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Abstract: The study aimed to develop quantitative structure-toxicity relationship 
(QSTR) models to understand how chemical structure relates to the toxicity of 67 
phenols and anilines. The chemical structures of these compounds were characterized 
using electronic and physico-chemical descriptors and DFT calculations were performed 
to obtain insights into the chemical structure and property information of the compounds. 
The study compared the predictive abilities of multiple linear regression (MLR), 
multiple nonlinear regression (MNLR), and artificial neural network (ANN) models for 
predicting the toxicity of the compounds. The ANN model was found to be the most 
effective compared the other two models. The developed models were able to accurately 
predict the toxicity of the compounds for four different toxicity endpoints, as 
demonstrated by leave-one-out cross validation, external validation, Y-randomized 
validation, and application domain analysis. The study suggests that the proposed 
descriptors could be useful in predicting the toxicity of phenols and anilines towards 
Chlorella vulgaris.  
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1. Introduction 
Phenol, aniline and their derivatives have been utilized in a variety of ways in the chemical industry 
for many years. These have had various functions such as being used as solvents, propellants, additives, 
cooling agents, insecticides and herbicides. Additionally, they have found use in the production of 
materials such as dyes, pharmaceuticals, polymers, and synthetic resins, due to their versatility and 
usefulness (Aruoja et al., 2011; Azzaoui et al., 2015; Bakire et al., 2018). Many of these chemicals 
were released into the environment and accumulated in nearly all-natural environments, especially in 
aquatic systems, Ecologically, algae play a significant role in the aquatic ecosystem as a dominant 
producer, providing energy and oxygen at higher levels. Adverse effects of these toxic chemicals to 
algae may reduce the primary productivity of the ecosystem and further disrupt the food web so it is 
beneficial to study seriously their potential hazard to aquatic organism. 
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The process of experimentation is a direct method for acquiring the toxicity data of organic compounds, 
however, it has its limitations. These limitations include the need for an enormous number of trial 
organisms, which can be quite expensive and time-consuming. In addition, there is often a variation in 
measured values between different researchers. Thus, obtaining toxicity data for all organic compounds 
through experimentation alone would be a challenging task, especially considering the constant 
development of new compounds and the accompanying difficulties. As such, it is necessary to utilize 
theoretical research to address the shortcomings of experimentation and accurately predict the toxicity 
data of compounds in a rapid manner .  
Computational science and theoretical chemistry have rapidly evolved, making it possible to obtain 
quantum chemical parameters of organic compounds rapidly and precisely. The quantitative structure-
toxicity relationship (QSTR) approach utilizes structural parameters of compounds and appropriate 
mathematical models to predict bioactivity such as toxicity, mutagenicity, and carcinogenicity. 
Currently, QSTR studies have a plethora of molecular descriptors at their disposal (Rajarshi et al., 
2012, Zhu et al., 2010). After validation, the results obtained can be utilized to predict the activities of 
untested compounds. The use of density functional theory (DFT) has been substantiated by 
comparative QSTR studies, which have demonstrated that descriptors generated using the DFT method 
can enhance the accuracy of results and yield more dependable QSTR outcomes (Pansal & Singh, 
2018; Bouyad et al., 2018). The objective of this investigation is to construct predictive QSTR models 
for the acute toxic effects of Phenol, aniline, and their derivatives on Chlorella vulgaris. To achieve 
this, statistical tools such as principal components analysis (PCA), multiple linear regression (MLR), 
multiple non-linear regression (MNLR), and artificial neural network (ANN) methods will be utilized. 

2. Material and Methods 
2.1. Data sources 
Acute toxicity data of 67 phenols and anilines towards Chlorella vulgaris were taken from a literature 
(Zhu et al., 2010) IC50 (IC20) here means the millimolar concentration causing 50% (20%) inhibition 
of growth about 67 phenols and anilines towards Chlorella vulgaris. The bigger the value of –log IC50 

(pIC50) and pIC20, the higher is toxicity of compounds, and vice versa. For the proper validation of 
our data set with a QSTR model, the 67 substituted phenols were divided into training and test sets. A 
total of 60 molecules were placed in the training set to build the QSTR models, whereas the remaining 
10 molecules composed the test set. The division was carried out by random selection. The following 
table shows the studied compounds and the corresponding experimental toxicties pIC50 and pIC20 
(table 1).  
 
