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Abstract: In the year 2022 most of the patients affected by the disease was around 65 

year age. Among total number of patients, 73% were near 75 year or older age. It was 

also stated that maximum numbers of patients were women. Black Americans were 

more affected by Alzheimer than white Americans. GSK-3 has also been linked to the 

hyperphosphorylation of tau protein, the development of amyloid-beta plaques, other 

inflammatory responses, activation of microglial cells, the production of neurotoxic 

inflammatory factors, and a decrease in the level of acetylcholine, all of which 

together lead to Alzheimer's disease. GSK-3 controlled the inflammatory stress 

brought on by anomalies in the mitochondria and endoplasmic reticulum. However, 

none of the compounds utilised in the treatment were particularly helpful in curing the 

patient completely. The development of newer generation anti-Alzheimer therapeutic 

compounds was therefore hampered by this curse, and computational approaches were 

crucial in breaking it. The most effective QSAR model was pIC50 = -5.47052 

+2.60572 IC1 +1.64642 GATS2e +2.088 mindssC -0.01441 ATSC7s -13.5191 AVP-0 

+0.16712 minssNH -0.15369 minaaN +0.01777 VR2_Dt +1.52684 MATS8s +0.04725 

nAtomP with all necessary acceptance criteria Q^2: 0.60111, r^2: 0.65711, |r0^2-

r'0^2|: 0.07866, k: 0.99121 [(r^2-r0^2)/r^2] 0.00543 or k': 0.92437 [(r^2-r'0^2)/r^2] 

0.12513. It is clear that our QSAR model will be a blessing for humanity if we wish to 

produce a chemical that works as a GSK-3 inhibitor to treat Alzheimer's disease in the 

near future. 

Keywords: GSK-3β; Alzheimer Disease; Modelability Index; KS Method; GT 

acceptable criteria; YR Test.  
 

 

1. Introduction 

According to recent statistics, more than 60 lakh Americans had Alzheimer's disease. Most patients 

with the condition in 2022 were around 65 years old (Tang et al., 2014; Limor & Eldar-Finkelman 

2013; El khatabi et al., 2021). A total of 73% of the patients were 75 years of age or older. 

Additionally, it was noted that women made up the majority of the patients. According to the 
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Alzheimer's Facts and Figures Report Alzheimer's Association, black Americans were more likely to 

develop Alzheimer's disease than white Americans. Rivastigmine, Donepezil, galantamine, 

memantine are some commercially available anti Alzheimer drugs. GSK-3, or glycogen synthase 

kinase 3, originally attracted attention in year 1980. According to (Pal & Saha 2019; Ling et al., 

2013), the enzyme was primarily used to facilitate the production of glycogen from glucose using 

uridine diphosphate glucose molecules. GSK was a cell-specific enzyme with a serine/threonine 

amino acid basis (Akihiko 2006; Toral-Rios et al., 2020). The enzyme comes in two varieties, GSK-3 

and GSK-3. Through the phosphorylation of serine21 for alpha and serine9 for beta, this enzyme 

primarily initiated the downregulation process of neurons (Angela et al., 2021).  According to 

(Griebel et al., 2019), GSK-3 controlled the development of beta-amyloid plaques via the Wingless 

and Int-1/phosphatidylinositol-3 pathway. According to (Kim et al., 2006), GSK-3 has also been 

linked to the hyperphosphorylation of tau protein (Kareti & Subash 2020; Chtita et al., 2016), the 

development of amyloid-beta plaques, other inflammatory responses, activation of microglial cells, 

the production of neurotoxic inflammatory factors, and a decrease in the level of acetylcholine, all of 

which contribute to the development of Alzheimer's disease (El Alaouy et al., 2021; El-Mernissi et 

al., 2023). According to Hooper et al., 2008, GSK-3 controlled the inflammatory stress caused by 

anomalies in the endoplasmic reticulum and the mitochondria (El Alaouy et al., 2023). These 

pathways have been collectively linked to numerous neurological conditions like Parkinson's, 

Alzheimer's, mood swings, and other illnesses connected to cognition and behaviour (Ma, 2014; De 

Strooper & Karran 2016). To anticipate the bioactivity of newer generation GSK-3 inhibitors 

effective against Alzheimer's disease, we created a QSAR model in this context. 
 

2. Materials and Methodology 

2.1. Dataset and Descriptor Calculation 

A dataset of 124 GSK-3 inhibitors for Alzheimer's disease was obtained from the database (Thomas 

et al., 2012). The ACD ChemSketch software was used to create each molecule, which was then 

saved in MDL Mol format. Then, using the PADEL descriptor, two-dimensional descriptors of the 

molecules were derived (Saha et al., 2022a). The biological activities associated with each molecular 

descriptor were tabulated in.CSV format, with IC50 values converted to pIC50 values. 
 

2.2.Modelability Index 

Modelability index is a method for estimating feasibility that is defined by the ratio between the total 

number of pairings and the nearest-neighbour pairs of compounds that belong to the same activity 

class (Saha et al., 2022b; Alamari et al., 2023). This idea was related to the wasteful efforts of a 

QSAR dataset involved in the creation of a QSAR model. 
 

2.3. Descriptor Pretreatment  

Then, by using a variance cut off and correlation coefficient values of 0.0001 and 0.99, respectively, 

closely related descriptors found in the dataset were eliminated (Saha et al., 2022). 
 

2.4. Dataset Division 

The Kennard Stone (KS), Random Faster, and Euclidean Distance methods were typically used to 

partition the dataset into training and test sets. We chose the KS approach to partition the dataset of 

124 molecules into a training set and a test set in this instance. Following dataset partition, the 

training set contained 86 molecules, whereas the test set contained 38 molecules (de Moura et al., 

2021). 
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2.5. Suitable Descriptor Selection 

Using Stepwise MLR software, a set of appropriate descriptors was chosen with F values ranging 

from 3.9 to 4.0. Then, the R2 cut off value of 0.6 was shown to be the optimum subset combination 

(Kumar et al., 2023). 

