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ABSTRACT 
 
This study presents the simulations for distributed wireless sensor networks (WSNs) of 
autonomous mobile nodes that communicate intelligently, with or without a central/root node, as 
is desired in Edge Artificial Intelligence (Edge-AI).  

We harness the high-resolution and multidimensional sensing characteristics of IEEE 802.15.4 
standard and Routing Protocol for Low-Power and Lossy Networks (RPL) to implement dynamic, 
asynchronous, event-driven, targeted communication in distributed WSNs in a simulator.  

We use the chosen Contiki-NG/Cooja to simulate two WSNs with and without a central node. The 
two WSN simulations are assessed on the network Quality of Service (QoS) parameters such as 
throughput, network lifetime, power consumption, and packet delivery ratio. The simulation 
outputs show that the sensor nodes at the edge communicate successfully with the specific 
targets responding to particular events in an autonomous and asynchronous manner.  However, 
the performance is seen slightly degraded in the RPL WSN network with a central node. 

This work shows how to simulate distributed WSNs using the Cooja simulator, with or without a 
central node, for communication among sensors relevant to Edge-AI applications, such as visual 
surveillance, monitoring in assisted living facilities, intelligent transportation, connected vehicles, 
automated factory floors, immersive media experience, etc. 
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Introduction 
1.1 Motivation 
 

Edge computing involves data processing and analysis at the edge of a network, where actual 
data generation and collection happen. The Edge AI thus necessitates executing AI algorithms 
locally on an edge device or a server near the edge device. The devices should make un-assisted, 
uninterrupted autonomous decisions within a fraction of a millisecond without connecting to the 
Internet or the Cloud.  

The design aims to create distributed wireless sensor networks (WSNs) consisting of edge devices 
that talk to their peers directly, take decisions on their own in a dynamic, asynchronous 
environment. The devices thus perform intelligent, independent communication within their 
constraints to save power and resources during Edge Computing. 

As a simplified example of insightful predictive analysis and actionable decision-making in real-
time, let us consider three rooms in a building, each fitted with a temperature sensor to register 
hourly local room temperature. After recording, each sensor validates its measured value against 
a predefined high/low-temperature threshold. On crossing the threshold, the sensor compares its 
reading with the neighboring sensors. If its measured value does not align with the other sensors, 
there is a likelihood that the sensor may have started malfunctioning.  

However, in the other case, when the measured value crosses the threshold and matches with 
similar spikes in neighboring sensors, there is another likelihood of abnormal hot or cold 
temperature build-up in that area. The sensor then communicates with the expert sensors for 
follow-up actions such as sending alerts for possible dangers to a central command station, 
lighting the bulbs or ringing the alarms, running water showers in case of fire, and powering on 
the air-conditioners for temperature adjustment, etc. 
 
The building represents a dynamic neighborhood where the measuring sensors can be installed 
anew, removed, or moved to random locations. 

  
Thus,  

1. The sensors communicate when they need to, e.g., when crossing the threshold or 
during the spikes (asynchronous event-triggered communication).   

2. They talk to expert sensors for a follow-up action (targeted communication).  
3. The sensors belong to a network where they leave or join the network randomly 

(dynamic network). 
 

In this work, we will use an existing simulator software to simulate a working system for practical 
implementation. 
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1.2 Contributions 
 

Towards the aim of generating continuously integrated real-time data and actionable insights and 
decisions based on artificial intelligence (AI) or machine learning (ML) processing at the cloud-
agnostic constrained devices over Edge AI platforms, the contributions of this work are: 

1. Comparing existing simulators and identifying one that is affordable and can  
 simulate asynchronous, event-triggered, and targeted communication in a 

dynamic sensor network, 
 serve as an emulator with an actual edge device’s hardware/software feature to 

facilitate real-world deployment with minimal effort. 

Remark: Please note that the study to compare the simulators was carried out during 
Spring 2021 as part of EECE 7992 Independent Study II. 

2. Implementing point-to-point communication for edge computing in scalable distributed 
wireless sensor networks with varying network topologies. 

3. Demonstrating actionable decision making based on simple conditional logic at sensor 
level in distributed WSN using  

 high-resolution and multidimensional IEEE 802.15.4 standard, 
 Routing Protocol for Low-Power and Lossy Networks (RPL). 

2 Simulation Models and Methods 

2.1 Problem Definition 
 
Design and implement a distributed wireless sensor network (WSN) or Internet of Things (IoT) 
network capable of targeted, asynchronous, event-triggered, dynamic nodal communication with 
no central storage and no centralized decision-making. 

Thus, we aim to build a distributed WSN where:  

 Each node (or sensor or thing) decides when and whom to communicate. Hence, when 
triggered by an asynchronous event, the node communicates with a target node running a 
decision matrix locally. The source node thus exhibits complete autonomy based on its 
unique data, knowledge, and capabilities. 

 The nodes are stationary or moving. Hence, the network topology is expected to change 
with nodal mobility.  

 The independent decision making by a node consists of a few simple if-then statements like 
below, representing unique conditions, unique messages by unique nodes:  

if <condition>, 
           Send <message> to <node> 
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2.2 Simulator Selection 
 

To demonstrate the capabilities of our chosen networks on Edge AI, we needed an IoT simulator 
to emulate real-world scenarios on distributed WSNs. Earlier works available in the literature on 
simulator comparison do not evaluate the latest version of simulators on network attributes of our 
choice, namely, event-triggered, targeted, asynchronous, and dynamic communication. So, we 
present here our evaluation and comparison of a few popular IoT simulators, namely 
Contiki/Cooja, OMNeT++/Castalia, NS-3, and MATLAB-Simulink. Another simulator named 
NuvIoT had to be excluded as it frequently errored at the time of this research on its MS-Windows 
and web versions. 

 OMNeT++: The OMNeT++ has an event network simulation framework suitable for 
modeling entities communicating by exchanging messages. The nodes generate realistic 
packets based on a real-life scenario.  

 NS-3: The NS-3 event network simulator executes events in sequential time order at a 
specified simulation time. The NS-3 generates consistent, reproducible results for 
modeling the internet protocols on real network cards.  

 MATLAB – Simulink: Matlab-Simulink allows creating digital twins and developing data-
driven and physics-based models for simulating the end nodes, modeled in continuous, 
sampled, or a hybrid time for connected things. 

 Contiki-NG/Cooja: With Cooja, large and small networks of Contiki nodes can be 
simulated. Contiki OS allows precise inspection of the nodes and directly emulates their 
behavior at the hardware level. 

The detailed feature comparison for the above simulators is shown in Table 1. 

 

2.2.1 Limitations of the simulators not selected for this study 
 

Referring to the recent literature, the OMNeT++, NS-3, and MATLAB/Simulink were opted out 
from further studies due to their limitations listed below. 

[A] NS-3  

 A limited number of contributed source code [31], implying lesser interest in the 
development community 

 Lesser support for protocols and devices using pre-built models [31]  
 Higher CPU usage impacting performance [31] 
 The NS-3 simulation framework cannot be integrated with an actual hardware platform 

[35] 

[B] OMNeT++  

 The Castalia/OMNeT++ kernel is single-threaded. As OMNeT++ only uses one core, so a 
higher single-core performance causes higher execution speeds and fully loading of only 
one core of the CPU [32] 

 OMNeT++ does not support multi-hop communication which strongly depends on real-
time data [32] 
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 OMNeT++ is free only for academic and non-profit use [33] 
 The INET Framework behind OMNeTT++ is not specialized in mobile and wireless 

networks but has some support for it [34] 
 The OMNeT++ simulation framework cannot be integrated with an actual hardware 

platform [35] 

[C] MATLAB/Simulink 

 Max number of permitted nodes for simulation are only 100 [35] 
 Affordability issue 

 

2.2.2 The rationale for choosing Contiki-NG/Cooja as our simulator 
 

“Cooja is an emulator – a hardware or software system that makes the host system - a complete 
replication of the guest system, right down to being binary compatible with the emulated system's 
inputs and outputs. The code to be executed by the node is the exact same firmware uploaded to 
physical nodes” [47]. 

