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ABSTRACT

This manuscript proposes a new approach to track 2D targets using a combination of machine learning algorithms 
and the Unscented Kalman filter (UKF). The approach makes use of active sonar sensors to measure range and 
bearing, which are used to predict the target’s course and speed. So far in the literature of target tracking, researchers 
assumed covariance matrix of the noise in sonar measurements. In this manuscript, it is tried to estimate the same 
using deep learning algorithms. The Machine Learning algorithms, such as multilayer perceptron, convolutional neural 
network, long-short term memory, and gated recurrent unit, are employed to approximate the covariance of the noise 
in the input measurements. Simultaneously, the Unscented Kalman Filter (UKF) is utilised to mitigate the noise in 
the measurements and to estimate the position and speed of the target. The results are quantified through Monte 
Carlo simulations in a simulated underwater environment. The measurements are assumed to conform to a normal 
Gaussian distribution with a mean of zero. The findings indicate that LSTM has superior performance compared 
to the other models. Nevertheless, it is important to note that the results are constrained in their applicability due 
to the restricted set of variables employed for training the machine learning models.

Keywords: Nonlinear filtering; Statistical signal processing; Deep learning; Recurrent neural network; Time series 
prediction

1. INTRODUCTION
ACTIVE sonar systems, underwater vehicles and 

acoustic imaging equipment use sound waves to detect targets 
underwater and extract information about their characteristics. 
There are different techniques for transmitting and receiving 
sound waves in an acoustic environment, such as pulse-echo, 
phase difference measurement, and frequency modulated 
continuous wave. These techniques have diverse applications, 
including marine navigation, object detection, ranging and 
acoustic imaging. After receiving the signal, various signal 
processing techniques, such as band-pass, matched, and 
adaptive filters, are then used to extract useful information 
from the received signal. These techniques are essential in 
improving the accuracy and reliability of the extracted data1.

The task of target tracking involves estimating the target 
state based on measurements only, which is challenging 
due to measurement noise, unmodeled dynamics, and non-
linearities2. To address these challenges, various methods have 
been developed, such as Kalman, particle filters and machine 

learning algorithms etc.3-7. Current research on active sonar 
systems aims to enhance the detection and localization of 
targets by using advanced signal processing techniques such 
as beamforming7. This method involves creating a beam by 
combining signals from multiple sensors directed towards the 
target, which improves the signal-to-noise ratio and enhances 
the measurement accuracy.

Deep Neural Networks (DNNs) are a type of machine 
learning models that have become widely popular because of 
their capacity to autonomously acquire intricate connections 
between inputs and outputs from extensive datasets9. There 
are several types of DNNs, including MLP10, CNN11, LSTM12, 
and GRU13, each with unique architectural features and 
training procedures. MLP (Multi-Layer Perceptron) and CNN 
(Convolutional Neural Network) are types of feedforward 
networks that operate by sequentially processing incoming 
data through a series of layers, without any loops or feedback 
connections. However, LSTM and GRU are types of recurrent 
neural networks (RNNs) that may effectively simulate 
sequential data by preserving an internal state or memory. 
However, all four types of neural networks - MLP, CNN, 



PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

691

LSTM, and GRU - are well-suited for processing sequential 
data and can model dependencies between measurements and 
true values to improve tracking accuracy14.

RNNs are designed to maintain an internal state that 
is updated with each new input in the sequence, allowing 
them to use information from previous inputs to inform their 
prediction for the current input15. This internal state, along with 
the current input, is used to compute the output for the current 
time step. In contrast, feedforward neural networks such MLPs 
the computation is performed layer by layer, with each layer’s 
output serving as the input to the next layer10. This makes 
them ideal for modeling dependencies between the elements 
of a sequence, especially in problems where the current output 
depends on previous inputs.

This article describes methods for tracking targets using 
bearing and range measurements from an active surveillance 
sonar mounted on a submarine to predict target states—course 
and speed. The UKF incorporated with machine learning was 
introduced which provided good results in tracking mechanism. 
Particle Filter (PF) with its variants as nonlinear non gaussian 
state estimation methods was able to handle non-Gaussian 
measurement noise16,17. However, the disadvantage of the PF 
is that it requires many particles to be used, which increases 
computation time. Other methods such as sequential Monte 
Carlo methods and hidden Markov models were proposed 
to track maneuvering targets, but their implementation was 
difficult to track the targets7. 

