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A B S T R A C T

Hydrologists and civil engineers often use design storms to assess flash flood hazards in urban, rural, and
mountainous catchments. These synthetic storms are not representations of real extreme rainfall events,
but rather simplified versions parameterized to mimic extreme precipitation statistics often obtained from
intensity–duration–frequency (IDF) curves. To construct design storms for the future climate, it is thus
necessary first to recalculate IDF curves to represent rainfall under warmer conditions. We propose a framework
for adjusting IDF curves and design storms to future climate conditions using the TENAX model, a novel
statistical approach that can provide future short-duration precipitation return levels based on projected
temperature changes. For most applications, information from climate models at the daily scale can be used to
construct design storms at the sub-hourly scale without any downscaling or bias adjustment. Our approach is
illustrated through a re-parameterization of the Chicago Design Storm (CDS) in the context of climate change.
As a case study demonstration, we apply the TENAX model to data from the city of Zurich to calculate changes
in the historical IDF curve for durations ranging from 10 min to 3 h. We then construct synthetic 100-year
return period design storms based on the CDS for present and future climates and use the CAFlood model to
produce flood inundation maps to assess changes in flood hazard. The codes for adapting design storms to
climate change are simple to implement, easily applicable by practitioners, and made freely available.
1. Introduction

Extreme rainfall events with short duration are the main cause
of pluvial and flash floods and recent years have shown that cli-
mate change has increased the frequency and magnitude of these
events (Kundzewicz et al., 2014). The Clausius–Clapeyron relation par-
tially explains this trend, which relates rising air temperatures with an
increase in atmospheric water capacity, resulting in the intensification
of rainfall (Trenberth et al., 2003). Hence, continued warming will re-
sult in further intensification of extreme rainfall (Min et al., 2011); par-
ticularly short-duration convective rainfall (Prein et al., 2017; Fowler
et al., 2021). This will likely result in more frequent and more severe
flash floods in urban (Rosenzweig et al., 2018), rural (Yin et al., 2018),
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and mountainous (Borga et al., 2014) areas, leading to increased fatal-
ities and infrastructure damage. The development of effective adapta-
tion strategies requires a thorough assessment of the impact of climate
change on flash floods.

Many methods have been proposed for assessing extreme rainfall
and flood changes in a future climate (for an overview see: Willems
et al. (2012), Arnbjerg-Nielsen et al. (2013), Madsen et al. (2014)
and Maimone et al. (2023)). Some specific examples include: (i) incor-
porating rainfall data directly from climate models into hydrological
models (often with some sort of bias correction; Smith et al. (2014));
(ii) obtaining extreme rainfall events from an observed archive and
intensifying them by a factor derived from climate models (also known
as the change factor approach; Fatichi et al. (2011)) or by estimating
https://doi.org/10.1016/j.advwatres.2024.104823
Received 23 February 2024; Received in revised form 27 August 2024; Accepted 1
vailable online 17 September 2024 
309-1708/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
2 September 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/advwatres
https://www.elsevier.com/locate/advwatres
mailto:nadav.peleg@unil.ch
mailto:francesco.marra@unipd.it
https://doi.org/10.1016/j.advwatres.2024.104823
https://doi.org/10.1016/j.advwatres.2024.104823
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2024.104823&domain=pdf
http://creativecommons.org/licenses/by/4.0/


N. Peleg et al.

w

Advances in Water Resources 193 (2024) 104823 
a relationship with a climate variable (frequently near-surface air tem-
perature is used; Peleg et al. (2022)); (iii) simulating extreme storms
for present and future periods using a stochastic rainfall generator
model (Kilsby et al., 2007; Peleg et al., 2017, 2019; Moraga et al., 2021)
or using a stochastic storm transposition model to resample observed
storm events to generate hypothetical extreme storms for the future (Yu
et al., 2020; Wright et al., 2020); and (iv) utilizing an analog approach,
in which extreme storms recorded in one location are projected to
another location which matches the climate conditions of that location
in the future (Wang et al., 2019). These methods are all scientifically
sound but rely on strong assumptions (e.g., quantitative accuracy of
model simulations, no changes in atmospheric dynamics) and they are
often computationally intensive.

