of two samples of curves in SO(3), since we expect them to be even

more powerful in identifying locations of significant differences in gait patterns. This, however, 
comes with the additional challenge of incorporating the sample-specific group action caused 
by different walking speeds and marker replacement, which we solved here by the equivariance 
property of the SCTs.

Furthermore, we believe that our results derived for SO(3)generalise to general connected Lie 
groups, in particular to products of SO(3)with itself and with the Euclidean motion group. 
Providing SCTs for these Lie groups would be helpful for biomechanical analysis of more complicated 
joints (e.g. Rivest et al., 2008 for ankle motion) and in motion analysis of kinematic chains of entire 
limbs (e.g. Laitenberger et al., 2015) and their design for humanoid robots (e.g. Ude et al., 2004).

Figure 4. Depicting with notation from Figure 3 for Volunteer 6 all three Euler angles of sampled gait curves for each 
of two different sessions with point-wise extrinsic mean curves and loci of non-overlapping simultaneous 
0.05confidence tubes in SO(3).

1368 Telschow et al.



Acknowledgments
We want to thank the anonymous referees for their careful reading and helpful suggestions. Both 
helped to improve the readability of our manuscript substantially.

Conflict of interest: The authors certify that they have no affiliations with or involvement in any 
organization or entity with any financial interest (such as honoraria; educational grants; participation 
in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity 
interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as 
personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or 
materials discussed in this manuscript.

Funding
F.J.E.T. is funded by the Deutsche Forschungsgemeinschaft (DFG) under Excellence Strategy The 
Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID:390685689). F.J.E.T. 
and S.F.H. gratefully acknowledge the support from DFG HU 1575/4 and 1575/7, the 
Niedersachsen Vorab of the Volkswagen Foundation and DFG GRK 2088.

Data availability
An R-package containing the presented methods is available under www.stochastik.math.uni- 
goettingen.de/KneeMotionAnalytics.

Appendix A. Visualisations of non-overlapping SCTs
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Figure A1. Results of the SCT test for Volunteers 1, 3, 4, and 7. The presentation is the same as in Figure 3. We 
show all three Euler angles of the sampled gait curves for each of two different sessions together with the 
point-wise extrinsic mean curves and loci of non-overlapping simultaneous 0.05confidence tubes in SO(3).
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Appendix B. Proofs

Proof of Theorem 3.4. The following statements are equivalent, since Lis a bijection:

γ0(t) ∈ γ̂N(t)Exp ι Vα γ1, . . . , γN; t
( 􏼁( 􏼁( 􏼁

⇔ γ̂N(t)−1γ0(t)

∈ Exp ι Vα γ1, . . . , γN; t
( 􏼁( 􏼁( 􏼁

⇔ xN
t ∈ L

Exp ι Vα γ1, . . . , γN; t
( 􏼁( 􏼁( 􏼁( 􏼁

⇔ xN
t ∈ Vα γ1, . . . , γN; t

( 􏼁
.

To see the last equivalence note that the direction ‘⇒’ holds, since 
by construction

L Exp ι Vα γ1, . . . , γN; t
( 􏼁( 􏼁( 􏼁( 􏼁

⊆ Vα γ1, . . . , γN; t
( 􏼁

.

The direction ‘⇐’ holds because xN
t is contained in the image 

of L. Hence, if xN
t ∈ Vα(γ1, . . . , γN; t)it follows that 

xN
t ∈ L(Exp(ι(Vα(γ1, . . . , γN; t)))). The proof is finished, since by 

the definition of ĥγ0,N,αthe probability that the last equivalence 
holds simultaneously for all t ∈ Iis at least 1 − α.                   □

Proof of Theorem 3.6. With the intrinisic residuals for each of the samples:

xN,n
t = L γ̂T

N(t)γn(t)
( 􏼁

and yN,n
t = L η̂T

N(t)ηn(t)
( 􏼁

, 

due to equivariance, η̂N = ψ ◦ γ̂N ◦ ϕ, setting ψ(R) = PψRQψwith 
R, Pψ, Qψ ∈ SO(3), we have

yN,n
t = ι−1 ◦ Log Q ˆ̂ψ

T
N

ϕ(t)
( 􏼁

γn ϕ(t)
( 􏼁

Qψ

􏼐 􏼑

= ±ι−1 QT
ψLog γ̂T

N ϕ(t)
( 􏼁

γn ϕ(t)
( 􏼁( 􏼁

Qψ

􏼐 􏼑

= ±Qψι−1 ◦ Log γ̂T
N ϕ(t)
( 􏼁

γn ϕ(t)
( 􏼁( 􏼁

= ±QψxN,n
ϕ(t) .

Here, the second equality is due to the power series expansion of 
the matrix logarithm and the observation that different exten
sions of the matrix logarithm to the cut locus of I3×3differ only 
by their sign; the third equality is due to equation (1). 
Moreover, by a similar argument for xN

t = L(γ̂T
N(t)γ0(t))and 

yN
t = L(η̂T

N(t)η0(t))we obtain yN
t = ±QψxN

ϕ(t), yielding

Ŝy,N
t = QψŜx

ϕ(t)Q
T
ψ , Ĥy,N

t = Ĥx
ϕ(t) and ĥγ0,N,β = ĥη,N,β.

