
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

6-2-2022

Simulating Distributed Wireless Sensor Networks for Edge-AI Simulating Distributed Wireless Sensor Networks for Edge-AI

Ambar Prajapati

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Prajapati, Ambar, "Simulating Distributed Wireless Sensor Networks for Edge-AI" (2022). Electronic
Theses and Dissertations. 3367.
https://digitalcommons.memphis.edu/etd/3367

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F3367&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/3367?utm_source=digitalcommons.memphis.edu%2Fetd%2F3367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

SIMULATING DISTRIBUTED WIRELESS SENSOR NETWORKS
FOR EDGE-AI

by
Ambar Prajapati

A Thesis

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Major: Computer Engineering

The University of Memphis
May 2022

II

ACKNOWLEDGEMENT

I wish to express my honest regards and warm appreciation to my advisor Dr. Bonny Banerjee
who made this work possible and contributed much to helping me shape and reshape this
valuable piece of work. His guidance and advice carried me through the efforts across all stages
of the research.

Thanks to Dr. Lau and Dr. Robinson for serving on the thesis defense committee. Thank you for
letting me defend the thesis and for your valuable feedback.

Thanks to Dr. Lau for his valuable feedback earlier when we faced a design challenge on this
thesis. The credit also goes to Dr. Robinson for being my first advisor who introduced me to the
master’s degree at UofM.

I wish also to thank my wife and sons for their continued support and understanding while working
on the thesis and my master’s degree. Your prayers let me sustain the efforts and keep moving.

Finally, I thank Almighty for letting me through all the challenges. I keep feeling showers of Your
blessing every day.

III

ABSTRACT

This study presents the simulations for distributed wireless sensor networks (WSNs) of
autonomous mobile nodes that communicate intelligently, with or without a central/root node, as
is desired in Edge Artificial Intelligence (Edge-AI).

We harness the high-resolution and multidimensional sensing characteristics of IEEE 802.15.4
standard and Routing Protocol for Low-Power and Lossy Networks (RPL) to implement dynamic,
asynchronous, event-driven, targeted communication in distributed WSNs in a simulator.

We use the chosen Contiki-NG/Cooja to simulate two WSNs with and without a central node. The
two WSN simulations are assessed on the network Quality of Service (QoS) parameters such as
throughput, network lifetime, power consumption, and packet delivery ratio. The simulation
outputs show that the sensor nodes at the edge communicate successfully with the specific
targets responding to particular events in an autonomous and asynchronous manner. However,
the performance is seen slightly degraded in the RPL WSN network with a central node.

This work shows how to simulate distributed WSNs using the Cooja simulator, with or without a
central node, for communication among sensors relevant to Edge-AI applications, such as visual
surveillance, monitoring in assisted living facilities, intelligent transportation, connected vehicles,
automated factory floors, immersive media experience, etc.

IV

Contents
Introduction .. 1

1.1 Motivation .. 1

1.2 Contributions ... 2

2 Simulation Models and Methods .. 2

2.1 Problem Definition .. 2

2.2 Simulator Selection ... 3

2.2.1 Limitations of the simulators not selected for this study ... 3

2.2.2 The rationale for choosing Contiki-NG/Cooja as our simulator .. 4

2.3 Simulation of a distributed WSN without a central/root node ... 9

2.3.1 Neighbor Discovery Mechanism Without a Central/Root Node 10

2.3.2 Radio Propagation Models ... 11

2.3.3 WSN setup in Cooja (without gateway device) .. 16

2.3.4 Simulation Settings ... 17

2.3.5 Simulation Results .. 17

2.4 Simulation of a distributed WSN with central/root node(s) ... 24

2.4.1 Importance of the central node ... 24

2.4.2 Neighbor Discovery Mechanism Using Central/Root Node ... 25

2.4.3 Communication modes in RPL networks .. 25

2.4.4 RPL network with UDP communication .. 26

2.4.5 Root Node in RPL-UDP – using default non-storing mode .. 26

2.4.6 RPL – Storing Mode in Contiki .. 27

2.4.7 Point to Point (P2P) RPL protocol .. 28

2.4.8 WSN setup in Cooja (with root node) ... 28

2.4.9 Simulation Results .. 31

3 Conclusions .. 35

4 Appendix ... 37

5 References ... 39

1

Introduction
1.1 Motivation

Edge computing involves data processing and analysis at the edge of a network, where actual
data generation and collection happen. The Edge AI thus necessitates executing AI algorithms
locally on an edge device or a server near the edge device. The devices should make un-assisted,
uninterrupted autonomous decisions within a fraction of a millisecond without connecting to the
Internet or the Cloud.

The design aims to create distributed wireless sensor networks (WSNs) consisting of edge devices
that talk to their peers directly, take decisions on their own in a dynamic, asynchronous
environment. The devices thus perform intelligent, independent communication within their
constraints to save power and resources during Edge Computing.

As a simplified example of insightful predictive analysis and actionable decision-making in real-
time, let us consider three rooms in a building, each fitted with a temperature sensor to register
hourly local room temperature. After recording, each sensor validates its measured value against
a predefined high/low-temperature threshold. On crossing the threshold, the sensor compares its
reading with the neighboring sensors. If its measured value does not align with the other sensors,
there is a likelihood that the sensor may have started malfunctioning.

However, in the other case, when the measured value crosses the threshold and matches with
similar spikes in neighboring sensors, there is another likelihood of abnormal hot or cold
temperature build-up in that area. The sensor then communicates with the expert sensors for
follow-up actions such as sending alerts for possible dangers to a central command station,
lighting the bulbs or ringing the alarms, running water showers in case of fire, and powering on
the air-conditioners for temperature adjustment, etc.

The building represents a dynamic neighborhood where the measuring sensors can be installed
anew, removed, or moved to random locations.

Thus,

1. The sensors communicate when they need to, e.g., when crossing the threshold or
during the spikes (asynchronous event-triggered communication).

2. They talk to expert sensors for a follow-up action (targeted communication).
3. The sensors belong to a network where they leave or join the network randomly

(dynamic network).

In this work, we will use an existing simulator software to simulate a working system for practical
implementation.

2

1.2 Contributions

Towards the aim of generating continuously integrated real-time data and actionable insights and
decisions based on artificial intelligence (AI) or machine learning (ML) processing at the cloud-
agnostic constrained devices over Edge AI platforms, the contributions of this work are:

1. Comparing existing simulators and identifying one that is affordable and can
 simulate asynchronous, event-triggered, and targeted communication in a

dynamic sensor network,
 serve as an emulator with an actual edge device’s hardware/software feature to

facilitate real-world deployment with minimal effort.

Remark: Please note that the study to compare the simulators was carried out during
Spring 2021 as part of EECE 7992 Independent Study II.

2. Implementing point-to-point communication for edge computing in scalable distributed
wireless sensor networks with varying network topologies.

3. Demonstrating actionable decision making based on simple conditional logic at sensor
level in distributed WSN using

 high-resolution and multidimensional IEEE 802.15.4 standard,
 Routing Protocol for Low-Power and Lossy Networks (RPL).

2 Simulation Models and Methods

2.1 Problem Definition

Design and implement a distributed wireless sensor network (WSN) or Internet of Things (IoT)
network capable of targeted, asynchronous, event-triggered, dynamic nodal communication with
no central storage and no centralized decision-making.

Thus, we aim to build a distributed WSN where:

 Each node (or sensor or thing) decides when and whom to communicate. Hence, when
triggered by an asynchronous event, the node communicates with a target node running a
decision matrix locally. The source node thus exhibits complete autonomy based on its
unique data, knowledge, and capabilities.

 The nodes are stationary or moving. Hence, the network topology is expected to change
with nodal mobility.

 The independent decision making by a node consists of a few simple if-then statements like
below, representing unique conditions, unique messages by unique nodes:

if <condition>,
 Send <message> to <node>

3

2.2 Simulator Selection

To demonstrate the capabilities of our chosen networks on Edge AI, we needed an IoT simulator
to emulate real-world scenarios on distributed WSNs. Earlier works available in the literature on
simulator comparison do not evaluate the latest version of simulators on network attributes of our
choice, namely, event-triggered, targeted, asynchronous, and dynamic communication. So, we
present here our evaluation and comparison of a few popular IoT simulators, namely
Contiki/Cooja, OMNeT++/Castalia, NS-3, and MATLAB-Simulink. Another simulator named
NuvIoT had to be excluded as it frequently errored at the time of this research on its MS-Windows
and web versions.

 OMNeT++: The OMNeT++ has an event network simulation framework suitable for
modeling entities communicating by exchanging messages. The nodes generate realistic
packets based on a real-life scenario.

 NS-3: The NS-3 event network simulator executes events in sequential time order at a
specified simulation time. The NS-3 generates consistent, reproducible results for
modeling the internet protocols on real network cards.

 MATLAB – Simulink: Matlab-Simulink allows creating digital twins and developing data-
driven and physics-based models for simulating the end nodes, modeled in continuous,
sampled, or a hybrid time for connected things.

