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A B S T R A C T   

The discovery of new diagnostic tools for the early detection of diseases with poor prognosis such as pancreatic 
adenocarcinoma (PAC) is of high importance. The results from a control-case study (20 PAC patients, 19 healthy 
controls) for the search of new biomarkers of pancreatic cancer based in differences in the serum volatolome are 
presented in this work. Volatolomics were performed following a non-targeted HS-SPME-GC/MS approach, and a 
total of 433 volatile organic compounds (VOCs) was detected in the human serum samples. Of these, 125 VOC 
indexes showed a significant variation when controls and patients were compared (p-value < 0.05). Bonferroni 
corrected p-values < 0.05 were found for 40 features. PCA analysis showed the control-PAC discrimination 
capability of VOCs in serum, and PLS-DA was performed to select the best candidate biomarkers for the diagnosis 
of PAC. For the 40 selected VOCs, calculated areas under the curve (AUC) ranged from 0.98 to 0.85, and 11 of 
them were successfully validated using an independent set of samples (5 PAC patients, 5 healthy controls). Four 
of the proposed PAC biomarkers were identified as toluene, 2-ethyl-1-hexanol, pentylbenzene, and butox-
ymethylbenzene. Combinations of the identified PAC biomarkers were tested and showed AUC > 0.90, with the 
more promising candidate being butoxymethylbenzene (AUC = 0.98).   

1. Introduction 

Pancreatic adenocarcinoma (PAC) is one of the most lethal kinds of 
cancer, presenting concerning incidence and survival rate tendencies in 
the last years. Globocan 2020 data [1] shows PAC to be on the 12th place 
in the incidence rate ranking worldwide, while it presents the eighth 
leading mortality rate. The mortality and incidence trends of this cancer 
are concerning, with estimated increases on incidence (+77.7 %) and 
mortality (+79.9 %) from 2018 to 2040 [2,3]. Because of the pancreas 
location, the detection of a pancreatic tumor is not easy, and the PAC 
symptoms become evident only after the tumor has grown and/or 
spread to other organs. Those facts, and the lack of a specific diagnostic 
tool, make PAC to be usually diagnosed at stage III or IV, normally 
presenting inoperable tumors limiting their treatment and, conse-
quently, leading to low survival rates: only 12 % of PAC patients survive 
after 5 years of diagnosis [4]. 

Biopsy is currently the only method for the unequivocal diagnosis of 
pancreatic cancer, supported by imaging techniques, while screening 
tests do not exist yet and blood tests are based in the determination of 
serum carcinoembryonic antigen (CEA) and cancer antigen 19–9 (CA 
19–9), that are not specific [5,6]. 

Volatile organic compounds (VOCs) are final metabolism products, 
and can be detected in exhaled breath, blood, and other bodily fluids. 
Metabolic changes in response to external factors and intrinsic factors 
such as inflammation, necrosis, and diseases, including cancer, are re-
flected in VOCs extent; therefore, there is an increasing interest in 
developing diagnostic tests based in their detection [7,8]. The fluctua-
tions of VOCs have been evidenced in individuals presenting health 
conditions like cystic fibrosis [9,10], cancer [11–16], diabetes [17,18], 
tuberculosis [19,20] , irritable bowel syndrome [21], or infectious dis-
eases [22]. The biochemical pathways leading to the production of VOCs 
are not fully understood, but it is known that oxidative stress, some liver 
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enzymes such as alcohol dehydrogenase (ADH) or aldehyde dehydro-
genase (ALDH), glycolysis, and loss of tumor suppressor genes, angio-
genesis, or apoptosis, which are activated in cancer patients, alter the 
production of VOCs in the organism [23,24]. 

The study of new biomarkers for the detection of pancreatic cancer 
has been attempted before by the application of metabolomic and vol-
atolomic analysis of exhaled breath and urine, showing promising re-
sults [25–31]. While blood or serum are biospecimens containing a great 
number of cell metabolites, studies focused in the volatolomic analysis 
of serum for the discovery of PAC biomarkers are lacking. Moreover, 
serum is collected by trained health staff in a controlled environment 
that avoids contaminations, and it is normally stored in biobanks, which 
allows the development of large retrospective studies. 

The main goal of this work was the discovery of new PAC biomarkers 
in serum. The serum volatolome of PAC patients (n = 20) were 
compared with the controls (n = 19) to find those VOCs able to 
discriminate PAC patients from healthy population. 

A sensitive PAC biomarker may be the keystone for the development 
of new diagnostic devices that could be used for the development of 
population screening strategies. The early diagnosis of pancreatic cancer 
would improve the treatment options and the prognosis of those 
patients. 

2. Material and methods 

2.1. Study design 

Approval from the local ethic’s review board (Comité Ético de 
Investigación Clínica de La Rioja, CEICLAR, study permit number CEI-
CLAR P.I.260) was obtained and Informed Consent was signed by all 
patients and healthy donors. A total of 20 PAC patients diagnosed with 
unresectable locally advanced or metastatic pancreatic adenocarcinoma 
who had not received chemotherapy (65 % male, 65.2 ± 9.0 years of 
age) and a sex-age matched healthy control group (n = 19; 63 % male, 
63.4 ± 7.7 years) participated in the study. Not statistical differences 
were found between groups in terms of sex or age. A second group of 
patients (n = 5, 40 % male, 67.0 ± 10.0 years) and healthy volunteers (n 
= 5, 40 % male, 40.2 ± 11 years) was recruited as a validation cohort 
(Table 1). 

