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Simple Summary: Prostate cancer is the most common cancer in men and a major cause of cancer-
related deaths around the world. Prostate cancer that has spread to other parts of the body (advanced
prostate cancer) is often treated with a drug called enzalutamide, which is a type of hormone therapy.
Enzalutamide works by blocking the effect of the testosterone hormone on prostate cancer cells to stop
them from growing. While this can be effective for several years, unfortunately, many patients being
treated with enzalutamide eventually go on to become resistant to treatment, and the therapy stops
working. Here, we show that prostate cancer cells that have become resistant to enzalutamide have
increased levels of a type of sugar (known as sialic acid) on their surfaces. We set out to test whether
stripping sialic acid from the surface of prostate cancer cells could help keep enzalutamide working
for longer. Excitingly, our experiments show that treating prostate cancer cells with a drug to block
sialic acid can partially reverse enzalutamide resistance. These findings suggest that drugs targeting
sialic acid could be used in combination with enzalutamide therapy to disarm drug resistance and
provide urgently needed new treatment options for men with prostate cancer.

Abstract: Prostate cancer is a lethal solid malignancy and a leading cause of cancer-related deaths in
males worldwide. Treatments, including radical prostatectomy, radiotherapy, and hormone therapy,
are available and have improved patient survival; however, recurrence remains a huge clinical
challenge. Enzalutamide is a second-generation androgen receptor antagonist that is used to treat
castrate-resistant prostate cancer. Among patients who initially respond to enzalutamide, virtually
all acquire secondary resistance, and an improved understanding of the mechanisms involved is
urgently needed. Aberrant glycosylation, and, in particular, alterations to sialylated glycans, have
been reported as mediators of therapy resistance in cancer, but a link between tumour-associated
glycans and resistance to therapy in prostate cancer has not yet been investigated. Here, using cell line
models, we show that prostate cancer cells with acquired resistance to enzalutamide therapy have an
upregulation of the sialyltransferase ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1)
and increased levels of α2,6-sialylated N-glycans. Furthermore, using the sialyltransferase inhibitor
P-SiaFNEtoc, we discover that acquired resistance to enzalutamide can be partially reversed by
combining enzalutamide therapy with sialic acid blockade. Our findings identify a potential role for
ST6GAL1-mediated aberrant sialylation in acquired resistance to enzalutamide therapy for prostate
cancer and suggest that sialic acid blockade in combination with enzalutamide may represent a novel
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therapeutic approach in patients with advanced disease. Our study also highlights the potential
to bridge the fields of cancer biology and glycobiology to develop novel combination therapies for
prostate cancer.

Keywords: prostate cancer; castrate resistance; enzalutamide; sialic acid; sialyltransferase inhibitor;
combination therapies

1. Introduction

Prostate cancer is the second most common cancer in men worldwide and is a signifi-
cant cause of morbidity and mortality in the global male population [1]. Although localised
prostate cancer is largely curable and has a five-year survival rate of >99%, the mortal-
ity rate for advanced prostate cancer is high, and only 32% of advanced prostate cancer
patients will be alive after 5 years [2]. Primary prostate cancer is largely driven through
androgen signalling via interactions with the androgen receptor (AR) and is commonly
therapeutically managed with androgen deprivation therapies (ADT) [3,4]. Although ADT
achieves initial success, the majority of patients will develop resistance to these therapies
within 5 years of diagnosis and will go on to develop castrate-resistant prostate cancer
(CRPC), where tumours persist despite low androgen conditions due to the acquisition
of resistance mechanisms [5,6]. Patients with CRPC are managed with second-generation
androgen receptor inhibitors (enzalutamide, abiraterone, apalutamide, or darolutamide),
radium-233 for bone metastases, immunotherapy (sipuleucel-T, pembrolizumab), poly-
ADP ribose polymerase (PARP) inhibitors (olaparib, rucaparib), or chemotherapy (most
commonly docetaxel) [2,7–11]. However, resistance to these interventions is commonplace,
culminating in the dire median survival of 9–30 months for CRPC patients [2,12].