 Contiki-NG/Cooja: With Cooja, large and small networks of Contiki nodes can be
simulated. Contiki OS allows precise inspection of the nodes and directly emulates their
behavior at the hardware level.

The detailed feature comparison for the above simulators is shown in Table 1.

2.2.1 Limitations of the simulators not selected for this study

Referring to the recent literature, the OMNeT++, NS-3, and MATLAB/Simulink were opted out
from further studies due to their limitations listed below.

[A] NS-3

 A limited number of contributed source code [31], implying lesser interest in the
development community

 Lesser support for protocols and devices using pre-built models [31]
 Higher CPU usage impacting performance [31]
 The NS-3 simulation framework cannot be integrated with an actual hardware platform

[35]

[B] OMNeT++

 The Castalia/OMNeT++ kernel is single-threaded. As OMNeT++ only uses one core, so a
higher single-core performance causes higher execution speeds and fully loading of only
one core of the CPU [32]

 OMNeT++ does not support multi-hop communication which strongly depends on real-
time data [32]

4

 OMNeT++ is free only for academic and non-profit use [33]
 The INET Framework behind OMNeTT++ is not specialized in mobile and wireless

networks but has some support for it [34]
 The OMNeT++ simulation framework cannot be integrated with an actual hardware

platform [35]

[C] MATLAB/Simulink

 Max number of permitted nodes for simulation are only 100 [35]
 Affordability issue

2.2.2 The rationale for choosing Contiki-NG/Cooja as our simulator

“Cooja is an emulator – a hardware or software system that makes the host system - a complete
replication of the guest system, right down to being binary compatible with the emulated system's
inputs and outputs. The code to be executed by the node is the exact same firmware uploaded to
physical nodes” [47].

“Cooja Framework, due to its use of embedded software to perform cycle-exact emulation of
devices— can run any program designed for one of the emulated architectures. Many published
articles in the domain of WSNs, including very recent publications, include simulations made with
the Cooja/MSPSim framework. Cooja has the ability to develop and debug WSN-related software
much more easily thanks to its emulation features.” [46].

Thus, we observe that the Contiki NG/Cooja has several advantages over other simulators for
edge devices. Its properties listed below allow the simulation of event-triggered, targeted,
asynchronous, dynamic communication along with energy efficiency, efficient bandwidth usage,
efficient coverage, and connectivity for use in distributed WSN.

 Preemptive multithreading, proto-thread based concurrent programming, event-driven kernel
 Wide range of supported protocols, propagation models
 Emulated code directly portable on sensor hardware platforms
 Open source along with substantial industrial and development support
 Supported simulation for 170+ nodes

The following sections describe our simulations developed in Contiki NG/Cooja.

Feature Contiki Castalia NS-3 MATLAB-Simulink
Latest version Contiki-NG Version 4.6 Version 3.3 Version NS-3.7 Version R2021a
Programming
language

C language, Optional GUI C++, OMNeT++ NED
language

C++/Python, No GUI MATLAB multi-
paradigm and Simulink
proprietary graphical
programming languages

Required
library or
software

Native Contiki OS
libraries

OMNeT++ component-based
C++ simulation library and
framework

Standard C++ library: GPLv2 MATLAB coder,
Simulink

OS/Middleware Contiki OS Any OS with a modern C++
compiler. But Simulation IDE
can run only on Windows,
Linux, or macOS

Linux Cygwin, osX Windows, macOS, and
Linux

License type Open-sourced under a
BSD-style license.

Academic Public License /
Commercial License for
OMNeT++ for commercial
usage

Free, GNU GPLv2 license Commercial license
required for usage

Simulator type Sensor simulator called
Cooja, which simulates
Contiki nodes

OMNeT++ platform based
object-oriented modular
discrete event network
simulation framework

discrete-event network
simulator for Internet
systems

Graphical programming
environment – Simulink
tightly integrated with
MATLAB

Simulation
library features

The simulation platform
provides users with a
single, integrated GUI
environment in which all
tasks are carried out.

Discrete event simulation,
scheduling events, sending
and receiving messages,
channel operation, finite state
machines, dynamic module
creation, signals, logging,
random number generation,
queues, topology discovery
and routing support, statistics
and result collection

“NS-3 is designed as a set of
libraries that can be
combined together and also
with other external software
libraries. Several external
animators and data analysis
and visualization tools can
be used with ns-3.” [6]

Discrete-event
simulation with
Simulink® provides
capabilities for
analyzing and
optimizing event-driven
communications and
operations using hybrid
system models, agent-
based models, and
state charts.
Its primary graphical
block interface is a
diagramming tool and a
customizable block
library.

6

Uniqueness “Contiki is a multitasking
operating system,
specially designed for
microcontrollers with
small amount of
memory (35KB of ROM
and around 3K of
RAM)”[9]. Its in-built
TCP/IP stack
provides lightweight
preemptive scheduling
over event-driven kernel

“Researchers and developers
use Castalia to test their
distributed algorithms and/or
protocols in a realistic wireless
channel and radio models”
[10] behavior especially
relating to access of the
radio. Used as a simulator for
Wireless Sensor Networks
(WSN), Body Area Networks
(BAN), and generally
networks of low-power
embedded devices.

“Open, extensible network
simulation platform, for
networking research and
education. Some of the
reasons to use ns-3 include
performing studies that are
more difficult or not possible
to perform with real systems,
to study system behavior in a
highly controlled,
reproducible environment”
[11], for modeling the Interne
t protocols and to learn about
how networks work. ns-3 can
also be used to model non-
Internet-based systems.

Easy to use, wide
adoption, mature
product, great
visualization for
complex systems.
Matlab’s simulations of
physical structures can
almost automate entire
cycles in product
delivery.

Event-driven
programming

Uses Event-Driven Kernel
based on protothreads.

A protothread is a
concurrent programming
mechanism
“that shares features of
both multithreading and
event-driven
programming to attain a
low memory
overhead” [12]

Uses OMNeT++ event-driven
simulation engine

Event-driven simulation core
and object framework.

“Conceptually, the simulator
keeps track of a number of
events that are scheduled to
execute at a specified
simulation time. The job of
the simulator is to execute
the events in sequential time
order. Once the completion
of an event occurs, the
simulator will move to the
next event (or will exit if there
are no more events in the
event queue)” [13]

SimEvents is used to
add a library of
graphical building
blocks for modeling
queuing systems to the
Simulink environment
and to add an event-
based simulation engine
to the time-based
simulation engine in
Simulink.

Preemptive
multithreading

Contiki provides
preemptive multithreading
as an application library
that runs on top of
the event-based kernel.
Preemptive

cooperative multitasking or
non-preemptive threads - The
Threads are scheduled
non-preemptively

NS-3 provides a non-
preemptive scheduler via
(direct-code execution) DCE
Manager.
This scheduler allows a
'synchronous' programming

A custom or pred-
defined architecture can
be chosen for models
configured for
concurrent execution.
Data and task

7

multithreading can be
provided on a per-
process basis.

Contiki processes run in
the cooperative context,
whereas interrupts and
real-time timers run in the
preemptive context.

style where functions can
block until certain conditions
are verified as opposed to
event-driven programming.

parallelism including
pipelines can be
implemented in
Simulink.

Supported
Protocols and
Communicatio
n Stacks

Implements IPv6 and
IPv4 stacks, along with
the recent low-
power wireless standards
: 6LoWPAN, RPL, CoAP,
TSCH, Nullnet layer

“INET Framework is an open-
source model library for
the OMNeT++ simulation
environment.
INET supports a wide class of
communication networks,
including wired, wireless,
mobile, ad hoc and sensor
networks. It contains models
for the Internet stack (TCP,
UDP, IPv4, IPv6, OSPF, BGP,
etc.), link-layer protocols
(Ethernet, PPP, IEEE 802.11,
various sensor MAC
protocols, etc.), refined
support for the wireless
physical layer, MANET routing
protocols, DiffServ, MPLS with
LDP and RSVP-TE signaling,
several application models,
and many other protocols and
components. It also provides
support for node mobility,
advanced visualization,
network emulation, and more”
[14]

IPv4, UDP, and TCP stack
and support
for NSC (integrating Linux
and BSD TCP/IP network
stacks).

Simulink supports two
communication
mechanisms [1]- XCP,
the
Universal Measurement
, and Calibration
Protocol
[2]- TCP/IP and serial
(RS-232)

8

Supported
Propagation
Models

- Unit Disk Graph Medium
(UDGM)
- Distance loss UDGM
- Directed Graph Radio
Medium (DGRM)
- Multipath Ray-tracer
Medium (MRM)

Default is Free Space model
Extended by paper-10 these
propagation models- Two Ray
Ground and Log-Normal
Shadowing, Nakagami model,

probabilistic
propagation models

Free Space, Two Ray
Ground and Log-Normal
Shadowing, Nakagami
Model. A set of solid 802.11
MAC and PHY models

MATLAB Simulink
supports various
propagation models,
e.g., Atmospheric,
Empirical, Terrain and
Ray Tracing methods –
image and SBR
(shooting and bouncing
rays)

Mesh
networking

Contiki supports more
advanced functionality
like mesh networking, an
important capability for
self-forming and self-
healing large networks
with many nodes.