2.2. Sample collection 

Samples for the control-case study were collected at the Hospital San 
Pedro facilities (Logroño, Spain) from October 2017 to November 2018. 
The validation set of serum samples was obtained in the same setting in 
2021. 

Venous blood was drawn in a tube without additives, centrifuged at 
4 ◦C (3000g for 10 min) and the serum was collected and aliquoted in 1 

ml portions, and stored at − 80 ◦C for further analysis. The procedure 
blank was performed collecting ultrapure water in substitution of serum 
using the same materials, to evaluate potential contaminating volatile 
compounds derived from collection tubes, tubing and storage 
containers. 

2.3. Volatolomic analysis 

The HS-SPME-GC/MS analytical method for the volatolomic analysis 
of serum was optimized for the detection of the greatest number of 
signals with the best sensitivity. One of the critical steps of the SPME 
method development is the selection of the fiber. Different SPME fiber 
coatings were tested, including Carboxen/Polydimethylsiloxane (CAR/ 
PDMS), Polydimethylsiloxane/Divinylbenzene (PDMS/DVB) and 
Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS). 
The latest, due to the mixed coating materials, was the fiber that 
extracted the highest number of volatile and semi-volatile compounds 
from serum and was selected for further analysis. The rest of analytical 
variables were optimized, and the final conditions are detailed below. 

A Varian CP-3800 gas chromatograph coupled to a Saturn 2200 ion 
trap mass spectrometer equipped with a CTC CombiPal autosampler 
(Agilent, Madrid, Spain) was used for the non-targeted analysis of VOCs. 
The analysis was performed using a Zebron ZB-35 GC column (30 m, 
0.25 mm ID, Phenomenex, Torrance, CA), with Helium at 1 ml min− 1 as 
carrier gas. 

Each serum sample was thawed at 4 ◦C and, after homogenisation, 
250 μl were transferred to a 20 ml vial. 25 μl of surrogate standards D10- 
ethylbenzene (d10-EB) and D4-1,4-dichlorobenzene (d4-DCB) (Merck 
KGaA, Darmstadt, Germany) (1 µg/ml each) were added. The vial was 
closed with a magnetic screw cap for the HS-SPME analysis. The sample 
was incubated for 1 min at 50 ◦C and stirred at 250 rpm prior to 
extraction. Then, a 50/30 μm DVB/CAR/PDMS fiber (Supelco, Darm-
stadt, Germany) was used for the headspace extraction of VOCs at 50 ◦C 
for 20 min. Desorption was done at 250 ◦C for 30 s in the injection port. 
The injection was made with the closed split, that was open to 1:50 ratio 
at 1 min until the end of the analysis. Between analyses, the fiber was 
conditioned in the backout station for 15 min at 270 ◦C to avoid 
carryover effects. 

The temperature program for VOCs separation started at 50 ◦C held 
for 15 min. Then, the temperature was raised 5 ◦C/min until 100 ◦C, held 
for 1 min at 100 ◦C, increased to 250 ◦C at 25 ◦C/min, and maintained 
for 2 min, with a total run time of 36 min. The VOCs signals were 
monitored in full scan mode, from 40 to 300 m/z and using electron 
ionization. Three technical replicates were processed for all samples. 
Analytical standards for identification tasks were provided by Merck Life 
Science (Madrid, Spain) and Cymit Quimica (Barcelona, Spain). 

2.4. Quality assurance 

An empty vial and a reagents blank were daily processed before the 
sample sequence started. Baseline level was checked and the labelled 
standards D4-DCB and D10-EB, that were added at a fixed amount (25 
ng), were monitored to assure correct instrument performance. 

2.5. Data collection and statistical analysis 

The workflow design for data curation and statistical analysis was 
made according with literature [32–34]. MassHunter software (Agilent) 
was used for chromatogram processing including deconvolution of the 
signals, and exclusion criteria was set at area 150 threshold. A total of 
433 components (V1-V433) were considered and corresponded with the 
sequential signals for the VOCs detected in the volatolome (Peak1- 
Peak433). For each VOC, the most abundant signal in the spectra was 
selected as the quantitative ion, and XIC chromatogram was manually 
integrated to get their area. Those components detected in the procedure 
blank at a similar intensity than the area found in serum were not 

Table 1 
Age and sex distribution of cancer patients and healthy volunteers in the study. 
Statistical tests employed: Chi square (*) or t-test (†).  

Control – Case study  
Healthy volunteers (n =
19) 

Cancer patients (n =
20) 

p-value 

Sex (males, 
%) 

12 (63 %) 13 (65 %) 0.77* 

Age (years) 63.4 ± 7.7 65.2 ± 9.0 0.51†

Validation study  
Healthy volunteers (n ¼
5) 

Cancer patients (n ¼
5) 

p- 
value 

Sex (males, 
%) 

2 (40 %) 2 (40 %) 1.00* 

Age (years) 49.2 ± 16.9 67.0 ± 9.7 0.12†
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considered. A peak table was constructed for the 39 samples calculating 
the average area of the three technical replicates for each of the 433 
VOCs. 

Descriptive statistics were calculated for all signals. Sample 
normalization was accomplished calculating the ratio of the peak area of 
the signal to the respective peak area of the internal standard D4-DCB in 
the same chromatogram. For each feature, the control and case groups 
were tested for normality using a Shapiro Wilk test and homoscedas-
ticity with an F test. Depending on normality of the signal, Mann- 
Whitney U test or two tail t-test were used to evaluate the significance 
of control-case average area differences. Data was filtered removing 
those signals with high variability or low differences between groups, 
thus after univariate statistics only those VOCs with corrected p-value <
0.05 for the inter-group mean comparison were further considered. Raw 
p-values were corrected for multiple comparisons by Bonferroni method 

Table 2 
Features selected after Bonferroni adjustment for multivariate analysis sorted by 
raw p-values. VOCs XIC normalized area average values for the control and case 
groups ± confidence interval at a significance level α = 0.05 (95 % CI) are 
shown. Fold change (FC), raw p-values and Bonferroni and BH corrected p- 
values are included.  