“Cooja Framework, due to its use of embedded software to perform cycle-exact emulation of 
devices— can run any program designed for one of the emulated architectures. Many published 
articles in the domain of WSNs, including very recent publications, include simulations made with 
the Cooja/MSPSim framework. Cooja has the ability to develop and debug WSN-related software 
much more easily thanks to its emulation features.” [46]. 

Thus, we observe that the Contiki NG/Cooja has several advantages over other simulators for 
edge devices. Its properties listed below allow the simulation of event-triggered, targeted, 
asynchronous, dynamic communication along with energy efficiency, efficient bandwidth usage, 
efficient coverage, and connectivity for use in distributed WSN. 

 Preemptive multithreading, proto-thread based concurrent programming, event-driven kernel  
 Wide range of supported protocols, propagation models  
 Emulated code directly portable on sensor hardware platforms 
 Open source along with substantial industrial and development support 
 Supported simulation for 170+ nodes 

The following sections describe our simulations developed in Contiki NG/Cooja.  

 



 
 

Feature Contiki Castalia NS-3 MATLAB-Simulink 
Latest version Contiki-NG Version 4.6 Version 3.3 Version NS-3.7 Version R2021a 
Programming 
language 

C language, Optional GUI C++, OMNeT++ NED 
language 

C++/Python, No GUI MATLAB multi-
paradigm and Simulink 
proprietary graphical 
programming languages 

Required 
library or 
software 

Native Contiki OS 
libraries 

OMNeT++ component-based 
C++ simulation library and 
framework 

Standard C++ library: GPLv2 MATLAB coder, 
Simulink 

OS/Middleware Contiki OS Any OS with a modern C++ 
compiler. But Simulation IDE 
can run only on Windows, 
Linux, or macOS 

Linux Cygwin, osX Windows, macOS, and 
Linux 

License type Open-sourced under a 
BSD-style license. 

Academic Public License / 
Commercial License for 
OMNeT++ for commercial 
usage 

Free, GNU GPLv2 license Commercial license 
required for usage 

Simulator type Sensor simulator called 
Cooja, which simulates 
Contiki nodes 

OMNeT++ platform based 
object-oriented modular 
discrete event network 
simulation framework 

discrete-event network 
simulator for Internet 
systems 

Graphical programming 
environment – Simulink 
tightly integrated with 
MATLAB 

Simulation 
library features 

The simulation platform 
provides users with a 
single, integrated GUI 
environment in which all 
tasks are carried out. 

Discrete event simulation, 
scheduling events, sending 
and receiving messages, 
channel operation, finite state 
machines, dynamic module 
creation, signals, logging, 
random number generation, 
queues, topology discovery 
and routing support, statistics 
and result collection 

“NS-3 is designed as a set of 
libraries that can be 
combined together and also 
with other external software 
libraries. Several external 
animators and data analysis 
and visualization tools can 
be used with ns-3.” [6] 

Discrete-event 
simulation with 
Simulink® provides 
capabilities for 
analyzing and 
optimizing event-driven 
communications and 
operations using hybrid 
system models, agent-
based models, and 
state charts. 
Its primary graphical 
block interface is a 
diagramming tool and a 
customizable block 
library. 
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Uniqueness   “Contiki is a multitasking 
operating system, 
specially designed for 
microcontrollers with 
small amount of 
memory (35KB of ROM 
and around 3K of 
RAM)”[9].  Its in-built 
TCP/IP stack 
provides lightweight 
preemptive scheduling 
over event-driven kernel 

“Researchers and developers 
use Castalia to test their 
distributed algorithms and/or 
protocols in a realistic wireless 
channel and radio models” 
[10] behavior especially 
relating to access of the 
radio. Used as a simulator for 
Wireless Sensor Networks 
(WSN), Body Area Networks 
(BAN), and generally 
networks of low-power 
embedded devices.  

“Open, extensible network 
simulation platform, for 
networking research and 
education. Some of the 
reasons to use ns-3 include 
performing studies that are 
more difficult or not possible 
to perform with real systems, 
to study system behavior in a 
highly controlled, 
reproducible environment” 
[11], for modeling the Interne
t protocols and to learn about 
how networks work. ns-3 can 
also be used to model non-
Internet-based systems.  

Easy to use, wide 
adoption, mature 
product, great 
visualization for 
complex systems.  
Matlab’s simulations of 
physical structures can 
almost automate entire 
cycles in product 
delivery.  

Event-driven 
programming  
  

Uses Event-Driven Kernel 
based on protothreads.  
  
A protothread is a 
concurrent programming 
mechanism  
“that shares features of 
both multithreading and 
event-driven 
programming to attain a 
low memory 
overhead” [12] 

Uses OMNeT++ event-driven 
simulation engine  
  
  

Event-driven simulation core 
and object framework.  
  
“Conceptually, the simulator 
keeps track of a number of 
events that are scheduled to 
execute at a specified 
simulation time. The job of 
the simulator is to execute 
the events in sequential time 
order. Once the completion 
of an event occurs, the 
simulator will move to the 
next event (or will exit if there 
are no more events in the 
event queue)” [13] 

SimEvents is used to 
add a library of 
graphical building 
blocks for modeling 
queuing systems to the 
Simulink environment 
and to add an event-
based simulation engine 
to the time-based 
simulation engine in 
Simulink.  

Preemptive 
multithreading  
   

Contiki provides 
preemptive multithreading 
as an application library 
that runs on top of 
the event-based kernel.  
Preemptive 

cooperative multitasking or 
non-preemptive threads - The 
Threads are scheduled    
non-preemptively   

NS-3 provides a non-
preemptive scheduler via 
(direct-code execution) DCE 
Manager.  
This scheduler allows a 
'synchronous' programming 

A custom or pred-
defined architecture can 
be chosen for models 
configured for 
concurrent execution. 
Data and task 
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multithreading can be 
provided on a per-
process basis.  
  
Contiki processes run in 
the cooperative context, 
whereas interrupts and 
real-time timers run in the 
preemptive context.  

style where functions can 
block until certain conditions 
are verified as opposed to 
event-driven programming.  

parallelism including 
pipelines can be 
implemented in 
Simulink.   
 
  

Supported 
Protocols and 
Communicatio
n Stacks 

Implements IPv6 and 
IPv4 stacks, along with 
the recent low-
power wireless standards
: 6LoWPAN, RPL, CoAP, 
TSCH, Nullnet layer  
  

“INET Framework is an open-
source model library for 
the OMNeT++ simulation 
environment.  
INET supports a wide class of 
communication networks, 
including wired, wireless, 
mobile, ad hoc and sensor 
networks. It contains models 
for the Internet stack (TCP, 
UDP, IPv4, IPv6, OSPF, BGP, 
etc.), link-layer protocols 
(Ethernet, PPP, IEEE 802.11, 
various sensor MAC 
protocols, etc.), refined 
support for the wireless 
physical layer, MANET routing 
protocols, DiffServ, MPLS with 
LDP and RSVP-TE signaling, 
several application models, 
and many other protocols and 
components. It also provides 
support for node mobility, 
advanced visualization, 
network emulation, and more” 
[14] 
  

IPv4, UDP, and TCP stack 
and support 
for NSC (integrating Linux 
and BSD TCP/IP network 
stacks).  