OMNeT++ supports
simulation of 802.11
Wireless Mesh Networks
(WMNs).

NS-3 supports mesh
networking as IEEE 802.11s
Mesh Networking Model

Mesh Networking
supported e.g. network
layer flooding in a
Bluetooth® mesh
network using
Communication Toolbox
Library™ for the
Bluetooth® Protocol.

Real-time
emulation
features

The simulation code
generated can be
deployed mostly as-is to
work on real physical
systems.

Does not meet hard real-time
requirements – rather focuses
on soft and firm real time

“To integrate with real
network stacks and
emit/consume packets, NS-3
uses a real-time scheduler to
lock the simulation clock with
the hardware clock.” [15] The
real-time scheduler causes
the progression of the
simulation clock to occur
synchronously to some
external time base.

The simulation code
generated can be
deployed mostly as-is to
work on real physical
systems.

Table 1. Comparison of simulators’ features. Remark: Please note that the study to compare the simulators was carried out
during Spring 2021 as part of EECE 7992 Independent Study II.

9

2.3 Simulation of a distributed WSN without a central/root node

This section implements a distributed WSN, an autonomous collection of mobile nodes that
communicate over wireless links without a central node. Revisiting our requirements, we need
the nodes to be mobile and independently execute logical decisions, network organization, and
message delivery.

The left-most layers shown in Figure 1(a) represent the networking framework of the Open
System Interconnections (OSI) model that conceptualizes communication among systems. The
media access control (MAC) sublayer of the data link layer has access to the wireless medium
for data transmission. It provides an abstraction of the physical layer to the layers above it in the
OSI framework [48]. The MAC layer encapsulates IEEE 802.15.4 standard for low-rate wireless
personal area networks (LR-WPANs). This standard provides ubiquitous communication among
nearby devices with little to no underlying infrastructure.

Figure 1(a). Open System Interconnections (OSI) Data-link layer mapped to Contiki-NG

The MAC layer governs the transmission and reception of data packets. ContikiMAC, the default
MAC protocol in ContikiOS, uses Carrier Sensing for detecting medium activity. The Radio Duty
Cycle RDC protocol performs asynchronous discovery using low-power probing and low-power
listening (LPL) [59]. The mechanism works so that the entire data frames are sent repeatedly until
acknowledged by the receiver. The nodes detect the emerging links in the neighborhood using
their constantly-on radios that operate at low-duty cycles to preserve power and maximize lifetime.

With short wake-up periods and an efficient transmission mechanism, the MAC/RDC layers yield
a better Packet Delivery Ratio (PDR) and work well in practice for dynamic traffic [55] [58].

10

On the right of Figure 1(a), we show how the MAC Sublayer maps with the Contiki network
protocol stack shown in Figure-1(b). The MAC layer of Contiki-NG, version 4.0 onwards,
combines MAC and the Radio Duty Cycle (RDC) layers [16]. The RDC layer controls the wake-
up and sleep cycles of a node to preserve energy during data transmission.

Figure 1(b). Contiki protocol stack. Adopted from [4].

With version 4.0, a new layer called Nullnet is introduced in the Contiki-NG network stack [16].
The Nullnet network layer is a minimal layer helpful for lower-layer testing and non-IPv6 scenarios
[38]. It relays the data packets unmodified up/down the Contiki network stack. The data packets
from the sender node travel via MAC and NullNet layers up to the receiver node.

The network layer in Contiki OS is accessed via the global variable NETSTACK_NETWORK
defined in compilation time at core/net/netstack.h [55][56] and the NullNet layer is accessed via
os/net/nullnet/nullnet.h [57].

Thus, the dual-stack of the MAC and Nullnet layers in Contiki-NG ensures a distributed WSN
without utilizing a central node or any intermediate device, access point, router, modem, gateway,
cloud from the upper layers of the stack. Each node in a WSN is identified by its Extended Unique
Identifier (EUI)-48-bit address [39][40], which is hard-wired into the sensor’s transceiver for data
transmission within a wireless (Wi-Fi, Zigbee, Bluetooth) segment. The lower dual-stack facilitates
a unicast, any-node to any-node communication among nodes based on their EUI addresses.

2.3.1 Neighbor Discovery Mechanism Without a Central/Root Node

In the case of WSN with no central node: For discovering the MAC addresses, the ContikiOS
caches the node addresses by default by enabling the global variable
UIP_ND6_AUTOFILL_NBR_CACHE. The caching lets the node derive the MAC address from
the EUI-64 contained in the IPv6 address [64]. However, if the neighbors are not maintained in
the cache, the ContikiOS assumes auto-configuration and enables UIP_ND6_SEND_NS instead.
In this case, it runs IPv6 Neighbor Discovery and derives the link-layer address of the neighbors
from the link-local IPv6. Thus, it adds the neighbors regardless of their reachability and liveness.
[65]

11

Simplifying further, in ContikiOS, a node consists of an Internet Protocol (IP) interface attached
to the IEEE 802.15.4 medium link. During the entry of a node into the network at its system start-
up, the node undergoes autoconfiguration and ensues an IPv6-based neighbor discovery process
described below [62][66][67][68].

The node generates a tentative link-local address for the interface based on its MAC address.
However, before self-assigning this address, the node multicasts a “neighbor solicitation”
message to verify if its prospective link-local address is unique on the link.

1- If the address is already present on the link, a “neighbor advertisement” message is
returned in the response. The autoconfiguration stops in this case, and manual
intervention is required.

2- If the address is not in use nor is solicited by any of the neighbors, the link-local address
is assigned to the interface, and the node gets attached to the link. The nodes attached
on the same link become neighbors and cache the detected link-layer addresses for
subsequent use.

3- A node is called reachable when the one-way packets forwarded to it by its neighbors
reach its IP interface. The link-attached reachable neighbors can thus communicate or
exchange data packets.

During exit and re-entry, if the node undergoes a change in its link-layer address, it multicasts a
neighbor advertisement to all its neighbors [69]. It allows the neighbors to update their address
cache with the modified link-layer address of the node.

2.3.2 Radio Propagation Models

2.3.2.1 Unit Disk Graph Medium (UDGM) distance-loss radio propagation

Unit Disk Graph Medium (UDGM) distance-loss radio propagation model in Cooja models the
transmission range surrounding a unit disk with the transmitting node as the center. All the
receivers within the disk have the same probability of successfully receiving a data packet. The
UDGM uses distance as the criteria to determine if the two nodes can communicate with each
other. It creates a directed graph of nodes within transmission distance of each other and displays
“the percentage of packets that will not be corrupted on transmission (TX) and reception (RX)”
[50]. It models interferences and the packets “transmitted with a TX success ratio and received
with RX success ratio, offering a higher sense of reality for the simulation” [49]. Beyond the
transmission disk around a node center, the UDGM-distance loss model draws another disk of
interference, in which the packets from a node can interfere with those from the others. The data
packets are delivered only when there is no interference during transmission.

12

2.3.2.2 Multi-path Ray-tracer Medium (MRM) radio propagation

Cooja provides yet another packet-based Multi-path Ray-tracer Medium (MRM) radio propagation
model, which uses a ray-tracing technique in 2D space. The MRM environment in Cooja allows
simulating signal-to-ratio (SNR) based reception, background-noise mean and variance, capture
effects, path-rays, refraction, diffraction, reflection, and obstacle attenuation. The parameters for
transmitter, receiver, ray-tracer, and obstacles can be configured via the MRM settings in Cooja.

The analytical approach of the MRM radio propagation model approximates obstacles as
attenuators of the signal strength. The model accounts for the refractions, reflections, and
diffractions to render a much realistic transmission range of radio signals. [70]

We generated a WSN (with no central node) as in Figure 2(a), in MRM environment in Cooja that
shows the radio antennas of five nodes including an obstacle. The nodes were placed at distances
ranging from 200 to 800 meters. An obstacle, shown as the rectangular walls was placed between
the nodes 2 and 5.

Figure 2(a). An obstacle placed between the nodes 2 and 5 in the MRM environment

Figure 2(b) shows the same five nodes in the MRM environment with their positions in 2D space
and the probability of reception, signal strength from node 5.

Obstacle

13

Figure 2(b). Impact of obstacle on the probability of packet reception as seen from node 5
in the MRM environment

From Figure 2(b), we observe that node 2 has a 0% probability of reception for the packets from
node 5 due to an obstacle between the two.

Figure 2(c). Impact of distance on the probability of packet reception as seen from node 1 in the
MRM environment

From Figure 2(c), we observe that as we move farther away from node 1 towards nodes 5, 2, and
3, the probability of reception drops to just 7.8%

14

In Figures 2(d) and 2(e), we show the color-painted MRM radio environment for visualization of
the signal strength around node 5 at two different distances (measured by the length of the ray).