VOC Control 
Mean 
± 95 % 
CI 

PAC 
patient 
Mean 
± 95 % 
CI 

FC 
(P/ 
C) 

Raw p- 
value 

Bonferroni 
corrected p- 
value 

BH 
corrected 
p-value 

V197 0.0161 
±

0.0010 

0.0098 
±

0.0011  

0.61 6.39 
⋅10− 10   

2.77⋅10− 7  2.77⋅10− 7 

V328 (4.17 ±
0.23) 
⋅10− 3 

(2.98 ±
0.19) 
⋅10− 3  

0.72 1.94⋅10− 9 

†

8.40⋅10− 7  4.20⋅10− 7 

V332 (3.42 ±
0.22) 
⋅10− 3 

(2.40 ±
0.20) 
⋅10− 3  

0.70 2.12⋅10¡7 

y

9.18⋅10− 5  2.16⋅10− 5 

V38 0.44 ±
0.04 

0.29 ±
0.03  

0.67 2.67⋅10− 7   1.16⋅10− 4  2.16⋅10− 5 

V40 94 ± 6 72 ± 4  0.77 2.78⋅10− 7   1.20⋅10− 4  2.16⋅10− 5 

V365 (7.4 ±
0.4) 
⋅10− 3 

(5.3 ±
0.5) 
⋅10− 3  

0.72 3.92⋅10− 7   1.70⋅10− 4  2.16⋅10− 5 

V39 0.74 ±
0.07 

0.47 ±
0.04  

0.64 3.95⋅10− 7   1.71⋅10− 4  2.16⋅10− 5 

V172 4.0 ±
0.3 

2.6 ±
0.3  

0.65 4.03⋅10− 7   1.75⋅10− 4  2.16⋅10− 5 

V174 0.030 
± 0.003 

0.018 
± 0.003  

0.58 4.48⋅10− 7   1.94⋅10− 4  2.16⋅10− 5 

V41 0.59 ±
0.06 

0.37 ±
0.04  

0.63 6.59⋅10− 7   2.85⋅10− 4  2.85⋅10− 5 

V390 (2.85 ±
0.18) 
⋅10− 3 

(2.03 ±
0.20) 
⋅10− 3  

0.71 1.00⋅10− 6   4.34⋅10− 4  3.94⋅10− 5 

V171 0.343 
± 0.025 

0.239 
± 0.025  

0.70 1.16⋅10− 6   5.02⋅10− 4  4.19⋅10− 5 

V51 (3.3 ±
0.3) 
⋅10− 3 

(2.21 ±
0.21) 
⋅10− 3  

0.68 1.32⋅10− 6   5.72⋅10− 4  4.40⋅10− 5 

V34 (6.3 ±
0.5) 
⋅10− 3 

(4.4 ±
0.4) 
⋅10− 3  

0.69 2.02⋅10− 6   8.76⋅10− 4  6.25⋅10− 5 

V338 (4.1 ±
0.3) 
⋅10− 3 

(2.9 ±
0.3) 
⋅10− 3  

0.73 2.23⋅10− 6 

†

9.66⋅10− 4  6.25⋅10− 5 

V37 0.196 
± 0.015 

0.139 
± 0.014  

0.71 2.31⋅10− 6   0.0010  6.25⋅10− 5 

V311 (1.57 ±
0.11) 
⋅10− 3 

(1.14 ±
0.16) 
⋅10− 3  

0.73 2.71⋅10− 6 

†

0.0012  6.90⋅10− 5 

V142 0.339 
± 0.023 

0.24 ±
0.03  

0.71 3.71⋅10− 6   0.0016  8.92⋅10− 5 

V36 0.166 
± 0.015 

0.108 
± 0.013  

0.65 3.95⋅10− 6 

†

0.0017  9.00⋅10− 5 

V131 (3.8 ±
0.4) 
⋅10− 3 

(2.5 ±
0.3) 
⋅10− 3  

0.65 5.82⋅10− 6   0.0025  1.23⋅10− 4 

V52 0.39 ±
0.04 

0.277 
± 0.023  

0.71 5.95⋅10− 6   0.0026  1.23⋅10− 4 

V173 0.028 
± 0.003 

0.018 
± 0.003  

0.65 6.48⋅10− 6   0.0028  1.28⋅10− 4  

Table 2 (continued ) 

VOC Control 
Mean 
± 95 % 
CI 

PAC 
patient 
Mean 
± 95 % 
CI 

FC 
(P/ 
C) 