 

2.6. Stepwise regression 

The construction of a stepwise multiple linear regression equation involved three independent 

processes, including the discovery of an initial model, repeating the previous step to improve the F 

and R2 value, and calibrating the model. Statistical SPSS software was used to create the stepwise 

regression equation, which was evaluated using the parameters of explained variance (R2a), 

correlation coefficient (R), standard error of estimate (s), and variance ratio (F) with a given DF. 

Finally, using cross validation R2 (Q2), SPRESS, and SDEP parameters, the LOO approach was used 

to validate the model (Hassan et al., 2022). 

 

2.7. QSAR Equation Development 

According to the accuracy of the predictions, the final QSAR model was created by Multiple Linear 

Regression Plus valid software (Hanieh et al., 2022). 

 

2.8. QSAR Equation Validation 

The acceptable model criteria of Golbraikh and Tropsha(GT acceptable criteria) were used to validate 

the constructed QSAR model. The following were the requirements for an acceptable model 

(Ambure & Roy 2016).  

1. Q2 > 0.5. 

2. R2 > 0.6. 

3. |r02-r'02| < 0.3. 

4. [0.85<k<1.15 and ((r^2-r0^2)/r^2)<0.1 or [0.85<k'<1.15 and ((r^2-r'0^2)/r^2)<0.1]. 

 

2.9. QSAR Equation Validation 

The LOO procedure was used to cross-validate the QSAR model. By using mahalanobis distance and 

euclidean distance approaches, the model's applicability domain was examined. A specified 

application domain threshold value was compared to the distance between a test set and its closest 

neighbour in the training set (Yap 2011). 

 

2.10. MLR YRandomization (YR)test 

In the YR test, a quicker random technique was used to create a random multiple linear regression 

model by changing the dependent variable while keeping the independent variable constant. After 

multiple trials, the model with considerably better R2 and Q2 values demonstrated that the proposed 

model was reliable and repeatable. In order to pass this test, another parameter, cRp2, which must be 

more than 0.5, was also calculated (Golbraikh et al., 2014). 

 

3. Results and Discussion 

When the modelability index value of the entire dataset was first verified, it was found to be 0.55, 

with 41 molecules having a high total active/lower activity and 83 molecules having a low total 

active/toxic activity, with a threshold value of 0.65. Therefore, the model's modelability index score 

was 0.5926, indicating that the dataset was near to what was needed to create a good QSAR 
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(Quantitative Structure Activity Relationship) model. The Kennard-Stone approach was then used to 

split the entire dataset into training and test set. In the training and test sets, there were, respectively, 

86 and 38 molecules present. The most likely group of descriptors to employ in a successful QSAR 

model were found using stepwise multiple linear regression analysis. Then, using the best set of 

descriptors available, the best subset selection process was carried out using an R2 cut-off value of 

0.6 and an R2 cut-off value of 0.5 for inter-correlation between descriptors (Ballabio et al., 2014). 

Following the multiple linear regression analysis, we created five distinct QSAR models (Table 1 and 

Table 2), ranging from the fewest to the most descriptors.  

Table 1.Actual pIC50, and Predicted pIC50 Values of Training Set Molecules of the best QSAR Model. 

 

SN 

Structure of the compounds Actual 

pIC50 

Predicted 

pIC50  

1 
NH

O

O

N
+

O
–

O

NH

O

OH

Cl  

-1.41497 -2.22094 

2 
NH

O

O

NH

O

OH

Cl

Cl

 

-2.89542 -2.73921 

3 

NH

O

O

N

CH3

Cl

Cl

 

-1.53148 -2.18685 

4 

NH

O

O

N N

N

N

OH  

-1.39794 -0.72689 

5 

NH

O

O

N N

N

N

OH

O
CH3

O

CH3

 

-0.77815 -0.40648 
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6 

NH

O

O

N N

OH

O

CH3

 

-0.60206 -0.58177 

7 

NH

O

O

N N

N

OH

Cl

FF
F

 

-1.41497 -1.62494 

8 

NH

O

O

N

Br

N

N

N

N

 

-2.14613 -1.1836 

9 

NH

O

O

N

F

CH3

NH OH

OH

 

0.221849 -0.35942 

10 

NH

O

O

N

CH3

O

CH3

 

-2.94939 -0.99586 

11 

NH

O

O

NH

O

CH3

 

-3.65031 -1.34828 

12 

NHO

O

N
N

CH3

S NH

NH2  

-0.44716 0.589746 



Saha et al., Mor. J. Chem., 2023, 11(4), pp. 1137-1182 1142 

 

13 

NHO

O

N
O

CH3

Br

 

-0.8451 -0.54697 

14 

NHO

O

N
O

CH3

OH

 

-0.73239 -0.51165 

15 
N

NH
OO

O

CH3

O

CH3

CH3

 

-2.48287 -2.19145 

16 

NH
OO

O

CH3

O

CH3

CH3

 

-1.96379 -2.13535 

17 

NH
OO

O

CH3

O

CH3

CH3

 

-2.43136 0.083766 

18 
O

NH
O

N N

CH3

O

CH3NH

CH3  

-1.17609 -1.86128 

19 

NH

NH

O

N

OH

 

-1.34242 -1.27194 
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20 

NH

NH

O

O

 

-2.77815 -0.62703 

21 

NH

NH

O

N

OH

Br

 

-0.69897 -0.12701 

22 

NH

NH

O
N

O

Br

O CH3  

-1 -0.78529 

23 

NH

NH

O
O

Br

 

-1.65321 -0.87523 

24 

NH

NH

O
N

O

Cl

O CH3

Cl

 

-0.60206 -0.93966 

25 

NH

NH

O
N

O

Br

H

N

N
OH

 

-0.69897 -1.00089 

26 

NH

NH

O
N

O

Br

H

N

N
O

OH

 

-1.14613 -1.03339 

27 
NH

NH

O
O

H

NH2

 

-1.90309 -0.72496 
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28 
NH

NH

O
O

H

NH

O

CH3

 

-0.87506 -0.6128 

29 
NH

NH

O
N

OH

H

N
+

O
–

O

 

-1.60206 -2.3758 

30 NH

NH

O
N

OH

N
+ O

–
O

 

-0.32222 -1.52093 

31 
NH NH

O

Br  

-1.36173 -1.96416 

32 

NH NH

O

N
+

O
– O

 