2.2. Molecular descriptors 
The computation of electronic descriptors was performed using the Gaussian 03W program To 
compute electronic descriptors, the Gaussian 03W program (Tugcuet et al., 2018) was utilized. All 67 
phenols and anilines that were modeled theoretically had their geometries optimized using the DFT 
method with the B3LYP functional and the 6-31G (d) basis set. Relevant structural descriptors such as 
the highest occupied molecular orbital energy (EHOMO) in electron volts (eV), the lowest unoccupied 
molecular orbital energy (ELUMO) in eV, the energy gap (ΔE) in eV, the dipole moment (µ) in Debye, 
and the total energy (ET) in eV were selected from the quantum computation outcomes. 
For the calculation of other molecular descriptors, the ChemSketch program (Lafridi et al., 2020) was 
employed. These descriptors include the molar volume (MV) in cubic centimeters (cm3), the molecular 
weight (MW) in grams per mole (g/mol), the molar refractivity (MR) in cm3, the parachor (Pc) in cm3, 
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the density (D) in grams per cubic centimeter (g/cm3), the refractive index (n), the surface tension (γ) 
in dyne per centimeter (Dyne/cm), and the polarizability (α) in cm3. Additionally, the number of atoms 
(NA) and the number of electrons (NE) were considered as descriptors. To improve the quality of 
toxicity estimates for these compounds, it is recommended to include additional molecular descriptors 
that reflect specific interactions, such as the octanol/water partition coefficient (log P). 

 
Table 1: phenols and anilines derivatives and their observed toxicities against Chlorella vulgaris 

N° Name (IUPAC) pIC20 pIC50 N° Name (IUPAC) pIC20 pIC50 
1* 2-Methylphenol 0.0313 −0.0846    35 4-Chloro-2-nitrophenol  2.2617 1.8485  
2  2,3-Dimethylphenol 0.6072 0.3872 36* 4-Chloro-3-nitrophenol  1.5405 1.3667 
3 2,4-Dimethylphenol 0.5745  0.4424  37 2,6-Dichloro-4-nitrophenol   1.0765 0.9582  
4 2,5-Dimethylphenol 0.5745  0.3326  38* 3-Aminophenol  −0.2951 −0.6845  
5 2,6-Dimethylphenol 0.3502 0.1377 39 2-Amino-4-methylphenol  0.9149  0.4378 
6 3,4-Dimethylphenol 0.7724  0.5779  40 2-Amino-4-chlorophenol  1.4822 1.0296 
7 3,5-Dimethylphenol 0.6757  0.5147  41 2-Nitroaniline  0.5611 0.3021  
8 4-Ethylphenol 0.3971 0.2357  42 3-Nitroaniline  0.3963  0.1505  
9 4-Methoxyphenol −0.0257 −0.2948  43 2,4-Dinitroaniline   1.5467 1.2512  
10 3,5-Dimethoxyphenol   0.0744 −0.1893  44 3,5-Dinitroaniline 1.6957 1.5046  
11 2,3,5-Trimethylphenol  0.7512 0.5101  45 2-Methyl-3-nitroaniline 0.1553  0.0308 
12 2,4,6-Trimethylphenol   0.4969 0.3561  46 4-Methyl-3-nitroaniline 0.7187 0.1757  
13 Hydroxyhydroquinone 0.4980  0.1566  47 4-Chloro-2-nitroaniline  1.1968 0.8624  
14 Methoxyhydroquinone 1.3884 1.2075  48 4-Chloro-3-nitroaniline  0.9747 0.6943 
15 2,5-Dichlorohydroquinone 1.8199  1.6074  49 6-Chloro-2,4-dinitroaniline  1.9160 1.6815 
16 5-Methylresorcinol −0.5101 −0.6842  50 4-Hydroxy-3-methoxy-benzonitrile 0.3512  0.0012  
17 2-Chloro-4-methylphenol 0.6637  0.5093  51 Phenol  0.4677 0.6003 
18 2-Chloro-5-methylphenol 1.2366  0.8930  52 2-Chlorophenol  0.3656 0.1731 
19* 4-Chloro-2-methylphenol 1.0606  0.8550  53 4-Chlorophenol  0.7129 0.4568 
20 4-Chloro-3-methylphenol   1.3716 1.1718  54 2,4-Dichlorophenol  1.5401 1.2437 
21 4-Chloro-3,5-dimethylphenol  1.4474 1.1534  55 2,6-Dichlorophenol  1.3146 0.8798 
22 2-Nitrophenol  1.6591 1.1218 56 3,4-Dichlorophenol  1.6937 1.4718 
23 3-Nitrophenol 0.9627 0.7029  57 3,5-Dichlorophenol  2.0081 1.6681  
24 4-Nitrophenol   1.4118  1.2317  58 2,3,6-Trichlorophenol  1.8041 1.5101  
25 2,4-Dinitrophenol   1.1488 1.0452  59* 2,4,5-Trichlorophenol 1.9732  1.6722  
26 2,5-Dinitrophenol  1.9795 1.8057  60 2,3,4,6-Tetrachlorophenol 1.6249 1.4462  
27 3,4-Dinitrophenol  0.8382  0.6242  61 2,3,5,6-Tetrachlorophenol 1.6932 1.4308 
28 3-Methyl-2-nitrophenol 1.0596  0.6532 62 Pentachlorophenol 1.7442  1.4523  
29 3-Methyl-4-nitrophenol   1.1851 1.0288  63* Hydroquinone  0.2615 0.0178  
30 4-Methyl-3-nitrophenol 0.7049  0.5671  64 4-Chlorocatechol  1.4611 1.1347  
31 5-Methyl-2-nitrophenol 1.3170  1.1461 65 Resorcinol  0.1596 0.4928  
32* 2-Methyl-4,6-dinitrophenol  1.6906 1.3966 66 4-Chlororesorcinol 0.4945 0.2652  
33 2,6-Dimethyl-4-nitrophenol  1.4336 1.2099 67 4,6-Dichlororesorcinol  1.1922 1.0250 
34 2-Chloro-4-nitrophenol 1.5767  1.4656      

