
690

Defence Science Journal, Vol. 74, No. 5, September 2024, pp. 690-700, DOI : 10.14429/dsj.74.19683
 2024, DESIDOC

Received : 12 December 2023, Revised : 22 April 2024
Accepted : 31 July 2024, Online published : 19 September 2024

Unscented Kalman Filters Integrated with Deep Learning Approaches for Active
Sonar Based 2D Underwater Target Tracking

Uwigize Patrick#, S. Koteswara Rao#, B. Omkar Lakshmi Jagan!,*, M. Kavitha Lakshmi$ and Thayyaba
Khatoon Mohammed^

#Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, Guntur - 522 302, India

!Department of Computer Science and Engineering, Vignan’s Institute of Information Technology,
Duvvada, Visakhapatnam - 530 049, India

$Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram, Guntur -522 302, India

^Department of Artificial Intelligence and Machine Learning, School of Engineering, Malla Reddy University,
Maisammaguda, Dulapally, Hyderabad - 500 043, India

*E-mail: omkarjagan@gmail.com

ABSTRACT

This manuscript proposes a new approach to track 2D targets using a combination of machine learning algorithms
and the Unscented Kalman filter (UKF). The approach makes use of active sonar sensors to measure range and
bearing, which are used to predict the target’s course and speed. So far in the literature of target tracking, researchers
assumed covariance matrix of the noise in sonar measurements. In this manuscript, it is tried to estimate the same
using deep learning algorithms. The Machine Learning algorithms, such as multilayer perceptron, convolutional neural
network, long-short term memory, and gated recurrent unit, are employed to approximate the covariance of the noise
in the input measurements. Simultaneously, the Unscented Kalman Filter (UKF) is utilised to mitigate the noise in
the measurements and to estimate the position and speed of the target. The results are quantified through Monte
Carlo simulations in a simulated underwater environment. The measurements are assumed to conform to a normal
Gaussian distribution with a mean of zero. The findings indicate that LSTM has superior performance compared
to the other models. Nevertheless, it is important to note that the results are constrained in their applicability due
to the restricted set of variables employed for training the machine learning models.

Keywords: Nonlinear filtering; Statistical signal processing; Deep learning; Recurrent neural network; Time series
prediction

1. INTRODUCTION
ACTIVE sonar systems, underwater vehicles and

acoustic imaging equipment use sound waves to detect targets
underwater and extract information about their characteristics.
There are different techniques for transmitting and receiving
sound waves in an acoustic environment, such as pulse-echo,
phase difference measurement, and frequency modulated
continuous wave. These techniques have diverse applications,
including marine navigation, object detection, ranging and
acoustic imaging. After receiving the signal, various signal
processing techniques, such as band-pass, matched, and
adaptive filters, are then used to extract useful information
from the received signal. These techniques are essential in
improving the accuracy and reliability of the extracted data1.

The task of target tracking involves estimating the target
state based on measurements only, which is challenging
due to measurement noise, unmodeled dynamics, and non-
linearities2. To address these challenges, various methods have
been developed, such as Kalman, particle filters and machine

learning algorithms etc.3-7. Current research on active sonar
systems aims to enhance the detection and localization of
targets by using advanced signal processing techniques such
as beamforming7. This method involves creating a beam by
combining signals from multiple sensors directed towards the
target, which improves the signal-to-noise ratio and enhances
the measurement accuracy.

Deep Neural Networks (DNNs) are a type of machine
learning models that have become widely popular because of
their capacity to autonomously acquire intricate connections
between inputs and outputs from extensive datasets9. There
are several types of DNNs, including MLP10, CNN11, LSTM12,
and GRU13, each with unique architectural features and
training procedures. MLP (Multi-Layer Perceptron) and CNN
(Convolutional Neural Network) are types of feedforward
networks that operate by sequentially processing incoming
data through a series of layers, without any loops or feedback
connections. However, LSTM and GRU are types of recurrent
neural networks (RNNs) that may effectively simulate
sequential data by preserving an internal state or memory.
However, all four types of neural networks - MLP, CNN,

PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

691

LSTM, and GRU - are well-suited for processing sequential
data and can model dependencies between measurements and
true values to improve tracking accuracy14.

RNNs are designed to maintain an internal state that
is updated with each new input in the sequence, allowing
them to use information from previous inputs to inform their
prediction for the current input15. This internal state, along with
the current input, is used to compute the output for the current
time step. In contrast, feedforward neural networks such MLPs
the computation is performed layer by layer, with each layer’s
output serving as the input to the next layer10. This makes
them ideal for modeling dependencies between the elements
of a sequence, especially in problems where the current output
depends on previous inputs.

This article describes methods for tracking targets using
bearing and range measurements from an active surveillance
sonar mounted on a submarine to predict target states—course
and speed. The UKF incorporated with machine learning was
introduced which provided good results in tracking mechanism.
Particle Filter (PF) with its variants as nonlinear non gaussian
state estimation methods was able to handle non-Gaussian
measurement noise16,17. However, the disadvantage of the PF
is that it requires many particles to be used, which increases
computation time. Other methods such as sequential Monte
Carlo methods and hidden Markov models were proposed
to track maneuvering targets, but their implementation was
difficult to track the targets7.