-0.60206 -0.68383 

33 

NH NH

O

O

NH2

Br  

-1.47712 -0.39746 

34 

NH NH

O

Br

O

NH2

 

-1.60206 -1.70237 
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35 

NH2

NH NH

O

N
+

O
– O

 

-0.77815 -1.90844 

36 
NH NH

O

N
+

O
– O

NH2

 

-0.39794 -1.97428 

37 
NH NH

O

N
+

O
– O

OH

O

 

-0.81291 -1.35609 

38 

N

N

NH

NH

O

CH3

 

-1.74819 -1.75919 

39 

N

N

NH

NH

O

CH3

F

 

-1.25527 -1.4052 

40 

N
N

N

NH

NH

O

CH3

 

-0.60206 -1.51684 
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41 

N
N

NH

NH

O

CH3

 

-0.8451 -1.7273 

42 

N
N

N

NH

NH

ON

CH3

CH3

 

-1.34242 -0.69354 

43 

N

N

NH

NH

O

 

-2.62839 -0.8534 

44 
N

N

NH

NH

O

OH  

-0.90309 -1.86433 

45 

N

N

NH

NH

O

Br

O  

-0.8451 -0.59118 

46 

N

N

N
N

NN

N

 

-2 -0.80109 

47 

N

N

N

N

O

CH3

CH3

CH3

NH

 

-3.38021 -2.50705 

48 

N

N

N

N NH

CH3

O

OOH  

-2.98227 -0.54668 
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49 

N

N

N

N NH

O

OOH

CH3

 

-2.88081 -2.81112 

50 

N

N

N

N NH

OOH

Cl

 

-2.25527 -2.13329 

51 

N

N NH

OOH

NH

N

O

 

-3.54407 -2.17863 

52 

N

N NH

OOH

NH

N
+

O
–

O

 

-2.17609 -1.89979 

53 

N

N NH

OOH

NH

F

F

F

 

-2.6902 -2.88638 

54 

N

N NH

O

OOH

N

N

N

 

-1.11394 -1.97767 
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55 

N

N NH

OH

NH

OH

FF

F

 

-1.61278 -1.49188 

56 

N

NO

NH O

O

CH3

 

-1.50515 -0.97557 

57 

N

NO

NH O

 

-1.36173 -1.86114 

58 

N

NO

N

NH2

NH
S

O

O S

 

-1.36173 -1.27403 

59 

N N

O

NH2
N

N

N

O

NH N

N

N

CH3 CH3  

-2.61278 -1.54548 

60 

N
N

O

NH2

N

N

N

O

NH

N

N

 

-3.06446 -1.26618 

61 

N N

O

NH2
N

N

N

NH

N

N

N

 

-2.44716 -1.51465 
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62 

N N

O

NH2

N

NH

 

-2.32222 -1.99199 

63 

N N

O

NH2

N

NH

 

-2.38021 -2.60846 

64 

N

N

O

NH2

NNH

 

-2.4624 -2.53969 

65 
N N

O
O

S

N

O
CH3

 

-0.54407 -1.49584 

66 
N N

O

N

N
S

N

O
CH3

 

-0.36173 -1.76997 

67 

N N

O
OCH3

S

OCH3

 

-2.14613 -2.36521 

68 

N N

O
OCH3

S

O
CH3

 

-2.27875 -1.50115 
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69 
N N

ONH

CH3

Cl
N

+

O
–

O

 

-1.23045 -0.76386 

70 

N N

ONH

O

CH3

N
+

O
–

O

 

-0.8451 -1.10673 

71 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-2.54407 -2.92428 

72 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-2.83885 -2.337 

73 
N

N

N

S

CH3

CH3

O

NH

NH

 

-2.11394 -2.5921 

74 
N

N

N

S

CH3

CH3

O

NH

NHN

CH3

CH3

 

-2.74819 -2.86505 

75 

N

S
N

+

O
–

O

NH

O

NH

O

CH3

 

-2.01703 -2.19594 

76 

NH

N

OH

ONH

NH
S

O

O
CH3

Cl

Cl

 

-1.17609 -1.9819 
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77 
N

NH

N
NH

O

Cl

 

-3.17319 -1.66181 

78 

N

NH

N
NH

O

O
CH3

O
CH3

 

0.09691 -3.19567 

79 

N

NH

N
NH

O

N

O
CH3

 

-0.30103 -2.73399 

80 

NH

NH

O

O

N

CH3 CH3 

-3.62325 -0.74004 

81 

NH

NH

O

O

S

 

-3.80618 -1.02228 

82 

NH

NH

O

O

S

CH3  

-3.89209 -1.48276 
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83 

N

O

CH3

N

N

NH

OCH3

 

-1.24055 -3.39249 

84 

NH

N

N
NH2

Br

 

-3.39794 -3.80155 

85 

NH

O

NH

Br

NH

N

NH2

O

 

-1 -1.0735 

86 
N

NH

NH

N

NH2

Br

Br

O  

-3.47712 -2.29833 

 

Table 2. Actual pIC50, and Predicted pIC50 Values of Test Set Molecules of the best QSAR Model. 

SN Structure of the compounds Actual 

pIC50 

Predicted  

pIC50  

1 

NH

O

O

N
+

O
–

O

NH

Cl

Cl OH  

-1.30103 -1.27507 

2 

NHO

O

N
O

CH3

F

OH  

0.455932 -2.94906 
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3 

NHO

O

N
O

CH3

OCH3

 

0.638272 -2.59976 

4 

NH

NH

O
N

O

Br

O CH3

CH3

 

-0.8451 -2.57599 

5 

NH

NH

O
N

O

Br

H

N

NH

 

-0.51851 -1.04211 

6 

NH

NH

O

 

-2.79239 -1.98943 

7 

NH NH

O

Cl  

-1.38021 -1.9894 

8 

NH NH

O

N  

-1 -1.7943 
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9 

N

NH NH

O

Br ` 

-1.25527 -2.29929 

10 
NH NH

O

N
+

O
– O

O

O

CH3

 

-1.53148 -0.10967 

11 
NH NH

O

N
+

O
– O

N

 