Alternatively, extreme storms can be parameterized and represented
with design storms. These are simplified versions of extreme storms
that can be used to simulate the hydrological responses to unseen but
possible precipitation events using a rainfall-runoff model (Marsalek
and Watt, 1984; Watt and Marsalek, 2013). This approach is compu-
tationally much faster and less complex than the methods described
above, as an extreme storm for a given return level (e.g., an event that
occurs on average every ten years) can be simulated via a single syn-
thetic storm. Despite its simplicity, this method provides valuable flood
hazard information, since design storms and their resulting design flow
response may be tailored to specific return levels of interest (Keifer and
Chu, 1957; Rosbjerg and Madsen, 2019). Design storms are commonly
used in urban drainage system planning (Markolf et al., 2021), as well
as in estimating the risks and damages associated with flash floods in
rural catchments (Berk et al., 2017).

Design storms are not a new concept (Watt and Marsalek, 2013;
Markolf et al., 2021). Our first knowledge of design storms dates
back over 130 years to the groundbreaking research of Kuichling
(1889). The approach gained popularity and was further developed
by researchers and practitioners from the 1930s onward (for exam-
ple, refer to Hicks (1944), Keifer and Chu (1957) and Tholin and
Keifer (1960)). Various types of design storm exist today (for a few
examples, see Balbastre-Soldevila et al. (2019)). Among them, the
Chicago Design Storm (CDS; Keifer and Chu (1957)) and variations
thereof, such as the Alternating Block Method (Chow et al., 1988),
yield hyetographs that are constructed in such a way that they simulate
extreme rainfall in accordance with rainfall intensities sampled directly
from intensity–duration–frequency (IDF) curves, as described further in
Section 2.2.

When using the design storm approach to assess the impact of
climate change on floods, it is necessary to compute IDF curves for
current and future climates (Schlef et al., 2023). Common practice is to
compute IDF curves based on a long time series of observed precipita-
tion data and to then re-compute these for a future climate by applying
a statistical transformation of the observed time series (e.g., using the
quantile mapping approach; Rajulapati and Papalexiou (2023)) based
on data from climate models. Other methods can be used to alter a
historical time series of precipitation to represent future conditions (as
presented by Dinh and Aires (2023)). These approaches (and others, see
review by Martel et al. (2021)) require interpretation of climate model
simulations of precipitation. This may lead to increased uncertainty in
the projections of future IDF curves and design storms owing to three
factors: (i) many design storms are required to be at sub-hourly scales
due to the rapid hydrological response time of urban floods (Ochoa-
Rodriguez et al., 2015) and rural flash floods (Borga et al., 2014).
Despite this, most climate model data are only available at a coarser
time resolution (often daily or, at most, hourly), and the transformation
from observed to future time series is therefore based on the assumption
that the factor of change derived from the daily or hourly time-scale
can also be applied to the sub-hourly time-scale (Bordoy and Burlando,
2014). While Blanchet et al. (2016) suggested a parameterization to

scale down IDF curves (GEV-based) to the hourly resolution (further
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developed by Lima et al. (2018)), it has not been explored at the sub-
hourly scale. Innocenti et al. (2017) presented a simple GEV-based
scaling method that was successfully validated at sub-hourly scales,
but noted that with climate change the scaling might not be effective,
as extreme rainfall on a sub-hourly basis will likely respond to global
warming with different sensitivity to temperature than those expected
on a daily basis; (ii) climate models cannot explicitly resolve convective
processes (Prein et al., 2015), unless convection-permitting models
are employed, making it virtually impossible to adequately represent
changes in sub-daily convective extreme rainfall intensities; and (iii)
since the procedure consists of three steps (i.e., shifting the observed
rainfall time series, fitting the parameters for the IDF curve, and fitting
the parameters for the design storm), uncertainty is accumulated and
propagated from each step to the next (Cook et al., 2020).

Marra et al. (2024) recently proposed a physics-based statistical
model called TENAX that can assess changes in IDF curves for short-
duration precipitation extremes (these are mostly generated by con-
vective processes and the most conducive to the production of flash
floods) with temperature without the need to simulate or adjust the
precipitation time series. The TENAX model requires only three pa-
rameters for climate adjustment of IDF estimates: the change in the
average and standard deviation of air temperature during rainy days,
and the change in the annual number of precipitation events. These
can all be obtained from coarse-resolution climate models at a daily
scale, by analyzing the temperature time series for the days on which
precipitation was recorded. This directly addresses point (i) above and
reduces the level of uncertainty in design storm and flood hazard
assessment by removing the need for the first step in point (iii) also
mentioned above.