So far, the methods developed for target tracking, assume
that the covariance matrix of noise in sonar measurements
was known. But, in reality this is not available. Hence, using
deep learning algorithms the covariance matrix of input
measurements is found out, and the same is used in UKF. The
deep learning algorithms used are MLP, CNN, LSTM and
GRU. Python is used to realize and implement UKF and deep
learning algorithms. The results of these methods are tabulated
and compared. Active sonar systems are of paramount
importance in the realm of underwater target tracking as they
utilize chaotic sensor measurements to approximate target
attributes such as course and speed. Nevertheless, current
tracking techniques that employ Kalman filters or particle
filters operate under the presumption that the attributes of the
noise, which are symbolized by the covariance matrix, are
predetermined. This information is frequently unavailable or
inaccurate in the actual world, which results in tracking errors.
A novel approach is proposed in this article to tackle this
challenge. The system utilizes deep learning algorithms such
as MLP, CNN, LSTM, and GRU in an effort to directly learn
the noise covariance matrix from the sonar measurements.
This obviates the necessity for prequalification regarding the
attributes of the noise, which may result in enhanced precision
and resilience in the tracking of the target.

This article is divided into several sections. Section
I covers the introduction part and the challenges of target
tracking, while Section II describes about target tracking in
acoustic environment, Section III delves into the mathematical
formulations of two proposed networks, the Recurrent Neural
Network (RNN) and the Unscented Kalman Filter (UKF).
Section IV provides description about machine leaning

algorithms implementation, Section V outlines the simulation
design, while Section VI discusses how machine learning
algorithms are integrated into the UKF. The simulation results
and analysis are presented in Section VII, and Section VIII
draws conclusions based on the findings presented in the
preceding sections.

2. TA R G E T T R A C K I N G I N A C O U S T I C
ENVIRONMENT
The unpredictable and rapidly changing nature of a

moving target’s motion makes tracking it a complex and
non-linear task. In addition, moving in water is difficult for
underwater vehicles due to the density of water, hydrodynamic
forces, and the physical characteristics of the vehicle.
These factors, including size, weight, buoyancy, propulsion
system, and hydrodynamic properties, all affect a vehicle’s
maneuverability in water, making it a challenging environment
to navigate reducing the speeds of UVs. The sonar system is
mounted on the submarine and is being used to track a target as
both the submarine and the target are moving in the direction
shown in Fig. 1.

3. MATHEMATICAL MODELLING
In traditional tracking approaches, the movement of the

target and the data collected about it are typically represented
using mathematical equations that describe the target’s
behavior. The models employed are commonly derived from
preexisting knowledge regarding the dynamics and behavior
of the object. It is expected that these models are realistic
enough to accurately depict the movements and observations
of the target. The objective of the tracking process is to infer
the target’s state over time by utilizing these models and
the observations of the target. The precision of the tracking
outcomes relies on the precision of the model and the excellence
of the observations. Target model can be described as follows:

() { }1 , 1, 2,.....
hh h h hζ r h+ ΤΧ = Χ + Τ ∈ (1)

This is a state transition equation in the context of dynamic
systems. Here, Xh+1 is the state of the system at time step h, h

ζ Τ

being non-linear function that describes the system’s dynamics,
rh is an additive noise term, and Th is a discrete random variable
that determines which of the h possible dynamics the system
follows at time h.

b: Bearing, Tcrs: Target course, Ocrs: Observer course, r: Range, TBA: Target
bearing angle

Figure 1. Observer - target movement in acoustic environment
for tracking purpose.

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

692

The Eqn. (1) describes how the state of the system evolves
over time, given the current state Xh at time h and the function

h
ζ Τ , which represents the system’s dynamics. The random
variable Th allows for the possibility of multiple different
dynamics being present in the system, and the noise term rh
represents any unmodeled or unknown effects that influence
the system’s evolution. The measurements are modeled as a
function of the true target states, which can be expressed as in
the following Eqn.:

() ()h h hh c= Η +Y V (2)
This Eqn. (2) is an observation equation. Here, Y(h) s the

observation of the system at time step h, Hh is a non-linear
function that maps the state of the system to its observation,
and it is determined by sensor, ch is the state of the system,
and Vh is an additive noise term. The observation equation
describes how the system’s observations are related to its state.

Target tracking estimates target’s state using a sequence
of measurements. This is done by calculating the predicted and
conditional probability densities. The conditional density gives
the best estimate of the target’s state. The predicted density can
be calculated recursively using the Bayesian formula:

() () ()1: 1 1: 1 1 1: 1 1h h h h h h hc- - - - -Χ = Χ Χ Χ∫p Y p p Y d (3)

() () () ()1
1

1
h h h h h h

h h
-

-

Χ = Χ Χp Y p Y p Y
p Y Y (4)

Here, p(Xh/X1:h-1) is the posterior density of the target at
time h given observations up to time h-1, p(Xh/X1:h-1) is the
posterior density of the target at time h-1 given observations
up to time h-1, and p(Xh-1/Y1:h-1) is the transition density or
the probability distribution of the target’s state at time h given
its state at time h-1. p(Xh/Yh) is the likelihood of observing
the measurement Yh given the target state Xh, p(Yh/Yh-1) is
the predicted state density or the probability distribution of
the target state at time h given all previous measurements
p(Yh/Y1:h-1) and p(Xh/Yh-1) is the marginal likelihood or the
probability of observing the measurement Yh given all previous
measurements p(Yh/Y1:h-1) .