This implies Vβ((η1, . . . , ηN); t) = QψVβ(γ1, . . . , γN; ϕ(t)), yield
ing the assertion.                                                                   □

Proof of Theorem 3.7. Recall that the generating Gaussian process atcan be considered to 
be a process in so(3)by defining At = ι(at). Consider samples 
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γ1, . . . , γNwith fixed N ∈ Nof a GP model γ0Exp(At)with 
at = ι−1 ◦ At, maxt∈I ‖at‖ =Op(σ)and σ→ 0, and let 
γ̂N(t) ∈ EN(t)be a measurable selection of PEMs. Then for each 
t ∈ I, taking xN

t ∈ R3from Definition 3.3 and XN
t = ι(xN

t ), we
have that γ̂N(t) = γ0Exp(XN

t ). Making use of the fact

ι
x
‖x‖

􏼒 􏼓􏼒 􏼓2

=
xxT

‖x‖2
− I3×3, (B1) 

the property trace(ι(c)T ι(d)) = 2cTdfor all c, d ∈ R3and the 
Rodriguez formula (2), we have for each t ∈ Ithat XN

t maximises

1
N

􏽘N

n=1

trace γ̂T
N(t)γ0(t)Exp An

t

( 􏼁( 􏼁

= trace I3×3 + ι xN
t

( 􏼁
sinc XN

t

􏼍
􏼍

􏼍
􏼍

F

( 􏼁
+

1 − cos XN
t

􏼍
􏼍

􏼍
􏼍

F

( 􏼁

XN
t

􏼍
􏼍

􏼍
􏼍2

F

ι(xN
t )2

􏼠 􏼡T
⎛

⎝

· I3×3 + ι a̅t( ) +Op σ2( 􏼁( 􏼁
􏼡

= 3 + trace

ι xN
t

( 􏼁T ι(a̅t)sinc(‖xM
t ‖) + (1 − cos (‖xN

t ‖) ι
xN

t

‖xN
t ‖

􏼒 􏼓􏼒 􏼓2

+Op(σ2
l )

􏼠 􏼡

= 1 + 2 xN
t

T
a̅tsinc(‖xN

t ‖) + cos (‖xN
t ‖)

􏼐 􏼑
+Op(σ2).

Note that the Op(σ2)is indeed uniform in t ∈ I.
Writing xN

t = rewith a unit vector e and length 0 ≤ r ≤ π, the 
first two summands above are maximised in xN

t if

s sin (r) + cos (r) 

is maximal under the side condition −‖a̅t‖ ≤ s = eTa̅t ≤ ‖a̅t‖. 
Hence, for 0 ≤ r < πchoose the maximising s = ‖a̅t‖(as large as 
possible) and hence r = arctan (‖a̅t‖) ∈ (0, π/2)(r = πis no option). 
In consequence we have that

xN
t = a̅t

arctan ‖a̅t‖

‖a̅t‖
+Op σ2( 􏼁

= a̅t +Op σ2( 􏼁
.

This is the first claimed identity in equation (10).
To establish the second identity, consider the Taylor expansion

xN,n
t = L γ̂T

N(t)γn(t)
( 􏼁

= ι−1 ◦ Log Exp −ι a̅t( ) +Op σ2( 􏼁( 􏼁
Exp ι an

t

( 􏼁( 􏼁( 􏼁

= an
t − a̅N

t +Op(σ2)

which is not valid for ‖an
t − xN

t ‖ ≥ π, cf. Chirikjian (2000, p. 121). 
The probability of which, however, is O(σ2), uniformly over t ∈ I, 
yielding the second assertion.                                                              □
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Proof of Corollary 3.8. Recall the definitions

Ha
t = N a̅t( )

T Sa
t

( 􏼁−1a̅t and H̃
x
t = N xN

t

( 􏼁T
Ŝx

t

􏼐 􏼑−1
xN

t .

By virtue of Theorem 3.7 we obtain

Ŝx
t = Sa

t + Zt 

with maxt ‖Zt‖F =Op(σ3
l ). Using Henderson and Searle (1981,

p. 58, equation (24)) yields

1
N

Ĥx
t = (xN

t )T(Sa
t + Zt)

−1xN
t

= xN
t

( 􏼁T
(Sa

t )−1xN
t − (xN

t )T Sa
t

( 􏼁−1

Zt I3×3 + Sa
t

( 􏼁−1Zt

􏼐 􏼑−1
Sa

t

( 􏼁−1xN
t .

From the assumption var[an
t ] = σ2Σtwe have that

maxt∈I ‖(Sa
t )−1‖F =Op(σ−2). Thus, we obtain

xN
t

( 􏼁T
Sa

t

( 􏼁−1xN
t =

1
N

Ha
t +Op(σ)

by Theorem 3.7. Moreover, we obtain that 
maxt∈I ‖(Sa

t )−1Zt‖F =Op(σ)implying (Sa
t )−1Zt

P
−→

0uniformly over 

t ∈ I. In consequence, on U = {‖(Sa
t )−1Zt‖F < 1}we have the Von

Neumann series

I3×3 + Sa
t

( 􏼁−1Zt

􏼐 􏼑−1
=
􏽘∞

j=0

(−1)j Sa
t

( 􏼁−1Zt

􏼐 􏼑 j 

showing at once

xN
t

( 􏼁T
Sa

t

( 􏼁−1Zt I3×3 + Sa
t

( 􏼁−1Zt

􏼐 􏼑−1
Sa

t

( 􏼁−1xN
t =Op(σ).

Since P{U} = 1 −O(σ), this completes the proof.   □
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