Enzalutamide (MDV3100, Xtandi®) is a commonly used second-generation AR in-
hibitor that demonstrates a higher affinity for binding to the AR in comparison to its prede-
cessors, such as bicalutamide, and has the capacity to prevent AR nuclear translocation,
DNA-binding, and recruitment of co-activators [13–18]. Clinical trial data have highlighted
that the inclusion of enzalutamide in the clinical regimen for treating patients with CRPC
could significantly improve overall survival and progression-free survival [13,15,19–21].
However, both primary and acquired resistance are observed in relation to enzalutamide
treatment. Primary resistance to enzalutamide (defined as treatment failure within the first
3 months following treatment initiation) occurs in 25% of CRPC patients, and acquired
resistance is typically observed 9–15 months following treatment initiation [14,22–24]. How
CRPC tumours develop resistance to enzalutamide remains to be fully understood, but
it likely includes AR amplification, AR mutations, the generation of AR splice variants
(AR-v), alterations to steroidogenesis, overexpression of glucocorticoid and progesterone
receptors, and neuroendocrine differentiation [14,22,25]. As most patients treated with
enzalutamide eventually develop resistance and disease progression, there is a critical need
to identify mechanisms of resistance as targets for future therapies [26,27]

Glycosylation is a post translational modification where glycan structures are added to
proteins and lipids [28–30]. Altered glycosylation is a hallmark of cancer and can mediate
critical events in tumour development and progression [31,32]. Even though aberrant
glycosylation is a potentially druggable hallmark of cancer [28,33–35], to date, it has been
relatively underexplored particularly in the context of prostate cancer. Studies have sought
to understand the molecular mechanisms underpinning prostate cancer progression and
resistance to therapy [36–40], but only a few have studied glycans. Historically, this
has been due to technological limitations, but this is now changing. For example, the
development of N-glycan imaging mass spectrometry [41–43] has enabled the profiling of
glycosylation changes throughout prostate cancer evolution [44]. An understanding of the
role glycans play in prostate cancer will be crucial to the identification of new targets that
can be exploited to treat advanced disease and prolong patient survival [45–48]. Recent
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studies have highlighted the potential to target aberrant glycosylation in combination
with existing therapies to boost treatment response and potentially overcome therapy
resistance [34,49,50] and this area of research is beginning to show promise for prostate
cancer [51–54].

A common change in tumour glycosylation is alterations to sialylated glycans, and
this can actively drive aggressive disease [55–58]. Aberrant sialylation has been linked to
paclitaxel and cisplatin resistance in ovarian cancer [59–61], chemotherapy resistance in
gastric cancer [62], sensitivity to docetaxel in hepatocarcinoma [63], multi-drug resistance
in leukaemia [64,65], sensitivity to tyrosine kinase inhibition in lung cancer [66], and
bortezomib resistance in myeloma [67]. A correlation between radiotherapy resistance and
increased sialylation is also well established, particularly for colorectal cancer [68–71]. The
contribution of sialylated glycans to chemotherapy resistance in cancer could be due to the
physical barrier of extra sialic acid on the surface of cells which can potentially modify key
receptors or block the uptake of drugs into the cell. For example, sialylation of the oncogenic
receptor Erb2 can mask an epitope recognised by the anti-cancer antibody trastuzumab
and promote resistance [72]. Sialylated glycans may also promote therapy resistance by
absorbing ionising radiation [56], and radiation exposure can enhance the sialylation of
membrane glycoproteins to promote radiation resistance [68,73]. Taken together, these
studies raise the possibility of targeting aberrant sialylation in combination with existing
cancer therapies to improve patient outcomes.

In prostate cancer, a rewiring of the tumour glycome is associated with disease
progression, and glycans play important roles in tumour growth, metastasis, and im-
mune evasion [45,48,74–76]. Recently, we showed that ST6 beta-galactoside alpha-2,6-
sialyltransferase 1 (ST6GAL1) and larger branched sialylated N-glycans are upregulated in
men with prostate cancer, and this can promote tumour growth and the spread of tumours
to bone [52,77]. Aberrant sialylation is causally linked to therapy resistance in cancer [55],
and ST6GAL1 has been identified as a mediator of treatment resistance in several tumour
types, including pancreatic cancer [78], colorectal cancer [73,79], leukaemia [80,81], and
gastric cancer [72]. A previous study showed resistance to hormonal therapy in prostate
cancer is associated with an upregulation of complex larger-branched N-glycans [74].
However, to date, studies investigating the role of ST6GAL1 and its associated glycans in
therapy-resistant prostate cancer are lacking.