This system exhibits uniform motion with constant
velocity, and it was modeled using a second order system
following normal distribution with zero-mean. The covariance
of the noise was appropriately adjusted to account for the
normally small linear accelerations as follows:

2

1 12

1 0 0 0
0 1 0 0 0
0 0 1 0
0 0 0 1 0

h h h

t t
t

r
t t

t

+ +

 Χ = Χ +

(5)

Here, the coordinates and corresponding velocities in a
2-dimension environment are denoted by []h γ γΧ = x x and
t represents the sampling interval.

3.1 Recurrent Neural Networks Architecture
ANNs are in fact computing systems encourage by the

way the brain works, designed to learn, and perform tasks by
learning from examples. DNNs are a type of ANN containing
multiple hidden layers connecting inputs and output layers
allowing them to extract more complex features and achieve
more accurate results. RNNs are another type of ANN that

can use its internal memory to process sequences of input and
generate corresponding sequences of output. RNNs are suitable
for tasks that involve tracking and processing sequences of
data.

RNNs are specifically designed to handle input that is
presented in a sequence, such as time series or text data. They
achieve this by maintaining a state that enables the retention
of information from previous time steps. A conventional
architecture of a RNN containing hidden layers that processes
sequential input data. The hidden layer has connections that
allow the output of the previous input to be fed back into the
current input. This allows RNN to learn patterns in the input
data over time. The mathematical formula for a conventional
RNN architecture with the given variable substitutions can be
represented as:

() () ()()* 1 *hh hx hf f x bl s l l= - + +t W t W (6)

() ()()*yh yf f bl s l= +o W t (7)

Where at l, tf(l) is the hidden, x(l) is the input, of(l)
is the output , Weight matrices (i.e., Whh, Whx and Wyh) are
responsible for regulating the transmission of data among the
input, hidden, and output layers. Bias terms (i.e., bh and by)
are additional values that are incorporated into the calculations
of the hidden and output layers. s is a non-linear activation
function, such as the sigmoid or tanh function, that adds non-
linearity to the network.

The Rectified Linear Unit (ReLU) activation function
was employed in this study due to its computational efficiency,
sparsity, and ability to circumvent the vanishing gradient
problem. ReLU is mathematically given by f(x)=max(0,x), x
being the input to the activation function and f(x) is the output.
In this function, the output is zero for any input x that is less
than or equal to zero, and the output is equal to the input for any
input x that is greater than zero. This makes ReLU a piecewise
linear function with a rectified or flattened output for negative
inputs and a linear output for positive inputs.

The use of the hidden state tf(l-1) in the calculation of
the hidden state tf(l) allows the RNN to remember previous
inputs and learn patterns in the input data over time.

Figure 2. Recurrent neural network illustration.

The network is composed of input layers, hidden layers,
and output layers, where the hidden layers serve as the network’s
memory unit which is given in Fig. 2. At each iteration of the
input sequence, the network receives the current input and
updates its hidden state using both the current input and the
prior hidden state.

PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

693

After being trained then only the neural network can
generate the desired deterministic output. Let our RNN take
such sequence of time series data k1, k2,…, kl, as input to
return output sequence tf1, tf2, tf3,…, tfl. If we have M number
sequences, this can be described as follows:

() ()
()

()

() () () ()
1 1 2 2

() ()
3 3

() ()

, , , ,

, ,
1

...., ,
m m

m m m m

m m

m m
L L

k v k v
MS k v

m
k v

 = =
 (8)

An RNN’s parameters, which include input sequences i
and required output t, can be determined by minimizing the
following cost function.

() ()
1 1

1 (,)
mLM

n
K dl f v

M l
t

l
= =

F = ∑∑ t

(9)

The cost function involves a predefined divergence
measure, such as the Euclidean distance, between x and y,
represented as dl(x,y). The network parameters denoted by F
and represented by F={whi, whh, woh}. These parameters are
typically determined through the stochastic gradient descent
algorithm, which involves calculating the gradient of the cost
function. From a probabilistic perspective, the RNN aims to
estimate the conditional probability p(v1,v2,…,vt/k1,k2,…,kt)
using deterministic functions. The computation of the RNN
involves parameterizing this conditional probability as a
product of conditional probabilities, which can be expressed
as:

() { } { }()1 2 1 2 1 1 1 1, ,..., , ,..., ,..., , ,...,p v v v k k k p v v v v vt t t t -= ∏
 () { } { }()1 2 1 2 1 1 1 1, ,..., , ,..., ,..., , ,...,p v v v k k k p v v v v vt t t t -= ∏
 (10)
This involves estimating the probability of each target

output ti given the input sequence k1,k2,…,kt and the previously
generated targets v1,…,v{t-1}.