Here, we present the further development of the TENAX model to
compute design storms in the context of climate change, integrating
the CDS approach into the model. The codes are open-source and have
been made available for other hydrologists and practitioners to use. We
demonstrate our methodology for the city of Zurich in Switzerland and
briefly discuss the TENAX-CDS model’s limitations and advantages.

2. Methods

An overview of the proposed approach to estimating changes in
IDF curves, design storms, and flood responses as a result of climate
change is shown in Fig. 1. Data input requirements for TENAX-CDS are
minimal: (i) observed time series of precipitation (𝑃𝑝, with a minimum
temporal resolution equal to that required for the IDF) and temperature
(𝑇𝑝, minimum temporal resolution is daily) representing the present
climate, and (ii) information on the change of mean and standard devia-
tion of temperature during wet days (𝛥𝑇 = 𝑇𝑓 −𝑇𝑝 and 𝜎𝑓

𝜎𝑝
, respectively;

here 𝑝 and 𝑓 subscript indicate present and future estimates), and
on the change in the total annual number of rainfall events ( 𝑛𝑓𝑛𝑝 ) as
derived from daily climate model projections. The TENAX-CDS model
code (Peleg and Marra, 2024) is open-source; details are provided in
the ‘‘code availability’’ section.

In the following subsections, we briefly present the TENAX (Sec-
tion 2.1) and CDS (Section 2.2) models; later we present the CAFlood
model (Section 2.3) that was used to translate the present and future
CDSs into inundation maps in our case study.

2.1. The TENAX model

The TENAX model (Marra et al., 2024) is an abbreviation for
‘‘TEmperature-dependent Non-Asymptotic statistical model for eXtreme
return levels’’. Below, a concise description of the model is presented.
Readers are referred to Marra et al. (2024) for further details.

The TENAX model separates the dependence of extreme precipita-
tion on temperature (i.e., the physics of short-duration precipitation
extremes at a given temperature) from the occurrence of precipitation
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Fig. 1. A flowchart of the TENAX-CDS approach for assessing flood inundation changes
due to climate change.

events at a given temperature, and combines this information to de-
rive precipitation return levels. TENAX is based on a non-asymptotic
statistical methodology, which models duration maxima of indepen-
dent storms instead of block maxima (typically annual maxima). This
approach allows one to reconcile the approaches based on the ex-
treme precipitation–temperature scaling relation with a sound estima-
tion of extreme precipitation return levels with low frequency. Three
components are combined to achieve this (Fig. 1): (i) a ‘‘magnitude
component’’ — a non-stationary statistical model for the cumulative
distribution function of the magnitude of precipitation events, incor-
porating temperature as a covariate; (ii) a ‘‘temperature component’’
— a function describing the probability density of temperatures during
precipitation events; and (iii) a ‘‘return level estimation component’’ —
a non-asymptotic formulation for extreme precipitation return levels.

(i) Magnitude component. Precipitation magnitudes 𝑥 for a du-
ration 𝑡𝐷 of interest are defined as the maximum intensities at the
duration 𝑡𝐷 observed during independent storms. Details on the iden-
tification of independent storms are given in Marra et al. (2020). The
Weibull distribution is used to model precipitation magnitudes (𝑥). The
Weibull parameters (scale and shape) are made explicitly dependent on
near-surface air temperature (𝑇 ):

𝑊 (𝑥; 𝑇 ) = 1 − e
−
[

𝑥
𝜆0 ⋅e𝑎𝑇

]𝜅0+𝑏𝑇

, (1)

where 𝜆0 and 𝑎 describe the dependence of the scale parameter on
temperature, which is exponential, as supported by theory and by
numerous studies (e.g., see Fowler et al. (2021)), and 𝜅0 and 𝑏 describe
the dependence (if any) of the shape parameter on temperature via a
simple linear relation. Note that previous applications by the authors
found that 𝑏 is not significantly different from 0.