Raw p- 
value 

Bonferroni 
corrected p- 
value 

BH 
corrected 
p-value 

V141 27.4 ±
1.6 

20.9 ±
1.9  

0.76 6.80⋅10− 6 

†

0.0029  1.28⋅10− 4 

V362 (1.02 ±
0.09) 
⋅10− 3 

(0.71 ±
0.07) 
⋅10− 3  

0.70 7.88⋅10− 6   0.0034  1.40⋅10− 4 

V140 1.20 ±
0.07 

0.93 ±
0.08  

0.77 8.11⋅10− 6 

†

0.0035  1.40⋅10− 4 

V29 0.090 
± 0.006 

0.065 
± 0.008  

0.72 9.89⋅10− 6   0.0043  1.65⋅10− 4 

V380 0.0282 
±

0.0015 

0.0215 
±

0.0021  

0.76 1.12⋅10− 5   0.0049  1.78⋅10− 4 

V139 0.30 ±
0.03 

0.21 ±
0.03  

0.69 1.15⋅10− 5 

†

0.0050  1.78⋅10− 4 

V28 0.059 
± 0.003 

0.044 
± 0.005  

0.74 1.24⋅10− 5   0.0054  1.85⋅10− 4 

V187 0.024 
± 0.003 

0.0144 
±

0.0019  

0.61 1.36⋅10− 5 

†

0.0059  1.96⋅10− 4 

V170 0.0095 
±

0.0012 

0.0057 
±

0.0012  

0.61 1.89⋅10− 5 

†

0.0082  2.64⋅10− 4 

V68 0.0164 
±

0.0016 

0.0111 
±

0.0015  

0.67 2.38⋅10− 5   0.0103  3.22⋅10− 4 

V349 0.0047 
±

0.0005 

0.0031 
±

0.0005  

0.65 2.76⋅10− 5   0.0120  3.62⋅10− 4 

V386 0.0213 
±

0.0019 

0.013 
± 0.003  

0.59 3.05⋅10− 5 

†

0.0132  3.88⋅10− 4 

V169 0.0133 
±

0.0017 

0.0075 
±

0.0017  

0.57 3.83⋅10− 5   0.0166  4.74⋅10− 4 

V97 0.0118 
±

0.0013 

0.0076 
±

0.0013  

0.64 4.15⋅10− 5 

†

0.0180  4.99⋅10− 4 

V364 (1.99 ±
0.15) 
⋅10− 3 

(1.45 ±
0.18) 
⋅10− 3  

0.73 5.96⋅10− 5   0.0258  6.97⋅10− 4 

V145 0.034 
± 0.005 

0.021 
± 0.003  

0.62 8.69⋅10− 5 

†

0.0376  9.65⋅10− 4 

V274 0.027 
± 0.003 

0.019 
± 0.003  

0.71 8.69⋅10− 5 

†

0.0376  9.65⋅10− 4 

V94 0.048 
± 0.005 

0.031 
± 0.006  

0.65 1.15⋅10− 4 

†

0.0498  0.0012 

t-test equal variances. 
t-test unequal variances. 

† Mann Whitney U test.  
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[33,35]. Prior to multivariate analysis, data was log transformed, mean- 
centered, and divided by standard deviation of each variable for scaling. 
Unsupervised principal component analysis (PCA) was performed to 
find potential outliers and to evaluate the discriminating capability of 
the volatolomic profile. Partial least square discriminant analysis (PLS- 
DA) was used to find the most significant VOCs for the discrimination of 
PAC patients from healthy volunteers. To evaluate the accuracy of the 
most suitable signals to be used as biomarkers for PAC prediction, 
receiver operating characteristic (ROC) analysis was performed finding 
the corresponding area under de curve (AUC). AUC values from 0.9 to 
1.0 were considered “excellent”, “good” from 0.8 to 0.9, “fair” from 0.7 
to 0.8, “poor” from 0.7 to 0.6 and those values below 0.6 were consid-
ered failed [35]. 

Samples from the validation cohort were analysed following the 
proposed procedure, and their results were compared with the respec-
tive cut-off point for group assignation (control or case) and evaluation 
of the false positive (FP) and false negative (FN) events. 

2.6. Identification 

For those VOCs showing potential as PAC biomarkers, tentative 
identification was made using MassHunter software by mass spectra 
match using NIST17 library. Among NIST candidates for each VOC, for 
those with Rmatch above 50 %, commercially available analytical 
standards were purchased (Merck, Darmstadt, Germany and Cymit 
Quimica, Barcelona, Spain). The standards were tested using the same 
HS-SPME-GC/MS method; and confirmed if the unknown and standard 
eluted at coincident GC retention time, and with similar MS spectra 
match with the library record. 

2.7. Software 

MS Workstation (Varian) was used for data acquisition and Mass-
Hunter (Agilent) for chromatogram processing and tentative identifi-
cation using NIST17 library. R software and Metaboanalyst [32,34] 
were used for statistics and graphs. Microsoft Excel was used as database 
and for graph drawing. 

3. Results and discussion 

3.1. Univariate statistics 

The most relevant VOCs for the discrimination of pancreatic cancer 
from healthy individuals started with the univariately consideration of 
the 433 signals found in the volatolomic profile. Two normalization 
approaches for these signals were tested: the relative area to d10-EB, and 
the relative area to d4-DCB. Since d4-DCB detection presents high inter- 
analysis stability, this internal standard was selected to account for HS- 
SPME-GC/MS method variability. 

Out of the 433 signals, a p-value < 0.05 was obtained for 125 VOCs 
when comparing the control and case means. Within those significant 
features, 96 had a p-value < 0.01, and 64 a p-value < 0.001 when in-
dividual inter-group difference significance tests were applied. We 
found 87 % of those significant VOCs to be downregulated for the pa-
tients, whereas only 13 % were upregulated. Raw p-values were sub-
jected to multivariate correction by Bonferroni and 
Benjamini&Hochberg (BH) methods. The BH method, based in false 
discovery rate, found adjusted p-values < 0.05 for 96 VOCs; 77 of them 
were below 0.01, and 40 had a p-value < 0.001. After Bonferroni 
correction of family-wise error, p-values were < 0.05 for 40 VOCs, from 

Fig. 1. Heatmap showing different patterns for the VOCs expressions on patients and healthy controls.  
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which 31 had a p-value < 0.01, and 15 of them had a p-value below 
0.001; all of them were downregulated for patients, with fold changes 
ranging from 0.57 to 0.77. To prevent false positive errors, the most 
conservative method was selected; therefore, Bonferroni adjusted p- 
values were used for data filtering. Those VOCs with p-value < 0.05 
were further considered (Table 2), excluding from the study those sig-
nals with high intra-group variability and low inter-group change of 
intensity. Chromatographic parameters, precision of the method, and 
absence of significant signal in procedure blanks for those VOCs were 
checked and are reported in Table S1. 