Here, using VCaP and LNCaP cell line models, we show that prostate cancer cells
with acquired resistance to enzalutamide have upregulated ST6GAL1 and significantly
higher levels of α2-6 sialylated N-glycans. Our findings identify ST6GAL1-mediated
aberrant sialylation as a potential mediator of acquired resistance to enzalutamide therapy
in prostate cancer. Furthermore, using the newly developed C-5 carbamate sialyltransferase
inhibitor P-SiaFNEtoc [82,83], we show that acquired resistance to enzalutamide by prostate
cancer cells can be partially reversed by sialic acid blockade. These results suggest that
inhibiting sialylation in combination with enzalutamide may represent a novel therapeutic
approach in patients with advanced prostate cancer.

2. Methods
2.1. Cell Culture

Cell culture was carried out as described previously [84]. VCaP (CRL-2876) and LNCaP
(CRL-1740) cells were purchased from ATCC. Enzalutamide-resistant VCaP (VCaPEnzR) and
LNCaP (LNCaPEnzR) cell lines were generated as described previously [85]. Briefly, LNCaP
and VCaP cells were grown in 10 µM enzalutamide in long-term culture (>6 months).
Resistant cells were pooled and maintained. Once resistant, cells were continually cultured
in 10 µM enzalutamide. No changes in phenotype were observed, and we did not detect
any genomic changes. The cell lines were authenticated using DNA STR analysis and tested
every 3 months for mycoplasma contamination.
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2.2. Inhibitors

The enzalutamide (MDV3100, Xtandi®) was purchased from MedChemExpress®

(HY-70002). The sialyltransferase inhibitor P-SiaFNEtoc was synthesised as described
previously [82] (compound 10).

2.3. Western Blotting

Western blotting was performed as previously described [86]. Immunoblots were
probed with antibodies for ST6GAL1 at 1:1000 dilution (Abgent, San Diego, CA, USA,
AP19891c) or GAPDH at 1:2000 dilution (Abgent, AP7873b), followed by incubation with
appropriate fluorescent secondary antibodies at 1:10,000 dilution, (anti-mouse 680, Cell
Signalling, Leiden, The Netherlands, 5470S) or anti-rabbit 800 (Cell Signalling, 5151S)).

2.4. ELISA Assays

Conditioned media samples were prepared from cell lines as described previously [86].
ST6GAL1 protein levels were monitored using sandwich ELISA assays, which have previ-
ously been validated (Cambridge Bioscience, Cambridge, UK, ELH-ST6GAL1-1) [77].

2.5. Immunocytochemistry

The cells were cultured in a Nunc™ 4 well plate (Thermo Scientific™, Oxford, UK,
176740) on top of a sterilised 10 mm-round coverslip (VWRTM, 631-1340) in complete
media. Treatments with P-SiaFNEtoc were performed for either for 3 days (LNCaP cells)
or 6 days (VCaP cells) with the indicated concentrations. Cells treated with DMSO were
used as controls. The cells were washed with PBS before permeabilization and fixation
with ice-cold absolute methanol for 10 min at −20 ◦C. Next, the cells were washed with
PBS and blocked with 10% goat serum (Abcam, Cambridge, UK, ab7481) for 1 h at room
temperature. The cells were incubated overnight at 4 ◦C with a ST6GAL1 antibody at 1:200
(Abgent, AP19891c), followed by goat anti-rabbit IgG H and L (Alexa Fluor® 594) (Abcam,
ab150080), diluted 1:500. Finally, the cells were washed with PBS and stained with Hoechst
(Thermo Scientific, 62249) for 15 min at room temperature. Images were acquired and
processed with a ZEISS Axio Imager 4.