So far, the methods developed for target tracking, assume 
that the covariance matrix of noise in sonar measurements 
was known. But, in reality this is not available. Hence, using 
deep learning algorithms the covariance matrix of input 
measurements is found out, and the same is used in UKF. The 
deep learning algorithms used are MLP, CNN, LSTM and 
GRU. Python is used to realize and implement UKF and deep 
learning algorithms. The results of these methods are tabulated 
and compared. Active sonar systems are of paramount 
importance in the realm of underwater target tracking as they 
utilize chaotic sensor measurements to approximate target 
attributes such as course and speed. Nevertheless, current 
tracking techniques that employ Kalman filters or particle 
filters operate under the presumption that the attributes of the 
noise, which are symbolized by the covariance matrix, are 
predetermined. This information is frequently unavailable or 
inaccurate in the actual world, which results in tracking errors.  
A novel approach is proposed in this article to tackle this 
challenge. The system utilizes deep learning algorithms such 
as MLP, CNN, LSTM, and GRU in an effort to directly learn 
the noise covariance matrix from the sonar measurements. 
This obviates the necessity for prequalification regarding the 
attributes of the noise, which may result in enhanced precision 
and resilience in the tracking of the target.

This article is divided into several sections. Section 
I covers the introduction part and the challenges of target 
tracking, while Section II describes about target tracking in 
acoustic environment, Section III delves into the mathematical 
formulations of two proposed networks, the Recurrent Neural 
Network (RNN) and the Unscented Kalman Filter (UKF). 
Section IV provides description about machine leaning 

algorithms implementation, Section V outlines the simulation 
design, while Section VI discusses how machine learning 
algorithms are integrated into the UKF. The simulation results 
and analysis are presented in Section VII, and Section VIII 
draws conclusions based on the findings presented in the 
preceding sections. 

2. TA R G E T  T R A C K I N G  I N  A C O U S T I C 
ENVIRONMENT
The unpredictable and rapidly changing nature of a 

moving target’s motion makes tracking it a complex and 
non-linear task. In addition, moving in water is difficult for 
underwater vehicles due to the density of water, hydrodynamic 
forces, and the physical characteristics of the vehicle. 
These factors, including size, weight, buoyancy, propulsion 
system, and hydrodynamic properties, all affect a vehicle’s 
maneuverability in water, making it a challenging environment 
to navigate reducing the speeds of UVs. The sonar system is 
mounted on the submarine and is being used to track a target as 
both the submarine and the target are moving in the direction 
shown in Fig. 1.

3. MATHEMATICAL MODELLING
In traditional tracking approaches, the movement of the 

target and the data collected about it are typically represented 
using mathematical equations that describe the target’s 
behavior. The models employed are commonly derived from 
preexisting knowledge regarding the dynamics and behavior 
of the object. It is expected that these models are realistic 
enough to accurately depict the movements and observations 
of the target. The objective of the tracking process is to infer 
the target’s state over time by utilizing these models and 
the observations of the target. The precision of the tracking 
outcomes relies on the precision of the model and the excellence 
of the observations. Target model can be described as follows: 

( ) { }1 , 1, 2,.....
hh h h hζ r h+ ΤΧ = Χ + Τ ∈                                       (1)

This is a state transition equation in the context of dynamic 
systems. Here, Xh+1 is the state of the system at time step h, h

ζ Τ

being non-linear function that describes the system’s dynamics, 
rh is an additive noise term, and Th is a discrete random variable 
that determines which of the h possible dynamics the system 
follows at time h.

b: Bearing, Tcrs: Target course, Ocrs: Observer course, r: Range, TBA: Target 
bearing angle

Figure 1.   Observer - target movement in acoustic environment 
for tracking purpose.
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The Eqn. (1) describes how the state of the system evolves 
over time, given the current state Xh at time h and the function 

h
ζ Τ , which represents the system’s dynamics. The random 
variable Th allows for the possibility of multiple different 
dynamics being present in the system, and the noise term rh 
represents any unmodeled or unknown effects that influence 
the system’s evolution. The measurements are modeled as a 
function of the true target states, which can be expressed as in 
the following Eqn.:

( ) ( )h h hh c= Η +Y V                                                 (2)
This Eqn. (2) is an observation equation. Here, Y(h) s the 

observation of the system at time step h, Hh is a non-linear 
function that maps the state of the system to its observation, 
and it is determined by sensor, ch is the state of the system, 
and Vh is an additive noise term. The observation equation 
describes how the system’s observations are related to its state. 