            * Test set 
 
2.3. Statistical analysis 
The structures of 67 phenols and anilines towards Chlorella vulgaris were studied by statistical 
methods based on the principal component analysis (PCA) (Camargo et al., 2022) using the software 
XLSTAT version 2016 (Larif et al., 2018). PCA is a statistical method useful to summarize all the 
information encoded in the structures of the compounds. It is also very helpful for understanding the 
distribution and classification of the data set (Kyaw et al., 2009). This is an important descriptive 
statistical method which aims to present, in graphic forms. 
The relationship between structure and toxicity was modeled using Multiple linear regression (MLR) 
analysis employing backward selection. This mathematical technique is useful as it minimizes the 
differences between actual and predicted values and selects the descriptors to be used as input 
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parameters in the multiple non-linear regression (MNLR) and artificial neural network (ANN) models 
(Hammoudan et al., 2022; El Masaoudy et al., 2023).  
The MLR and MNLR were performed using the software XLSTAT version 2016 (Ousaa et al., 2018), 
to predict toxic effects pIC20 and pIC50. Equations were justified by the determination coefficient (R2), 
mean squared error (MSE), Fisher’s criterion (F) and significance level (P) (Camargo et al., 2022). The 
ANN is an artificial system that is simulating the function of the human brain. Three components form 
a neural network: the processing elements or nodes, the topology of the connections between the nodes, 
and the learning rule by which new information is encoded in the network. While there are a many 
different ANN types, the most commonly used in QSAR is the three-layered feed forward network 
(Aouidate et al., 2018). In this type of network, the neurons are arranged in layers (an input layer, one 
hidden layer and an output layer). Each neuron in any layer is fully connected with the other neurons 
of a next layer and no connections are between neurons belonging to the same layer. 
According to the supervised learning adopted, the networks are taught by giving them examples of 
input patterns and the corresponding target outputs. Through an iterative procedure, the connection 
weights are modified until the network gives the desired results for the training set of data. A back 
propagation algorithm is used to minimize the error function. This algorithm has been described 
previously with a simple example of application (Ousaa et al., 2018) and a detail of this algorithm is 
given elsewhere. The ANN analysis was performed using Matlab software version 2009a Neural 
Fitting tool (nftool) toolbox (Ghamali et al., 2017). 
In a QSTR study, the evaluation of the proposed models for stability, predictability, and generalization 
ability is an essential step. To validate the prediction ability of a QSTR model, two main methods are 
available: internal and external validations. Cross-validation is one of the most common methods used 
for internal validation. In this study, the internal predictive ability of each model was evaluated using 
leave-one-out cross-validation (R2cv). A good R2cv often indicates robustness and high internal 
predictive capacity of a QSTR model. However, recent studies (Shavalieva et al., 2022; Gramatica et 
al., 2014;) indicate that there is no clear correlation between the value of R2cv and the actual predictive 
capacity of a QSTR model, suggesting that R2cv alone remains inadequate as a reliable estimate of the 
model's predictive ability for all new chemicals. To determine both the generalizability of QSTR 
models for new chemicals and the true predictive ability of the models, statistical external validation 
is utilized during the model development step by properly employing a prediction set for validation. 