3.2 Deep Neural Networks Architecture
A DNN is composed of several layers of neurons, which

include input layers, hidden layers, and output layers. Every
individual neuron inside the network employs an activation
function to process its inputs and transmits the outcome to the
subsequent layer of neurons. The equations for a feedforward
DNN can be written as:

1*l l l lz W a b-= + (11)

()l la g z= (12)
where, W is the weight matrix between layer l and layer l-1,
bl is the bias vector for layer l, al is the output of layer 1 after
applying the activation function g to its inputs zl. The forward
pass through the network can be computed recursively as:

0a x= (13)

() ()1*l l l l la g z g W a b-= = + (14)
for 1, 2,....,l L=

where, x is the input to the network and L is the number of
layers in the network.

During the training process, the network receives
instruction to minimize a loss function that quantifies the
discrepancy between the predicted output of the network and
the desired target output. Commonly, this task is accomplished

by employing gradient descent or a related technique, such as
backpropagation.

4. MACHINE LEARNING IMPLEMENTATION
Prior to modeling, the authors applied standard scaling

to each feature individually. This was done to ensure equal
contribution of all characteristics to the model’s performance
and to prevent any single feature from overpowering the others.
Standard scaling is a process of scaling the data in such a way
that each feature has an average of zero and a variance of one.

Next, the data was split into x and y and generated 3D data
[samples, time steps, n features] as required by CNN, LSTM
and GRU. The experiment was done with different time steps,
and it was found that 10-time steps provided better results.
This involved breaking the data into windows of 10-time steps
and treating each window as a single input to the model. MLP
was exceptional because it doesn’t require 3D data, so the data
was flattened back to 2D data.

Several model architectures and different parameters for
each ML algorithm were tested, and the one providing better
results was considered and explained below. Each model was
building sequentially, and specifics are explained below:

4.1 MLP
The neural network architecture comprised of four densely

connected layers. The initial dense layer consisted of 200 units
utilizing a ReLU activation function, which was then followed
by another dense layer containing 100 units and employing the
same ReLU activation function. The third dense layer consisted
of 64 units and utilized a ReLU activation function. Ultimately,
the output layer consisted of a dense layer containing a number
of units that matched the total number of classes in the target
variable. The ReLU activation function is frequently employed
in deep learning models and is highly effective in mitigating
the issue of vanishing gradients.

4.2 CNN
The Neural network model comprised six layers. The

initial layer consisted of a 1-dimensional convolutional layer
with 200 filters, a kernel size of 2, and a ReLU activation
function. The second layer consisted of a 1D max pooling layer
with a pool size of 2, which was then followed by a flatten
layer that transformed the output of the preceding layer into
a one-dimensional array. The fourth and fifth levels consisted
of thick layers with 100 and 64 units, respectively, and both
employed the ReLU activation function. Ultimately, the sixth
and final layer consisted of a compact layer with several units,
each corresponding to the number of classes in the target
variable. This layer served as the output layer of the model.

4.3 LSTM
The architecture of the model consists of three LSTM

layers, each stacked on top of each other. The first layer has
200 units, the second layer has 100 units, and the third layer
has 64 units. All of these levels utilize the ReLU activation
function. Stacked refers to the property where the output of
each recurrent layer has a same number of time steps as the
input sequence. The output layer consisted of a dense layer

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

694

with 3 units, corresponding to the number of classes in the
target variable. This layer served as the final layer of the
model. This model architecture is well-suited for handling
sequential data and accurately predicting the class labels of the
target variable. LSTM layers possess the ability to acquire and
retain information about long-term relationships, making them
highly prevalent in a range of applications, including speech
recognition and natural language processing.

4.4 GRU
The recurrent neural network model was constructed

utilising stacked gated recurrent unit layers. The model consists
of three GRU layers with 200, 100, and 64 units, respectively.
All layers utilize the ReLU activation function, except for the
last layer. The output of each GRU layer is sequentially sent to
the subsequent GRU layer, with the final layer’s output serving
as the model’s overall output. The output layer is a dense
layer with 3 classes in the target variable, serving as the final
layer of the model. This model architecture is well-suited for
analysing sequential input and accurately predicting the class
labels of the target variable. GRU layers possess the ability
to acquire long-term dependencies and share similarities with
LSTM layers, however with a reduced number of parameters,
resulting in faster training.

To enhance the precision and efficiency of the training
process, the learning rate was decreased for all the models.
The initial learning rate of 0.001 was reduced to 0.0001. The
learning rate governs the magnitude of the increments the
model makes during optimization, and a high learning rate
might lead to the model surpassing the optimal solution or
diverging completely.

Another technique used to prevent overfitting was early
stopping. This method was implemented by monitoring the
validation loss. If the validation loss stopped improving,
the training process would stop to prevent the model from
continuing to train and improve performance on the training
data at the expense of generalization performance on unseen
data.

Given that this is a regression problem, various loss
functions can be employed. However, the decision was made
to use Mean Squared Error (MSE) as the loss function. The
MSE calculates the average of the squared differences between
the predicted and actual values. It has been demonstrated to be
a superior option for regression situations.

After training, the data was scaled, so it was crucially
important to inverse scale it to go back to the original range.
This was done to ensure that the predictions are meaningful in
the original units of measurement.

Finally, the trained models were saved along with the
scalers so that they could be retrieved and reused without
having to retrain them every time predictions were made.
This was done to make the process more efficient and faster,
especially when making predictions in real-time applications
such as the UKF.