0.09691 0.108851 

12 

N

N

NH

NH

O

CH3

N

 

-1.04139 -1.35735 

13 

N

N

NH

NH

O

OH

Br

 

0.09691 -0.66613 
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14 

N

N

NH

NH

O

Br

 

-1.87506 -0.14005 

15 

N

N

N
N

S

O

O CH3

N

N

O
CH3  

-0.39794 -2.33035 

16 

N

N

N
N

NN

N
NH

N

 

-0.60206 -2.47494 

17 

N

N

N

N

O

CH3

NH

 

-3.23045 -3.2014 

18 

N

N NHN

N

N

 

-2.79796 -2.8862 

19 

N

N NHNH

N
+

O
–

O

O

OOH  

-1.96379 -2.2231 

20 

N

NO

N

NH O

 

-0.69897 -1.86114 
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21 

N

NO

N

NH O

 

-0.69897 -1.23586 

22 

N

NO

N

NH2

NH
S

O

O

 

-1.47712 -0.77889 

23 

N
N

O

NH2

N

N

N

O

NH
N

N
N

 

-2 -1.98689 

24 
N N

O

O

O
S

F

O
CH3

 

-1.81291 -1.39531 

25 
N N

O
O

S

F

O
CH3

 

-1.64345 -1.59345 

26 
N N

O

S

N
S

F

O
CH3

 

-0.49136 -1.03709 

27 

N N

ONH

O

CH3

F

F

F

 

-1.72428 -2.42491 

28 

N N

ONH

O

CH3

N 
-1.25527 -1.79302 

29 
N

N

O

N

O

NH
N

N

O

CH3

 

-2.61278 -2.72557 
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30 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-3.05308 -2.05047 

31 

NH

N

OH

ONH

 

-2.76343 -2.62762 

32 

NH

N

OH

ONH

NH
S

O

O
CH3  

-1.39794 -3.01513 

33 

N

OH

O

 

-3.76343 -2.46821 

34 

N

OH

O

NH2

 

-3.61278 -3.70334 

35 

N

OH

O

N

CH3

CH3

 

-3.17609 -0.90886 
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36 

N

NH

N
NH

O

N

O
CH3

 

-0.65321 -1.0735 

37 

N

O

CH3

N

N

N

OH

 

-0.92942 -3.74375 

38 

N

O

CH3

N

N

N

OOCH3

 

-1.20683 -1.47041 

3.1. Model 1 (with 10 descriptors) 

pIC50 = -5.47052 +2.60572 IC1 +1.64642 GATS2e +2.088 mindssC -0.01441 ATSC7s -13.5191 

AVP-0 +0.16712 minssNH -0.15369 minaaN +0.01777 VR2_Dt +1.52684 MATS8s +0.04725 

nAtomP. 

[Internal Validation Parameters (IVP): SEE :0.58767, r^2 :0.70183, r^2 adjusted :0.66207, PRESS 

:25.90197, F :17.6534 (DF (Degree of Freedom) :10, 75); Leave-One-Out(LOO) Result: Q2 

:0.60111, Average rm^2(LOO) :0.47316, Delta rm^2(LOO) :0.19941; External Validation 

Parameters (EVP)(Without Scaling):: r^2 :0.65711, r0^2 :0.65354, reverse r0^2:0.57488, RMSEP 

(Root Mean Square Error of Prediction) :0.63121, Q2f1/R^2(Pred) :0.68626, Q2f2 :0.65324; EVP 

(After Scaling): Average rm^2(test) :0.54109, Delta rm^2(test) :0.1653] 

{GT acceptable criteria :  Q^2: 0.60111 Passed (Q^2>0.5), r^2: 0.65711Passed (r^2>0.6), |r0^2-

r'0^2|: 0.07866 Passed   (|r0^2-r'0^2|<0.3), k: 0.99121 [(r^2-r0^2)/r^2] 0.00543 or k': 0.92437 [(r^2-

r'0^2)/r^2] 0.12513 Passed}    

3.2.Model 2 (with 11 descriptors)(Roy and Mitra 2011) 

pIC50 = -6.19416 + 2.64534 IC1 +1.80112 GATS2e +2.20934 mindssC -0.01408 ATSC7s -

12.84456 AVP-0 +0.19708 minssNH -0.1799 minaaN +0.02228 VR2_Dt +1.61577 MATS8s 

+0.05144 nAtomP -0.25802 nF12Ring. 
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[IVP:: SEE :0.55403, r^2 :0.73853, r^2 adjusted :0.69966, PRESS :22.71409, F :19.00109 (DF :11, 

74); Leave-One-Out(LOO) Result :: Q2 :0.59013, Average rm^2(LOO) :0.47465, Delta rm^2(LOO)   

:0.12766; EVP(Without Scaling):: r^2 :0.66916, r0^2 :0.6592, reverse r0^2:0.61934, 

RMSEP:0.62738, Q2f1/R^2(Pred) :0.69006, Q2f2 :0.65743; EVP (After Scaling):: Average 

rm^2(test) :0.5594,Delta rm^2(test) :0.09565]  

{GT acceptable criteria:: Q^2 : 0.59013 Passed,  r^2: 0.66916 Passed, |r0^2-r'0^2|: 0.03986 

Passed), k: 0.97891 [(r^2-r0^2)/r^2] 0.01489 or  k': 0.93738 [(r^2-r'0^2)/r^2] : 0.07445Passed}    

3.3.Model 3 (with 12 descriptors) 

pIC50 = -7.11297 + 2.59644 IC1 -0.23252 minsssN +2.11949 GATS2e +2.03621 mindssC -0.01331 

ATSC7s -10.98537 AVP-0 +0.24422 minssNH -0.16546 minaaN +0.02086 VR2_Dt +1.21546 

MATS8s +0.03775 nAtomP -0.2656 nF12Ring. 