3. Results 
3.1. QSTR models and analysis 
QSTR analysis was performed using the   pIC20 and pIC50 of 67 phenols and anilines towards 
Chlorella vulgaris as reported in (Zhu et al., 2010). From the results of the density functional theory 
DFT (B3LYP/6-31G (d)) calculations, fquantum chemistry descriptors obtained and the other 
molecular descriptors calculated by the ChemSketch program (Ousaa et al., 2018) for building the 
model. to explain the Quantitative structure–toxicity relationship (QSTR), In this study 16 descriptors 
are calculated for the 67 molecules. For the correct validation of our data set with a QSAR model, the 
67 compounds data were divided into training and test sets. A total of 60 molecules were placed in the 
training set to build the QSTR models, whereas the remaining 7 molecules composed the test set. The 
division was performed by random selection. The principle objective is to perform in the first time, a 
principal component analysis (PCA), which allows us to eliminate descriptors that are highly correlated 
(dependent), then an MLR analysis was performed on the remaining descriptors using the backward 
method until a valid model. 
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3.2. Principal component analysis  
The set of descriptors coding the 67 phenols and anilines, electronic and physico-chemical descriptors 
are submitted to PCA analysis (Chtita et al.,2020). The first three principal axes are sufficient to encode 
the information provided by the data matrix. Indeed, the percentages of variance are 44.66%, 29.29% 
and 11.96% for the axes F1, F2 and F3, respectively. The total information is estimated to a percentage 
of 85.92%. 
The principal component analysis (PCA) (Chtita et al.,2019) was conducted to identify the link between 
the different descriptors. Bold values are different from 0 at a significance level of p= 0.05. Correlations 
between the fourteen descriptors are shown as a correlation matrix. The obtained matrix provides 
information on the positive or negative correlation between descriptors. In general, the co-linearity 
(r>0.5) was observed between most of the variables, and between the variables and pIC50. Additionally, 
to decrease the redundancy presented in our data matrix, the descriptors that are highly correlated (R ≥ 
0.95), were removed. 
 

3.3. Multiple linear regression of the variable toxicity (MLR) 
To generate the quantitative relationships between toxicity pIC50 and selected descriptors, our data set 
were subjected to the MLR and MNLR. Only variables with significant coefficients were retained. 
In our study, we conducted multiple linear regression (MLR) analysis to establish quantitative 
relationships between toxicity (pIC20 and pIC50) and the selected descriptors. Only variables with 
significant coefficients were retained in the final MLR models. The objective of the analysis was to 
identify descriptors that showed statistically significant correlations with toxicity, as these descriptors 
are crucial in predicting the toxicity levels of the compounds. These models allowed us to establish 
quantitative relationships and gain insights into the potential toxicity of the compounds. The MLR 
analysis provided a valuable tool for capturing and quantifying the relationships between the selected 
descriptors and toxicity. It enhanced our understanding of toxicity patterns and facilitated making 
predictions based on the available dataset. During our analysis, we attempted to develop relationships 
with the indicator variables of toxicity, namely pIC20 and pIC50. However, the best relationship 
obtained by this method is only one corresponding to the linear combination of two descriptors 
selected, the energy ELUMO and the octanol/water partition coefficient (log P) for pIC50 in Eqn.1, 
but for pIC20 is only one corresponding to the linear combination of two the total energy ET and the 
octanol/water partition coefficient (log P) in Eqn.2. 
The resulting equations is: 

            pIC50 = -1.275 – 0.170×ELUMO + 0.675×log P             Eqn.1 
 

N = 60     R2 = 0.801     R2
CV1 = 0.777     MSE = 0.120     F = 114.457     p-value <0.0001 

 

                 pIC20= -1.176 + 7.221 10-06 ET + 1.58 log P                  Eqn.2 
 

N = 60   R2 = 0.821     R2CV2 = 0.793   MSE = 0.064    F = 47.672    p-value <0.0001 
 