Figure 2(d). MRM signal reception at a distance of about 200 m away from the node

Figure 2(e). MRM signal reception at a distance of about 700 m away from the node

We tracked rays from a node at different distances in the MRM environment to inspect the signal
strength, signal-to-noise ratio, path gain, and reception probability when moving away from the
node. The observations were recorded in Table A.

15

Distance
(in meters)

100 200 300 400 500 600 700

Received
Signal strength

(in dB)
at variance 4.0

-80.113 -86.223 -90.100 -92.361 -94.197 -96.091 -96.796

Total
path gain

-80.113 -86.223 -90.100 -92.361 -94.197 -96.091 -96.796

Received SNR
(in dB)

at variance 5.0
19.887 13.895 9.909 7.856 5.851 3.921 3.204

Reception
Probability

100% 100% 96.2% 81% 47.1% 17.6% 10.6%

Table A. Signal quality at various distances from a node
in MRM radio environment in Cooja for a WSN without a central node

From Table A, we observe that the SNR and reception probability begin to drop at distances away
from a node.

To assess the impact of obstacle, distances, interference, refraction, and diffraction on the
network Quality of Service (QoS) parameters (i.e., network throughput, network lifetime, power
consumption, packet delivery ratio) on the two WSNs with and without central node, we generated
couple more simulations in the MRM environment using simulation settings in Table B in Cooja.
The simulation results for the MRM environment are added in each of the sub-sections under
sections 2.3.5 and 2.4.9 after the UDGM distance-loss model results.

SNR reception threshold (dB) 6
Background noise mean (dBm) -100
Background noise variance (dB) 1
Extra system gain mean (dB) 0
Extra system gain variance (dB) 4
Frequency (MHz) 2400
Capture effect preamble (us) 64
Capture effect threshold (dB) 3
Default transmitter output power (dBm) 1.5
Directional antennas with TX gain True
Receiver sensitivity (dBm) -100
Directional antennas with RX gain False
Use FSPL on total path lengths only True
Max path rays 1
Max refractions 1
Max reflections 1
Max diffractions 0
Reflection coefficient (dB) -3
Reflection coefficient (dB) -5
Diffraction coefficient (dB) -10
Obstacle attenuation (dB/m) -3

Table B. MRM environment simulation settings

16

2.3.3 WSN setup in Cooja (without gateway device)

Aiming to create a simulation akin to the real world, we placed five low-power 2.4GHz, IEEE
802.15.4, and 6LowPAN compatible WSN Z1 motes from Zolertia [42] at random locations in
Cooja, as in Figure 2. To implement decision-making in the case of WSN without a central node,
we used a random number-based simple conditional logic to pick the destination node for sending
a counter as the message.

Thus, to implement

if <condition>,
 Send <message> to <node>

we used

Condition: Pick a destination node if chosen by the random function

Message: Counter value

Node: Destination address chosen by the condition

Figure 2(f). Z1 WSN Nodes at random locations in Cooja (with no central node)
UDGM distance-loss model

17

2.3.4 Simulation Settings

The following settings are used while simulating a WSN without a gateway device using UDGM
distance-loss model.

MAC Layer (PHY+MAC) IEEE 802.15.4 CSMA
Number of nodes 5
Simulation Time 5 minutes 49 seconds
Energy Measurement Interval Every second
Energy Measurement Module Energest
Radio Propagation Model Unit Disk Graph medium (UDGM) – Distance Loss
Node positioning Random
Transmission (TX) Range 50 m
Communication Type Peer to peer / Unicast
Network Topology Random
Total Frame Size 25 bytes
MAC layer CSMA
Net layer Null net
Routing Null Routing
Default Channel 26

Table 2. UDGM distance-loss model simulation settings.

Channel ID 26, shown as the default channel above, is one of the physical channels in a 2.4 GHz
frequency range and has a center frequency of 2480.

2.3.5 Simulation Results

The below performance metrics are dependable indicators of Quality of Service (QoS) in wireless
sensor networks [25] [54].

 Network Throughput
 Network Lifetime
 Packet Delivery Ratio
 Power consumption

The sub-sections under 2.3.5 and 2.4.8 evaluate the above QoS parameters for the two WSNs
implemented with and without a central node, using UDGM distance-loss and MRM radio
propagation models

2.3.5.1 Network Throughput

In data transmission, network throughput is the amount of data moved successfully from one
place to another in a given time period and is typically measured in bits per second (bps). Higher
throughput implies a better network [36] [53]. Tables 3(a) and 3(b) list the network throughput
statistics from the Wireshark network analyzer tool [37] for the two radio propagation models.

18

Total Packets 22562
Total Simulation Time 349 seconds
Average packets per second 1.3
Average packet size 15 bytes
Average bytes per second 18
Average bits per second 151
Encapsulation IEEE 802.15.4 Low-rate Wireless PAN

Table 3(a). Network throughput - UDGM distance-loss model

Throughput is sometimes measured as data packets per time slot [36]. Figures 3(a) and 3(b)
show the input/output graph generated in the Wireshark for the throughput measured as packets
per minute for the two radio propagation models.

Figure 3(a). Packets per minute using CSMA-CA CC2420 RF Transceiver.
(For WSN without a central node) - UDGM distance-loss model

Total Packets 121296
Total Simulation Time 349 seconds
Average packets per second 5.7
Average packet size 22 bytes
Average bytes per second 127
Average bits per second 1021
Encapsulation IEEE 802.15.4 Wireless PAN

Table 3(b). Network throughput in MRM environment

19

Figure 3(b). Packets per minute in MRM environment

(For WSN without a central node)

2.3.5.2 Network Lifetime

A lower RDC ratio indicates a larger network lifetime. A node must keep its radio off to conserve
energy. Tables 4(a) and 4(b) provide the RDC ratio values of five motes, as recorded in Cooja for
the two radio propagation models.

Mote ON TX RX
Z1 100% 0.02% 0.05%
Z2 100% 0.02% 0.06%
Z3 100% 0.02% 0.05%
Z4 100% 0.02% 0.06%
Z5 100% 0.01% 0.07%

Table 4(a). Radio duty cycle percentage (For WSN without a central node) -

UDGM distance-loss model

Mote ON TX RX
Z1 99.96% 0.10% 0.18%
Z2 99.96% 0.10% 0.22%
Z3 99.95% 0.10% 0.21%
Z4 99.96% 0.11% 0.33%
Z5 99.95% 0.10% 0.24%

Table 4(b). Radio duty cycle percentage in MRM environment
(For WSN without a central node)

20

2.3.5.3 Power Consumption

The power consumption value (in mW unit) of a node in Contiki/Cooja [45] can be calculated using
Equation [A]. Therefore, we will be required to find out various input values for this equation.

𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
𝐸𝑛𝑒𝑟𝑔𝑒𝑠𝑡 × 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑅𝑇𝐼𝑀𝐸𝑅_𝑆𝐸𝐶𝑂𝑁𝐷 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒

Equation [A]

Under Contiki-NG, the Energest module keeps track of energy consumption by the CPU and
Radio components of the sensors. Knowing how long the components have been in different
states like active, radioactive, or stand-by, and the energy consumption in those states makes it
possible to estimate the power consumption by the sensor nodes [29]. The average Energest
values of the five nodes derived from the recorded Cooja simulation log for the two radio
propagation models are given in Table 5(a) and 5(b).

Average
Energest
Value

Node1 Node2 Node3 Node4 Node5

 CPU 6804.847 8116.051 6788.033898 6869.423729 5615.542373

 LPM 1959274 1957963 1959290.78 1959209.39 1960463.271

 TX 198 198.6441 195.4067797 201.2033898 195.3559322

 RX 1965866 1965866 1965869.288 1965863.085 1965869.237

Table 5(a). Average Energest values (For WSN without a central node)
UDGM distance-loss model

Average
Energest
Value

Node1 Node2 Node3 Node4 Node5

 CPU 10185.186 11559.948 10083.052 11818.690 10186.983

 LPM 1955893 1954554 1955990 1954298 1955886

 TX 1611.31 1611.41 1611.56 1611.92 1611.39

 RX 1964403.271 1964403.458 1964408.224 1964402.576 1964402.881

Table 5(b). Average Energest values (For WSN without a central node) in MRM environment

21

Next, we work out the voltage and current consumption values of CPU and radio hardware
components of the Z1 mote for use in Equation [A]. We begin with reproducing a few details of
the Z1 WSN motes from the manufacturer data specification sheet [43] in Table 6.

WSN mote Z1 Zolertia
Operating Voltage 3V

Microcontroller
(CPU) unit

Type MSP430 series
Frequency 16 MHz
Current
Consumption

Active mode < 10 mA
Stand-by/
low-power mode (LPM)

0.5 µA

Radio
Transceiver

Type CC2420 Radio
Frequency Transceiver

Current
Consumption

Transmit/TX mode 17.4 mA
Receive/RX mode 18.8 mA

Table 6. Current, voltage and frequency values from the manufacturer data specification sheet [43].