3.2. Multivariate analysis 

Prior to multivariate analysis, data were normalized by the calcula-
tion of the relative response against D4-DCB, log transformed, and 
scaled. Sample and feature view normalization results were visually 
checked (Fig. S2). In the sample view graph, certain difference between 
the controls and patients was visually observed (Fig. S2). 

Unsupervised analysis was performed by PCA and heatmap con-
struction to evaluate the presence of outliers among the samples. The 
goals of those approaches are the observation of sample patterns and the 
reduction of the number of variables to explain the total variability for 
all the samples in the study. The heatmap shows VOCs variability for the 
samples grouped for controls and patients (Fig. 1). Differences between 
the groups are appreciated, with the PAC’s group presenting down-
regulated VOC values. Furthermore, the signal for P17 seems to have a 
slightly different pattern when compared with the other patients in the 

heatmap. 
In the PCA analysis, the first component explained 75 % of the total 

variance. The representation of the two most explicative components 
calculated by PCA with reference in the graph to the control and case 
groups with the 95 % CI area (Fig. 2) shows certain separation between 
the groups, reaching an accumulated explained variance of 81 % for the 
two first components, as shown in the scree plot (Fig. S3). In agreement 
with the conclusions from the heatmap observation, certain differenti-
ation between controls and patients was observed, sample P17 was 
outside the 95 %CI for its group and, consequently, it may be considered 
an outlier. Since data from sample P17 is not aberrant and may be 
relevant to show real variability in the dataset, all further statistics and 
tests were performed including the integral acquired data after confir-
mation that similar final conclusions would be obtained if this sample 
was not included in the study (Fig. S4). 

A supervised classification was done to get a model with a reduced 
number of variables that explains differences between controls and pa-
tients. Sparse PLS-DA was used to get two components built with 10 
variables each, to explain intergroup variability. The separation be-
tween the control and case groups was evident, the first component 
explained 71 % of the total variance, and the two main components 76 % 
of the total variance (Fig. 3). Variables contributing to component 1 
were VOCs 328, 197, 332, 39, 41, 38, 40, 365, 172 and 174, while 
component 2 was built with VOCs 386, 145, 169, 173, 94, 97, 171, 170, 
364 and 131. 

Fig. 2. Principal component analysis showing 95% CI areas for the control and patient groups. Accumulated explained variance for the two represented components 
is 81%. 
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3.3. Biomarker analysis 

For the evaluation of their predictive capability, ROC curves were 
constructed for pre-selected VOCs. The AUC and the cut-off values for 
each signal are shown in Table 3. 

Nineteen VOCs showed excellent predictive potential, with AUC 
above 0.90. The best results were for V197 with an AUC value of 0.98 ±
0.05, with 90 % sensitivity (true positive rate) and 95 % specificity (1- 
false positive rate); and for V328 with 0.98 ± 0.06, 95 % sensitivity and 
95 % specificity (Fig. 4). Features V39, V332, V40, V41, V365, V172, 
V390, V34, V174, V38, V338, V311, and V171 also are considered 
excellent predictors based on their AUCs. Other VOCs showed good AUC 
values, above 0.85 for all cases, and may be also suitable PAC biomarker 
candidates. 

3.4. Sex and age effects in VOC expression 

It is known that the volatolome may change depending on lifestyle, 
diet, or disease. Our goal is to find those VOCs able to discriminate PAC 
disease patients from the healthy population, but since the variance of 
their expression may be influenced by covariates, sex and age were 
studied on the selected panel of VOCs as potential confusing factors. 
Considering all participants, differences between the male (n = 25) and 
female (n = 14) groups were evaluated by a t-test (2 tails, equal vari-
ances, α = 0.05) for each selected VOC. The only significant difference 
was found for V311, with a lower signal in females ((1.19 ± 0.19) ‧10− 3) 
than in males ((1.44 ± 0.14) ‧10− 3) (p-value = 0.03). 

Sex effects were also evaluated in both the control and patient 
groups. Interestingly, signals for the control females and males were 

equal, while significant differences were found for 20 VOCs in the pa-
tient’s group (Table 4). The most significant differences (p-value < 0.01) 
were found for V34 and V68, with higher area values in males. The other 
18 VOCs that showed differences between males and females for the 
patient group, presented p-values from 0.02 to 0.04, and were all 
upregulated in males. Since all diagnostic biomarkers were down-
regulated for the patient group, the fact that female patients present 
lower signal than males (α = 0.05) may indicate sex differences in the 
prediction capacity of our model. p-Values for the difference between 
controls and patients were calculated for the male and the female pop-
ulation independently; although in most cases p-values in the female 
population were lower (but for V34), in all cases the VOCs signal means 
difference between controls and patients was statistically different for 
both sexes (Table S5). 