(ii) Temperature component. A Generalized Gaussian distribution
can be used to model the temperature associated with precipitation
events (i.e., the average temperature during the 24 h leading up to the
event peak intensity). Its probability density function is:

𝑔(𝑇 ) = 2
𝜎 ⋅ 𝛤 (1∕4)

⋅ exp

[

−
(

𝑇 − 𝜇
𝜎

)4
]

, (2)

where 𝜇 is the location and 𝜎 is the scale parameters. It is important to
note here that different regions may require different descriptions of the
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temperature distribution. For example, the authors found that for some
applications focusing only on summer months, a normal distribution
can be used (see also Marra et al., 2024).

(iii) Return level estimation component. Non-asymptotic ex-
treme value statistics (Marani and Ignaccolo, 2015) builds on the
consideration that when the marginal cumulative distribution function
𝐹 (𝑥) describing all the independent realizations of the process of
interest is known (which can be tested, e.g., see Marra et al. (2023)),
the cumulative distribution function 𝐺(𝑥) of annual maxima emerging
from a finite number 𝑛 of independent events per year sampled from
𝐹 (𝑥) can be written as:

𝐺(𝑥) = 𝐹 (𝑥)𝑛. (3)

Once the magnitude 𝑊 (𝑥; 𝑇 ) and the temperature 𝑔(𝑇 ) components
are established, a stochastic approach can be used to generate a large
collection of temperatures 𝑇𝑖 with 𝑖 = 1,… , 𝑁 sampled from 𝑔(𝑇 ) to
obtain a Monte Carlo approximation of 𝐹 (𝑥). An estimate of the dis-
tribution of annual maxima can then be obtained using the Simplified
Metastatistical Extreme Value formulation (SMEV) formulation (Marra
et al., 2019):

𝐺TENAX(𝑥) =
(

∫

∞

−∞
𝑊 (𝑥; 𝑇 ) ⋅ 𝑔(𝑇 )𝑑𝑇

)𝑛
≃

(

1
𝑁

𝑁
∑

𝑖=1
𝑊 (𝑥; 𝑇𝑖)

)𝑛

, (4)

where 𝑁 is the number of stochastically-generated events and 𝑛 is the
average number of independent events in a year. Precipitation return
levels can be then computed by the inversion of Eq. (4).

Model uncertainty is computed by fitting the parameters of the
model multiple times (here, 500 iterations were applied) by bootstrap-
ping the observed precipitation and temperature data (bootstrapping
with replacement of years in the record, as in Marra et al. (2024)).
Estimation uncertainties computed by the TENAX model are reduced
compared to those obtained by employing GEV-based methods (Marra
et al., 2024), following the lower uncertainties obtained using other
non-asymptotic approaches (Marra et al., 2020). Uncertainties emerg-
ing from the Monte Carlo approximation in Eq. (4) can be reduced
arbitrarily (in our case they are as small as ∼10−2 mm using 𝑁 =
20,000). Epistemic uncertainties may arise from the choice of the
magnitude model (Marra et al., 2024). Here we used the Weibull
distribution, following atmospheric dynamics reasoning (Wilson and
Toumi, 2005), empirical evidence (Zorzetto et al., 2016; Marra et al.,
2023), and stochastic modeling results (Papalexiou, 2022). Estimation
uncertainty for future periods was calculated using the same parameter
sets while applying the change of 𝛥𝑇 , 𝜎𝑓

𝜎𝑝
, and 𝑛𝑓

𝑛𝑝
, as mentioned above.

2.2. The Chicago design storm model

The CDS approach was first introduced by Keifer and Chu (1957). It
enables a single synthetic storm to embed a given precipitation return
level for all durations of interest based on an intensity–duration curve.
In the example presented in Fig. 2, CDS is fit to perfectly simulate
rainfall intensities with a prescribed return level (of 100 years in this
case) for durations from 10 min (rainfall peak) to 3 h, which is the
maximum storm duration of the simulated design storm.

Suppose the intensity–duration curve for a given  -year return level
is as follows:

𝐼(𝑡𝐷;  ) =
𝐶𝑎

(𝑡𝐷 + 𝐶𝑏)𝐶𝑐
, (5)

where 𝐼 is the rainfall intensity, 𝑡𝐷 is the duration of interest, and 𝐶𝑎,
𝐶𝑏, and 𝐶𝑐 are the CDS parameters in the intensity–duration curve.