5. SYSTEM DESIGN
In this paper, the author designed a Python-based

simulator to generate synthetic data that mimics the behavior of

an underwater real-world system. The generated data was used
to test and validate the algorithm and train machine learning
models, as actual data was not available. Without actual
data, simulators can provide a cost-effective and safe way to
test and refine an approach under a wide range of scenarios
and conditions. Moreover, since machine learning requires a
large amount of data, the synthetic data for various scenarios
provided insight into the performance of the machine learning
algorithm. Table 1 presents an example of the initial conditions
used to generate the dataset for the 2D space for the target
tracking simulator design. The simulator, given these initial
conditions and many others (300 in total), produced enough
independent features (range and bearing measurements), as
well as dependent features (standard deviation of noise in
range and bearing measurements). These features are used
for training and evaluating machine learning models in the
simulation.

Moreover, the simulator was also used along with the
UKF to predict the target’s position, course and speed, given
the standard deviation of noise in measurements using machine
learning algorithms. Overall system is presented in the block
diagram as given in Fig. 3.

Table 1. Few of several simulated initial conditions

Sc
No Brg Tcrs Ocrs Rng Vt Vo sR sB

1 136 63 93 5028 8 5 12.506 0.020
2 298 73 43 4295 9 11 14.255 0.028
3 325 51 21 4957 11 7 10.141 0.023
4 189 164 194 4498 17 6 11.523 0.025
5 176 222 192 5317 19 11 11.335 0.006
6 153 216 186 5668 14 7 9.382 0.027
7 162 74 104 5841 7 5 9.258 0.009
8 161 243 213 5827 12 4 15.902 0.017
9 16 355 385 3877 17 4 13.591 0.039
10 261 177 207 5890 19 10 15.763 0.015

Note: Sc no: scenario number, Brg: starting bearing (deg), Rng: starting range
(m), Vt: Target’s velocity (m/s), Vo: observer’s velocity (m/s), sR and sB are
standard deviation of noise in range and bearing measurements respectively.

Figure 3. Descriptive block diagram of the process.

PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

695

The simulation was run for a specific time interval, in
this case, 10 sec, which matches the time steps considered
during training. During the initial 10 sec of the simulation, the
measured bearing and range were buffered and the UKF did
not operate. Later, the buffered measurements were used along
with saved models and scalers to make a prediction of standard
deviation. The buffered data was first transformed into 3D
data to match the requirements of the GRU, LSTM and CNN
models but not MLP. These predictions were then used in the
UKF to predict the state of the unknown target, following the
block diagram shown in Fig. 3.

6. UKF BASED TARGET TRACKING
UKF-based target tracking is a widely employed method

in several domains such as robotics, aerospace, and military. It
is used to estimate the location and velocity of a moving target.
This technique is particularly useful when the measurements
are subject to noise or uncertainty. In this paper, bearing and
range measurements from a sonar sensor are available, which
can be used to estimate the position, course and speed of a
target.

The UKF, is a recursive Bayesian filter employed for state
estimation in dynamic systems. The UKF employs a collection
of sigma points to estimate the probability distribution of the
system state, hence enhancing the precision of the estimation.
The method comprises two primary stages: prediction and
update. During the prediction step, the UKF utilises a motion
model to forecast the subsequent state of the target. The process
involves computing the average and covariance of the sigma
points and advancing them in time using the motion model. The
resultant forecasted state estimation is subsequently employed
as the preliminary estimation for the update phase.

During the update step, the UKF uses the available sonar
measurements to update the state estimate of the target. This is
done by first predicting the expected measurement using the
predicted state estimate and then comparing it to the actual
measurement obtained from the sonar sensor. The disparity
between the anticipated and real data is subsequently employed
to revise the state estimation by means of the Kalman filter
equations.

Through repetitive repetition of the prediction and update
processes, the UKF is capable of accurately tracking the
location and velocity of the target. This is particularly crucial in
situations where the target’s movement is not in a straight line,
or the measurements are susceptible to noise or uncertainty.

This is particularly crucial in situations where the target’s
movement is not in a straight line, or the measurements are
affected by noise or ambiguity. The subsequent actions are
executed during the implementation of the UKF algorithm for
target tracking.

6.1 Sigma Point Generation
Calculate the sigma points around the current state

estimate:

() (), ,x x L P x L Pl l Χ = + + - + (15)
where, x is the current state estimate, P is the state covariance
matrix, L is a scaling parameter, and l is the offset parameter.

6.2 Sigma Point Propagation
Propagate the sigma points through the process model to

obtain the predicted state estimate and covariance:

()*hat i hatx w f P= Χ∑
() ()*

T
i i hat i hatw f x f x Q= Χ - Χ - + ∑ (16)

where, f is the process model, Q is the process noise covariance
matrix, wi are the weights of the sigma points, and Xi are the
propagated sigma points.

3
2

2

3

3 3

** 0 0 2
0 * 0 0

*0 0 04
* *0 02 4

s
s

s

s

s s

dd

d
Q d

d d

l

l

l

l l

=

 (17)

And d should be a small positive number, for example
d=10-5, ls is time steps.

6.3 Measurement Prediction
Predict the measurement from the predicted state estimate:

()*hat i iz w h= Χ∑ (18)
where, h is the measurement model.