For our 60 compounds, the correlation between experimental toxicity and calculated on based on these 
models is quite significant as indicated by statistical values. In the equations, N is the number of 
compounds, R2 is the determination coefficient, MSE is the mean squared error, F is the Fisher’s 
criterion and P is the significance level.  
A higher correlation coefficient and lower mean squared error indicate that the model is more reliable. 
A P that is smaller than 0.05 exhibits that the regression equation is statistically significant. The QSTR 
model expressed by Eqn.1 and Eqn.2 is cross-validated by its noticeable R2cv value (R2cv1 =0.777 
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and R2CV2 =0.793) obtained by the leave-one-out (LOO) method. A value of R2cv is greater than 0.5 is 
the important criterion for qualifying a QSTR model as valid (Tiwari et al.,2022, Liu et al.,2022). The 
correlation coefficients between descriptors in the model were calculated by variance inflation factor 
(VIF) as shown in table 2. The VIF was defined as 1/(1-R2), where R was the multiple correlation 
coefficients for one independent variable against all the other descriptors in the model (Rohand et 
al.,2021, Bakal et al., 2022). If VIF greater than 5, it mean that models were unstable and must be 
rejected, models with a VIF values between 1 and 4 can be accepted. As can be seen from table 2, the 
VIF values of the two descriptors are all smaller than 5.0, resulting that there is no-collinearity between 
the selected descriptors and the obtained model has good stability. 
 

Table 2: The variance inflation factors (VIF) of descriptors in QSAR model 

 pIC20  pIC50  
ELUMO log P    ET log P    

Tolerance 0.967 0.958 0.988 0.979 
VIF 1.013 1.022 1.004 1.011 

 
The elaborated QSTR model reveals that the toxicity of 60 phenols and anilines towards Chlorella 
vulgaris may be explained by the two selected descriptors in Eq (1). The negative correlation of the 
energy ELUMO with the pIC50 shows that an increase in the values of this factor indicates a decrease in 
the value of the pIC50, whereas a positive correlation of the octanol/water partition coefficient (log P) 
with the pIC50 reveals an increase in the value of the pIC50. 
 

3.4. Multiple nonlinear regression of the variable toxicity (MNLR) 
The nonlinear regression method was also used to improve the structure toxicity in a quantitative way, 
taking into account several parameters. We have applied it to table containing 60 molecules associated 
with sixteen variables. We used a pre-programmed function of XLSTAT following: 
 

Y = a + (b X1+ c X2 + d X3+ e X4 …) 
 

Where a, b, c, d...: represent the parameters and X1, X2, X3, X4,...: represent the variables. 
The resulting equation is: 
 

pIC50 = -1,195 - 0,151×ELUMO + 0,595×log P + 8,116 10-3×E2LUMO + 1,690   10-2×log2P     Eqn.3 
 

pIC20= -8.376 + 6.221 10-06 ET + 0.601 log P  + 3.489 10-11 E2T + 0.401 10-2 log2 P             Eqn.4                    
 

The obtained parameters describing the topological and the electronic aspects of the studied molecules 
are: 
 

   N = 60     R2 = 0.802        R2CV3 =0.751       MSE = 0.124 

                                       N = 60    R2 = 0.810     R2CV4 =0.713           MSE = 0.066 
 

The toxicity values pIC50 predicted by this model are almost similar to that observed.  
The obtained coefficients of determination in Eqn.3 and Eqn.4 is quite very interesting. The QSTR 
models expressed by Eqn.3 and Eqn.4 is cross-validated by its appreciable R2cv values obtained using 
the leave-one-out (LOO) method. A value of R2cv is greater than 0.5 is the important criterion for 
qualifying a QSTR model as valid (Ousaa et al.,2018, Ghamali et 2017). To optimize the error standard 
deviation and to improve our model, we involve in the next part artificial neural networks (ANN). 
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3.5. Artificial neural networks ANN 
In order to increase the probability of good characterization of studied compounds, neural networks 
(ANN) can be used to establish predictive models of quantitative structure–toxicity relationships 
(QSTR) between a set of molecular descriptors obtained from the MLR and observed toxicity. The 
ANN calculated toxicity model was developed using the parameters of the studied compounds. The 
correlation between ANN calculated and experimental toxicity values are very significant as illustrated 
in figure 1. 

 

Figure 1: Correlations of observed and predicted activities calculated using ANN 

pIC 20 :      N = 60     R2 = 0.833     R2
CV5 = 0.764     MSE = 0.100 

pIC 50 :      N = 60     R2 = 0.804     R2
CV6 = 0.772     MSE = 0.100 

The obtained determination coefficient (R2) values is 0.833 and 0.804 for this data set of the phenols 
and anilines derivatives. This confirms that the artificial neural network (ANN) results are the best to 
predict the quantitative structure-activity relationship model. Furthermore, the R2cv values shows that 
the ANN model is the high predictive power. 
 