To determine the three CDS parameters for a given return period  ,
we minimized the weighted root mean square error (WRMSE) between
the observed intensities at the duration of interest 𝐼(𝑡𝐷,  ) and the
computed ones 𝐼𝑡𝐷 from the simulated CDS hyetograph:

𝑊𝑅𝑀𝑆𝐸 =

√

√

√

√

√

𝛴𝑊𝑡𝐷

(

𝐼𝑡𝐷 − 𝐼𝑡𝐷
)2

. (6)

𝛴𝑊𝑡𝐷
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Fig. 2. A hyetograph constructed with the Chicago design storm approach, parameter-
ized to reflect a 100-year return level storm computed from the TENAX model (blue
line here and dashed line in Fig. 3). The designed hyetograph is compatible with the
rainfall intensity at a 100-year return level of 10 min, and one and three hours.

The weights 𝑊𝑡𝐷 computed as:

𝑊𝑡𝐷 = 1
𝑁𝑡𝐷

⋅
𝛴𝐼𝑡𝐷
𝐼𝑡𝐷

, (7)

where 𝑁𝑡𝐷 is the total number of durations used in the optimization.
Weights are required to reduce the effects of higher intensities in the
shorter durations, which are much greater than those in the longer
durations, and Eq. (7) proposes a weighting method that equalizes this
effect.

Then, the CDS hyetograph before the peak can be expressed as:

𝐼(𝑡𝑏;  ) =
𝐶𝑎

(

(1 − 𝐶𝑐 )(
𝑡𝑏
𝑟 ) + 𝐶𝑏

)

(

𝑡𝑏
𝑟 + 𝐶𝑏

)𝐶𝑐+1
, (8)

and after the rainfall peak as:

𝐼(𝑡𝑎;  ) =
𝐶𝑎

(

(1 − 𝐶𝑐 )(
𝑡𝑎
1−𝑟 ) + 𝐶𝑏

)

(

𝑡𝑎
1−𝑟 + 𝐶𝑏

)𝐶𝑐+1
, (9)

where 𝑡𝑎 and 𝑡𝑏 are the time after and before the rainfall peak (ac-
cordingly), and 𝑟 is the asymmetry of the hyetograph, which defines
the point fraction (0 < 𝑟 < 1) within the storm in which the rainfall
intensity is at peak.

2.3. The CAflood model

We used the CADDIES/CAFlood 2D cellular automata flood model
(Guidolin et al., 2016) to simulate flood inundation maps. It uses
a weight-based system and simplified transition rules to replace the
shallow water equations to resolve flow movement on a square regular
grid (Ghimire et al., 2012; Guidolin et al., 2016), reducing compu-
tational expense while ensuring a high level of precision in runoff
calculations (Wang et al., 2018). Flow between grid cells is governed
by Manning’s equation, which takes into account the cells’ water sur-
face gradient, surface roughness, and lateral water inflow and outflow
from nearby cells. For this purpose, the border between a grid cell
and its neighbor is considered a channel with a width equal to the
4 
cell length. CAFlood simulates only above-ground runoff; underground
piped drainage systems are not modeled directly. To compensate for
inflows to such systems, the user can impose an outflow rate to remove
runoff from the simulation (Webber et al., 2018). Model inputs consist
of time series of uniform or spatially distributed rainfall intensities, as
well as static variables such as terrain elevation and surface roughness,
whereas model outputs are composed of spatially and temporally vari-
able water depths and flow velocities. The model has been widely used,
including in estimating flood impacts using design storms (for some
recent examples see: Cao et al. (2020), Vamvakeridou-Lyroudia et al.
(2020), Padulano et al. (2021) and Peleg et al. (2022)).

3. Case study

The purpose of this case study is to demonstrate the capabilities
and outputs of the TENAX-CDS model. Since we recently investigated
how climate change affects extreme rainfall and flooding in Zurich
(Switzerland) and its surroundings (Guo et al., 2021; Peleg et al., 2022),
we decided to demonstrate the model there.

3.1. Data

A 10-min precipitation and 1-h temperature dataset were acquired
for the Zurich Affoltern station (1 km north of Zurich) from MeteoSwiss
for the period 1981–2018. The station is part of the SwissMetNet
project, which includes approximately 260 automatic stations with a
high level of quality control (Landl et al., 2009).