Target tracking estimates target’s state using a sequence 
of measurements. This is done by calculating the predicted and 
conditional probability densities. The conditional density gives 
the best estimate of the target’s state. The predicted density can 
be calculated recursively using the Bayesian formula:

( ) ( ) ( )1: 1 1: 1 1 1: 1 1h h h h h h hc- - - - -Χ = Χ Χ Χ∫p Y p p Y d              (3)

( ) ( ) ( ) ( )1
1

1
h h h h h h

h h
-

-

Χ = Χ Χp Y p Y p Y
p Y Y                (4)

Here, p(Xh/X1:h-1) is the posterior density of the target at 
time h given observations up to time h-1, p(Xh/X1:h-1)  is the 
posterior density of the target at time h-1 given observations 
up to time h-1, and p(Xh-1/Y1:h-1) is the transition density or 
the probability distribution of the target’s state at time h given 
its state at time h-1. p(Xh/Yh) is the likelihood of observing 
the measurement Yh given the target state Xh, p(Yh/Yh-1) is 
the predicted state density or the probability distribution of 
the target state at time h given all previous measurements 
p(Yh/Y1:h-1) and p(Xh/Yh-1) is the marginal likelihood or the 
probability of observing the measurement Yh given all previous 
measurements p(Yh/Y1:h-1) .

This system exhibits uniform motion with constant 
velocity, and it was modeled using a second order system 
following normal distribution with zero-mean. The covariance 
of the noise was appropriately adjusted to account for the 
normally small linear accelerations as follows:

2

1 12

1 0 0 0
0 1 0 0 0
0 0 1 0
0 0 0 1 0

h h h

t t
t

r
t t

t

+ +

  
  
  Χ = Χ +
  
  

                             
(5)

Here, the coordinates and corresponding velocities in a 
2-dimension environment are denoted by [ ]h γ γΧ =  x x and 
t represents the sampling interval.

3.1 Recurrent Neural Networks Architecture
ANNs are in fact computing systems encourage by the 

way the brain works, designed to learn, and perform tasks by 
learning from examples. DNNs are a type of ANN containing 
multiple hidden layers connecting inputs and output layers 
allowing them to extract more complex features and achieve 
more accurate results. RNNs are another type of ANN that 

can use its internal memory to process sequences of input and 
generate corresponding sequences of output. RNNs are suitable 
for tasks that involve tracking and processing sequences of 
data.

RNNs are specifically designed to handle input that is 
presented in a sequence, such as time series or text data. They 
achieve this by maintaining a state that enables the retention 
of information from previous time steps. A conventional 
architecture of a RNN containing hidden layers that processes 
sequential input data. The hidden layer has connections that 
allow the output of the previous input to be fed back into the 
current input. This allows RNN to learn patterns in the input 
data over time. The mathematical formula for a conventional 
RNN architecture with the given variable substitutions can be 
represented as:

( ) ( ) ( )( )* 1 *hh hx hf f x bl s l l= - + +t W t W                 (6)

( ) ( )( )*yh yf f bl s l= +o W t                 (7)

Where at l, tf(l) is the hidden, x(l) is the input, of(l) 
is the output , Weight matrices (i.e., Whh, Whx and Wyh) are 
responsible for regulating the transmission of data among the 
input, hidden, and output layers. Bias terms (i.e., bh and by) 
are additional values that are incorporated into the calculations 
of the hidden and output layers. s is a non-linear activation 
function, such as the sigmoid or tanh function, that adds non-
linearity to the network.