Simulink supports two 
communication 
mechanisms [1]- XCP, 
the 
Universal Measurement
, and Calibration 
Protocol  
[2]- TCP/IP and serial 
(RS-232)  
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Supported 
Propagation 
Models 

- Unit Disk Graph Medium 
(UDGM)  
- Distance loss UDGM   
- Directed Graph Radio 
Medium (DGRM)  
- Multipath Ray-tracer 
Medium (MRM)  

Default is Free Space model 
Extended by paper-10 these 
propagation models- Two Ray 
Ground and Log-Normal 
Shadowing, Nakagami model,
  
probabilistic 
propagation models  

Free Space, Two Ray 
Ground and Log-Normal 
Shadowing, Nakagami  
Model. A set of solid 802.11 
MAC and PHY models  

MATLAB Simulink 
supports various 
propagation models, 
e.g., Atmospheric, 
Empirical, Terrain and 
Ray Tracing methods – 
image and SBR 
(shooting and bouncing 
rays)  

Mesh 
networking  

Contiki supports more 
advanced functionality 
like mesh networking, an 
important capability for 
self-forming and self-
healing large networks 
with many nodes.  

OMNeT++ supports 
simulation of 802.11  
Wireless Mesh Networks 
(WMNs).   

NS-3 supports mesh 
networking as IEEE 802.11s 
Mesh Networking Model  

Mesh Networking 
supported e.g. network 
layer flooding in a 
Bluetooth® mesh 
network using 
Communication Toolbox 
Library™ for the 
Bluetooth® Protocol.  

Real-time 
emulation 
features  

The simulation code 
generated can be 
deployed mostly as-is to 
work on real physical 
systems.  

Does not meet hard real-time 
requirements – rather focuses 
on soft and firm real time  

“To integrate with real 
network stacks and 
emit/consume packets, NS-3 
uses a real-time scheduler to 
lock the simulation clock with 
the hardware clock.” [15] The 
real-time scheduler causes 
the progression of the 
simulation clock to occur 
synchronously to some 
external time base.   
  

The simulation code 
generated can be 
deployed mostly as-is to 
work on real physical 
systems.  

 

Table 1. Comparison of simulators’ features.  Remark: Please note that the study to compare the simulators was carried out 
during Spring 2021 as part of EECE 7992 Independent Study II. 
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2.3 Simulation of a distributed WSN without a central/root node 
 

This section implements a distributed WSN, an autonomous collection of mobile nodes that 
communicate over wireless links without a central node. Revisiting our requirements, we need 
the nodes to be mobile and independently execute logical decisions, network organization, and 
message delivery.  

The left-most layers shown in Figure 1(a) represent the networking framework of the Open 
System Interconnections (OSI) model that conceptualizes communication among systems. The 
media access control (MAC) sublayer of the data link layer has access to the wireless medium 
for data transmission. It provides an abstraction of the physical layer to the layers above it in the 
OSI framework [48]. The MAC layer encapsulates IEEE 802.15.4 standard for low-rate wireless 
personal area networks (LR-WPANs). This standard provides ubiquitous communication among 
nearby devices with little to no underlying infrastructure. 

 

Figure 1(a). Open System Interconnections (OSI) Data-link layer mapped to Contiki-NG 

 

The MAC layer governs the transmission and reception of data packets. ContikiMAC, the default 
MAC protocol in ContikiOS, uses Carrier Sensing for detecting medium activity. The Radio Duty 
Cycle RDC protocol performs asynchronous discovery using low-power probing and low-power 
listening (LPL) [59]. The mechanism works so that the entire data frames are sent repeatedly until 
acknowledged by the receiver. The nodes detect the emerging links in the neighborhood using 
their constantly-on radios that operate at low-duty cycles to preserve power and maximize lifetime.  

With short wake-up periods and an efficient transmission mechanism, the MAC/RDC layers yield 
a better Packet Delivery Ratio (PDR) and work well in practice for dynamic traffic [55] [58].  
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On the right of Figure 1(a), we show how the MAC Sublayer maps with the Contiki network 
protocol stack shown in Figure-1(b). The MAC layer of Contiki-NG, version 4.0 onwards, 
combines MAC and the Radio Duty Cycle (RDC) layers [16]. The RDC layer controls the wake-
up and sleep cycles of a node to preserve energy during data transmission. 

 

 

Figure 1(b). Contiki protocol stack. Adopted from [4]. 

 

With version 4.0, a new layer called Nullnet is introduced in the Contiki-NG network stack [16]. 
The Nullnet network layer is a minimal layer helpful for lower-layer testing and non-IPv6 scenarios 
[38]. It relays the data packets unmodified up/down the Contiki network stack. The data packets 
from the sender node travel via MAC and NullNet layers up to the receiver node.  

The network layer in Contiki OS is accessed via the global variable NETSTACK_NETWORK 
defined in compilation time at core/net/netstack.h [55][56] and the NullNet layer is accessed via 
os/net/nullnet/nullnet.h [57]. 

Thus, the dual-stack of the MAC and Nullnet layers in Contiki-NG ensures a distributed WSN 
without utilizing a central node or any intermediate device, access point, router, modem, gateway, 
cloud from the upper layers of the stack. Each node in a WSN is identified by its Extended Unique 
Identifier (EUI)-48-bit address [39][40], which is hard-wired into the sensor’s transceiver for data 
transmission within a wireless (Wi-Fi, Zigbee, Bluetooth) segment. The lower dual-stack facilitates 
a unicast, any-node to any-node communication among nodes based on their EUI addresses.  

2.3.1 Neighbor Discovery Mechanism Without a Central/Root Node 
 

In the case of WSN with no central node: For discovering the MAC addresses, the ContikiOS 
caches the node addresses by default by enabling the global variable 
UIP_ND6_AUTOFILL_NBR_CACHE. The caching lets the node derive the MAC address from 
the EUI-64 contained in the IPv6 address [64]. However, if the neighbors are not maintained in 
the cache, the ContikiOS assumes auto-configuration and enables UIP_ND6_SEND_NS instead. 
In this case, it runs IPv6 Neighbor Discovery and derives the link-layer address of the neighbors 
from the link-local IPv6. Thus, it adds the neighbors regardless of their reachability and liveness. 
[65]  
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Simplifying further, in ContikiOS, a node consists of an Internet Protocol (IP) interface attached 
to the IEEE 802.15.4 medium link. During the entry of a node into the network at its system start-
up, the node undergoes autoconfiguration and ensues an IPv6-based neighbor discovery process 
described below [62][66][67][68]. 

The node generates a tentative link-local address for the interface based on its MAC address. 
However, before self-assigning this address, the node multicasts a “neighbor solicitation” 
message to verify if its prospective link-local address is unique on the link.  

1- If the address is already present on the link, a “neighbor advertisement” message is 
returned in the response. The autoconfiguration stops in this case, and manual 
intervention is required. 

2- If the address is not in use nor is solicited by any of the neighbors, the link-local address 
is assigned to the interface, and the node gets attached to the link. The nodes attached 
on the same link become neighbors and cache the detected link-layer addresses for 
subsequent use.  