6.4 Innovation Calculation
Calculate the innovation, or the difference between the

actual measurement and the predicted measurement:
haty z z= - (19)

where z is the actual measurement.

6.5 Measurement Update
Calculate the cross-covariance between state and

measurement:
[][]* () T

xz i i i hatP w x h z= Χ - Χ -∑ (20)

6.6 Calculate the Innovation Covariance Matrix

[][]* () () T
i i hat i hatS w h z h z R= Χ - Χ - +∑ (21)

where, R is the measurement noise covariance matrix.

6.7 Calculation of Kalman Gain
1*xzK P S -= (22)

Calculate the updated state estimate and covariance:

*
* *

hat
T

hat

x x K yP
P K S K
= +

= - (23)
where x is the updated state estimate, P is the updated state
covariance, K is the Kalman gain, and y is the innovation.

7. INCORPORATION OF ML MODELS INTO
UKF
The accuracy of a UKF’s state estimation and covariance

update is influenced by the correct estimation of the standard
deviation. An underestimation can lead to overconfidence in the
estimate, while overestimation can lead to over-conservatism,
both resulting in poor performance. To optimise UKF’s
performance, it is necessary to estimate the standard deviation

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

696

(a)
(b)

(c) (d)

(e)
Figure 4. Observer, target’s true, and estimated paths using (a) UKF only, (b) UKF with MLP, (c) UKF with CNN, (d) UKF with

LSTM and (e) UKF with GRU

using prior knowledge of the system and measurement sensors.
In UKF, the assumed standard deviation is represented by the
process noise covariance matrix and the measurement noise
covariance matrix, which are used to compute the sigma
points during the unscented transformation step to estimate
the state and covariance of the system. To design a machine
learning based UKF, various parameters and features must be
considered, including raw sensor data, sensor configuration,
physical constraints, environmental factors, quality and
quantity of training data, and ML algorithm parameters. These
parameters are included in the standard deviation for the
implementation of the UKF.

8. SIMULATION ANALYSIS AND RESULTS
A 2D space target tracking simulator was created to track

a target using measurements of range and bearing, with noise
added to the measurements. Machine learning models such as

MLP, CNN, LSTM, and GRU were used to forecast standard
deviations in range and bearing. These predictions, along
with the measurements, were used in an Unscented Kalman
Filter (UKF) to predict the unknown states of the target. The
Monte Carlo method was used to model nonlinearities in the
target motion and measurement models for more accurate
predictions. The results of the 10th scenario from the table are
shown. Moreover, the initial target’s state vector is computed
using the initial distance of 6500 mtr and the velocity of 10
meters per second. The state vector is assumed to follow
a Gaussian distribution with a zero mean; therefore, the
following expression is derived:

[](0) 15.0 15.0 6500*sin 6500*cossX b b= (24)
Starting covariance matrix

2()0 4*
0 12

sX kP diagonal
 =

 (25)

PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

697

Table 2. Performance comparison of LSTM, GRU, CNN and
MLP models for target tracking: Results of a test
case

Forecasted
True MLP CNN LSTM GRU

Sigma
R 10.005 11.1987 10.969 10.122 10.156

Sigma
B 0.0045 0.02364 0.005174 0.001249 0.003013

Multiple Monte Carlo simulations were employed
to address randomness and improve estimates, as a single
experiment would be insufficient. Machine learning algorithms
estimated standard deviation and UKF was used to predict
unknown target states. Estimated target path was plotted
against true target paths and observer. Moreover, Root Mean
Square (RMS) error values corresponding to target’s estimated
was also plotted. Graphs below depict analysis outcomes.

In Fig. 4 (a), the true path followed by the target and
observer is displayed, along with the estimated target path
using the UKF algorithm alone. The standard deviations
used in the UKF algorithm are determined solely based on
human intuition and experience and are assumed to be in the
range of 0° to 3°. Despite this, the UKF algorithm alone has
successfully estimated the target’s unknown states, indicating
its effective performance.

However, it is crucial to note that relying solely on human
judgment to determine the standard deviations used in the
UKF algorithm may not always result in optimal performance.
It is often advantageous to utilize data-driven approaches to
estimate the uncertainty in the system, rather than relying on
subjective assessments based on experience and intuition. Such
an approach can lead to improved accuracy and robustness in
the estimation process.

Figure 4 (a), (b), (c) and (d) display the true path of the
target and observer, as well as the estimated target path obtained
using different machine learning algorithms incorporated into
the UKF algorithm. The specific machine learning algorithms
used were the Multilayer Perceptron, Convolutional Neural
Network, Gated Recurrent Unit, and Long Short-Term
Memory.

Authors want to compare how different algorithms
perform in terms of their error convergence when they are used
in conjunction with the Unscented Kalman Filter, as well as
when the UKF algorithm is used on its own.

The main objective of incorporating these machine
learning algorithms was to address the issue of relying on
human intuition to estimate the standard deviation. This
reliance on human intuition can lead to problems and
inaccuracies in estimating the standard deviation. By using
pre-trained machine learning algorithms to learn patterns in
measurements, the estimation of the standard deviation can be
improved and the reliance on human intuition can be removed.