[IVP:: SEE :0.53557, r^2 :0.75896, r^2 adjusted :0.71933, PRESS :20.93933, F :19.15421 (DF :12, 

73); Leave-One-Out(LOO) Result :: Q2 :0.64714, Average rm^2(LOO) :0.53284, Delta rm^2(LOO)   

:0.14785; EVP (Without Scaling):: r^2 :0.72485, r0^2 :0.72259, reverse r0^2:0.67595, 

RMSEP:0.56733, Q2f1/R^2(Pred) :0.74655, Q2f2 :0.71988; EVP (After Scaling):: Average 

rm^2(test) :0.62788, Delta rm^2(test) :0.09232] 

{GT acceptable criteria:: Q^2 : 0.64714 Passed, r^2: 0.72485 Passed, |r0^2-r'0^2| : 0.04664 

Passed, k: 0.97418 [(r^2-r0^2)/r^2] 0.00311 or k' : 0.95766 [(r^2-r'0^2)/r^2] 0.06745 Passed} 

3.4.Model 4 (with 13 descriptors)(Roy et al., 2014) 

pIC50 = -6.022 +2.58977 IC1 -0.24611 minsssN +1.93576 GATS2e -1.28529 GATS7v +2.08453 

mindssC -0.0132 ATSC7s -10.29187 AVP-0 +0.24584 minssNH -0.15455 minaaN +0.02051 

VR2_Dt +1.09995 MATS8s +0.03865 nAtomP -0.20946 nF12Ring. 

[IVP::SEE :0.51741, r^2 :0.77811, r^2 adjusted :0.73804, PRESS :19.27568, F :19.42172 (DF :13, 

72); Leave-One-Out(LOO) Result :: Q2 :0.69747, Average rm^2(LOO) :0.5901, Delta rm^2(LOO) 

:0.16211; EVP(Without Scaling):: r^2 :0.72304, r0^2 :0.71848, reverse r0^2:0.68331, 

RMSEP:0.57069, Q2f1/R^2(Pred) :0.74354, Q2f2 :0.71655; EVP(After Scaling):: Average 

rm^2(test) :0.62587, Delta rm^2(test) :0.08572] 

{GT acceptable criteria : Q^2 : 0.69747 Passed,  r^2: 0.72304 Passed, |r0^2-r'0^2| : 0.03516 

Passed, k: 0.97811 [(r^2-r0^2)/r^2] 0.00632 or k' : 0.9528 [(r^2-r'0^2)/r^2]: 0.05495 Passed} 

3.5.Model 5 (with 24 descriptors)(Dimitrov et al., 2002) 

pIC50 = -5.31625 - 0.09091 ALogP +2.23424 IC1 -0.21727 minsssN +0.98009 GATS2e +1.21443 

mindssC -0.0104 ATSC7s -8.07662 AVP-0 +0.56286 MATS8s +0.15643 minssNH -2.0612 GATS7v 

-0.17167 C1SP2 +0.03561 nAtomP +0.01557 VR2_Dt -0.13713 minaaN -0.28466 nF12Ring 

+0.03612 AATSC4v -5.72469 VE1_D +3.51384 VE1_Dze +0.46693 ndsN +0.83305 SP-5 -0.11812 

MDEC-22 -0.02118 MPC6 -0.17558 AATS4s -0.24231 nCl. 
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[IVP:: SEE :0.35722, r^2 :0.91039, r^2 adjusted :0.87514, PRESS :7.78406, F :25.82319 (DF :24, 

61); Leave-One-Out(LOO) Result :: Q2 :0.80158, Average rm^2(LOO):0.73688, Delta 

rm^2(LOO):0.01789; EVP(Without Scaling):: r^2 :0.88284, r0^2 :0.86732, reverse r0^2:0.81182, 

RMSEP:0.39046, Q2f1/R^2(Pred) :0.87995, Q2f2 :0.86731; EVP (After Scaling):: Average 

rm^2(test) :0.75257, Delta rm^2(test) :0.11285] 

{GT acceptable criteria:: Q^2: 0.80158 Passed,  r^2: 0.88284 Passed, |r0^2-r'0^2|: 0.0555 Passed, k : 

1.00114 [(r^2-r0^2)/r^2] 0.01758 or k' : 0.96682 [(r^2-r'0^2)/r^2] : 0.08045 Passed}. 

The findings revealed that all models met the criteria for acceptance, however only Model 1 had the 

bare minimum of descriptors (Paola 2013). Model 5 showed the highest Q2 (0.80158) and R2 

(0.88284) values. There were 24 descriptors in this model. More descriptors increase prediction 

noise. One description was assigned for every ten molecules according to a rule. In this case, Model 1 

was regarded as the best model (Krstajicet al., 2014). In Model 1, the model was predicted using just 

10 descriptors. In this model IC1 (Information Content index), GATS2e (Geary autocorrelation of lag 

2 weighted by Sanderson electronegativity), mindssC (Minimum atom-type E-State =C), minssNH 

(Minimum atom-type E-State: -NH-), VR2_Dt (normalised Randic-like eigenvector-based index 

from detour matrix), MATS8s (Moran autocorrelation of lag 8 weighted by I-state) and nAtomP 

(Number of atoms in the largest pi system) were positively contributed in the bioactivity (Zhang et 

al., 2006) The model meets every requirement for validation, according to the validation parameter. 

Figure 1's curve between the actual and projected pIC50 values in the training and test set 

demonstrated that the difference between the two values was within acceptable bounds. According on 

the applicability domain study, two compounds were found to be outliers (Rucker et al., 2007).The 

average R2, Q2 (LOO), and cRp2 values for the model are 0.15, -0.16, and 0.64, respectively, 

according to the YR test results (Table 3). 

Table 3.Y Randomization (YR) Data of the best QSAR Model. 

Avg 

R2 

Avg 

Q2 

(LOO) 

cRp2 

0.15 -0.16 0.64 
 

 

Figure 1 Graph between Actual and Predicted pIC50 values in Training Set and Test Set. 
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Conclusion 

Here, we draw the conclusion that the established QSAR model will function as a good predictor 

with any chemical scaffold and descriptor combination in order to develop newer 

generation GSK-3 inhibitors targeting Alzheimer's disease.  
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Out, MLR: Multiple Linear Regression. 
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Table S1.Actual pIC50, and Predicted pIC50 Values of Training Set Molecules of different QSAR Models. 