The active mode CPU frequency of an emulated Z1 mote is 8 MHz by default in Cooja [44] and
differs from its 16 MHz value specified in the manufacturer datasheet. We, therefore, need to
investigate the current consumption of the emulated Z1 motes for their 8 MHz frequency in Cooja.
Referring to [42], we adopt the methodology and the resultant active mode CPU current
consumption value 4.3mA at 8 MHz for Z1 motes in Cooja.

Hence, specific to Cooja, the Z1 values we shall be using are:

CPU Frequency 8 MHz
Active mode CPU current consumption @ 8MHz 4.3 mA

Table 7. Adjusted active mode CPU current consumption at 8MHz in Cooja. Adopted from [42].

The energy consumption data is generated per unit time of the hardware clock known as
RTIMER_SECOND. And the RTIMER_SECOND value for Z1 mote is 32768 ticks per second in
Cooja [45]. The length of time for which the simulation is run is called the Run time, and it is the
difference of simulation start and end time which is 349 seconds in our case.

Thus, for Z1 motes, we can summarize the standard operating voltage, current consumption
values for CPU and Radio Transceiver components, RTIMER_SECOND, and simulation run time
in the table below.

Z1 mote parameter Value
Normal operating Voltage 3V
CPU Active state current consumption @ 8 MHz 4.3 mA
CPU Standby/LPM current consumption 0.5 µA
TX CC2420 RF Transceiver current consumption 17.4 mA
RX CC2420 RF Transceiver current consumption 18.8 mA
RTIMER_SECOND (real timer) 32768 ticks per second
Total simulation Runtime 349 seconds

Table 8. Values for Z1 mote for use in power calculations.

22

We use the values from Table 8 and apply them in Equation [A] to calculate the power
consumption values for the five nodes in the two radio propagation models, as shown in Tables
9(a) and 9(b)

Power(mW) Node1 Node2 Node3 Node4 Node5

CPU 0.0077 0.0092 0.0077 0.0077 0.0063

LPM 0.0003 0.0003 0.0003 0.0003 0.0003

TX 0.0009 0.0009 0.0009 0.0009 0.0009

RX 9.6952 9.6952 9.6952 9.6952 9.6952

Total 9.7041 9.7056 9.7041 9.7041 9.7027

Table 9(a). Power consumption (For WSN without a central node)- UDGM distance-loss model

Power(mW) Node1 Node2 Node3 Node4 Node5

CPU 0.0115 0.0130 0.0114 0.0133 0.0115

LPM 0.0003 0.0003 0.0003 0.0003 0.0003

TX 0.0074 0.0074 0.0074 0.0074 0.0074

RX 9.6880 9.6880 9.6880 9.6880 9.6880

Total 9.7072 9.7087 9.7070 9.7089 9.7071

Table 9(b). Power consumption (For WSN without a central node) in MRM environment

2.3.5.4 Packet Delivery Ratio (PDR)

A network's performance is measured by the packet delivery ratio (PDR) given by the equation
below [25].

𝑃𝐷𝑅(%) =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠)

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠)
× 100

Equation [B]

Tables 10(a) and 10(b) show the number of packets each node sent and received in our Cooja
simulations for the two radio propagation models.

23

Source
Node

Packet
Sent

Packet
Received

PDR

1 449 449 100%

2 449 449 100%

3 449 449 100%

4 449 448 99.8%

5 449 449 100%

Table 10(a). Packet delivery ratio (For WSN without a central node) UDGM distance-loss model

Source
Node

Packet
Sent

Packet
Received

PDR

1 21024 21024 100%

2 21024 42048 200%

3 21024 21035 100.05%

4 21035 21024 99.95%

5 21024 0 0%

Table 10(b). Packet delivery ratio (For WSN without a central node) in MRM environment

The PDR for node 2 in the MRM environment is double due to its proximity with nodes 3 and 4,
as shown in Figure 3(c).

Figure 3(c). Reachability of node 2 in MRM environment

24

To investigate the reason behind the 0% PDR of node 5, we refer to the SNR reception threshold
of 6 dB in the MRM settings in Table B. Thus a node cannot receive signals with SNR below 6 dB
in the given MRM environment. We observed the signal-to-noise ratio around node 5 in the color-
painted radio channel in Figure 3(d) and saw that the obstacle and the large distances impacted
the ability of node 5 to receive packets from the other nodes.

Figure 3(d). signal to noise ratio in colored radio channel around node surrounded with obstacle

2.4 Simulation of a distributed WSN with central/root node(s)

This section investigates RPL 6LowPAN wireless networks that work around a central node (also
known as root or sink node). The RPL networks are the most successful for IPv6-based
networking in low-powered and lossy network (LLN) devices and incorporate the latest
improvements in wireless sensor networking [30]. These networks are built as Directed Acyclic
Graphs (DAGs), where the paths are oriented toward and must terminate in a root node with no
outgoing edges [51]. For multipath routing in distributed networks, the RPL networks use
Destination-Oriented Directed Acyclic Graphs (DODAGs) terminating at a single root or border
router. When acting as a router, the central node is referred to as the low-powered and lossy
border router (LBR) device.

2.4.1 Importance of the central node

The root node is indispensable and central to the design of RPL networks. The central node is
often deployed first and should be constantly powered. It is considered dependable enough to
provide connectivity among non-root LLN devices. In essence, a minimal configuration non-root
sensor with no in-built network stack can still communicate with the neighboring nodes or the
upper network layers via the root node.

The central node as an LBR device enables router-based, distributed, wide-area, multi-sensor
networks spread over geographies and extended to global networks via IPv6 connectivity. The
communication interfaces for web or messaging can be extended beyond LBR using Message
Queuing Telemetry Transport (MQTT) and Constrained Application (CoAP) protocols [42].

25

2.4.2 Neighbor Discovery Mechanism Using Central/Root Node

Described in section 2.3.1, the IPv6 network discovery in the low-power IPv6 stack under Contiki-
NG is based on RFC 4861, where “IPv6 nodes on the same link use Neighbor Discovery to
discover each other's presence, to determine each other's link-layer addresses, to find routers,
and to maintain reachability information about the paths to active neighbors” [61][62].

However, for 6LowPAN RPL networks dependent on the root nodes under Contiki-NG, the
“Default RPL NBR policy decides when to add a new discovered node to the nbr table from RPL.
This policy assumes that all neighbors end up being IPv6 neighbors and are not only MAC
neighbors” [63]. Thus, besides the IPv6 network discovery framework, the existence of the nodes
in RPL networks is determined by a neighbor policy dependent on the RPL storing mode. With
the storing mode-ON, all nodes cache the neighboring node addresses, whereas in the case of
storing mode off, only the root node caches all the addresses. The caching of nodes impacts the
discoverability of the nodes. Therefore, RPL uses different routing approaches described under
sections 2.4.3, 2.4.5, and 2.4.6 for different storing modes.

2.4.3 Communication modes in RPL networks

For our use-case of distributed WSN, we essentially need direct communication capabilities
among non-root sensors (or child nodes or clients). Since “the edge node is mostly one or two
hops away from the mobile client to meet the response time constraints for real-time” [18, 19].
The edge-AI algorithms should execute near the central device and not necessarily on the central
device. So, we explore the routing mechanisms available in RPL networks to establish autonomy
and communication among the non-root nodes.

For passing control messages with node addresses, RPL uses two routing modes: storing and
non-storing, as shown in Figure 4. In non-storing mode, the message is sent directly to the root,
the only node that can maintain the addresses. However, a child node's discovery of neighboring
nodes becomes possible when it begins recording addresses in a routing table in its memory
under the storing mode [28]. The routing table contains, among other things, the identifier for each
of the other sensors. A child node can thus communicate with any other node when the RPL
network is implemented in the storing mode.

Figure 4. Routing modes in an RPL network. Adopted from [21].

26

Figure 4(a) shows the default non-storing mode and involves passing by root. Figure 4(b) shows
RPL with storing mode ON, where the routing happens through the common ancestor between
the source and destination nodes instead of the root.

2.4.4 RPL network with UDP communication

We extend the “rpl-udp” example [52] from the Contiki-NG repository in this work. The example
is a simple RPL network with User Datagram Protocol (UDP) communication, containing a DAG
root and client. The clients periodically send a UDP request containing a counter as a payload.
The server responds with the same counter back to the originator upon receiving the request.

We implement autonomous decision-making in the RPL-UDP root and client nodes. And enhance
the child nodes to be able to talk to their peers directly via building and maintaining an independent
routing table.

Figure 5. Z1 WSN with a central node.