3- A node is called reachable when the one-way packets forwarded to it by its neighbors 
reach its IP interface. The link-attached reachable neighbors can thus communicate or 
exchange data packets. 

During exit and re-entry, if the node undergoes a change in its link-layer address, it multicasts a 
neighbor advertisement to all its neighbors [69]. It allows the neighbors to update their address 
cache with the modified link-layer address of the node. 

 

2.3.2 Radio Propagation Models 
 

2.3.2.1 Unit Disk Graph Medium (UDGM) distance-loss radio propagation 
 

Unit Disk Graph Medium (UDGM) distance-loss radio propagation model in Cooja models the 
transmission range surrounding a unit disk with the transmitting node as the center. All the 
receivers within the disk have the same probability of successfully receiving a data packet. The 
UDGM uses distance as the criteria to determine if the two nodes can communicate with each 
other. It creates a directed graph of nodes within transmission distance of each other and displays 
“the percentage of packets that will not be corrupted on transmission (TX) and reception (RX)” 
[50].  It models interferences and the packets “transmitted with a TX success ratio and received 
with RX success ratio, offering a higher sense of reality for the simulation” [49]. Beyond the 
transmission disk around a node center, the UDGM-distance loss model draws another disk of 
interference, in which the packets from a node can interfere with those from the others. The data 
packets are delivered only when there is no interference during transmission. 
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2.3.2.2 Multi-path Ray-tracer Medium (MRM) radio propagation 
 

Cooja provides yet another packet-based Multi-path Ray-tracer Medium (MRM) radio propagation 
model, which uses a ray-tracing technique in 2D space. The MRM environment in Cooja allows 
simulating signal-to-ratio (SNR) based reception, background-noise mean and variance, capture 
effects, path-rays, refraction, diffraction, reflection, and obstacle attenuation. The parameters for 
transmitter, receiver, ray-tracer, and obstacles can be configured via the MRM settings in Cooja. 

The analytical approach of the MRM radio propagation model approximates obstacles as 
attenuators of the signal strength. The model accounts for the refractions, reflections, and 
diffractions to render a much realistic transmission range of radio signals. [70]  

We generated a WSN (with no central node) as in Figure 2(a), in MRM environment in Cooja that 
shows the radio antennas of five nodes including an obstacle. The nodes were placed at distances 
ranging from 200 to 800 meters. An obstacle, shown as the rectangular walls was placed between 
the nodes 2 and 5.  

 

 

Figure 2(a). An obstacle placed between the nodes 2 and 5 in the MRM environment 

 

Figure 2(b) shows the same five nodes in the MRM environment with their positions in 2D space 
and the probability of reception, signal strength from node 5.  

 

 

 

 

Obstacle 
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Figure 2(b). Impact of obstacle on the probability of packet reception as seen from node 5  
in the MRM environment 

From Figure 2(b), we observe that node 2 has a 0% probability of reception for the packets from 
node 5 due to an obstacle between the two.  

 

Figure 2(c). Impact of distance on the probability of packet reception as seen from node 1 in the 
MRM environment 

From Figure 2(c), we observe that as we move farther away from node 1 towards nodes 5, 2, and 
3, the probability of reception drops to just 7.8%  
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In Figures 2(d) and 2(e), we show the color-painted MRM radio environment for visualization of 
the signal strength around node 5 at two different distances (measured by the length of the ray). 

 

Figure 2(d). MRM signal reception at a distance of about 200 m away from the node 

 

Figure 2(e). MRM signal reception at a distance of about 700 m away from the node 

 
We tracked rays from a node at different distances in the MRM environment to inspect the signal 
strength, signal-to-noise ratio, path gain, and reception probability when moving away from the 
node. The observations were recorded in Table A.  
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Distance 
(in meters) 

100 200 300 400 500 600 700 

Received 
Signal strength  

(in dB) 
at variance 4.0 

-80.113 -86.223 -90.100 -92.361 -94.197 -96.091 -96.796 

Total  
path gain 

-80.113 -86.223 -90.100 -92.361 -94.197 -96.091 -96.796 

Received SNR 
(in dB) 

at variance 5.0 
19.887 13.895 9.909 7.856  5.851 3.921 3.204 

Reception 
Probability 

100% 100% 96.2% 81% 47.1% 17.6% 10.6% 

 

Table A. Signal quality at various distances from a node 
in MRM radio environment in Cooja for a WSN without a central node 

From Table A, we observe that the SNR and reception probability begin to drop at distances away 
from a node.  

To assess the impact of obstacle, distances, interference, refraction, and diffraction on the 
network Quality of Service (QoS) parameters (i.e., network throughput, network lifetime, power 
consumption, packet delivery ratio) on the two WSNs with and without central node, we generated 
couple more simulations in the MRM environment using simulation settings in Table B in Cooja. 
The simulation results for the MRM environment are added in each of the sub-sections under 
sections 2.3.5 and 2.4.9 after the UDGM distance-loss model results.  

SNR reception threshold (dB) 6 
Background noise mean (dBm) -100 
Background noise variance (dB) 1 
Extra system gain mean (dB) 0 
Extra system gain variance (dB) 4 
Frequency (MHz) 2400 
Capture effect preamble (us) 64 
Capture effect threshold (dB) 3 
Default transmitter output power (dBm) 1.5 
Directional antennas with TX gain True 
Receiver sensitivity (dBm) -100 
Directional antennas with RX gain False 
Use FSPL on total path lengths only True 
Max path rays 1 
Max refractions 1 
Max reflections 1 
Max diffractions 0 
Reflection coefficient (dB) -3 
Reflection coefficient (dB) -5 
Diffraction coefficient (dB) -10 
Obstacle attenuation (dB/m) -3 

 
Table B. MRM environment simulation settings 
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2.3.3 WSN setup in Cooja (without gateway device) 
 

Aiming to create a simulation akin to the real world, we placed five low-power 2.4GHz, IEEE 
802.15.4, and 6LowPAN compatible WSN Z1 motes from Zolertia [42] at random locations in 
Cooja, as in Figure 2. To implement decision-making in the case of WSN without a central node, 
we used a random number-based simple conditional logic to pick the destination node for sending 
a counter as the message.  

Thus, to implement 

if <condition>, 
           Send <message> to <node> 

we used 

Condition: Pick a destination node if chosen by the random function 

Message: Counter value 

Node: Destination address chosen by the condition 

 

 

Figure 2(f). Z1 WSN Nodes at random locations in Cooja (with no central node)  
UDGM distance-loss model 
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2.3.4 Simulation Settings 
 

The following settings are used while simulating a WSN without a gateway device using UDGM 
distance-loss model. 

MAC Layer (PHY+MAC) IEEE 802.15.4 CSMA 
Number of nodes 5 
Simulation Time 5 minutes 49 seconds 
Energy Measurement Interval Every second 
Energy Measurement Module Energest 
Radio Propagation Model Unit Disk Graph medium (UDGM) – Distance Loss 
Node positioning Random  
Transmission (TX) Range 50 m 
Communication Type Peer to peer / Unicast 
Network Topology Random 
Total Frame Size 25 bytes 
MAC layer CSMA 
Net layer Null net 
Routing  Null Routing 
Default Channel 26 

 

Table 2. UDGM distance-loss model simulation settings. 

Channel ID 26, shown as the default channel above, is one of the physical channels in a 2.4 GHz 
frequency range and has a center frequency of 2480. 

2.3.5 Simulation Results 
 
The below performance metrics are dependable indicators of Quality of Service (QoS) in wireless 
sensor networks [25] [54]. 
 