Figure 5(a) and (b) serves to compare the performance of
the different machine learning algorithms incorporated into the
UKF algorithm in estimating the target path. This comparison
allows for the determination of which machine learning
algorithm performs best in estimating the target path and how
well it compares to the true path. However, the purpose was not
achieved because of limited number of features and the results
of MLP clearly demonstrates this.

8.1 Limitation
When analysing time series data, the number of features

in a machine learning model can have a significant impact
on its ability to make accurate predictions. If the number
of features is too low, the model may not fully capture the
complex relationships and patterns within the data. This
can lead to incomplete representation of the data, decreased
predictive power, and increased risk of overfitting. In this
paper, the authors encountered this issue due to limited
number of features within the initial model, and it was unable
to capture the underlying patterns and relationships in the data.
To address this an elevation measurement was incorporated as
an additional feature and evaluated the results. Table 3 shows
the simulated scenario.

Where, inr: starting range, Elev: starting elevation, opi:
observer’s starting pitch, tpi: target’s starting pitch. sr, sb,
se: are standard deviation of range, bearing and elevation
respectively.

(a)

(b)
Figure 5. Comparison in error convergence for all algorithms

when used along with UKF and when UKF algorithm
is only used, (a) RMS Error in course; and (b) RMS
error in speed.

Table 3. Simulation results

scno ocrs inr b Vt Vo Tcrs Elev opi tpi sr sb se

1 45 3000 45 9 5 255 45 45 110 10 0.34 0.24

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

698

(a)

(b)

(c) (d)

(e)
Figure 6. Observer, target’s true, and estimated paths using (a) UKF with CNN, (b) UKF with LSTM, (c) UKF with MLP, (d) UKF

only, and (e) UKF with GRU.

Bearing starting bearing, trgtv: Starting target’s velocity,
obsrv: Observer’s starting velocity, trgtc: Starting target’s
course, elev: starting elevation, opi: Observer’s starting pitch,
tpi: Target’s starting pitch, sr, sb, se: Standard deviation of
range, bearing, and elevation respectively.

Findings revealed that including this additional feature
significantly improved the model’s ability to capture the
complexities of the time series data hence the prediction was
improved, affected the UKF to use correctly estimated Standard
deviations which ultimately provided accurate estimation of
target unknown states. Figure 6 represents the obtained results.

Figure 6(a) shows the true and estimated paths of the target
and observer using the Unscented Kalman Filter algorithm only
which means the standard deviations used in the algorithm are
based on human intuition, assumption, and experience and

may not always result in optimal performance. Figure 6(b),
(c) and (d) display the true and estimated paths obtained using
different machine learning algorithms, including multilayer
perceptron, convolutional neural network, gated recurrent unit
and long short-term memory.

Text emphasises that relying solely on human intuition
to estimate the standard deviation can lead to inaccuracies and
problems, and using pre-trained machine learning algorithms
can remove the reliance on human intuition and improve the
estimation of the standard deviation. It should be noted that
data-driven approaches, such as machine learning algorithms,
to estimate the uncertainty in the system and improve the
estimation process’s accuracy and robustness is shown in
Fig. 7 in the form of RMS errors. We can assess how the
error convergence of various algorithms is affected using

PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

699

as deep learning is more complex and takes longer. While MLP
can be used for time series prediction, it may not be able to
capture the complex patterns and dependencies present in the
data. LSTM, GRU, and CNN have more advanced structures
that are designed for time series analysis and have been shown
to be more effective at capturing the complexity of the data.

REFERENCES
1. Havelock, D.; Kuwano, S. & Vorländer, M. Editors.

Handbook of signal processing in acoustics. New York:
Springer; 2008 Oct 26.

2. Luo, J.; Han, Y. & Fan, L. Underwater acoustic target
tracking: A review. Sensors., 2018, 18(1), 112.

 doi: 10.3390/s18010112.
3. Murthy, A.S.; Rao, S.K.; Naik, K.S.; Das, R.P.; Jahan,

K. & Raju, K.L. Tracking of a manoeuvering target ship
using radar measurements. Indian J. Sci. Technol., 2015,
8(28), 1-6.

 doi: 10.17485/ijst/2015/v8i28/73788
4. Divya, G.N. & Rao, S.K. Implementation of ensemble

Kalman filter algorithm for underwater target tracking. J.
Control and Decision. 2022, 1-10.

 doi: 10.1080/23307706.2022.2092039
5. Jagan, B.O.L. & Rao, S.K. Measure of nonlinearity for

underwater target tracking using hull-mounted sensor. Int.
J. Intelligent Comput. Cybernetics. 2022, 15(3), 333-44.

 doi: 10.1108/IJICC-08-2021-0167
6. Rao, S.K.; Lakshmi, M.K.; Jahan, K.; Naga, D.G. &

Omkar, B.L.J. Acceptance criteria of bearings-only
passive target tracking solution. IETE J. Res., 2023, 69(5),
2874-85.

 doi: 10.1080/03772063.2021.1906769
7. Raju, K.L.; Rao, S.K.; Das, R.P.; Santhosh, M.N. &

Murthy, A.S. Passive target tracking using unscented
kalman filter based on monte carlo simulation. Indian J.
Sci. Technol. 2015, 8(29), 1-7.

 doi: 10.17485/ijst/2015/v8i29/76981
8. Sharaga, N.; Tabrikian, J. & Messer, H. Optimal cognitive

beamforming for target tracking in MIMO radar/sonar.
IEEE J. Selected Topics in Signal Process. 2015, 9(8),
1440-50.

 doi: 10.1109/JSTSP.2015.2467354
9. Montavon, G.; Samek, W. & Müller, K.R. Methods for

interpreting and understanding deep neural networks.
Digital Signal Process. 2018, 73, 1-5.

 doi: 10.1016/j.dsp.2017.10.011
10. Ramchoun, H.; Idrissi, M.J.; Ghanou, Y. & Ettaouil, M.