SN 

Structure of the compounds Actual 

pIC50 

Predicted pIC50 

(Model 2) 
Predicted 

pIC50 

(Model 3) 

Predicted 

pIC50 

(Model 4) 

Predicted 

pIC50 

(Model 5) 

1 
NH

O

O

N
+

O
–

O

NH

O

OH

Cl  

-1.41497 -2.30004 -2.23258 -2.14573 -1.40867 

2 
NH

O

O

NH

O

OH

Cl

Cl

 

-2.89542 -2.82135 -2.6834 -2.66375 -2.5139 

3 

NH

O

O

N

CH3

Cl

Cl

 

-1.53148 -2.13956 -2.03201 -1.96968 -1.85593 

4 

NH

O

O

N N

N

N

OH  

-1.39794 -0.79598 -0.72437 -0.85654 -1.45258 

5 

NH

O

O

N N

N

N

OH

O
CH3

O

CH3

 

-0.77815 -0.43003 -0.33837 -0.54359 -0.68705 

6 

NH

O

O

N N

OH

O

CH3

 

-0.60206 -0.5895 -0.48583 -0.55114 -0.85404 
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7 

NH

O

O

N N

N

OH

Cl

FF
F

 

-1.41497 -1.72622 -1.73665 -1.77401 -1.22522 

8 

NH

O

O

N

Br

N

N

N

N

 

-2.14613 -1.15536 -0.99847 -0.93181 -1.75658 

9 

NH

O

O

N

F

CH3

NH OH

OH

 

0.221849 -0.27469 -0.28134 -0.35449 0.109629 

10 

NH

O

O

N

CH3

O

CH3

 

-2.94939 -0.91179 -0.86128 -0.73648 -0.72958 

11 

NH

O

O

NH

O

CH3

 

-3.65031 -1.1996 -1.08469 -1.00174 -0.5754 

12 

NHO

O

N
N

CH3

S NH

NH2  

-0.44716 0.697029 0.59284 0.537598 0.654765 

13 

NHO

O

N
O

CH3

Br

 

-0.8451 -0.47302 -0.4567 -0.43978 -0.34366 
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14 

NHO

O

N
O

CH3

OH

 

-0.73239 -0.40635 -0.29248 -0.33784 -0.19527 

15 
N

NH
OO

O

CH3

O

CH3

CH3

 

-2.48287 -2.04245 -1.81369 -1.8969 -2.36854 

16 

NH
OO

O

CH3

O

CH3

CH3

 

-1.96379 -2.01599 -1.83776 -1.94506 -2.3328 

17 

NH
OO

O

CH3

O

CH3

CH3

 

-2.43136 -1.44855 -1.36137 -1.18429 -1.09335 

18 
O

NH
O

N N

CH3

O

CH3NH

CH3  

-1.17609 -1.86729 -1.86815 -2.13011 -2.45918 

19 

NH

NH

O

N

OH

 

-1.34242 -1.20029 -1.07961 -1.13321 -0.92177 

20 

NH

NH

O

O

 

-2.77815 -0.51826 -0.58883 -0.60891 -0.84507 
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21 

NH

NH

O

N

OH

Br

 

-0.69897 -0.02092 -0.11468 -0.17541 -0.83205 

22 

NH

NH

O
N

O

Br

O CH3  

-1 -0.68463 -0.70411 -0.59629 -0.65531 

23 

NH

NH

O
O

Br

 

-1.65321 -0.68596 -0.91526 -0.75859 -0.36744 

24 

NH

NH

O
N

O

Cl

O CH3

Cl

 

-0.60206 -0.7294 -0.9344 -0.83984 -0.65749 

25 

NH

NH

O
N

O

Br

H

N

N
OH

 

-0.69897 -0.79755 -0.97665 -1.03631 -1.25777 

26 

NH

NH

O
N

O

Br

H

N

N
O

OH

 

-1.14613 -1.00397 -1.07686 -1.0799 -1.27856 

27 
NH

NH

O
O

H

NH2

 

-1.90309 -0.73288 -0.8216 -1.01674 -1.18456 

28 
NH

NH

O
O

H

NH

O

CH3

 

-0.87506 -0.6296 -0.70327 -0.76289 -0.63109 
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29 
NH

NH

O
N

OH

H

N
+

O
–

O

 

-1.60206 -2.32736 -2.17871 -2.16424 -2.3064 

30 NH

NH

O
N

OH

N
+ O

–
O

 

-0.32222 -1.36718 -1.04414 -0.95986 -1.68108 

31 
NH NH

O

Br  

-1.36173 -1.89785 -1.59642 -1.38647 -1.28267 

32 

NH NH

O

N
+

O
– O

 

-0.60206 -0.63048 -0.70215 -0.70853 -0.89312 

33 

NH NH

O

O

NH2

Br  

-1.47712 -0.32444 -0.42398 -0.40326 -0.28892 

34 

NH NH

O

Br

O

NH2

 

-1.60206 -1.78293 -1.77262 -1.76719 -1.21492 
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35 

NH2

NH NH

O

N
+

O
– O

 

-0.77815 -1.85024 -1.78648 -1.70026 -1.66258 

36 
NH NH

O

N
+

O
– O

NH2

 

-0.39794 -1.99331 -1.88426 -1.78381 -1.54936 

37 
NH NH

O

N
+

O
– O

OH

O

 

-0.81291 -1.28162 -1.20721 -1.11966 -1.19969 

38 

N

N

NH

NH

O

CH3

 

-1.74819 -1.70293 -1.66593 -1.64999 -1.16942 

39 

N

N

NH

NH

O

CH3

F

 

-1.25527 -1.32476 -1.27739 -1.29819 -1.20384 

40 

N
N

N

NH

NH

O

CH3

 

-0.60206 -1.50572 -1.8366 -1.79823 -1.26106 
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41 

N
N

NH

NH

O

CH3

 

-0.8451 -1.73161 -1.72174 -1.83262 -2.13273 

42 

N
N

N

NH

NH

ON

CH3

CH3

 

-1.34242 -0.6871 -0.72391 -0.84536 -0.91578 

43 

N

N

NH

NH

O

 