The relation between age and biomarker expression was studied by a 
Pearson correlation test. Only one feature, V349, showed a significant 
correlation with age (p-value = 0.018) when all participants were 
studied, but with a correlation factor that indicates poor negative cor-
relation (R = − 0.38). No correlations between age and VOCs intensities 
were observed within the control group nor for the patient group. 

3.5. Tobacco and alcohol intake influence in volatolome 

An additional evaluation of some lifestyle factors such as alcohol 
intake and smoking were done for the PAC patient group. Volatolomic 
profile may change depending on lifestyle, and studying if those factors 
may have an effect on the selected VOCs is of importance. Individuals in 
the smoker group (n = 10) declared to consume cigarettes daily. Results 
showed that smoking had a significant effect only on V274, with higher 

Fig. 3. Sparse PLS-DA was applied to the data to get a model with a reduced number of variables. The control-case separation is shown through the representation of 
the scores for the two first components, built with 10 variables each. VIP scores of the variables used for the components are shown. 
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values for smokers (0.022 ± 0.004 (n = 10)) than for non-smokers 
(0.016 ± 0.002 (n = 10)) (p-value = 0.02). No differences were found 
for the groups based on alcohol intake. 

3.6. Study of markers for the prediction of survival time 

The prediction of the evolution of a PAC patient would be important 
for the decision-making regarding treatment strategies. The complete 
volatolome (n = 433 signals) was included in the comparison of two 
groups based on the patients that survived more than one year after 
diagnostic or not. Out of the 20 patients that participated in the study, 
19 received chemotherapy treatment. Ten patients survived more than 
1 year (from 12 to 24 months), whereas the other ten patients’ survival 
was lower than 7 months. After univariant mean comparison, 16 VOCs 
showed differences between the groups (α = 0.05) (Table S6). While in 
the control-case study we found that VOCs expression was generally 
downregulated for the patients, it was observed that the overall response 
of the significant features was downregulated for those patients that 
survived longer; except for V13 and V219. Only one of those signals that 
was related with the response to treatment, V386, was also found among 
the proposed biomarkers for PAC detection (AUC 0.87). Surprisingly, 
while the healthy controls present a higher value for V386 (0.0213 ±
0.0019) than for patients (0.013 ± 0.003), when we look within the 
patient group, those that have a better prognosis present lower value 
(0.009 ± 0.002) than those that survived less than 1 year (0.015 ±
0.004). This behaviour was also observed for other three VOCs with 

significant difference between controls and patients’ groups: V345, 
V107, and V323. A different trend was found for V219, that was upre-
gulated for controls and when the survival time was studied the longer 
survival corresponded with the upregulated group. Those are results 
from the raw p-value calculation, considering univariant comparisons; 
when those p-values were corrected by Bonferroni or BH methods, all 
tests for the comparison of groups based on survival for more than 1 year 
lost their significance. 

The ROC analysis for those VOCs showing significant differences 
between the long-short survival time groups (α = 0.05), gave excellent 
predictive accuracy for V109 (AUC = 0.93) with 100 % sensitivity and 
89 % specificity. Good accuracies were found for V345 (AUC = 0.90) 
and V107 (AUC = 0.87); and AUCs were < 0.8 for the other considered 
VOCs (Table S7). These preliminary results should be confirmed by the 
analysis of a greater number of samples, and ideally with a setting that 
minimize variability due to different treatment strategies. 

3.7. Validation of the diagnostic model 

The diagnostic model based in the relative intensity of the selected 
PAC biomarkers was validated by the analysis of an independent cohort. 
The validation samples (n = 10) were collected along 2021 at Hospital 
San Pedro (Logroño). Serum samples were collected from 5 PAC patients 
and 5 controls, and they were analysed following the proposed method. 
Using signal V197, that showed the most promising results after the 
modelling experiment, all samples were correctly classified. Among the 
other selected VOCs with biomarker potential, V362, V274, V94, V364, 
V145, V187, and V365 classified the 5 controls and the 5 patients 
correctly. For V328, that had a similar AUC with V197, out of the 10 
samples one false positive was found. One false positive was also 
detected for V171, and one false negative for V170. Since the accuracy of 
the prediction was 100 % for V197, V362, V274, V94, V364, V145, 
V187, and V365; and 90 % for V328, V170 and V171, those eleven VOCs 
were considered validated biomarkers for PAC (Table 5). 

The other VOCs had different results for false positive and false 
negative. Interestingly, for some of them (V380, V338, V172, V51, 
V131, V173, V68, V38, V386, V169, V332, and V97) we observed a 
significant difference (α = 0.05) between the signals for controls and 
patients (Table 5) that may indicate to be consistent regarding differ-
ences between groups, but the cut-off points were not consistent be-
tween the control-case set used to establish the model and the validation 
set. This may be due to a change of sensitivity of the equipment or other 
factors. Although good results were obtained following this strategy, 
ideally, those VOC levels in serum should be determined to give an ac-
curate concentration cut-off, using a SIM acquisition method, and 
normalized by independent labelled ISs for each biomarker; but this 
would be only viable after the chemical identification of the biomarkers. 

3.8. VOCs identification 

The results from the control-case study are highly promising 
regarding the potential discovery of a biomarker capable to detect 
pancreatic cancer using volatolomic information. For the transference of 
this discovery to clinical application, for example as the basis for the 
design of a portable point-of-care device for the in-situ detection of PAC, 
the elucidation of the chemical structure of the most promising VOCs is 
needed. With this goal in mind, for those VOCs with AUC above 0.90 and 
that correctly classified the validation set, we performed NIST library 
search for correspondences with their MS spectra. Among the proposed 
compounds, we selected the highest score ranked (threshold was set at 
50 %) with concordance for the proposed structure for at least 30 % of 
the samples (n = 10). Those analytical standards that were commercially 
available at reasonable conditions were purchased and an aliquot was 
analysed following the same HS-SPME-GC/MS method. The RT for the 
standard was compared with the RT found for the unknown compound 
in serum (Table S8). We successfully found coincidence of RT for four of 

Table 3 
Results of the ROC analysis of the signals showing a significant difference be-
tween the control and case groups. AUC with 95% CI, sensitivity, specificity and 
cut-off point are included.  