3.6. Y-randomized analysis 
To validate the robustness of the models, utilized Y-randomized analysis, as proposed by (Chtita et 
al.,2020, Ousaa et al 2018), to ensure the reliability of the models. This analysis involved scrambling 
the order of all experimental values and developing a new model based on this randomized data. The 
purpose was to determine if the original models exhibited a significant correlation by chance alone. 
For a model to be considered robust, it should have low R2 and R2cv LOO values when applied to the 
randomized data. The Y-randomized analysis was repeated 400 times, and the average R2 values 
(denoted as R2 aver) for pIC50 and pIC20 were found to be 0.131,1,44, 151 and 0.136, respectively for 
RLM and RNLM. These values were significantly lower than the original model values. Consequently, 
the results indicate that there was no chance correlation during the modeling process, thereby 
confirming the stability and reliability of the original models (Lafridi el al 2020, Chtita et al 2019). 
 

3.7. External validation 
To evaluate the predictive capacity of the MLR, MNLR, and ANN models, it is necessary to employ a 
group of compounds that were not used to establish the QSTR model during the training phase. In this 
study, the QSTR models developed for 60 phenols and anilines were used to predict the toxicity of 
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seven additional compounds (test set). Table 3 presents the primary performance measures for the three 
models. The results indicate that the ANN model exhibited more robust statistical indicators compared 
to the other models. 
 

Table 3: Performance comparison between models obtained by MLR, RNLM and ANN 

Model 
Training set Test set 

R2 R2cv MSE R2 R2ext MSE 
pIC 20       
MLR 0.821 0.793 0.064 0.801 0.708 0.132 

MNLR 0.810 0.713 0.066 0.802 0.716 0.115 
ANN 0.832 0.794 0.124 0.812 0.726 0.115 
pIC 50       
MLR 0.801 0.777 0.120 0.801 0.708 0.132 

MNLR 0.802 0.751 0.124 0.802 0.716 0.115 
ANN 0.824 0.794 0.100 0.824 0.773 0.109 

 

After evaluating the optimal linear QSTR regression equations established in this research, it was 
observed that the predictive capability of the ANN model is better than that of the MLR and MNLR 
models. The ANN model provides superior results, indicating a highly satisfactory correlation between 
molecular descriptors and the toxicity of the compounds examined To demonstrate the accuracy, 
generalizability and predictability of the proposed models, we compared key statistical parameters such 
as the R or R2 obtained using different statistical tools and descriptors. These results are presented in 
Table 4. 
 

Table 4: Observed values and calculated values of pIC20 and pIC50 according to different methods 

N° 
pIC20 
(obs.) 

pIC20 (calc.) pIC50 
(obs.) 

pIC50 (calc.) 
MLR NMLR ANN N° MLR NMLR ANN 

1* 0.0313 0.0350 0.0303   −0.033 1* −0.0846    −0.1046    0.0341    −0.2549 
2 0.6072 -0.6101 0.6002   0.5859 2 0.3872 0.3672 0.3870  0.3973 
3 0.5745 -0.5901 0.5705   0.4111 3  0.4424   0.4024   0.4423  0.2023 
4 0.5745  0.5650  0.5715  0.5157  4  0.3326   0.3626   0.3324  0.4847 
5 0.3502   0.4541 0.3412   0.5046 5 0.1377 0.1577 0.1372 0.2786 
6 0.7724  0.6910 0.7314  0.4910 6  0.5779   0.5579   0.5777  0.3143 
7 0.6757  0.6143 0.6227  0.2647 7  0.5147   0.5047   0.5146  0.0464 
8 0.3971   0.3652 0.3831   0.4353 8 0.2357  0.2357  0.2354  0.2472 
9 −0.0257   0.0118 0.0257   0.3112 9 −0.2948  −0.2848  −0.2949  0.0618 