-2.62839 -0.7903 -0.72911 -0.72825 -0.17177 

44 
N

N

NH

NH

O

OH  

-0.90309 -1.81215 -1.70345 -1.77353 -1.40783 

45 

N

N

NH

NH

O

Br

O  

-0.8451 -0.51051 -0.34936 -0.43911 -0.64388 

46 

N

N

N
N

NN

N

 

-2 -0.79856 -0.87639 -0.78181 -0.0336 

47 

N

N

N

N

O

CH3

CH3

CH3

NH

 

-3.38021 -2.57317 -2.56155 -2.73292 -2.40363 

48 

N

N

N

N NH

CH3

O

OOH  

-2.98227 -0.50783 -0.65366 -0.9334 -0.6203 
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49 

N

N

N

N NH

O

OOH

CH3

 

-2.88081 -2.81615 -3.16829 -3.42202 -3.71252 

50 

N

N

N

N NH

OOH

Cl

 

-2.25527 -2.2175 -2.19284 -2.4026 -2.19672 

51 

N

N NH

OOH

NH

N

O

 

-3.54407 -2.20601 -2.30905 -2.3306 -2.52371 

52 

N

N NH

OOH

NH

N
+

O
–

O

 

-2.17609 -1.9437 -2.02975 -2.03443 -2.5492 

53 

N

N NH

OOH

NH

F

F

F

 

-2.6902 -2.88344 -2.83131 -2.7947 -2.52929 

54 

N

N NH

O

OOH

N

N

N

 

-1.11394 -2.12724 -2.06828 -2.10328 -2.14187 



Saha et al., Mor. J. Chem., 2023, 11(4), pp. 1137-1182 1172 

 

55 

N

N NH

OH

NH

OH

FF

F

 

-1.61278 -1.61625 -1.56539 -1.40164 -1.59834 

56 

N

NO

NH O

O

CH3

 

-1.50515 -0.84986 -0.72522 -0.86441 -0.80867 

57 

N

NO

NH O

 

-1.36173 -1.85979 -1.79061 -1.90179 -1.38761 

58 

N

NO

N

NH2

NH
S

O

O S

 

-1.36173 -1.25793 -1.1872 -1.34339 -0.96918 

59 

N N

O

NH2
N

N

N

O

NH N

N

N

CH3 CH3  

-2.61278 -1.5973 -1.79574 -1.82646 -2.47975 

60 

N
N

O

NH2

N

N

N

O

NH

N

N

 

-3.06446 -1.33031 -1.61328 -1.56254 -1.92922 

61 

N N

O

NH2
N

N

N

NH

N

N

N

 

-2.44716 -1.61252 -1.63734 -1.52088 -2.17555 
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62 

N N

O

NH2

N

NH

 

-2.32222 -1.85875 -2.06846 -2.12803 -2.33823 

63 

N N

O

NH2

N

NH

 

-2.38021 -2.55919 -2.74464 -2.81479 -2.17512 

64 

N

N

O

NH2

NNH

 

-2.4624 -2.61129 -2.67446 -2.69233 -2.69243 

65 N N

O
O

S

N

O
CH3

 

-0.54407 -1.50621 -1.464 -1.50507 -1.30741 

66 
N N

O

N

N
S

N

O
CH3

 

-0.36173 -1.78588 -1.73863 -1.74121 -1.70141 

67 

N N

O
OCH3

S

OCH3

 

-2.14613 -2.41121 -2.48671 -2.38873 -2.67373 

68 

N N

O
OCH3

S

O
CH3

 

-2.27875 -1.42259 -1.50215 -1.15754 -1.59148 
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69 

N N

ONH

CH3

Cl
N

+

O
–

O

 

-1.23045 -0.67261 -0.68706 -0.44822 -1.04778 

70 

N N

ONH

O

CH3

N
+

O
–

O

 

-0.8451 -1.07109 -1.14375 -0.87355 -1.11622 

71 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-2.54407 -2.93449 -3.13921 -3.1271 -3.17411 

72 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-2.83885 -2.31807 -2.455 -2.28096 -2.52259 

73 
N

N

N

S

CH3

CH3

O

NH

NH

 

-2.11394 -2.6011 -2.83325 -2.65245 -2.63491 

74 
N

N

N

S

CH3

CH3

O

NH

NHN

CH3

CH3

 

-2.74819 -2.81163 -2.74266 -3.01938 -2.53783 

75 

N

S
N

+

O
–

O

NH

O

NH

O

CH3

 

-2.01703 -2.23854 -2.01232 -2.0085 -2.44876 

76 

NH

N

OH

ONH

NH
S

O

O
CH3

Cl

Cl

 

-1.17609 -2.0615 -1.94474 -1.86403 -1.55231 



Saha et al., Mor. J. Chem., 2023, 11(4), pp. 1137-1182 1175 

 

77 
N

NH

N
NH

O

Cl

 

-3.17319 -1.72148 -1.55145 -1.3515 -1.21064 

78 

N

NH

N
NH

O

O
CH3

O
CH3

 

0.09691 -3.22932 -3.16331 -3.19711 -3.84867 

79 

N

NH

N
NH

O

N

O
CH3

 

-0.30103 -2.70091 -2.4354 -2.73939 -2.95431 

80 

NH

NH

O

O

N

CH3 CH3 

-3.62325 -0.59672 -0.52066 -0.35065 0.246198 

81 

NH

NH

O

O

S

 

-3.80618 -0.97199 -0.83399 -0.76394 -0.55527 

82 

NH

NH

O

O

S

CH3  

-3.89209 -1.46444 -1.316 -1.30007 -0.86088 

83 
N

O

CH3

N

N

NH

OCH3

 

-1.24055 -3.40718 -3.76988 -3.57262 -3.54276 
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84 

NH

N

N
NH2

Br

 

-3.39794 -3.86152 -3.7999 -3.51148 -3.4637 

85 

NH

O

NH

Br

NH

N

NH2

O

 

-1 -1.07088 -1.25888 -1.1567 -1.215 

86 
N

NH

NH

N

NH2

Br

Br

O  

-3.47712 -2.84139 -3.0448 -3.45799 -3.67018 

 

Table S2.Actual pIC50, and Predicted pIC50 Values of Test Set Molecules of different QSAR Models. 