 Network Throughput 
 Network Lifetime 
 Packet Delivery Ratio 
 Power consumption 

 
The sub-sections under 2.3.5 and 2.4.8 evaluate the above QoS parameters for the two WSNs 
implemented with and without a central node, using UDGM distance-loss and MRM radio 
propagation models 

2.3.5.1 Network Throughput 
 

In data transmission, network throughput is the amount of data moved successfully from one 
place to another in a given time period and is typically measured in bits per second (bps). Higher 
throughput implies a better network [36] [53]. Tables 3(a) and 3(b) list the network throughput 
statistics from the Wireshark network analyzer tool [37] for the two radio propagation models. 
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Total Packets 22562 
Total Simulation Time 349 seconds 
Average packets per second 1.3 
Average packet size 15 bytes 
Average bytes per second 18 
Average bits per second 151 
Encapsulation IEEE 802.15.4 Low-rate Wireless PAN 

 
Table 3(a). Network throughput - UDGM distance-loss model 

 

Throughput is sometimes measured as data packets per time slot [36]. Figures 3(a) and 3(b) 
show the input/output graph generated in the Wireshark for the throughput measured as packets 
per minute for the two radio propagation models. 

 

Figure 3(a). Packets per minute using CSMA-CA CC2420 RF Transceiver. 
(For WSN without a central node) - UDGM distance-loss model 

 

Total Packets 121296 
Total Simulation Time 349 seconds 
Average packets per second 5.7 
Average packet size 22 bytes 
Average bytes per second 127 
Average bits per second 1021 
Encapsulation IEEE 802.15.4 Wireless PAN 

 
Table 3(b). Network throughput in MRM environment 
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Figure 3(b). Packets per minute in MRM environment 

(For WSN without a central node) 

 

2.3.5.2 Network Lifetime 
 

A lower RDC ratio indicates a larger network lifetime. A node must keep its radio off to conserve 
energy. Tables 4(a) and 4(b) provide the RDC ratio values of five motes, as recorded in Cooja for 
the two radio propagation models. 

 

Mote ON TX RX 
Z1 100% 0.02% 0.05% 
Z2 100% 0.02% 0.06% 
Z3 100% 0.02% 0.05% 
Z4 100% 0.02% 0.06% 
Z5 100% 0.01% 0.07% 

 
Table 4(a). Radio duty cycle percentage (For WSN without a central node) -  

UDGM distance-loss model 

Mote ON TX RX 
Z1 99.96% 0.10% 0.18% 
Z2 99.96% 0.10% 0.22% 
Z3 99.95% 0.10% 0.21% 
Z4 99.96% 0.11% 0.33% 
Z5 99.95% 0.10% 0.24% 

 

Table 4(b). Radio duty cycle percentage in MRM environment  
(For WSN without a central node) 



20 
 

 

2.3.5.3 Power Consumption 
 

The power consumption value (in mW unit) of a node in Contiki/Cooja [45] can be calculated using 
Equation [A]. Therefore, we will be required to find out various input values for this equation. 

 

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
𝐸𝑛𝑒𝑟𝑔𝑒𝑠𝑡  ×  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 ×  𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑅𝑇𝐼𝑀𝐸𝑅_𝑆𝐸𝐶𝑂𝑁𝐷 ×  𝑅𝑢𝑛𝑡𝑖𝑚𝑒
 

 

Equation [A] 

 

Under Contiki-NG, the Energest module keeps track of energy consumption by the CPU and 
Radio components of the sensors. Knowing how long the components have been in different 
states like active, radioactive, or stand-by, and the energy consumption in those states makes it 
possible to estimate the power consumption by the sensor nodes [29]. The average Energest 
values of the five nodes derived from the recorded Cooja simulation log for the two radio 
propagation models are given in Table 5(a) and 5(b). 

 

Average 
Energest 
Value 

Node1 Node2 Node3 Node4 Node5 

  CPU 6804.847 8116.051 6788.033898 6869.423729 5615.542373 

  LPM 1959274 1957963 1959290.78 1959209.39 1960463.271 

  TX 198 198.6441 195.4067797 201.2033898 195.3559322 

  RX 1965866 1965866 1965869.288 1965863.085 1965869.237 
 

Table 5(a). Average Energest values (For WSN without a central node) 
UDGM distance-loss model 

 

Average 
Energest 
Value 

Node1 Node2 Node3 Node4 Node5 

  CPU 10185.186 11559.948 10083.052 11818.690 10186.983 

  LPM 1955893 1954554 1955990 1954298 1955886 

  TX 1611.31 1611.41 1611.56 1611.92 1611.39 

  RX 1964403.271 1964403.458 1964408.224 1964402.576 1964402.881 
 

Table 5(b). Average Energest values (For WSN without a central node) in MRM environment 
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Next, we work out the voltage and current consumption values of CPU and radio hardware 
components of the Z1 mote for use in Equation [A]. We begin with reproducing a few details of 
the Z1 WSN motes from the manufacturer data specification sheet [43] in Table 6. 

WSN mote Z1 Zolertia 
Operating Voltage 3V 

Microcontroller 
(CPU) unit 
 
 

Type MSP430 series 
Frequency 16 MHz 
Current 
Consumption  
 

Active mode < 10 mA 
Stand-by/ 
low-power mode (LPM) 

0.5 µA 

Radio 
Transceiver 

Type CC2420 Radio 
Frequency Transceiver 

Current 
Consumption 

Transmit/TX mode 17.4 mA 
Receive/RX mode 18.8 mA 

 

Table 6. Current, voltage and frequency values from the manufacturer data specification sheet [43]. 

The active mode CPU frequency of an emulated Z1 mote is 8 MHz by default in Cooja [44] and 
differs from its 16 MHz value specified in the manufacturer datasheet. We, therefore, need to 
investigate the current consumption of the emulated Z1 motes for their 8 MHz frequency in Cooja. 
Referring to [42], we adopt the methodology and the resultant active mode CPU current 
consumption value 4.3mA at 8 MHz for Z1 motes in Cooja.  

Hence, specific to Cooja, the Z1 values we shall be using are: 

CPU Frequency 8 MHz 
Active mode CPU current consumption @ 8MHz 4.3 mA 

 

Table 7. Adjusted active mode CPU current consumption at 8MHz in Cooja. Adopted from [42]. 

The energy consumption data is generated per unit time of the hardware clock known as 
RTIMER_SECOND. And the RTIMER_SECOND value for Z1 mote is 32768 ticks per second in 
Cooja [45]. The length of time for which the simulation is run is called the Run time, and it is the 
difference of simulation start and end time which is 349 seconds in our case.   

Thus, for Z1 motes, we can summarize the standard operating voltage, current consumption 
values for CPU and Radio Transceiver components, RTIMER_SECOND, and simulation run time 
in the table below. 