2.4.5 Root Node in RPL-UDP – using default non-storing mode

Using the default non-storing mode of RPL networks, we verified via a few simulation tests that
the clients can communicate (send/receive messages) only via the server node and not directly
with each other. For example, In Figure 6 from the Cooja simulation log, we see that the client
node id 3 (CLIENT-TWO) and node id 4 (CLIENT-ONE) can send the request to server node 1
and can receive the same message back from node 1. But the communication never directly
happens between the client node ids 3 and 4.

27

Figure 6. Cooja message log

2.4.6 RPL – Storing Mode in Contiki

As discussed in section 2.4.3, with the storing mode ON under Contiki RPL networks, each client
builds its routing table for accessing the neighboring nodes. We can set the storing mode on via
the following setting in the Cooja project Makefile [28]:

MAKE_ROUTING = MAKE_ROUTING_RPL_CLASSIC

Figure 7 shows an enhanced 6LowPAN RPL-UDP network with node 1 (green circle) as the root
node and the remaining as client nodes (yellow circles). Their IPv6 addresses are marked ending
with node id numbers, e.g., IPv6 address for node 1 is fe80::c30c:0:0:1 and so on.

Figure 7. Tree graph formed in UDP-RPL.

Figure 8 shows the routing table built by node 4.

28

Figure 8. Routing Table automatically built at the client-node

Thus, from Figures 7 and 8, we can conclude for node 4 that it has the below paths available to
access the neighboring nodes 3, 5, and 6

 Node 4 can access node 6 via node 2.
 Node 4 can access node 3 via node 2.
 Node 4 can access node 5 via node 2.
 Node 4 can access node 2 via node 2 itself.

This access-graph/routing table changes if the node positions are altered, that is, when the nodes
move or disappear, e.g., due to a change in their relative position or due to a malfunction, etc.
The routing table is built afresh when a trigger arrives at a sensor, which makes a sensor detect
changes in the state of its neighboring sensor.

Thus, with storing mode-on in Contiki, we observe that:

1. Each sensor can discover other sensors in its neighborhood without the help of any

central server (storage, processor) or root node.
2. The network is dynamic, i.e., when sensors enter or exit the network, the nodes can

detect the live positions/addresses of other nodes using the dynamic routing table.

2.4.7 Point to Point (P2P) RPL protocol

The Point-to-point RPL (P2P RPL) [20] is an extension of RPL that implements shorter paths that
do not pass by the sink (or root node.) It uses an IPv6 router instead of an RPL router on
6LoWPAN networks and provides the capability to link arbitrary paths connecting point-to-point
nodes.

The P2P-RPL came as RFC 6997 [20] in August 2013, after the RPL RFC 6550 [22] that came in
March 2012. Since many shortcomings of even P2P-RPL are noted, newer improved P2P
variations like GeoRank, ER-RPL, AODV-RPL [21] and alternatives like the Lightweight On-
demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) [29, 30, 31, 32],
Babel Routing Protocol RFC 8965 [24] have emerged with better routing for LLN devices.

2.4.8 WSN setup in Cooja (with root node)

Figures 8(a) and 8(b) show two 6LowPAN RPL-UDP WSNs with one server node surrounded by
four client nodes. We used these WSNs to generate simulations using the UDGM distance-loss
and the MRM radio propagation models. The MRM simulation included an obstacle (Figure 8(c)).

29

To implement decision-making in the case of WSNs with root nodes, we send the counter
message to a destination node if that node is present in the dynamic routing table of the source
node.

Thus, to implement

if <condition>,
 Send <message> to <node>

we used

Condition: Pick destination node if present in dynamic routing table of the source node

Message: Counter value

Node: Destination address chosen by the condition

Figure 8(a). RPL WSN in Cooja with a central node- UDGM distance-loss

30

Figure 8(b). RPL WSN in Cooja with a central node in MRM environment

Figure 8(c). An obstacle placed around root node 1 in the MRM environment

Obstacle

31

2.4.9 Simulation Results

2.4.9.1 Network Throughput

Total Packets 22824
Total Simulation Time 349 seconds
Average packets per second 1.1
Average packet size 35 bytes
Average bytes per second 38
Average bits per second 307
Encapsulation IEEE 802.15.4 Wireless PAN

Table 11(a). Network throughput (For WSN with a central node)- UDGM distance-loss model

Total Packets 12910
Total Simulation Time 349 seconds
Average packets per second 0.6
Average packet size 38 bytes
Average bytes per second 23
Average bits per second 189
Encapsulation IEEE 802.15.4 Wireless PAN

Table 11(b). Network throughput (For WSN with a central node) in MRM environment

Figure 9(a). Packets per minute (For WSN with a central node)- UDGM distance-loss model

32

Figure 9(b). Packets per minute (For WSN with a central node) in MRM environment

2.4.9.2 Network Lifetime

Mote ON TX RX
Z1 (root) 99.97% 0.017% 0.043%

Z2 99.98% 0.037% 0.071%
Z3 99.93% 0.028% 0.052%
Z4 99.86% 0.043% 0.054%
Z5 99.99% 0.015% 0.028%

Table 12(a). Radio duty cycle percentage (For WSN with a central node)

UDGM distance-loss model

Mote ON TX RX
Z1 (root) 99.98% 0.02% 0.06%

Z2 99.81% 0.01% 0.06%
Z3 99.88% 0.01% 0.04%
Z4 99.81% 0.02% 0.05%
Z5 99.87% 0.02% 0.04%

Table 12(b). Radio duty cycle percentage (For WSN with a central node) in MRM environment

33

2.4.9.3 Power Consumption

Average
Energest
Value

Node1 Node2 Node3 Node4 Node5

 CPU 11101.778 42394.49153 41163.424 43306.32203 38933.169

 LPM 1955164.119 1957006.424 1958236.271 1956094.61 1960466.525

 TX 33569.508 33948.18644 33795.152 34027.55932 33583.288

 RX 1965824.153 1965443.305 1965596.881 1965362.559 1965811.068

Table 13(a). Average Energest values (For WSN with a central node)
UDGM distance-loss model

Table 13(b). Average Energest values (For WSN with a central node) in MRM environment

We use the values from Tables 13(a) and 13(b) and apply them in Equation [A] to calculate the
power consumption values for the five nodes in the WSN with a central node in Table 14(a) and
14(b) for the two radio propagation models.

Power(mW) Node1 Node2 Node3 Node4 Node5

CPU 0.0125 0.0478 0.0464 0.0489 0.0439

LPM 0.0003 0.0003 0.0003 0.0003 0.0003

TX 0.1532 0.1550 0.1543 0.1553 0.1533

RX 9.6950 9.6931 9.6939 9.6927 9.6949

Total 9.8610 9.8962 9.8948 9.8972 9.8924

Table 14(a). Power consumption (For WSN with a central node)- UDGM distance-loss model

Average
Energest
Value

Node1 Node2 Node3 Node4 Node5

 CPU 6799.53 5957.80 5415.98 6956.92 5559.05

 LPM 1959279.288 1960121.475 1960663.153 1959122.356 1960519.78

 TX 254.12 224.90 241.41 386.05 343

 RX 1965819.576 1965851.237 1965833.707 1965687.068 1965731.525

34

Power(mW) Node1 Node2 Node3 Node4 Node5

CPU 0.0077 0.0067 0.0061 0.0078 0.0063

LPM 0.0003 0.0003 0.0003 0.0003 0.0003

TX 0.0012 0.0010 0.0011 0.0018 0.0016

RX 9.6950 9.6951 9.6951 9.6943 9.6946

Total 9.7041 9.7032 9.7026 9.7042 9.7027

Table 14(b). Power consumption (For WSN with a central node) in MRM environment

2.4.9.4 Packet Delivery Ratio (PDR)

Source
Node

Node IPv6
address

Packet
Sent (TX)

Packet
Received

PDR

1 (Root) fe80::c30c:0:0:1 13 421 3238.5%

2 fe80::c30c:0:0:2 446 368 82.5%

3 fe80::c30c:0:0:3 416 461 110.8%

4 fe80::c30c:0:0:4 480 350 72.9%

5 fe80::c30c:0:0:5 412 80 19.4%

Table 15(a). Packet Delivery Data (For WSN with a central node)- UDGM distance-loss model

Figure 10. Transmission range of node 3 in RPL network

Node 3 had more packets received than sent due to nodes 5 and 2 being in its access radius.

35

Source
Node

Node IPv6
address

Packet
Sent (TX)

Packet
Received

PDR

1 (Root) fe80::c30c:0:0:1 31 112 361.3%

2 fe80::c30c:0:0:2 330 337 102.1%

3 fe80::c30c:0:0:3 423 405 95.7%

4 fe80::c30c:0:0:4 207 187 90.3%

5 fe80::c30c:0:0:5 569 376 66.1%

Table 15(b). Packet Delivery Data (For WSN with a central node) in MRM environment

Table 15 (b) shows that node 5 has the lowest PDR due to its long distance from other nodes
under the MRM environment. But the PDR at node 5 is not 0 due to the access path tree formed
in the RPL network.