2.6. Lectin Immunofluorescence

The cells were cultured in a Nunc™ 4-well plate (Thermo Scientific™, 176740) on top of
a sterilised 10 mm-round coverslip (VWRTM, 631-1340) in complete media. Treatments with
P-SiaFNEtoc were performed for either for 3 days (LNCaP cells) or 6 days (VCaP cells) with
the indicated concentrations. Cells treated with DMSO were used as controls. P-SiaFNEtoc
concentrations were optimised to 2 µM for 3 days and 20 µM for 6 days for the LNCaP
and VCaP cells, respectively. For neuraminidase treatment, α2-3,6,8 neuraminidase (NEB,
UK, P0720) was used as a negative control to strip sialic acid from the surface of the cells.
The cells were cultured in 100 units/mL of neuraminidase as described previously [44].
To monitor Sambucas nigra (SNA) lectin binding, the cells were washed with PBS before
permeabilization and fixation with ice-cold absolute methanol for 10 min at −20 ◦C. Next,
the cells were washed with PBS and blocked with 1X Carbo-Free™ Blocking Solution
(1X CFB) (Vector Laboratories, Cambs, UK, SP-5040-125) for 1 h at room temperature.
The cells were incubated overnight at 4 ◦C with FITC-conjugated SNA lectin (Vector
Laboratoriesabs, FL-1301-2). Finally, the cells were washed with PBS and stained with
Hoechst (Thermo Scientific, 62249) for 15 min at room temperature. The cells were mounted
using ProLongTM gold antifade mountant (Thermo Scientific™, P36930), and images were
acquired and processed with the ZEISS Axio Imager 4.

2.7. CellTiter-Glo® Assays

CellTiter-Glo® Luminescent cell viability assays (Promega, UK, G9682) were per-
formed as described previously [51]. Cell viability was assessed at the times indicated, and
luminescence was recorded with the Varioskan™ LUX microplate reader.
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VCaP cells: The VCaP control and VCaPEnzR cells were seeded at a density of
7.0 × 103 cells/well in 96-well plates (Thermo cientific, 130188). After 24 h, the cells
were treated with a range of concentrations of enzalutamide with or without concurrent
treatment with 20 µM P-SiaFNEtoc for 6 days (144 h).

LNCaP cells: The LNCaP control and LNCaPEnzR cells were seeded at a density of
3.0 × 103 cells/well in a 96-well plate. After 24 h, the cells were treated with a range of
enzalutamide concentrations with or without concurrent treatment with 2 µM P-SiaFNEtoc
for 3 days (72 h).

2.8. Statistical Analyses

Statistical analyses were conducted using the GraphPad Prism software (version Prism
9.4.1). Data are presented as the mean of three independent samples ± standard error of
the mean (SEM). Statistical significance is denoted as * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001.

3. Results
3.1. Prostate Cancer Cells with Acquired Enzalutamide Resistance Have Upregulated ST6GAL1

The sialyltransferase ST6GAL1 has been previously identified to be upregulated in prostate
cancer and linked with tumour growth, metastasis, and poor overall survival [52,77,87,88].
ST6GAL1 has been reported as a mediator of therapy resistance in other cancer
types [72,73,78–81], but a link between ST6GAL1 and resistance to therapy has not yet been
investigated for prostate cancer. To address this gap, we used western blotting and pre-validated
sandwich ELISA assays [77] to monitor ST6GAL1 protein levels in VCaP and LNCaP prostate
cancer cell line models with acquired resistance to enzalutamide. Our findings show intra-
cellular and secreted ST6GAL1 levels are upregulated in the enzalutamide-resistant VCaP cells
(VCaPEnzR), compared to the enzalutamide-sensitive control VCaP cells (Figure 1A,B). Upregu-
lation of ST6GAL1 was also detected in the enzalutamide-resistant LNCaP cells (LNCaPEnzR),
where levels of ST6GAL1 are increased compared to the enzalutamide-sensitive control LNCaP
cells (Figure 1C,D). Taken together, these findings suggest that the sialyltransferase ST6GAL1 is
upregulated in prostate cancer cells with acquired resistance to enzalutamide therapy.
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Figure 1. Enzalutamide-resistant prostate cancer cells have upregulation of ST6GAL1. (A) Western
blot analysis of ST6GAL1 in the VCaP control and enzalutamide-resistant VCaP (VCaPEnzR) cells.
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ST6GAL1 levels are increased in both cell pellet and conditioned media samples from the VCaPEnzR