Z1 mote parameter Value 
Normal operating Voltage 3V 
CPU Active state current consumption @ 8 MHz 4.3 mA                                
CPU Standby/LPM current consumption 0.5 µA 
TX CC2420 RF Transceiver current consumption 17.4 mA 
RX CC2420 RF Transceiver current consumption 18.8 mA 
RTIMER_SECOND (real timer) 32768 ticks per second  
Total simulation Runtime 349 seconds 

 

Table 8. Values for Z1 mote for use in power calculations. 
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We use the values from Table 8 and apply them in Equation [A] to calculate the power 
consumption values for the five nodes in the two radio propagation models, as shown in Tables 
9(a) and 9(b) 

 

Power(mW) Node1 Node2 Node3 Node4 Node5 

CPU 0.0077 0.0092 0.0077 0.0077 0.0063 

LPM 0.0003 0.0003 0.0003 0.0003 0.0003 

TX 0.0009 0.0009 0.0009 0.0009 0.0009 

RX 9.6952 9.6952 9.6952 9.6952 9.6952 

Total 9.7041 9.7056 9.7041 9.7041 9.7027 

 

Table 9(a). Power consumption (For WSN without a central node)- UDGM distance-loss model 

 

Power(mW) Node1 Node2 Node3 Node4 Node5 

CPU 0.0115 0.0130 0.0114 0.0133 0.0115 

LPM 0.0003 0.0003 0.0003 0.0003 0.0003 

TX 0.0074 0.0074 0.0074 0.0074 0.0074 

RX 9.6880 9.6880 9.6880 9.6880 9.6880 

Total 9.7072 9.7087 9.7070 9.7089 9.7071 

 

Table 9(b). Power consumption (For WSN without a central node) in MRM environment 

 

2.3.5.4 Packet Delivery Ratio (PDR) 
 

A network's performance is measured by the packet delivery ratio (PDR) given by the equation 
below [25]. 

 

𝑃𝐷𝑅(%) =  
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠)
×  100 

Equation [B] 

Tables 10(a) and 10(b) show the number of packets each node sent and received in our Cooja 
simulations for the two radio propagation models. 
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Source 
Node 

Packet 
Sent 

Packet 
Received 

PDR 

1 449 449 100% 

2 449 449 100% 

3 449 449 100% 

4 449 448 99.8% 

5 449 449 100% 
 

Table 10(a). Packet delivery ratio (For WSN without a central node) UDGM distance-loss model 

 

Source 
Node 

Packet 
Sent 

Packet 
Received 

PDR 

1 21024 21024 100% 

2 21024 42048 200% 

3 21024 21035 100.05% 

4 21035 21024 99.95% 

5 21024 0 0% 
 

Table 10(b). Packet delivery ratio (For WSN without a central node) in MRM environment 

The PDR for node 2 in the MRM environment is double due to its proximity with nodes 3 and 4, 
as shown in Figure 3(c).  

 

Figure 3(c). Reachability of node 2 in MRM environment 
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To investigate the reason behind the 0% PDR of node 5, we refer to the SNR reception threshold 
of 6 dB in the MRM settings in Table B. Thus a node cannot receive signals with SNR below 6 dB 
in the given MRM environment. We observed the signal-to-noise ratio around node 5 in the color-
painted radio channel in Figure 3(d) and saw that the obstacle and the large distances impacted 
the ability of node 5 to receive packets from the other nodes. 

 

Figure 3(d). signal to noise ratio in colored radio channel around node surrounded with obstacle 

2.4 Simulation of a distributed WSN with central/root node(s) 
 

This section investigates RPL 6LowPAN wireless networks that work around a central node (also 
known as root or sink node). The RPL networks are the most successful for IPv6-based 
networking in low-powered and lossy network (LLN) devices and incorporate the latest 
improvements in wireless sensor networking [30].  These networks are built as Directed Acyclic 
Graphs (DAGs), where the paths are oriented toward and must terminate in a root node with no 
outgoing edges [51]. For multipath routing in distributed networks, the RPL networks use 
Destination-Oriented Directed Acyclic Graphs (DODAGs) terminating at a single root or border 
router.  When acting as a router, the central node is referred to as the low-powered and lossy 
border router (LBR) device. 

2.4.1 Importance of the central node 
 
The root node is indispensable and central to the design of RPL networks. The central node is 
often deployed first and should be constantly powered. It is considered dependable enough to 
provide connectivity among non-root LLN devices. In essence, a minimal configuration non-root 
sensor with no in-built network stack can still communicate with the neighboring nodes or the 
upper network layers via the root node.  
 
The central node as an LBR device enables router-based, distributed, wide-area, multi-sensor 
networks spread over geographies and extended to global networks via IPv6 connectivity. The 
communication interfaces for web or messaging can be extended beyond LBR using Message 
Queuing Telemetry Transport (MQTT) and Constrained Application (CoAP) protocols [42].  
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2.4.2 Neighbor Discovery Mechanism Using Central/Root Node 
 
Described in section 2.3.1, the IPv6 network discovery in the low-power IPv6 stack under Contiki-
NG is based on RFC 4861, where “IPv6 nodes on the same link use Neighbor Discovery to 
discover each other's presence, to determine each other's link-layer addresses, to find routers, 
and to maintain reachability information about the paths to active neighbors” [61][62].  
 
However, for 6LowPAN RPL networks dependent on the root nodes under Contiki-NG, the 
“Default RPL NBR policy decides when to add a new discovered node to the nbr table from RPL. 
This policy assumes that all neighbors end up being IPv6 neighbors and are not only MAC 
neighbors” [63]. Thus, besides the IPv6 network discovery framework, the existence of the nodes 
in RPL networks is determined by a neighbor policy dependent on the RPL storing mode. With 
the storing mode-ON, all nodes cache the neighboring node addresses, whereas in the case of 
storing mode off, only the root node caches all the addresses. The caching of nodes impacts the 
discoverability of the nodes. Therefore, RPL uses different routing approaches described under 
sections 2.4.3, 2.4.5, and 2.4.6 for different storing modes. 
 

2.4.3 Communication modes in RPL networks 
 
For our use-case of distributed WSN, we essentially need direct communication capabilities 
among non-root sensors (or child nodes or clients). Since “the edge node is mostly one or two 
hops away from the mobile client to meet the response time constraints for real-time” [18, 19]. 
The edge-AI algorithms should execute near the central device and not necessarily on the central 
device. So, we explore the routing mechanisms available in RPL networks to establish autonomy 
and communication among the non-root nodes. 

 
For passing control messages with node addresses, RPL uses two routing modes: storing and 
non-storing, as shown in Figure 4. In non-storing mode, the message is sent directly to the root, 
the only node that can maintain the addresses. However, a child node's discovery of neighboring 
nodes becomes possible when it begins recording addresses in a routing table in its memory 
under the storing mode [28]. The routing table contains, among other things, the identifier for each 
of the other sensors. A child node can thus communicate with any other node when the RPL 
network is implemented in the storing mode.  

 
Figure 4. Routing modes in an RPL network. Adopted from [21]. 
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Figure 4(a) shows the default non-storing mode and involves passing by root. Figure 4(b) shows 
RPL with storing mode ON, where the routing happens through the common ancestor between 
the source and destination nodes instead of the root.  

 

2.4.4 RPL network with UDP communication 
 
We extend the “rpl-udp” example [52] from the Contiki-NG repository in this work. The example 
is a simple RPL network with User Datagram Protocol (UDP) communication, containing a DAG 
root and client. The clients periodically send a UDP request containing a counter as a payload. 
The server responds with the same counter back to the originator upon receiving the request.  

 
We implement autonomous decision-making in the RPL-UDP root and client nodes. And enhance 
the child nodes to be able to talk to their peers directly via building and maintaining an independent 
routing table. 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Z1 WSN with a central node. 