For simplicity, future changes in temperature during wet days
(i.e., 𝛥𝑇 and 𝜎𝑓

𝜎𝑝
) and the change in the total number of annual rainfall

events ( 𝑛𝑓𝑛𝑝 ), are taken as the values reported for the nearby station
Aadorf by Marra et al. (2024). Specifically, for the end of the century
(2080–2099) and following the RCP8.5 emission scenario, values of
𝛥𝑇 = 2.8 ◦C, 𝜎𝑓

𝜎𝑝
= 0.99, and 𝑛𝑓

𝑛𝑝
= 0.93 were used. These values are

the median change in these statistics from 10 regional climate models
from the Euro-CORDEX multi-model ensemble, based on the official
CH2018 Swiss climate change scenarios (Sørland et al., 2020; Fischer
et al., 2022), as further explained in Marra et al. (2024).

For the CAFlood model, we followed the same setup and used the
same digital elevation map of 1 m resolution for the city of Zurich as
described by Guo et al. (2021).

3.2. Present and future IDF

First, we fitted the TENAX model to compute IDF curves for the
present climate for 1- to 100-year return levels and 10 min, 1 h, and 3 h
durations (Fig. 3). MeteoSwiss’s GEV-based IDF estimates and TENAX’s
SMEV-based results show good agreement (Fig. 3), with a bias of only
1.7% on average (by comparing the dotted symbols with the blue lines).
Similarly, the maximum bias, detected for the 100-y return level and
10-min duration, is only 5.8%, well within the estimation uncertainty.
This good fit is in agreement with the ability of the TENAX model to
compute IDF curves, as demonstrated for other nearby stations (Marra
et al., 2024).

We found the IDF curves for future climates are always higher
than those for present climates (Fig. 3). The projected intensification
is on average 23.4%, 18.3%, and 16.8% for the 10 min, 1 h, and 3 h
durations, respectively. These projected changes are in line with what is
expected, with larger changes for shorter durations (Marra et al., 2024).
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Fig. 3. Intensity–duration–frequency (IDF) curves as computed by the TENAX model
for present (1981–2018; blue lines) and future (2080–2099; red lines) climates for
10 min, 1 h, and 3 h duration for the station of Zurich Affoltern. The shaded areas
represent the 5–95th range of uncertainty estimated by the TENAX model. The circles
represent MeteoSwiss’s estimates for the IDF curves; their uncertainties are larger than
those from TENAX (not shown, see the comparison in Marra et al. (2024)). The dashed
line crosses the 100-y intensity–duration data used to construct the design storm for
the present (Figs. 2 and 4) and future (Fig. 4) periods.

3.3. Present and future CDS

We then fitted the CDS parameters to the present and future
intensity–duration curve at the 100-y return level (Fig. 4). A total storm
duration of 3 h was set, with a time resolution of 10 min to match
the time resolution of the data, and with an asymmetric 𝑟 value of
0.3, representing the average time for rainfall to reach its peak in the
region (Zeimetz et al., 2018). For the present climate, TENAX intensi-
ties are 201 mm h−1, 56.3 mm h−1, and 22.1 mm h−1 for the 10 min,
1 h, and 3 h durations respectively. The CDS simulated intensities are
identical for the 10 min and 1 h durations, and essentially identical for
the 3 h duration (21.07 mm h−1). The same applies when comparing
the TENAX and CDS intensities for the future, where TENAX values
of 260.2 mm h−1 (CDS: 260.2 mm h−1), 70 mm h−1 (70 mm h−1), and
27.2 mm h−1 (25.9 mm h−1) for the 10 min, 1 h, and 3 h durations, are
found in both cases. While near-perfect agreement is observed between
the TENAX intensity–duration curves and the CDS with respect to the
durations used in the parameter fitting, a bias of up to 10% can be
detected for the durations not used in the parameter fitting process. For
example, for the 30-min duration, the observed intensity is 105.6 mm
h−1, while the CDS intensity is 95.1 mm h−1. It is worth noting that the
intensification expected for 10-min intensities (29.5%) is much greater
than the one for hourly (24.3%) and three-hour (17.2%) intensities.
A quantification of these changes would thus be difficult to achieve
even using convection-permitting models as they typically only provide
hourly precipitation data, and since these models are unable to resolve
orographic convection or shallow convection very well.