cells. GAPDH is included as a loading control. (B) Analysis of ST6GAL1 levels in conditioned
media samples from the VCaP control and VCaPEnzR cells using pre-validated sandwich ELISA
assays [77]. The levels of ST6GAL1 are significantly higher in conditioned media from VCaPEnzR cells
(n = 3, unpaired t-test, *** p = 0.0002). (C) Western blot analysis of ST6GAL1 in the LNCaP control
and enzalutamide-resistant LNCaP (LNCaPEnzR) cells. GAPDH is used as a loading control. The
levels of ST6GAL1 are increased in both cell pellet and conditioned media samples (D) Analysis
of ST6GAL1 levels in conditioned media samples from the LNCaP control and LNCaPEnzR cells
using pre-validated sandwich ELISA assays [77]. The levels of ST6GAL1 are significantly higher in
conditioned media from the LNCaPEnzR cells compared to the control LNCaP cells (n = 6, unpaired
t-test, ** p = 0.0014). Results are representative of three biological repeats and are presented as the
mean ± standard error. Original western blots are presented in File S1.

3.2. Enzalutamide-Resistant Prostate Cancer Cells Have Increased Levels of α2,6-Sialylated
N-Glycans

ST6GAL1 adds α2,6-linked sialic acid to N-glycosylated proteins that are destined for
the cell membrane or secretion [55,89,90]. In previous studies, we detected increased levels
of α2,6 sialylation in prostate cancer cells with an upregulation of ST6GAL1 [52,77]. We thus
hypothesised that the upregulation of ST6GAL1 in enzalutamide-resistant prostate cancer
cells will alter the levels of α2,6 sialylated N-glycans. To test this, we used immunofluo-
rescence to monitor recognition by the SNA lectin (which recognises α2,6-linked sialylated
N-glycans [91]) in prostate cancer cells with acquired resistance to enzalutamide. Our findings
show that the VCaPEnzR cells have increased binding of SNA lectin relative to the control
enzalutamide-sensitive VCaP cells (Figure 2A). Similarly, the LNCaPEnzR cells also show
increased recognition by SNA lectin, indicating increased levels of α2,6 sialylation in these
cells compared to the control enzalutamide-sensitive LNCaP cells (Figure 2B). Confirming
the specificity of our results, SNA binding was eliminated when cells were treated with
neuraminidase (which removes terminal sialic acids of glycans) (Supplementary Figure S1).
In summary, these findings suggest enzalutamide resistance correlates with an upregulation
of α2,6-sialylated N-glycans in prostate cancer cell line models.Cancers 2024, 16, 2953 7 of 16 
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increased levels of ST6GAL1 and α2-6 sialylation (SNA, the lectin from Sambucus nigra, recognises
α2-6-linked sialylated N-glycans [91]). (B) SNA lectin immunofluorescence shows LNCaPEnzR cells
have increased levels of ST6GAL1 and α2-6 sialylation compared to control LNCaP cells. DNA is
stained with Hoechst. Scale bar = 200 µM.