3 Conclusions

I. We simulated the distributed wireless sensor networks using Contiki-NG / Cooja
where the nodes communicate directly with the other nodes -
 without having to go through a central node when implemented via non-IPv6 lower

layers
 via the IPv6 under RPL 6LoWPAN networks without having to go through the root

node when running Contiki under storing mode

II. Using the mechanisms described on Non-IPv6 MAC/Nullnet layer networks in section 2.3
and for RPL networks in section 2.4.2, we built two WSN simulations that demonstrate
 asynchronous event-triggered communication - because the nodes send packets

based on conditional logic implemented in the source code of the emulated nodes in
ContikiOS/Cooja

 targeted communication - because the nodes send packets to the specific recipient
nodes using ContikiMAC and RPL protocols from the network stack of the ContikiOS

 dynamic communication - because the nodes detect the target nodes using
ContikiMAC carrier sensing and RPL routing mechanism

III. Comparing the simulation results for the WSNs using UDGM distance-loss model with and
without central node, we observe that
 Network Throughput: From tables 3(a) and 11(a), it is observed that RPL WSN with

a central node has lesser network throughput
 Network Lifetime: From tables 4(a) and 12(a), it is observed that RPL WSN with a

central node has a lower network lifetime

36

 Power Consumption: From tables 9(a) and 14(a), it is observed that RPL WSN with
a central node has a higher power consumption

 Packet Delivery Ratio: From tables 10(a) and 15(a), it is observed that RPL WSN
with a central node has a degraded PDR for the four child nodes.

IV. Comparing the simulation results for the WSNs in MRM environment with and without
central node, we observe that
 Network Throughput: From tables 3(b) and 11(b), it is observed that WSN without

the central node has significantly higher network throughput
 Network Lifetime: From tables 4(b) and 12(b), it is observed that RPL WSN with a

central node has a higher network lifetime
 Power Consumption: From tables 9(b) and 14(b), it is observed that WSN without

the central node has slightly higher total power consumption due to higher CPU and
Transmission power consumption

 Packet Delivery Ratio: From tables 10(b) and 15(b), it is observed that obstacles
and larger distances among the nodes negatively impact the packet delivery ratio in
both types of WSNs

Thus, we see that, on the one hand, the edge devices can yield actionable real-time insights,
processing the AI or machine learning algorithms. On the other hand, the WSN networks can
deliver continuous integration beyond the edge of the network, addressing constraints of low-
powered and lossy networks.

37

4 Appendix
Table of Acronyms

WSN Wireless Sensor Network
Edge-AI Edge Artificial Intelligence
RPL Routing Protocol for Low-Power and Lossy Networks
QoS Quality of Service
IEEE Institute of Electrical and Electronics Engineers
AI Artificial Intelligence
ML Machine Learning
IoT Internet of Things
OMNeT++ Objective Modular Network Testbed in C++
NS-3 Network Simulator version 3
MATLAB MATrix LABoratory
Contiki-NG Contiki-Next Generation
CPU Central Processing Unit
GUI Graphical User Interface
GNU GPL GNU's Not UNIX General Public License
ROM Read only memory
RAM Random Access Memory
TCP/IP Transmission Control Protocol/Internet Protocol
BAN Body Area Networks
DCE Direct-Code Execution
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
CoAP Constrained Application Protocol
TSCH Time Slotted Channel Hopping or Time Synchronized Channel Hopping
OSPF Open Shortest Path First
BGP Border Gateway Protocol
PPP Point-to-Point Protocol
MAC Medium Access Control
MANET Mobile Ad Hoc Network
DiffServ Differentiated services
MPLS Multi-Protocol Label Switching
LDP Label Distribution Protocol
RSVP-TE Resource Reservation Protocol for Traffic Engineering
UDP User Datagram Protocol
NSC Network Simulation Cradle
BSD Berkeley Software Distribution
XCP Universal Measurement and Calibration Protocol
RS 232 Recommended Standard 232
UDGM Unit Disk Graph Medium
DGRM Directed Graph Radio Medium
MRM Multipath Ray-tracer Medium
SBR Shooting and Bouncing Rays
WMN Wireless Mesh Network

38

OSI Open System Interconnections
LR-WPAN Low-Rate Wireless Personal Area Network
RDC Radio Duty Cycle
LPL Low-power Probing and low-power Listening
PDR Packet Delivery Ratio
EUI Extended Unique Identifier
Wi-Fi Wireless Fidelity
TX Transmission
RX Reception
PHY Physical
CSMA Carrier Sense Multiple Access
GHz Giga Hertz
mW Milli Watt
RTIMER Real Timer
LPM Low Power Mode
RF Radio Frequency
DAG Directed Acyclic Graph
DODAG Destination-Oriented Directed Acyclic Graph
LLN device Low-powered and lossy network device
LBR Low-powered and lossy Border Router
MQTT Message Queuing Telemetry Transport
CoAP Constrained Application Protocol
P2P Point to Point
RFC Request for Comments
LOADng Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next

Generation
ER-RPL Energy-efficient region-based Routing Protocol
AODV Ad-hoc On-demand Distance Vector
MRM Multi-path Ray-tracer Medium
SNR Signal to Noise Ratio

39

5 References

1. “Message Passing.” Wikipedia, Wikimedia Foundation, 21 Apr. 2022,
https://en.wikipedia.org/wiki/Message_passing.

2. Kanaris, Loizos, et al. “On the Realistic Radio and Network Planning of IOT Sensor
Networks.” MDPI, Multidisciplinary Digital Publishing Institute, 24 July 2019,
https://www.mdpi.com/1424-8220/19/15/3264.

3. “RPL UDP.” RPL UDP - Contiki, https://anrg.usc.edu/contiki/index.php/RPL_UDP.
4. “Network Stack.” Network Stack - Contiki,

https://anrg.usc.edu/contiki/index.php/Network_Stack.
5. Ali, Qutaiba I. “Chapter: Simulation Framework of Wireless Sensor Network (WSN)

Using MATLAB/Simulink Software.” IntechOpen, IntechOpen, 26 Sept. 2012,
https://www.intechopen.com/chapters/39337.

6. Introduction to Network Simulator Version 3 (NS-3).
http://eng.staff.alexu.edu.eg/~bmokhtar/courses/computer_networks_ssp/fall_2014/ns3.
pdf.

7. “IOSR Journals.” IOSR Journal, https://www.iosrjournals.org/iosr-
jece/papers/Vol.%2015%20Issue%205/Series-1/A1505010106.pdf.

8. Unit II Data-Link Layer & Media Access - SNS Courseware.
http://www.snscourseware.org/snscenew/files/1565835024.pdf.

9. “Contiki Programming Guide.” Contiki Programming Guide - Contiki,
https://anrg.usc.edu/contiki/index.php/Contiki_Programming_Guide.

10. “ Castalia.” Castalia, https://omnetpp.org/download-items/Castalia.html.
11. “NS3 Tutorial.” Ns, https://www.nsnam.org/docs/release/3.35/tutorial/html/index.html.
12. “Contiki.” Wikipedia, Wikimedia Foundation, 28 Apr. 2022,

https://en.wikipedia.org/wiki/Contiki.
13. “Events and Simulator.” Events and Simulator - Manual,

https://www.nsnam.org/docs/release/3.29/manual/html/events.html.
14. “Introduction.” Introduction - INET 4.3.0 Documentation,

https://inet.omnetpp.org/docs/users-guide/ch-introduction.html.
15. “Realtime.” RealTime - Manual,

https://www.nsnam.org/docs/release/3.29/manual/html/realtime.html.
16. Contiki-Ng. “Releases · Contiki-Ng/Contiki-Ng.” GitHub, https://github.com/contiki-

ng/contiki-ng/releases.
17. “Routing Table.” Wikipedia, Wikimedia Foundation, 4 Apr. 2022,

https://en.wikipedia.org/wiki/Routing_table.
18. Tirado, Juan M. “We Have to Define What Is Edge Computing.” Jmtirado.net, 23 Sept.

2020, https://jmtirado.net/define_edge_computing/.
19. “Edge Computing.” Wikipedia, Wikimedia Foundation, 3 May 2022,

https://en.wikipedia.org/wiki/Edge_computing.
20. “RFC 6997 - Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy

Networks.” Document Search and Retrieval Page,
https://datatracker.ietf.org/doc/html/rfc6997.

21. Sobral, José V. V., et al. “Routing Protocols for Low Power and Lossy Networks in
Internet of Things Applications.” MDPI, Multidisciplinary Digital Publishing Institute, 9
May 2019, https://www.mdpi.com/1424-8220/19/9/2144.

22. “RFC 6550 - RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.”
Document Search and Retrieval Page, https://datatracker.ietf.org/doc/html/rfc6550.

23. ArXiv. https://arxiv.org/ftp/arxiv/papers/1902/1902.01876.pdf.
24. RFC Editor, https://www.rfc-editor.org/rfc/rfc8965.txt.