 

2.4.5 Root Node in RPL-UDP – using default non-storing mode 
  
Using the default non-storing mode of RPL networks, we verified via a few simulation tests that 
the clients can communicate (send/receive messages) only via the server node and not directly 
with each other. For example, In Figure 6 from the Cooja simulation log, we see that the client 
node id 3 (CLIENT-TWO) and node id 4 (CLIENT-ONE) can send the request to server node 1 
and can receive the same message back from node 1. But the communication never directly 
happens between the client node ids 3 and 4. 
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Figure 6. Cooja message log 

2.4.6 RPL – Storing Mode in Contiki 
 
As discussed in section 2.4.3, with the storing mode ON under Contiki RPL networks, each client 
builds its routing table for accessing the neighboring nodes. We can set the storing mode on via 
the following setting in the Cooja project Makefile [28]: 
  

MAKE_ROUTING = MAKE_ROUTING_RPL_CLASSIC 
  
Figure 7 shows an enhanced 6LowPAN RPL-UDP network with node 1 (green circle) as the root 
node and the remaining as client nodes (yellow circles). Their IPv6 addresses are marked ending 
with node id numbers, e.g., IPv6 address for node 1 is fe80::c30c:0:0:1 and so on. 
 

 
Figure 7. Tree graph formed in UDP-RPL. 

  
Figure 8 shows the routing table built by node 4.  
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Figure 8. Routing Table automatically built at the client-node 

 
Thus, from Figures 7 and 8, we can conclude for node 4 that it has the below paths available to 
access the neighboring nodes 3, 5, and 6 
 

 Node 4 can access node 6 via node 2. 
 Node 4 can access node 3 via node 2. 
 Node 4 can access node 5 via node 2. 
 Node 4 can access node 2 via node 2 itself. 

 
  

This access-graph/routing table changes if the node positions are altered, that is, when the nodes 
move or disappear, e.g., due to a change in their relative position or due to a malfunction, etc. 
The routing table is built afresh when a trigger arrives at a sensor, which makes a sensor detect 
changes in the state of its neighboring sensor. 

  
Thus, with storing mode-on in Contiki, we observe that: 

 
1. Each sensor can discover other sensors in its neighborhood without the help of any 

central server (storage, processor) or root node.  
2. The network is dynamic, i.e., when sensors enter or exit the network, the nodes can 

detect the live positions/addresses of other nodes using the dynamic routing table.  
 

2.4.7 Point to Point (P2P) RPL protocol 
 
The Point-to-point RPL (P2P RPL) [20] is an extension of RPL that implements shorter paths that 
do not pass by the sink (or root node.) It uses an IPv6 router instead of an RPL router on 
6LoWPAN networks and provides the capability to link arbitrary paths connecting point-to-point 
nodes.  

 
The P2P-RPL came as RFC 6997 [20] in August 2013, after the RPL RFC 6550 [22] that came in 
March 2012. Since many shortcomings of even P2P-RPL are noted, newer improved P2P 
variations like GeoRank, ER-RPL, AODV-RPL [21] and alternatives like the Lightweight On-
demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) [29, 30, 31, 32], 
Babel Routing Protocol RFC 8965 [24] have emerged with better routing for LLN devices.  
 

2.4.8 WSN setup in Cooja (with root node) 
 
Figures 8(a) and 8(b) show two 6LowPAN RPL-UDP WSNs with one server node surrounded by 
four client nodes. We used these WSNs to generate simulations using the UDGM distance-loss 
and the MRM radio propagation models. The MRM simulation included an obstacle (Figure 8(c)). 
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To implement decision-making in the case of WSNs with root nodes, we send the counter 
message to a destination node if that node is present in the dynamic routing table of the source 
node.  

Thus, to implement 

if <condition>, 
           Send <message> to <node> 

we used 

Condition: Pick destination node if present in dynamic routing table of the source node 

Message: Counter value 

Node: Destination address chosen by the condition 
 

 
Figure 8(a). RPL WSN in Cooja with a central node- UDGM distance-loss 
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Figure 8(b). RPL WSN in Cooja with a central node in MRM environment 

 

 

Figure 8(c). An obstacle placed around root node 1 in the MRM environment 

  

Obstacle 



31 
 

 

2.4.9 Simulation Results 
 

2.4.9.1 Network Throughput  
 

Total Packets 22824 
Total Simulation Time 349 seconds 
Average packets per second 1.1 
Average packet size 35 bytes 
Average bytes per second 38 
Average bits per second 307 
Encapsulation IEEE 802.15.4 Wireless PAN 

 
Table 11(a). Network throughput (For WSN with a central node)- UDGM distance-loss model 

 
Total Packets 12910 
Total Simulation Time 349 seconds 
Average packets per second 0.6 
Average packet size 38 bytes 
Average bytes per second 23 
Average bits per second 189 
Encapsulation IEEE 802.15.4 Wireless PAN 

 
Table 11(b). Network throughput (For WSN with a central node) in MRM environment 

 

 
Figure 9(a). Packets per minute (For WSN with a central node)- UDGM distance-loss model 
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Figure 9(b). Packets per minute (For WSN with a central node) in MRM environment 

 

2.4.9.2 Network Lifetime 
 

Mote ON TX RX 
Z1 (root) 99.97% 0.017% 0.043% 

Z2 99.98% 0.037% 0.071% 
Z3 99.93% 0.028% 0.052% 
Z4 99.86% 0.043% 0.054% 
Z5 99.99% 0.015% 0.028% 

 
Table 12(a). Radio duty cycle percentage (For WSN with a central node) 

UDGM distance-loss model 
 

Mote ON TX RX 
Z1 (root) 99.98% 0.02% 0.06% 

Z2 99.81% 0.01% 0.06% 
Z3 99.88% 0.01% 0.04% 
Z4 99.81% 0.02% 0.05% 
Z5 99.87% 0.02% 0.04% 

 
Table 12(b). Radio duty cycle percentage (For WSN with a central node) in MRM environment 
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2.4.9.3 Power Consumption 
 

Average 
Energest 
Value 

Node1 Node2 Node3 Node4 Node5 

  CPU 11101.778 42394.49153 41163.424 43306.32203 38933.169 

  LPM 1955164.119 1957006.424 1958236.271 1956094.61 1960466.525 

  TX 33569.508 33948.18644 33795.152 34027.55932 33583.288 

  RX 1965824.153 1965443.305 1965596.881 1965362.559 1965811.068 
 

Table 13(a). Average Energest values (For WSN with a central node)  
UDGM distance-loss model 

  

Table 13(b). Average Energest values (For WSN with a central node) in MRM environment  

 
We use the values from Tables 13(a) and 13(b) and apply them in Equation [A] to calculate the 
power consumption values for the five nodes in the WSN with a central node in Table 14(a) and 
14(b) for the two radio propagation models. 