Biomarker AUC 95 % CI Cut-off Sensitivity Specificity 

V197  0.984 (0.941–1.000)  0.0129  0.90  0.95 
V328  0.982 (0.929–1.000)  0.00351  0.95  0.95 
V39  0.953 (0.870–1.000)  0.523  0.85  0.95 
V332  0.942 (0.834–1.000)  0.00278  0.90  1.00 
V40  0.934 (0.826–0.989)  80.9  0.90  0.85 
V41  0.934 (0.839–0.987)  0.448  0.90  0.85 
V172  0.932 (0.834–0.995)  3.205  0.85  0.85 
V365  0.929 (0.829–0.995)  0.00610  0.85  0.95 
V390  0.929 (0.821–0.997)  0.0026  0.95  0.90 
V34  0.929 (0.826–0.992)  0.00525  0.85  0.90 
V174  0.921 (0.809–0.992)  0.0238  0.85  0.90 
V38  0.917 (0.809–0.984)  0.348  0.90  0.85 
V338  0.911 (0.800–0.992)  0.00345  0.85  0.95 
V311  0.911 (0.787–0.983)  0.00131  0.85  0.90 
V171  0.907 (0.797–0.987)  0.281  0.85  0.85 
V173  0.905 (0.779–0.986)  0.0229  0.85  0.85 
V37  0.903 (0.784–0.978)  0.172  0.90  0.80 
V380  0.903 (0.766–0.989)  0.0250  0.85  0.90 
V36  0.900 (0.792–0.984)  0.142  0.90  0.80 
V51  0.897 (0.785–0.972)  0.0027  0.85  0.80 
V141  0.897 (0.768–0.982)  23.0  0.75  0.90 
V131  0.897 (0.778–0.971)  0.00305  0.80  0.80 
V362  0.895 (0.754–0.987)  0.000870  0.90  0.90 
V140  0.895 (0.754–0.984)  0.995  0.75  0.95 
V68  0.895 (0.758–0.976)  0.0134  0.80  0.85 
V142  0.892 (0.758–0.978)  0.269  0.75  0.95 
V364  0.889 (0.759–0.983)  0.00165  0.80  0.90 
V29  0.887 (0.757–0.971)  0.0777  0.85  0.85 
V28  0.887 (0.759–0.976)  0.0515  0.85  0.85 
V139  0.886 (0.748–0.982)  0.232  0.80  0.95 
V187  0.884 (0.745–0.978)  0.0185  0.85  0.85 
V52  0.884 (0.763–0.961)  0.322  0.90  0.75 
V170  0.879 (0.755–0.971)  0.00726  0.80  0.85 
V349  0.871 (0.734–0.966)  0.00359  0.75  0.90 
V386  0.871 (0.738–0.968)  0.0181  0.85  0.85 
V97  0.866 (0.717–0.968)  0.00904  0.80  0.80 
V169  0.863 (0.710–0.963)  0.0102  0.85  0.85 
V145  0.853 (0.712–0.953)  0.0249  0.75  0.85 
V274  0.853 (0.716–0.963)  0.0228  0.80  0.80 
V94  0.850 (0.701–0.947)  0.0430  0.90  0.75  
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the proposed VOCs: V40 with toluene, V172 with 2-ethyl-1-hexanol, 
V274 with pentylbenzene, and V328 corresponded with butox-
ymethylbenzene, also known as benzyl butyl ether. A similar match ratio 
(Rmatch) after comparison with the NIST record was found for the VOC 
from serum and the analytical standard (Fig. 5) when the mass spectra 
were obtained by the proposed HS-SPME-GC/MS method. Since RT and 
mass spectra were matching with corresponding analytical standards, 
those four VOCs: toluene, butoxymethylbenzene, 2-ethyl-1-hexanol, and 
pentylbenzene were considered correctly identified. Among these bio-
markers, pentylbenzene presented the best results in the validation 
study after correct classification of all the tested samples. 

Toluene, pentylbenzene, and butoxymethylbenzene are benzenoids. 
Toluene in the body is exogenous, and it is metabolized by cytochrome 
P-450 (CYP) [36]. It has been detected in human blood, urine, breath, 
feces, and saliva [37]. Abnormal levels have been correlated with dis-
eases [7,38], its absence has been related with Clostridium difficile 
infection [39], and other authors found positive correlation between 
exposure to toluene and thyroid cancer occurrence [40]. Our findings 

indicate that the levels of these benzenoids in pancreatic cancer patients 
are lower than those for healthy controls (Table 2, data for V40, V328 
and V274). A possible explanation may be that, under carcinogenesis 
conditions, cytochrome p450 enzymes are overactivated and metabolize 
these benzenoids, decreasing their levels in blood [16]. But this expla-
nation would require thorough future examination. 