The Rectified Linear Unit (ReLU) activation function 
was employed in this study due to its computational efficiency, 
sparsity, and ability to circumvent the vanishing gradient 
problem. ReLU is mathematically given by f(x)=max(0,x), x 
being the input to the activation function and  f(x) is the output. 
In this function, the output is zero for any input x that is less 
than or equal to zero, and the output is equal to the input for any 
input x that is greater than zero. This makes ReLU a piecewise 
linear function with a rectified or flattened output for negative 
inputs and a linear output for positive inputs.

The use of the hidden state tf(l-1) in the calculation of 
the hidden state tf(l) allows the RNN to remember previous 
inputs and learn patterns in the input data over time.

Figure 2.  Recurrent neural network illustration.

The network is composed of input layers, hidden layers, 
and output layers, where the hidden layers serve as the network’s 
memory unit which is given in Fig. 2. At each iteration of the 
input sequence, the network receives the current input and 
updates its hidden state using both the current input and the 
prior hidden state.
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After being trained then only the neural network can 
generate the desired deterministic output. Let our RNN take 
such sequence of time series data k1, k2,…, kl, as input to 
return output sequence tf1, tf2, tf3,…, tfl. If we have M number 
sequences, this can be described as follows: 

( ) ( )
( )

( )

( ) ( ) ( ) ( )
1 1 2 2

( ) ( )
3 3

( ) ( )

, , , ,

, ,
1

...., ,
m m

m m m m

m m

m m
L L

k v k v
MS k v

m
k v

 
  =   = 
                                 (8)

An RNN’s parameters, which include input sequences i 
and required output t, can be determined by minimizing the 
following cost function.

( ) ( )
1 1

1 ( , )
mLM

n
K dl f v

M l
t

l
= =

F = ∑∑ t
                                   

(9)

The cost function involves a predefined divergence 
measure, such as the Euclidean distance, between x and y, 
represented as dl(x,y). The network parameters denoted by F 
and represented by F={whi, whh, woh}. These parameters are 
typically determined through the stochastic gradient descent 
algorithm, which involves calculating the gradient of the cost 
function. From a probabilistic perspective, the RNN aims to 
estimate the conditional probability p(v1,v2,…,vt/k1,k2,…,kt) 
using deterministic functions. The computation of the RNN 
involves parameterizing this conditional probability as a 
product of conditional probabilities, which can be expressed 
as:

( ) { } { }( )1 2 1 2 1 1 1 1, ,..., , ,..., ,..., , ,...,p v v v k k k p v v v v vt t t t -= ∏
   ( ) { } { }( )1 2 1 2 1 1 1 1, ,..., , ,..., ,..., , ,...,p v v v k k k p v v v v vt t t t -= ∏
             (10)
This involves estimating the probability of each target 

output ti given the input sequence k1,k2,…,kt and the previously 
generated targets v1,…,v{t-1}.

3.2 Deep Neural Networks Architecture
A DNN is composed of several layers of neurons, which 

include input layers, hidden layers, and output layers. Every 
individual neuron inside the network employs an activation 
function to process its inputs and transmits the outcome to the 
subsequent layer of neurons. The equations for a feedforward 
DNN can be written as:

1*l l l lz W a b-= +                                                       (11)

( )l la g z=                                                                (12)
where, W is the weight matrix between layer l and layer l-1, 
bl is the bias vector for layer l, al is the output of layer 1 after 
applying the activation function g to its inputs zl. The forward 
pass through the network can be computed recursively as:

0a x=                                                                        (13)

( ) ( )1*l l l l la g z g W a b-= = +                                     (14)
for 1, 2,....,l L=

where, x is the input to the network and L is the number of 
layers in the network.

During the training process, the network receives 
instruction to minimize a loss function that quantifies the 
discrepancy between the predicted output of the network and 
the desired target output. Commonly, this task is accomplished 

by employing gradient descent or a related technique, such as 
backpropagation.

4. MACHINE LEARNING IMPLEMENTATION
Prior to modeling, the authors applied standard scaling 

to each feature individually. This was done to ensure equal 
contribution of all characteristics to the model’s performance 
and to prevent any single feature from overpowering the others. 
Standard scaling is a process of scaling the data in such a way 
that each feature has an average of zero and a variance of one.