 

Power(mW) Node1 Node2 Node3 Node4 Node5 

CPU 0.0125 0.0478 0.0464 0.0489 0.0439 

LPM 0.0003 0.0003 0.0003 0.0003 0.0003 

TX 0.1532 0.1550 0.1543 0.1553 0.1533 

RX 9.6950 9.6931 9.6939 9.6927 9.6949 

Total 9.8610 9.8962 9.8948 9.8972 9.8924 

 
Table 14(a). Power consumption (For WSN with a central node)- UDGM distance-loss model 

  

Average 
Energest 
Value 

Node1 Node2 Node3 Node4 Node5 

  CPU 6799.53 5957.80 5415.98 6956.92 5559.05 

  LPM 1959279.288 1960121.475 1960663.153 1959122.356 1960519.78 

  TX 254.12 224.90 241.41 386.05 343 

  RX 1965819.576 1965851.237 1965833.707 1965687.068 1965731.525 
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Power(mW) Node1 Node2 Node3 Node4 Node5 

CPU 0.0077 0.0067 0.0061 0.0078 0.0063 

LPM 0.0003 0.0003 0.0003 0.0003 0.0003 

TX 0.0012 0.0010 0.0011 0.0018 0.0016 

RX 9.6950 9.6951 9.6951 9.6943 9.6946 

Total 9.7041 9.7032 9.7026 9.7042 9.7027 

 

Table 14(b). Power consumption (For WSN with a central node) in MRM environment 

 

2.4.9.4 Packet Delivery Ratio (PDR) 
 
 

Source 
Node 

Node IPv6 
address 

Packet 
Sent (TX) 

Packet 
Received 

PDR 

1 (Root) fe80::c30c:0:0:1 13 421 3238.5% 

2 fe80::c30c:0:0:2 446 368 82.5% 

3 fe80::c30c:0:0:3 416 461 110.8% 

4 fe80::c30c:0:0:4 480 350 72.9% 

5 fe80::c30c:0:0:5 412 80 19.4% 
 
Table 15(a). Packet Delivery Data (For WSN with a central node)- UDGM distance-loss model 

 

 
Figure 10. Transmission range of node 3 in RPL network  

 
 

Node 3 had more packets received than sent due to nodes 5 and 2 being in its access radius.  
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Source 
Node 

Node IPv6 
address 

Packet 
Sent (TX) 

Packet 
Received 

PDR 

1 (Root) fe80::c30c:0:0:1 31 112 361.3% 

2 fe80::c30c:0:0:2 330 337 102.1% 

3 fe80::c30c:0:0:3 423 405 95.7% 

4 fe80::c30c:0:0:4 207 187 90.3% 

5 fe80::c30c:0:0:5 569 376 66.1% 
 

Table 15(b). Packet Delivery Data (For WSN with a central node) in MRM environment 
 

Table 15 (b) shows that node 5 has the lowest PDR due to its long distance from other nodes 
under the MRM environment. But the PDR at node 5 is not 0 due to the access path tree formed 
in the RPL network. 

 

3 Conclusions 
 

I. We simulated the distributed wireless sensor networks using Contiki-NG / Cooja  
where the nodes communicate directly with the other nodes - 
 without having to go through a central node when implemented via non-IPv6 lower 

layers 
 via the IPv6 under RPL 6LoWPAN networks without having to go through the root 

node when running Contiki under storing mode 

 

II. Using the mechanisms described on Non-IPv6 MAC/Nullnet layer networks in section 2.3 
and for RPL networks in section 2.4.2, we built two WSN simulations that demonstrate 
 asynchronous event-triggered communication - because the nodes send packets 

based on conditional logic implemented in the source code of the emulated nodes in 
ContikiOS/Cooja 

 targeted communication - because the nodes send packets to the specific recipient 
nodes using ContikiMAC and RPL protocols from the network stack of the ContikiOS 

 dynamic communication - because the nodes detect the target nodes using 
ContikiMAC carrier sensing and RPL routing mechanism 

 

III. Comparing the simulation results for the WSNs using UDGM distance-loss model with and 
without central node, we observe that 
 Network Throughput: From tables 3(a) and 11(a), it is observed that RPL WSN with 

a central node has lesser network throughput 
 Network Lifetime: From tables 4(a) and 12(a), it is observed that RPL WSN with a 

central node has a lower network lifetime 
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 Power Consumption: From tables 9(a) and 14(a), it is observed that RPL WSN with 
a central node has a higher power consumption 

 Packet Delivery Ratio: From tables 10(a) and 15(a), it is observed that RPL WSN 
with a central node has a degraded PDR for the four child nodes. 
 

IV. Comparing the simulation results for the WSNs in MRM environment with and without 
central node, we observe that 
 Network Throughput: From tables 3(b) and 11(b), it is observed that WSN without 

the central node has significantly higher network throughput 
 Network Lifetime: From tables 4(b) and 12(b), it is observed that RPL WSN with a 

central node has a higher network lifetime 
 Power Consumption: From tables 9(b) and 14(b), it is observed that WSN without 

the central node has slightly higher total power consumption due to higher CPU and 
Transmission power consumption 

 Packet Delivery Ratio: From tables 10(b) and 15(b), it is observed that obstacles 
and larger distances among the nodes negatively impact the packet delivery ratio in 
both types of WSNs 

 

Thus, we see that, on the one hand, the edge devices can yield actionable real-time insights, 
processing the AI or machine learning algorithms. On the other hand, the WSN networks can 
deliver continuous integration beyond the edge of the network, addressing constraints of low-
powered and lossy networks. 
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4 Appendix 
Table of Acronyms 

WSN Wireless Sensor Network 
Edge-AI Edge Artificial Intelligence 
RPL Routing Protocol for Low-Power and Lossy Networks 
QoS Quality of Service 
IEEE Institute of Electrical and Electronics Engineers 
AI Artificial Intelligence 
ML Machine Learning 
IoT Internet of Things 
OMNeT++ Objective Modular Network Testbed in C++ 
NS-3  Network Simulator version 3 
MATLAB MATrix LABoratory 
Contiki-NG Contiki-Next Generation 
CPU Central Processing Unit 
GUI Graphical User Interface 
GNU GPL GNU's Not UNIX General Public License 
ROM Read only memory 
RAM Random Access Memory 
TCP/IP Transmission Control Protocol/Internet Protocol 
BAN Body Area Networks 
DCE Direct-Code Execution 
IPv4 Internet Protocol version 4 
IPv6 Internet Protocol version 6 
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks 
CoAP Constrained Application Protocol 
TSCH Time Slotted Channel Hopping or Time Synchronized Channel Hopping 
OSPF Open Shortest Path First 
BGP Border Gateway Protocol 
PPP Point-to-Point Protocol 
MAC Medium Access Control 
MANET Mobile Ad Hoc Network 
DiffServ Differentiated services 
MPLS Multi-Protocol Label Switching 
LDP Label Distribution Protocol 
RSVP-TE Resource Reservation Protocol for Traffic Engineering 
UDP User Datagram Protocol 
NSC Network Simulation Cradle 
BSD Berkeley Software Distribution 
XCP Universal Measurement and Calibration Protocol 
RS 232 Recommended Standard 232 
UDGM Unit Disk Graph Medium 
DGRM Directed Graph Radio Medium 
MRM Multipath Ray-tracer Medium 
SBR Shooting and Bouncing Rays 
WMN Wireless Mesh Network 
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OSI Open System Interconnections 
LR-WPAN Low-Rate Wireless Personal Area Network 
RDC Radio Duty Cycle 
LPL Low-power Probing and low-power Listening 
PDR Packet Delivery Ratio 
EUI Extended Unique Identifier 
Wi-Fi Wireless Fidelity 
TX Transmission 
RX Reception 
PHY Physical 
CSMA Carrier Sense Multiple Access 
GHz Giga Hertz 
mW Milli Watt 
RTIMER Real Timer 
LPM Low Power Mode 
RF Radio Frequency 
DAG Directed Acyclic Graph 
DODAG Destination-Oriented Directed Acyclic Graph 
LLN device Low-powered and lossy network device 
LBR Low-powered and lossy Border Router 
MQTT Message Queuing Telemetry Transport 
CoAP Constrained Application Protocol 
P2P Point to Point 
RFC Request for Comments 
LOADng Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next 

Generation 
ER-RPL Energy-efficient region-based Routing Protocol 
AODV Ad-hoc On-demand Distance Vector 
MRM Multi-path Ray-tracer Medium 
SNR Signal to Noise Ratio 
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