2-Ethyl-1-hexanol is a fatty alcohol that is metabolized in the body 
by ADH, and is excreted in breath, urine, sweat, feces and saliva [16,37]. 
Higher levels of 2-ethyl-1-hexanol in saliva were found in healthy chil-
dren than in celiac children along with alterations of salivary microbiota 
[41]. It has been pointed out, by several authors, as a potential 
biomarker for lung cancer, with elevated levels in breath, urine, pleural 
effusions and cell lines [11,16,42]. In this work, we found significantly 
decreased levels of 2-ethyl-1-hexanol in pancreatic cancer serum 
compared with controls (Table 2, data for V172). We could propose the 
hypothesis that PAC patients are affected by elevated ADH activity [43], 
that may lead to decreased 2-ethyl-1-hexanol in blood, but this suppo-
sition would need further investigation. 

Fig. 4. ROC curves with 95% CI and boxplot for the two most significant features: V197 (AUC 0.98, 95% sensitivity and 95% specificity) and V328 (AUC 0.98, 95% 
sensitivity and 95% specificity). Data was log transformed and auto scaled prior to ROC analysis, raw cut-off values are shown in Table 3. 
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Building a diagnostic method based in known VOCs is advantageous 
since their serum concentration for controls and patients may be accu-
rately determined, improving robustness of the diagnostic method. Best 
individual response was found for butoxymethylbenzene, with AUC =
0.98. Toluene and 2-ethyl-1-hexanol AUC were 0.93, pentylbenzene’s 
AUC was 0.85. With the goal of improving the diagnostic method, 
combinations of these normalized and scaled VOCs were considered and 
subjected to ROC analysis (Table S9). All tested options gave AUC >
0.90, with values ranging from 0.97 to 0.91, showing excellent predic-
tive accuracy. While those results were slightly better than for individual 
toluene, 2-ethyl-1-hexanol, or pentylbenzene, none of the combinations 
showed better AUC than butoxymethylbenzene (0.98). The combination 
2-ethyl-1-hexanol + pentylbenzene (V172 + V274) had the best results 
after analysis of the validation batch, correctly classifying all samples 
with an AUC value of 0.91 (Table S9), but that was still lower than 
butoxymethylbenzene alone. 

4. Conclusions 

The serum volatolomic profile reflects the organism lifestyle and 

health status, therefore its study for the discovery of disease biomarkers 
is meaningful. All univariant, unsupervised multivariate, and supervised 
multivariate analyses carried out in this control-case prospective study 
are congruent and drive to similar conclusions: the human serum vola-
tolome contains information valuable for the discrimination of PAC 
patients from the healthy population, and consequently is a valuable 
tool to discover new PAC biomarkers. Among the great number of VOCs 
in the volatolomic profile (n = 433), those signals found at the RT and 
m/z values indicated for V197 and V328 are the most promising can-
didates to be biomarkers of PAC (AUC = 0.98, p-val < 0.001). None-
theless, there are other VOCs with statistically significant results worthy 
to be considered: a total of 40 VOCs may be used as PAC biomarkers 
based on the significant differences for the control and case groups. 
Their ROC results give AUCs above 0.85 that means that are excellent 
(19 VOCs with AUC > 0.9) or good (21 VOCs with AUC 0.8–0.9) pre-
dictors of PAC. Among these biomarkers, V197, V362, V274, V94, V364, 
V145, V187, V365, V328, V170 and V171 have been validated using an 
independent set of samples. Some other VOCs are worthy to be further 
studied, because although the validation sample set classification was 
not satisfactory, the differences between the control and patient group 

Table 4 
Sex and age effects in the volatolome. p-Values from the 2-tails t-test that were applied for all the participants and for the control and PAC groups are shown. The 
correlation between age and VOCs intensity was tested by Pearson correlation tests. Statistically significant p-values are indicated in red. *: p < 0.05; **: p < 0.01.  
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are still present in the new set of samples so they may be good bio-
markers upon establishment of accurate cut-off points. The main 
objective of this study was to account for the maximum number of 
volatolomic signals in order to increase the chances of finding mean-
ingful information for the discrimination of PAC patients; therefore, MS 
full scan detection was used. However, the monitoring of those selected 
set of VOCs with a SIM method is recommended for further studies since 
it would enhance the sensitivity and precision; and, in consequence, the 
robustness of the analysis and would contribute to set the critical values 
for the diagnostic of PAC. 

Some variables that may affect volatolome, i.e., sex, age, smoking, 
and alcohol intake, were studied. Age or alcohol intake did not have a 
significant effect in the selected signals. Smokers presented an enhanced 
signal for one of the selected VOCs: pentylbenzene (V274). Regarding 
sex, differences between male and female PAC patients were observed 
(no sex differences were observed in controls). The significance of the 
control-patient test was not affected by those sex differences. 

For the improvement of the accuracy and robustness of the PAC 
diagnostic method, the identification of the biomarker candidates is 
crucial. We successfully identified four highly sensitive biomarkers of 
pancreatic cancer, namely toluene, 2-ethyl-1-hexanol, pentylbenzene, 
and butoxymethylbenzene. The quantification of those VOCs by SPME- 
GC–MS with SIM acquisition and using individual ISs may serve to 

establish the concentration levels in healthy volunteers and patients, 
and the assessment of those levels to discriminate PAC patients may 
serve as an initial step for designing a portable device able to detect 
pancreatic cancer in screening campaigns in populations with a high risk 
of developing PAC. 

Further studies should be directed to elucidate the specificity of the 
VOC panel proposed for pancreatic cancer detection in an experiment 
where samples from patients suffering different kinds of cancer and 
including other pancreatic affections may be tested. Moreover, the in-
clusion of samples collected at different stages of the disease would show 
the capability to detect PAC at early stages, which would be of great 
interest for improving the prognosis of those patients. 
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