3.3. The Sialyltransferase Inhibitor P-SiaFNEtoc Blocks α2,6 Sialylation in
Enzalutamide-Resistant Prostate Cancer Cells

We previously showed that the newly developed C-5 carbamate sialyltransferase
inhibitor P-SiaFNEtoc [82] can effectively inhibit the sialylation of prostate cancer cells
with only minor effects on other glycan types [51]. Next, to test whether P-SiaFNEtoc
can inhibit α2,6-sialylated N-glycans in enzalutamide-resistant prostate cancer cells, we
treated VCaPEnzR and LNCaPEnzR cells with P-SiaFNEtoc and monitored α2,6-sialylation
using SNA lectin immunofluorescence after 3 or 6 days (Supplementary Figure S2). For
the VCaPEnzR cells, treatment with 20 µM P-SiaFNEtoc for 6 days suppressed recognition
by SNA lectin, suggesting a reduction in α2,6-sialylated N-glycans (Figure 3A). For the
LNCaPEnzR cells, treatment with 2 µM P-SiaFNEtoc for 3 days reduced levels of levels
of α2,6 sialylation (Figure 3B). As VCaP cells have a significantly longer doubling time
than LNCaP cells [92,93], and have higher endogenous levels of ST6GAL1 [87], we hy-
pothesised that this may explain why the VCaP cells required increased concentrations
of P-SiaFNEtoc to reduce α2,6-sialylation levels, but we did not investigate this further.
Together with previously published findings [51], our data show that treatment with the
sialyltransferase inhibitor P-SiaFNEtoc can block α2,6 sialylation in enzalutamide-resistant
prostate cancer cells.
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Figure 3. The sialyltransferase inhibitor P-SiaFNEtoc blocks α2,6 sialylation in the VCaPEnzR and
LNCaPEnzR prostate cancer cells. (A) Detection of immunofluorescent staining of ST6GAL1 and
α2,6-sialylation of N-glycans in the VCaP control and VCaPEnzR cells treated with 20 µM of the
sialyltransferase inhibitor P-SiaFNEtoc for 6 days. Treatment of both cell lines with P-SiaFNEtoc
inhibits α2,6-sialylation of N-glycans (detected using SNA lectin). Control cells were treated with
DMSO. Scale bar = 50 µm. The images are representative of three biological repeats. (B) Detection of
immunofluorescent staining of ST6GAL1 and α2,6-sialylation of N-glycans in LNCaP control and
LNCaPEnzR cells treated with 2 µM of the sialyltransferase inhibitor P-SiaFNEtoc for 3 days. Treatment
of both cell lines with P-SiaFNEtoc inhibits α2,6-sialylation of N-glycans (detected using SNA lectin).
The control cells were treated with DMSO. Scale bar = 50 µm. The images are representative of three
biological repeats.

3.4. Sialic Acid Blockade Partially Reverts Acquired Resistance to Enzalutamide in Prostate
Cancer Cells

Together with the literature [59–72], the above data raises the possibility that aberrant
sialylation could play a functional role in the acquired resistance of prostate cancer to the
second-generation AR antagonist enzalutamide. This led to the hypothesis that therapies
targeting sialylation might have the potential to re-sensitise prostate cancer cells to treat-
ment with enzalutamide. To investigate this, we first treated control VCaP and VCaPEnzR

cells with a range of enzalutamide concentrations (up to 500 µM) and measured cellular
viability using CellTiter-Glo® luminescence assays and IC50 analyses. As expected, the IC50
value for the VCaPEnzR cells treated with enzalutamide was 3.46-fold higher relative to
the control VCaP cells (VCaP control IC50: 8.95 µM, VCaPEnzR IC50: 30.97 µM) (Figure 4A).
Next, to test if sialic acid blockade can impact the resistance of prostate cancer cells to
enzalutamide, we treated the VCaPEnzR cells with enzalutamide in combination with the
sialylation inhibitor P-SiaFNEtoc (treatments for VCaP cells were carried out with 20 µM
P-SiaFNEtoc for 6 days to match our findings in Figure 3A). Excitingly, this revealed that
although sialic acid blockade in combination with enzalutamide therapy did not alter
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the IC50 value for the VCaP control cell line, for the VCaPEnzR cells, there was a 38.33%
reversion in the IC50 value in comparison to enzalutamide treatment alone (VCaP control
IC50: 8.30 µM, VCaPEnzR IC50: 19.10 µM) (Figure 4B).
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Figure 4. Sialic acid blockade using P-SiaFNEtoc partially re-sensitises prostate cancer cells to the
second-generation androgen receptor antagonist enzalutamide. (A) The VCaPEnzR cells have in-
creased resistance to enzalutamide compared to the control VCaP cells. The control VCaP and
VCaPEnzR cells were treated with a range of enzalutamide concentrations (0–500 µM). Cell viability
was measured after 6 days using a CellTitrer-Glo® luminescence assay. The IC50 values (the concen-
tration of enzalutamide which reduced cellular viability by 50% relative to the DMSO control) was
3.46-fold greater in the VCaPEnzR cells (8.95 µM for VCaP control cells and 30.97 µM for the VCaPEnzR