3.4. Flood inundation maps

In the final step, we used the CDS time series as inputs to CAFlood.
Applying the CDS for the present climate, the average water depth in
the city was found to be 0.104 m, while the peak inundation depth in
some streets reached over 1 m (Fig. 5a). As a result of the increase in
rainfall intensity of about 20% in the future climate (see Section 3.2),
the average water depth in the city increased by 14.5% to 0.119 m
5 
Fig. 4. Intensity–duration curves computed by the TENAX model for present (1981–
2018; blue lines) and future (2080–2099; red lines) climates for the 100-year return
level, and the CDS hyetographs for present (blue) and future (red).

(Fig. 5b). There are, however, some places where the water depths
increase considerably more, sometimes by over 0.5 m (Fig. 5b).

It is worth noting that we use a simple model setup that does not
take into account the spatial distribution of land uses and infiltration
rates, for example. As such, the flood modeling results obtained should
be taken as indicative and not detailed future flood predictions for the
city of Zurich.

4. Discussion

In our case study above, we parameterized the TENAX model to
generate IDF curves and a CDS for a storm length of 3 h. How-
ever, since the temperature–extreme precipitation relation is stable
over longer durations, the model can be applied over longer time
scales. We have tested the model at the daily duration (not shown)
and the relationship still holds, and others have demonstrated that
the temperature–precipitation scaling relationship is valid at the daily
scale in Switzerland (Scherrer et al., 2016) and elsewhere (Ali et al.,
2018). We note that at daily durations and longer, precipitation in-
termittency may affect the extreme precipitation–temperature relation-
ship (Schleiss, 2018). As such, temperature–precipitation scaling at the
daily scale should be evaluated on a case-by-case basis. In addition
to this, TENAX’s underlying assumption that the magnitude model
𝑊 (𝑥; 𝑇 ) remains unchanged over time may be less true for durations
at daily and longer scales, since extremes may be related to a number
of factors (see further discussion in Marra et al. (2024)). Keeping this
caveat in mind, the proposed model may be used not only for sub-daily
durations, as presented here, but also for longer durations. As a result,
the model has the potential to be utilized for a variety of other purposes
in addition to the urban flooding demonstrated in our case study. This
may be relevant in the context of assessing changes to flash flooding in
rural catchments, which may be triggered by longer duration storms,
but whose main cause remains convective rainfall over the whole or
part of the catchment (Borga et al., 2014).

We used rainfall time series from a single source to represent rainfall
falling over the entire city. As such, this simple approach should be
revised to incorporate data from several sources and also (if necessary)
to account for the differences in scale between the rain gauge (a
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Fig. 5. (a) A simulation of the maximum water depth for Zurich using the 100-year return level CDS for the present climate that is presented in Fig. 4. (b) The difference (future
minus present) in simulated water depth for the 100-year return level CDS.
Table 1
Optimizing the CDS for Zurich (Affoltern) station using the official MeteoSwiss (MS)
GEV-based intensity estimates for five durations. The results are for the optimization
using weights (CDS-WRMSE), and without considering weights (CDS-RMSE).

Duration [min] MS [mm h−1] CDS-WRMSE [mm h−1] CDS-RMSE [mm h−1]

10 212.4 213.7 212.6
30 110.8 106.6 109.2
60 61.1 63 63.3
180 23.3 24.6 22.5
1440 4.5 3.7 2.6

point scale) and the catchment area. It is possible to accomplish the
latter by applying an area reduction factor as suggested, for example,
by Rosbjerg and Madsen (2019). However, changes in storm spatial
structure may require adjustments in the areal reduction factors (Kim
et al., 2019).