10  0.0744  0.1040  0.0734  0.1241 10 −0.1893  −0.1793  −0.1890 −0.0821 
11 0.7512   0.7107 0.7502   0.8106 11 0.5101  0.5001  0.5103 0.6183 
12  0.4969  0.6828  0.4939  0.7029 12 0.3561  0.3461  0.3561  0.4850 
13 0.4980   0.4041 0.4970   0.4740 13 0.1566  0.1466  0.1561  0.1733 
14 1.3884  1.3092 1.3814  1.2591 14 1.2075  1.2175  1.2074  1.0018  
15 1.8199   1.7194 1.8159   1.6793 15 1.6074  1.5974  1.6072  1.4023 
16 −0.5101   −0.397 −0.4121   −0.197 16 −0.684  −0.674  0.6841  −0.439 
17 0.6637  0.5866 0.6677  0.7862 17  0.5093   0.4893   0.5093  0.5580  
18 1.2366   0.8989 1.1326   0.7986 18  0.8930   0.8830   0.8931 0.5793 
19* 1.0606   1.0790 1.0666   1.1796 19*  0.8550   0.8350   0.8550  0.9408 
20  1.3716  1.2513  1.4726  1.3514 20 1.1718  1.1418  1.1719  1.1294 
21* 1.4474   1.3639 1.3434   1.3438 21* 1.1534  1.1434  1.1536  1.1326 
22 1.6591  1.1613 1.6581  1.1214 22 1.1218 1.1318 1.1213  0.8706  
23 0.9627   1.2010 0.8637   1.1610 23 0.7029  0.7029  0.7021  0.9103 
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24  1.4118  1.3137  1.4128  1.2736 24 1.2317  1.2217  1.2318  1.0318 
25  1.1488  1.5841  1.2478  1.6241 25 1.0452  1.0252  1.0454  1.4435 
26 1.9795   1.8679 1.8785   1.8272 26 1.8057  1.8757  1.7056  1.6106 
27  0.8382  1.3220  0.8392  1.4820 27  0.6242   0.6342   0.6241  1.2398 
28 1.0596   0.9439 1.1506   0.9030 28  0.6532  0.6332  0.6533  0.7045 
29  1.1851  1.0858  1.0861  0.9851 29 1.0288  1.0088  1.&286  0.8058 
30 0.7049   0.9001 0.7359   0.9406 30  0.5671   0.5571   0.5673  0.7439 
31 1.3170   1.3080 1.3180   1.2689 31  1.1461  1.1361  1.1469  1.0492 
32* 1.6906  1.5347 1.6816  1.4940 32* 1.3966 1.3466 1.2967  1.3078  
33 1.4336    1.3049 1.5326    1.2642 33 1.2099 1.2199 1.2094 1.0439 
34 1.5767   1.5440 1.4757   1.6044 34  1.4656   1.4456   1.4656  1.3555 
35 2.2617   1.9978 2.3607   1.9772 35 1.8485  1.8585  1.7483  1.7178 
36 1.5405   1.7601 1.4495   1.8061 36 1.3667 1.3567 1.3669  1.5455 
37*  1.0765  1.2036  1.0755  1.2540 37* 0.9582  0.9682  0.8582  1.0155 
38 −0.2951   −0.380 −0.306   −0.486 38 −0.684  −0.674  −0.584  −0.846 
39*  0.9149  0.5568  0.8959  0.4963 39*  0.4378  0.4478  0.4377  0.1484 
40 1.4822   1.6290 1.3832   1.7294 40 1.0296 1.0296 1.0294  1.3508 
41 0.5611   0.4989 0.6621   0.5011 41 0.3021  0.3121  0.3020  0.2330 
42  0.3963  0.3887  0.4953  0.4181 42  0.1505   −0.1605   −0.1503  0.1020 
43  1.5467  1.4697  1.5477  1.6691 43 1.2512  1.2412  1.3517  1.3688 
44 1.6957   1.6487 1.7967   1.6286 44 1.5046  1.5146  1.5042  1.2586 
45 0.1553   0.4500 0.0543   0.7530 45  0.0308  0.0408  0.0306  0.4592 
46 0.7187  0.6718 0.6177  0.5710 46 0.1757  0.1657  0.1756  0.2766  
47 1.1968   1.2590 1.2958   1.3593 47 0.8624  0.8724  0.8625  1.0808 
48 0.9747   1.0430 0.9737   1.0436 48 0.6943 0.6443 0.6942  0.7218 
49* 1.9160    1.6798 1.8150    1.5792 49* 1.6815 1.6315 1.6812 1.2792 
50 0.3512   0.3112 0.3522   0.3110 50  0.0012   0.0112   0.0015  0.0968 
51 0.4677    −0.309 0.4667    −0.529 51 0.6003 0.6103 0.6004 −0.7586 
52  0.3656  0.3839  0.3646  0.5819 52 0.1731 0.1531 0.1736 0.3222  
53 0.7129  1.0081 0.6119  1.0780 53 0.4568 0.4968 0.5569  0.8227  
54 1.5401   1.5124 1.5411   1.5422 54 1.2437 1.2337 1.2433 1.2794  
55 1.3146   1.1992 1.3126   1.1193 55 0.8798 0.8898 0.8790  0.8424 
56 1.6937    1.7177 1.4937    1.7178 56 1.4718 1.4618 1.4710 1.4584 
57 2.0081   1.7977 2.0001   1.7847 57 1.6681  1.6581  1.6682  1.5109 
58 1.8041   1.6919 1.8001   1.6117 58 1.5101  1.5001  1.5100  1.3432 
59* 1.9732   1.9011 1.8712   1.9408 59*  1.6722   1.6622   1.6724  1.6765 
60 1.6249   1.7430 1.6249   1.7930 60 1.4462  1.4362  1.4461  1.5459 
61 1.6932    1.6719 1.6922    1.6811 61 1.4308 1.4208 1.4307 1.4265 
62 1.7442   1.6078 1.7432   1.6072 62 1.4523  1.4623  1.4525  1.3800 
63* 0.2615   0.3374 0.2605   0.4073 63* 0.0178  0.0278  0.0173  0.1574 
64 1.4611   1.4356 1.4601   1.4057 64 1.1347  1.1447  1.1348  1.1209 
65 0.1596   −0.100 0.2506   −0.130 65 0.4928  0.4728  0.4923  −0.395 
66 0.4945   0.7160 0.3935   0.7162 66 0.2652  0.2452  0.3651  0.4382 
67 1.1922    1.0958 1.0912    1.0355 67 1.0250 1.0050 1.0252 0.7834 