cells). (B) Treatment of the VCaPEnzR cells with P-SiaFNEtoc partially reverts resistance to enzalu-
tamide. The control VCaP and VCaPEnzR cells were treated with 20 µM P-SiaFNEtoc and a range of
concentrations of enzalutamide (0–500 µM) for 6 days. Inhibiting sialylation in the VCaPEnzR cells
reduced the IC50 value from 30.97 µM to 19.10 µM, indicating a partial reversion of their resistance to
enzalutamide. (C) The LNCaPEnzR cells have increased resistance to enzalutamide compared to the
control LNCaP cells. The control LNCaP and LNCaPEnzR cells were treated with a range of enzalu-
tamide concentrations (0–500 µM). Cell viability was measured after 3 days using a CellTitre-Glo®

luminescence assay. The IC50 value was 2.27-fold higher in the LNCaPEnzR cells (53.33 µM for LNCaP
control cells and 121.06 µM for the LNCaPEnzR cells). (D) Treatment of the LNCaPEnzR cells with
P-SiaFNEtoc partially reverts their resistance to enzalutamide. The control LNCaP and LNCaPEnzR

cells were treated with 2 µM P-SiaFNEtoc and a range of concentrations of enzalutamide (0–500 µM)
for 3 days. A DMSO-only control arm was included for each cell line. Inhibiting sialylation in the
LNCaPEnzR cells reduced the IC50 value from 121.06 µM to 74.30 µM, indicating a partial reversion
of their resistance to enzalutamide. A line of best fit was utilised for interpolating the IC50 value.
Results are presented as the cell viability (luminescence) relative to the respective DMSO control
against the log of the enzalutamide concentration (nM) used for each cell line. Results are presented
as the mean ± standard error and are representative of three biological repeats.
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The IC50 value for the LNCaPEnzR cells was 2.27-fold higher relative to the control
LNCaP cells when treated with enzalutamide alone (LNCaP control: 53.33 µM, LNCaPEnzR:
121.06 µM) (Figure 4C). When the LNCaPEnzR cells were treated with both P-SiaFNEtoc
and enzalutamide (treatments for the LNCaP cells were carried out with 2 µM P-SiaFNEtoc
for 3 days to match our findings in Figure 3B), there was a 38.64% reversion in the IC50
value in comparison to enzalutamide treatment alone (LNCaP control IC50: 59.16 µM,
LNCaPEnzR IC50: 74.30 µM) (Figure 4C,D). These data indicate that that sialic acid blockade,
in combination with enzalutamide treatment, can partially revert acquired enzalutamide
resistance in cell line models of prostate cancer.