Multilayer perceptron: Architecture optimization and
training with mixed activation functions. In Proceedings
of the 2nd international Conference on Big Data, Cloud
and Applications. 2017, Article number 71, PP. 1-6.

 doi: 10.1145/3090354.3090427
11. Albawi, S.; Mohammed, T.A. & Al-Zawi, S.

Understanding of a convolutional neural network. In 2017
international conference on engineering and technology
(ICET). 2017, PP. 1-6.

 doi: 10.1109/ICEngTechnol.2017.8308186
12. Yu, Y.; Si, X.; Hu, C. & Zhang, J. A review of recurrent

(a)

(b)

(c)
Figure 7. Comparison in error convergence for all algorithms

when used along with UKF and when UKF algorithm
is only used. (a) RMS Error in course, (b) RMS Error
in pitch, and (c) MSE Error in speed.

the Unscented Kalman Filter both in combination with other
algorithms and on its own.

9. CONCLUSION
The authors of a study found that if range and bearing

measurements are available, a solution can be obtained for
underwater target tracking using UKF without machine
learning algorithms in six minutes. When deep learning is
used, in other hand, the solution time increases to ten minutes.
By adding elevation measurements, the convergence time for
deep learning can be reduced to under six minutes, which
suggests that the number of features was the limitation.
However, the reduction in time comes at the cost of increased
complexity and a longer overall convergence time. Since
Elevation measurements are typically not used in underwater
target tracking, the authors concluded that if an acceptable
analytical solution can be obtained within the required time
frame without using deep learning, it is not necessary to use it

DEF. SCI. J., VOL. 74, NO. 5, SEPTEMBER 2024

700

neural networks: LSTM cells and network architectures.
Neural Comput. 2019, 31(7), 1235-70.

 doi: 10.1162/neco_a_01199
13. Shen, G.; Tan, Q.; Zhang, H.; Zeng, P. & Xu, J. Deep

learning with gated recurrent unit networks for financial
sequence predictions. Procedia Comput., Sci. 2018, 131,
895-903.

 doi:10.1016/j.procs.2018.04.298
14. Brownlee, J. Deep learning for time series forecasting:

Predict the future with MLPs, CNNs and LSTMs in
Python. Machine Learning Mastery; 2018 Aug 30.

15. Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E. & Valaee
S. Recent advances in recurrent neural networks. arXiv
preprint arXiv:1801.01078. 2017.

 doi: 10.48550/arXiv.1801.01078
16. Branco, R. Beyond the Kalman filter; Partical filter

for tracking application. British Library Cataloging in
Publication data. 2004, 318.

17. Aidala, V. & Hammel, S. Utilization of modified polar
coordinates for bearings-only tracking. IEEE Transact.
on Automatic Control. 1983, 28(3), 283-94.

 doi: 10.1109/TAC.1983.1103230

CONTRIBUTORS

Mr Uwigize Patrick is a Researcher and Engineer, who holds
a Bachelor’s degree in Electronics and Telecommunication
Engineering from the National University of Rwanda. His research
interests include: Signal processing, wireless communication
networks and machine learning for signal processing.
His contribution in the current study is software development.

Dr S. Koteswara Rao is working as a Professor at the
Department of ECE, Koneru Lakshmaiah Education Foundation
(Deemed to be University), Vaddeswaram, Guntur, Andhra
Pradesh, India. He obtained PhD from College of Engineering,
Andhra University, A.P.
His contribution in the current study is conceptualisation,
methodology development and supervision.

Dr B. Omkar Lakshmi Jagan is working as an Associate
Professor in Department of Electrical and Electronics Engineering,
Vignan’s Institute of Information Technology (A), Duvada,
Visakhapatnam, Andhra Pradesh, India. He obtained PhD from
the Koneru Lakshmaiah Education Foundation (Deemed to be
University), Vaddeswaram, Guntur, A.P., India. His areas of
research include: Statistical signal processing, biomedical signal
processing and image processing technologies.
His contribution in the current study is methodology and
mathematical modelling.

Dr M. Kavitha Lakshmi obtained PhD in KL Demeed to be
university, Vijayawada. She is currently working as Research
Associate at DRDO-NSTL, sponsered Project at the Dept. of
ECE, Koneru Lakshmaiah Education Foundation (Deemed to
be University), Vaddeswaram, Guntur, Andhra Pradesh, India.
His contribution in the current study is validation and software
coding.

Dr Thayyaba Khatoon Mohammad is a Professor in the
Department of CSE-AIML at Malla Reddy University. She
obtained PhD from JNTUH. Her area of expertise is Artificial
intelligence, nature language processing, network security and
cloud computing.
His contribution in the current study is editing and reviewing
the concepts.