It has been mentioned previously that the CDS is perfectly matched
with the intensity–duration curves for which it has been fitted. In
other words, extreme rainfall for different sub-daily durations will all
be represented in the synthetic storm; in our case study, the design
storm includes simultaneously the peak rainfall intensity for 10 min,
1 h, and 3 h for the 100-y return level (Fig. 2). However, such an
extreme rainfall event, in which peak rainfall intensities of different
durations for an equivalent recurrence interval are concurrent, is highly
unlikely to occur. Therefore, when CDS is applied, it can be expected
to simulate the ‘‘worst-case scenario’’ of extreme rainfall and flooding.
Furthermore, we currently use the WRMSE (Eq. (6)) as the measure
of goodness-of-fit in the CDS parameterization. The minimization pro-
cess works perfectly well when three durations are considered, as
demonstrated in the case study; however, we note that when three
or fewer durations are considered, the parameters can be determined
analytically without optimization. Using MeteoSwiss intensity–duration
estimations for the 100-y return level for the same station, we repeated
the optimization with five durations to show that the optimization
is also valid for longer durations. As shown in Table 1, the WRMSE
minimization works well up to a daily scale, with an average bias of
only 6%. If users wish to reduce biases for longer durations, the weights
can be adjusted accordingly.

Another point to consider is that the proposed model generates only
a single design storm for each intensity–duration curve it is fitted for.
As a result, the continuity of rainfall over time is not represented.
Consequently, the catchment antecedent conditions prior to the start
of the design storm should be estimated independently and set in
the hydrological or hydrodynamic model (Watt and Marsalek, 2013).
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A challenge may arise in this regard, as the catchment antecedent
conditions are also expected to be impacted by climate change (Sharma
et al., 2021). A hydrodynamic model for an urban catchment, for
example, should consider the capacity of the drainage system at the
beginning of the simulation of the design storm, whereas in rural
catchments, soil saturation conditions and river levels should be taken
into consideration.

Equally the shape, or profile, of the design storm, and how this
might change with warming, is not taken into consideration in our
case study. While in the TENAX-CDS the time to peak and shape of the
design storm are defined by 𝑟, we used the same 𝑟 = 0.3 value for the
present and future climates. Work in the UK by Villalobos Herrera et al.
(2023) has shown that real storm profiles can be centered, front-loaded,
or back-loaded and this tends to depend on the duration of the storm,
with shorter events (1 to 3 h) being predominantly front-loaded and
becoming more centered as they become longer in duration. There also
appears to be evidence from an observational study in Australia (Visser
et al., 2023) that with warmer temperatures, storms become more
front-loaded.

As a final point, our case study shows that differences between
historical and future IDFs are greater for short durations (i.e., toward
10 min) and for rarer events (Fig. 3). As a matter of fact, at the 100-year
return level examined here, the uncertainties in the present and future
extreme rainfall intensities are highly overlapping (Fig. 3). This does
not imply that at rare recurrence intervals there is no climate change
signal, but rather that the estimates are highly uncertain (Fowler et al.,
2021). In fact, Marra et al. (2019) demonstrated that using the SMEV
approach (embedded in the proposed model, or the TENAX model itself,
see Marra et al. (2024)) to estimate IDF, lower uncertainties in the fit
can be anticipated in comparison to other common IDF-fit approaches,
such as using the GEV method.

We note that the TENAX-CDS model is a more compact version of
the TENAX model (Marra et al., 2024; Marra and Peleg, 2023). For
example, we have not included the parameter sensitivity estimation
or the temperature–precipitation scaling computation in the TENAX-
CDS model as in the original TENAX model to make the model lighter
and easier to use. However, these features (and others) are present in
the original code, which is available open source in Marra and Peleg
(2023). Readers are advised to refer to it if they wish to embed them
in the CDS version. Moreover, since methods other than CDS are used
to estimate flood hazards at different locations, we encourage users to
further develop and combine TENAX with alternative approaches based
on the provided open-source code.
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5. Conclusions

We have presented a new method for computing short-duration IDF
curves and design storms for flash flood assessments under increasing
temperatures. The physically-based TENAX-CDS model considers both
thermodynamical and dynamical changes and is highly efficient in
terms of its data requirements and computational costs. It requires a
minimal set of parameters and input data, and its projections only rely
on simulations of daily temperatures during rainy days from coarse-
resolution climate models. An example of its use is provided, as well as
the source code for others to use.

Code availability

The TENAX-CDS model is available at https://doi.org/10.5281/
zenodo.10491542 (Peleg and Marra, 2024), including the data nec-
essary to reproduce the results for the Zurich (Affoltern) station as
an example. Precipitation and temperature data for the Zurich (Af-
foltern) station in Switzerland shown in the case study is provided
by MeteoSwiss and are freely accessible from the IDAWEB at https:
//gate.meteoswiss.ch/idaweb.
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