Next, the data was split into x and y and generated 3D data 
[samples, time steps, n features] as required by CNN, LSTM 
and GRU. The experiment was done with different time steps, 
and it was found that 10-time steps provided better results. 
This involved breaking the data into windows of 10-time steps 
and treating each window as a single input to the model. MLP 
was exceptional because it doesn’t require 3D data, so the data 
was flattened back to 2D data.

Several model architectures and different parameters for 
each ML algorithm were tested, and the one providing better 
results was considered and explained below. Each model was 
building sequentially, and specifics are explained below:

4.1  MLP
The neural network architecture comprised of four densely 

connected layers. The initial dense layer consisted of 200 units 
utilizing a ReLU activation function, which was then followed 
by another dense layer containing 100 units and employing the 
same ReLU activation function. The third dense layer consisted 
of 64 units and utilized a ReLU activation function. Ultimately, 
the output layer consisted of a dense layer containing a number 
of units that matched the total number of classes in the target 
variable. The ReLU activation function is frequently employed 
in deep learning models and is highly effective in mitigating 
the issue of vanishing gradients.

4.2  CNN
The Neural network model comprised six layers. The 

initial layer consisted of a 1-dimensional convolutional layer 
with 200 filters, a kernel size of 2, and a ReLU activation 
function. The second layer consisted of a 1D max pooling layer 
with a pool size of 2, which was then followed by a flatten 
layer that transformed the output of the preceding layer into 
a one-dimensional array. The fourth and fifth levels consisted 
of thick layers with 100 and 64 units, respectively, and both 
employed the ReLU activation function. Ultimately, the sixth 
and final layer consisted of a compact layer with several units, 
each corresponding to the number of classes in the target 
variable. This layer served as the output layer of the model.

4.3  LSTM
The architecture of the model consists of three LSTM 

layers, each stacked on top of each other. The first layer has 
200 units, the second layer has 100 units, and the third layer 
has 64 units. All of these levels utilize the ReLU activation 
function. Stacked refers to the property where the output of 
each recurrent layer has a same number of time steps as the 
input sequence. The output layer consisted of a dense layer 
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with 3 units, corresponding to the number of classes in the 
target variable. This layer served as the final layer of the 
model. This model architecture is well-suited for handling 
sequential data and accurately predicting the class labels of the 
target variable. LSTM layers possess the ability to acquire and 
retain information about long-term relationships, making them 
highly prevalent in a range of applications, including speech 
recognition and natural language processing.

4.4  GRU
The recurrent neural network model was constructed 

utilising stacked gated recurrent unit layers. The model consists 
of three GRU layers with 200, 100, and 64 units, respectively. 
All layers utilize the ReLU activation function, except for the 
last layer. The output of each GRU layer is sequentially sent to 
the subsequent GRU layer, with the final layer’s output serving 
as the model’s overall output. The output layer is a dense 
layer with 3 classes in the target variable, serving as the final 
layer of the model. This model architecture is well-suited for 
analysing sequential input and accurately predicting the class 
labels of the target variable. GRU layers possess the ability 
to acquire long-term dependencies and share similarities with 
LSTM layers, however with a reduced number of parameters, 
resulting in faster training.

To enhance the precision and efficiency of the training 
process, the learning rate was decreased for all the models. 
The initial learning rate of 0.001 was reduced to 0.0001. The 
learning rate governs the magnitude of the increments the 
model makes during optimization, and a high learning rate 
might lead to the model surpassing the optimal solution or 
diverging completely.

Another technique used to prevent overfitting was early 
stopping. This method was implemented by monitoring the 
validation loss. If the validation loss stopped improving, 
the training process would stop to prevent the model from 
continuing to train and improve performance on the training 
data at the expense of generalization performance on unseen 
data.

Given that this is a regression problem, various loss 
functions can be employed. However, the decision was made 
to use Mean Squared Error (MSE) as the loss function. The 
MSE calculates the average of the squared differences between 
the predicted and actual values. It has been demonstrated to be 
a superior option for regression situations.