4. Discussion

Enzalutamide is an orally administered small-molecule inhibitor of the AR that is
designed to overcome resistance to anti-androgens and can improve overall survival in
CRPC [19,20,94]. Unfortunately, some patients have primary resistance to enzalutamide,
and others eventually develop acquired resistance and continue to progress [27,95]. Numer-
ous studies have sought to characterise the molecular mechanisms underlying how prostate
cancer becomes resistant to enzalutamide therapy, with AR amplification, AR variants,
altered expression of AR co-regulators, upregulation of glucocorticoid receptor (GR), and
metabolic alterations believed to play a role [95,96]. ST6GAL1 and its associated glycans
are likely to be an important target in cancer cells [89,90]. ST6GAL1 is upregulated in
numerous types of cancer, including pancreatic, ovarian, breast, and prostate cancer, and its
expression is associated with aggressive tumours and reduced survival times [52,89,97,98].
Upregulation of ST6GAL1 impacts oncogenic cell behaviours and can play a key role in
tumour growth, survival, metastasis, immune evasion, and resistance to therapy [89,97,99].
Specifically, ST6GAL1 can mediate resistance to chemoradiation in rectal cancer [73], the
sensitivity of gastric cancer cells to trastuzumab [72], and resistance to the EGFR inhibitor,
gefitinib, in ovarian cancer [100]. In prostate cancer, the upregulation of ST6GAL1 pro-
motes the growth and metastatic spread of prostate tumours to bone [52,77], and targeting
aberrant sialylation in prostate cancer cells can inhibit the metastatic spread of tumours
to bone [51,52]. The data presented in this manuscript indicate that ST6GAL1-mediated
aberrant sialylation could also be an important mediator of the acquired resistance of
prostate tumours to enzalutamide therapy (which is a major clinical issue potentially affect-
ing all men who develop CRPC [101]. Furthermore, our study provides proof-of-concept
data for a therapeutic strategy to target aberrant sialylation that has the potential to par-
tially revert enzalutamide resistance and prolong the clinical efficacy of anti-androgen
therapies. It should be noted that the sialyltransferase inhibitor used in this study (P-
SiaFNEtoc) is a global sialyltransferase inhibitor that targets all sialyltansferase enzymes
(including ST6GAL1), meaning we cannot rule out that that the effects of P-SiaFNEtoc on
the enzalutamide-resistant cells may not be solely due to ST6GAL1 inhibition. Inhibitors
specifically targeting ST6GAL1 are being developed [56,102] and, once available, will be
highly relevant to prostate cancer.

The mechanisms underpinning how aberrant sialylation might contribute to enzalu-
tamide resistance in prostate cancer remain unclear but are likely multi-faceted. Aberrant
sialylation on the cell surface could potentially inhibit the uptake of enzalutamide into
the cell. Another possibility is that alterations to sialylated glycans could interfere with
the binding of enzalutamide to the AR to promote resistance. The role of sialic acid in
the context of the tumour microenvironment and immune suppression is also an impor-
tant consideration which was not addressed by the current study. Increased sialylation is
common in cancer cells and is associated with an immunosuppressed tumour microenvi-
ronment [57,99,103,104]. Sialylated glycans can be engaged by a broad range of immune
cell types to promote immune suppression [105,106], and the upregulation of ST6GAL1 in
prostate cancer cells has been shown to promote a shift towards an immunosuppressive M2
macrophage phenotype [52]. Anti-androgen therapies are known to remodel the prostate
tumour immune microenvironment [107,108], and, recently, it was proposed that this re-
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modelling could include alterations to the Siglec–sialyloglycan axis in prostate tumours,
which could contribute to immunosuppression [109]. Moving forward, syngeneic models
of prostate cancer could be used to perform pre-clinical evaluation of sialic acid blockade
in combination with enzalutamide therapy, alongside investigating the role of altered gly-
cosylation in the resistance to enzalutamide therapy in the context of the tumour-immune
microenvironment. Previous studies have identified increased levels of ST6GAL1 in tu-
mours and blood samples from prostate cancer patients [52,77]. In future studies, it will be
important to monitor the levels of ST6GAL1 and sialylated glycans in clinical samples from
prostate cancer patients with tumours that have become resistant to enzalutamide therapy
and investigate whether the detection of ST6GAL1 and/or aberrant sialylation in prostate
tumours could be used to predict sensitivity and resistance to treatment strategies.

5. Conclusions

Our findings identify aberrant sialylation as a previously unexplored but clinically
relevant contributor to the acquired resistance of prostate tumours to enzalutamide therapy
and suggest further research in this area could lead to the development of novel combina-
tion therapies to disarm drug resistance in prostate cancer. Recent studies have provided
rationale for the use of glyco-immune checkpoint-targeting therapies in advanced prostate
cancer [52,109]. Numerous strategies to target sialylated glycans are under development, in-
cluding sialylation inhibitors and antibody–sialidase conjugates [34,50,110], some of which
are currently in clinical trials [34,50] and are likely to be relevant for patients with prostate
cancer. Future research should seek to utilise these advancements in the glycobiology field
to gain a better understanding of the role which aberrant glycosylation may play in prostate
cancer resistance to key therapeutic interventions, such as enzalutamide.
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treated with 2–20 µM P-SiaFNEtoc. File S1: Original western blots.
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