40

25. QoS Measurement of RPL Using Cooja Simulator and Wireshark Network Analyser.
https://www.researchgate.net/publication/325593751_QoS_Measurement_of_RPL_usin
g_Cooja_Simulator_and_Wireshark_Network_Analyser.

26. Researching and Hardware Implementation of RPL Routing Protocol ... - IJFCC.
http://www.ijfcc.org/papers/338-F1004.pdf.

27. “Scholars Crossing: Liberty University Research.” Site,
https://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=2048&context=honors.

28. Contiki-Ng. “Documentation: RPL · Contiki-Ng/Contiki-Ng Wiki.” GitHub,
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-RPL#modes-of-operation-
mop.

29. Contiki-Ng. “Documentation: Energest · Contiki-Ng/Contiki-Ng Wiki.” GitHub,
https://github.com/contiki-ng/contiki-ng/wiki/Documentation:-Energest.

30. Musaddiq, A., Zikria, Y.B., Zulqarnain et al. Routing protocol for Low-Power and Lossy
Networks for heterogeneous traffic network. J Wireless Com Network 2020, 21 (2020).
https://doi.org/10.1186/s13638-020-1645-4

31. Zarrad A, Alsmadi I. Evaluating network test scenarios for network simulators systems.
International Journal of Distributed Sensor Networks. October 2017.
doi:10.1177/1550147717738216

32. Obermaier, C.; Facchi, C. Observations on OMNeT++ Real-Time Behaviour. arXiv 2017,
arXiv:1709.02207.

33. Varga, Andras. “Chapters.” OMNeT++ - Simulation Manual,
https://doc.omnetpp.org/omnetpp/manual/.

34. Qutaiba I. Ali (September 26th 2012). Simulation Framework of Wireless Sensor
Network (WSN) Using MATLAB/SIMULINK Software, MATLAB - A Fundamental Tool for
Scientific Computing and Engineering Applications - Volume 2, Vasilios N. Katsikis,
IntechOpen, DOI: 10.5772/46467. Available from:
https://www.intechopen.com/chapters/39337

35. Wireless Sensor Network Simulation Frameworks: A Tutorial Review ...
https://www.researchgate.net/publication/301273587_Wireless_Sensor_Network_Simula
tion_Frameworks_A_Tutorial_Review_MATLABSimulink_bests_the_rest.

36. “Throughput.” Wikipedia, Wikimedia Foundation, 22 Mar. 2022,
https://en.wikipedia.org/wiki/Throughput.

37. “Download.” Wireshark · Go Deep., https://www.wireshark.org/.
38. “Ng: Nullnet.” Contiki, https://contiki-

ng.readthedocs.io/en/master/_api/group__nullnet.html#details.
39. “Hardware Address.” Hardware Address - an Overview | ScienceDirect Topics,

https://www.sciencedirect.com/topics/computer-science/hardware-address.
40. “Mac Address.” Wikipedia, Wikimedia Foundation, 3 May 2022,

https://en.wikipedia.org/wiki/MAC_address.
41. “Main Page.” Zolertia RSS, http://wiki.zolertia.com/wiki/index.php/Main_Page.
42. A Secure Network Level Bridge for Wireless Sensor Networks.

https://dias.library.tuc.gr/view/68659.
43. Zolertia Z1 Datasheet - Wiki.zolertia.com.

http://wiki.zolertia.com/wiki/images/e/e8/Z1_RevC_Datasheet.pdf.
44. [Contiki-Developers] Emulated Motes CPU Clock Rate. https://contiki-

developers.narkive.com/FCsZZvsv/emulated-motes-cpu-clock-rate.
45. Running and Testing Applications for Contiki OS Using Cooja Simulator.

https://core.ac.uk/download/pdf/80817534.pdf.

41

46. Using Cooja for WSN Simulations: Some New Uses and Limits - Ewsn.org.
https://www.ewsn.org/file-repository/ewsn2016/319_324_roussel.pdf.

47. IOT Emulation with Cooja - Wireless.
http://wireless.ictp.it/school_2015/presentations/firstweek/ICTP-Cooja-Presentation-
version0.pdf.

48. Medium Access Control Sublayer (Mac Sublayer).
https://www.tutorialspoint.com/medium-access-control-sublayer-mac-sublayer.

49. Santos, Aldri L., et al. “Clustering and Reliability-Driven Mitigation of Routing Attacks in
Massive IOT Systems - Journal of Internet Services and Applications.” SpringerOpen,
Springer London, 6 Sept. 2019,
https://jisajournal.springeropen.com/articles/10.1186/s13174-019-0117-8.

50. Terrainlos: An Outdoor Propagation Model for ... - Inrg.soe.ucsc.edu.
https://inrg.soe.ucsc.edu/wp-content/uploads/2016/08/mascots_2016_terrainLOS.pdf.

51. “Doc: RFC 6550: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.” Hjp,
https://www.hjp.at/doc/rfc/rfc6550.html.

52. “Examples/RPL-UDP · 4803E132CC922532DDC50652F071DBD67D32BEA4 · E3DA-
Public / Contiki-Ng.” GitLab, https://gitlab.fbk.eu/e3da-public/contiki-ng/-
/tree/4803e132cc922532ddc50652f071dbd67d32bea4/examples/rpl-udp.

53. Burke, John. “What Is Throughput? - Definition from Whatis.com.” SearchNetworking,
TechTarget, 5 May 2015,
https://www.techtarget.com/searchnetworking/definition/throughput.

54. “Performance Evaluation of the IEEE 802.15.4 Mac for Low-Rate Low-Power Wireless
Networks.” IEEE Xplore, https://ieeexplore.ieee.org/document/1395158.

55. “MAC Protocols in Contikios.” MAC Protocols in ContikiOS - Contiki,
https://anrg.usc.edu/contiki/index.php/MAC_protocols_in_ContikiOS.

56. Contiki-Os. “Contiki/Netstack.h at Master · Contiki-Os/Contiki.” GitHub,
https://github.com/contiki-os/contiki/blob/master/core/net/netstack.h.

57. “Ng: Os/Net/Nullnet/Nullnet.h Source File.” Contiki, https://contiki-
ng.readthedocs.io/en/master/_api/nullnet_8h_source.html.

58. Michel, Mathieu, and Bruno Quoitin. “Technical Report : Contikimac VS X-MAC
Performance Analysis.” ArXiv.org, 6 Apr. 2016, https://arxiv.org/abs/1404.3589.

59. C. Pinola, "Evaluating the performance of synchronous and asynchronous media access
control protocols in the contiki operating system," WORCESTER POLYTECHNIC
INSTITUTE, 2012.

60. “NG: Os/Net/ipv6/Uip-nd6.c File Reference.” Contiki, https://contiki-
ng.readthedocs.io/en/master/_api/uip-nd6_8c.html.

61. “Ng: UIP: The IPv6 Stack.” Contiki, https://contiki-
ng.readthedocs.io/en/master/_api/group__uip.html.

62. “RFC 4861 - Neighbor Discovery for IP Version 6 (ipv6).” Document Search and
Retrieval Page, https://datatracker.ietf.org/doc/html/rfc4861.

63. “Ng: Os/Net/Routing/Rpl-Classic/Rpl-Nbr-Policy.c Source File.” Contiki, https://contiki-
ng.readthedocs.io/en/master/_api/rpl-classic_2rpl-nbr-policy_8c_source.html.

64. “Tutorial: IPv6 Ping - Contiki-Ng/Contiki-Ng Wiki.” About GitHub Wiki SEE - 420,000+
Wikis, Now Indexable., https://github-wiki-see.page/m/contiki-ng/contiki-
ng/wiki/Tutorial%3A-IPv6-ping.

65. “Ng: Os/Net/ipv6/Uip-nd6.h Source File.” Contiki, https://contiki-
ng.readthedocs.io/en/master/_api/uip-nd6_8h_source.html.

66. “Neighbor Discovery Protocol.” Wikipedia, Wikimedia Foundation, 4 Mar. 2022,
https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol.

42

67. IPv6 Neighbor Discovery Protocol - System Administration Guide: IP Services. 1 Aug.
2011, https://docs.oracle.com/cd/E18752_01/html/816-4554/ipv6-ref-34.html.

68. “IPv6 Neighbor Discovery.” IPv6 Neighbor Discovery | Junos OS | Juniper Networks,
https://www.juniper.net/documentation/us/en/software/junos/neighbor-
discovery/topics/topic-map/ipv6-neighbor-discovery.html.

69. Neighbor Solicitation and Advertisement Messages.
http://docs.ruckuswireless.com/fastiron/08.0.60/fastiron-08060-l3guide/GUID-4B7AE145-
E81A-4826-8A28-9545490C374B.html.

70. Stehl´ık, Martin. “Comparison of Simulators for Wireless Sensor Networks.” Masters
Thesis, https://is.muni.cz/.

	Simulating Distributed Wireless Sensor Networks for Edge-AI
	Recommended Citation

	Microsoft Word - ETD_Thesis_revision_10May2022.docx