SN Structure of the 

compounds 

Actual 

pIC50 

Predicted  

pIC50  

(Model 2) 

Predicted  

pIC50  

(Model 3) 

Predicted  

pIC50  

(Model 4) 

Predicted 

pIC50  

(Model 5) 

1 

NH

O

O

N
+

O
–

O

NH

Cl

Cl OH  

-1.30103 -1.24499 -1.18999 -1.05578 -0.90191 

2 

NHO

O

N
O

CH3

F

OH  

0.455932 -3.02138 -2.79518 -2.94851 -2.7294 

3 

NHO

O

N
O

CH3

OCH3

 

0.638272 -2.67948 -2.60372 -2.81586 -3.19567 
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4 

NH

NH

O
N

O

Br

O CH3

CH3

 

-0.8451 -2.55217 -2.23694 -2.25148 -2.35823 

5 

NH

NH

O
N

O

Br

H

N

NH

 

-0.51851 -1.04091 -1.06345 -1.31319 -1.41323 

6 

NH

NH

O

 

-2.79239 -1.91673 -1.79193 -1.84845 -2.06799 

7 

NH NH

O

Cl  

-1.38021 -2.01779 -1.90029 -1.91985 -1.39755 

8 

NH NH

O

N  

-1 -1.65137 -1.4939 -1.31735 -1.5387 

9 

N

NH NH

O

Br ` 

-1.25527 -2.12677 -1.89394 -1.69193 -1.57186 



Saha et al., Mor. J. Chem., 2023, 11(4), pp. 1137-1182 1178 

 

10 
NH NH

O

N
+

O
– O

O

O

CH3

 

-1.53148 0.094285 -0.06494 0.007229 -0.77778 

11 
NH NH

O

N
+

O
– O

N

 

0.09691 0.178822 -0.10486 -0.05533 -0.89018 

12 

N

N

NH

NH

O

CH3

N

 

-1.04139 -1.21624 -0.88358 -0.81981 -1.61719 

13 

N

N

NH

NH

O

OH

Br

 

0.09691 -0.64458 -0.65798 -0.7253 -1.0553 

14 

N

N

NH

NH

O

Br

 

-1.87506 -0.09312 -0.21414 -0.17276 -0.39538 
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15 

N

N

N
N

S

O

O CH3

N

N

O
CH3  

-0.39794 -2.31872 -2.72759 -2.70075 -3.17392 

16 

N

N

N
N

NN

N
NH

N

 

-0.60206 -2.58918 -2.96401 -2.94737 -2.89934 

17 

N

N

N

N

O

CH3

NH

 

-3.23045 -3.31936 -3.35144 -3.44064 -3.05172 

18 

N

N NHN

N

N

 

-2.79796 -3.02355 -3.4654 -3.42876 -3.05327 

19 

N

N NHNH

N
+

O
–

O

O

OOH  

-1.96379 -2.33595 -2.23061 -2.2877 -1.46029 

20 

N

NO

N

NH O

 

-0.69897 -1.85979 -1.79061 -1.90179 -1.38761 

21 

N

NO

N

NH O

 

-0.69897 -1.22213 -1.40194 -1.55047 -1.73706 
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22 

N

NO

N

NH2

NH
S

O

O

 

-1.47712 -0.74298 -0.87667 -1.08011 -1.76131 

23 

N
N

O

NH2

N

N

N

O

NH
N

N
N

 

-2 -2.04707 -2.22989 -2.1214 -2.70784 

24 
N N

O

O

O
S

F

O
CH3

 

-1.81291 -1.38933 -1.37071 -1.29737 -0.88844 

25 
N N

O
O

S

F

O
CH3

 

-1.64345 -1.5615 -1.59767 -1.51346 -1.28357 

26 N N

O

S

N
S

F

O
CH3

 

-0.49136 -1.00044 -1.0599 -0.93604 -0.43445 

27 

N N

ONH

O

CH3

F

F

F

 

-1.72428 -2.47081 -2.54255 -2.33287 -2.4352 

28 

N N

ONH

O

CH3

N

 

-1.25527 -1.78717 -1.81222 -1.38524 -1.4032 

29 N

N

O

N

O

NH
N

N

O

CH3

 

-2.61278 -2.7362 -2.95038 -2.75703 -2.64634 



Saha et al., Mor. J. Chem., 2023, 11(4), pp. 1137-1182 1181 

 

30 
N

N

O

N

O

NH
N

N

CH3

CH3

 

-3.05308 -2.04621 -2.17407 -2.43196 -2.41212 

31 

NH

N

OH

ONH

 

-2.76343 -2.71455 -2.56637 -2.48332 -2.57254 

32 

NH

N

OH

ONH

NH
S

O

O
CH3  

-1.39794 -3.20082 -3.38694 -3.53726 -3.28303 

33 

N

OH

O

 

-3.76343 -2.53459 -2.99086 -3.22618 -2.69573 

34 

N

OH

O

NH2

 

-3.61278 -3.75633 -3.54664 -3.19798 -3.0588 

35 

N

OH

O

N

CH3

CH3

 

-3.17609 -0.84491 -0.90655 -0.63841 -1.53777 
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36 

N

NH

N
NH

O

N

O
CH3

 

-0.65321 -1.07088 -1.25888 -1.1567 -1.215 

37 

N

O

CH3

N

N

N

OH

 

-0.92942 -3.85206 -3.67773 -3.54236 -3.79259 

38 

N

O

CH3

N

N

N

OOCH3

 

-1.20683 -1.40269 -1.37178 -1.62418 -1.34722 

 

Table S3.YR Data of different QSAR Models. 

Model 2 Model 3 Model 4 Model 5 

Avg 

R2 

Avg 

Q2 

(LOO

) 

cR

p2 

Avg 

R2 

Avg 

Q2 

(LOO) 

cR

p2 

Avg 

R2 

Avg 

Q2 

(LO

O) 

cR

p2 

Avg 

R2 

Avg 

Q2 

(LOO

) 

cRp2 

0.14 -0.23 0.6

6 

0.15  -0.24 0.6

8 

0.15 -

0.32 

0.7

0 

0.29 -0.68 0.75 

 

 

(2023) ; https://revues.imist.ma/index.php/morjchem/index 
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