          

          

* Test set 

3.8. Domain of applicability 
To estimate the reliability of any QSTR model and its ability to predict new compounds, the domain 
of applicability must be essentially defined. The predicted compounds that fall within this domain may 
be considered as reliable. The applicability domain was discussed with the Williams graph in figure 2, 
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which the standardized residuals and the leverage values (hi) are plotted (Rücker et al.,2007, Ousaa et 
al., 2023). It is based on the calculation of the leverage hi for each molecule, for which QSAR model 
is used to predict its toxicity: 

ℎ! =	𝑥! 	(𝑋" 	𝑋)#$	𝑥!" 																(𝑖 = 1,… , 𝑛)																			𝐄𝐪𝐧. 𝟓 
Where xi is the row vector of the descriptors of compound i and X is the variable matrix deduced from 
the training set variable values. The index T refers to the matrix/vector transposed. The critical leverage 
h* is, generally, fixed at 3(k+1)/N, where N is the number of training molecules, and k is the number 
of model descriptors. If the leverage value h of molecule is higher than the critical value (h*) i.e., h > 
h*, the prediction of the compound can be considered as not reliable (Nawaz et al.,2022, Chtita et al., 
2021). 
 

 
Figure 2: Williams plot for the presented MLR and MNLR model 

The Williams plot for the presented MLR and MNLR models is shown in figure 2. From this plot, the 
leverage values (hi) of any molecule in the training and test sets are less than the critical value (h* = 
0.15) excepting the compounds 42 and 62 as outliers. Also, the standardized residuals of all molecules 
in the training and test sets are less than three standard deviation units (±3σ). Thus, the predicted 
toxicity by the developed MLR and MNLR models is reliable. 

Conclusion 
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This study employed three distinct techniques (MLR, MNLR, and ANN) to develop QSTR models for 
predicting the toxicity of phenols and anilines towards Chlorella vulgaris. The models established in 
this research may be employed with greater ease compared to previous models, with an enhanced 
degree of confidence in their prediction accuracy. Our analysis establishes a robust correlation between 
various descriptors and the pIC50 and pIC20 values of the phenol and aniline derivatives studied using 
the three techniques. 
Furthermore, robust statistical analyses, including leave-one-out cross validation, Y-randomized 
analysis, and external validation and the applicability domains (AD) were performed to validate the 
models. These analyses confirmed the accuracy, stability, and reliability of the developed models. 
Based on these findings, it was concluded that the QSTR models built on uniform descriptors could 
deliver satisfactory performance in predicting multiple toxicity endpoints of chemicals towards 
Chlorella vulgaris. 
These results encourage collaboration between theoretical researchers and pharmacologists, academic 
or industrial to protect nature and the environment, especially in aquatic systems. 
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