After training, the data was scaled, so it was crucially 
important to inverse scale it to go back to the original range. 
This was done to ensure that the predictions are meaningful in 
the original units of measurement.

Finally, the trained models were saved along with the 
scalers so that they could be retrieved and reused without 
having to retrain them every time predictions were made. 
This was done to make the process more efficient and faster, 
especially when making predictions in real-time applications 
such as the UKF.

5. SYSTEM DESIGN
In this paper, the author designed a Python-based 

simulator to generate synthetic data that mimics the behavior of 

an underwater real-world system. The generated data was used 
to test and validate the algorithm and train machine learning 
models, as actual data was not available. Without actual 
data, simulators can provide a cost-effective and safe way to 
test and refine an approach under a wide range of scenarios 
and conditions. Moreover, since machine learning requires a 
large amount of data, the synthetic data for various scenarios 
provided insight into the performance of the machine learning 
algorithm. Table 1 presents an example of the initial conditions 
used to generate the dataset for the 2D space for the target 
tracking simulator design. The simulator, given these initial 
conditions and many others (300 in total), produced enough 
independent features (range and bearing measurements), as 
well as dependent features (standard deviation of noise in 
range and bearing measurements). These features are used 
for training and evaluating machine learning models in the 
simulation.

Moreover, the simulator was also used along with the 
UKF to predict the target’s position, course and speed, given 
the standard deviation of noise in measurements using machine 
learning algorithms. Overall system is presented in the block 
diagram as given in Fig. 3.

Table 1. Few of several simulated initial conditions

Sc 
No Brg Tcrs Ocrs Rng Vt Vo sR sB

1 136 63 93 5028 8 5 12.506 0.020
2 298 73 43 4295 9 11 14.255 0.028
3 325 51 21 4957 11 7 10.141 0.023
4 189 164 194 4498 17 6 11.523 0.025
5 176 222 192 5317 19 11 11.335 0.006
6 153 216 186 5668 14 7 9.382 0.027
7 162 74 104 5841 7 5 9.258 0.009
8 161 243 213 5827 12 4 15.902 0.017
9 16 355 385 3877 17 4 13.591 0.039
10 261 177 207 5890 19 10 15.763 0.015

Note: Sc no: scenario number, Brg: starting bearing (deg), Rng: starting range 
(m), Vt: Target’s velocity (m/s), Vo: observer’s velocity (m/s), sR and sB are 
standard deviation of noise in range and bearing measurements respectively.

Figure 3.  Descriptive block diagram of the process.



PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

695

The simulation was run for a specific time interval, in 
this case, 10 sec, which matches the time steps considered 
during training. During the initial 10 sec of the simulation, the 
measured bearing and range were buffered and the UKF did 
not operate. Later, the buffered measurements were used along 
with saved models and scalers to make a prediction of standard 
deviation. The buffered data was first transformed into 3D 
data to match the requirements of the GRU, LSTM and CNN 
models but not MLP. These predictions were then used in the 
UKF to predict the state of the unknown target, following the 
block diagram shown in Fig. 3.

6. UKF BASED TARGET TRACKING
UKF-based target tracking is a widely employed method 

in several domains such as robotics, aerospace, and military. It 
is used to estimate the location and velocity of a moving target. 
This technique is particularly useful when the measurements 
are subject to noise or uncertainty. In this paper, bearing and 
range measurements from a sonar sensor are available, which 
can be used to estimate the position, course and speed of a 
target.

The UKF, is a recursive Bayesian filter employed for state 
estimation in dynamic systems. The UKF employs a collection 
of sigma points to estimate the probability distribution of the 
system state, hence enhancing the precision of the estimation. 
The method comprises two primary stages: prediction and 
update. During the prediction step, the UKF utilises a motion 
model to forecast the subsequent state of the target. The process 
involves computing the average and covariance of the sigma 
points and advancing them in time using the motion model. The 
resultant forecasted state estimation is subsequently employed 
as the preliminary estimation for the update phase.

During the update step, the UKF uses the available sonar 
measurements to update the state estimate of the target. This is 
done by first predicting the expected measurement using the 
predicted state estimate and then comparing it to the actual 
measurement obtained from the sonar sensor. The disparity 
between the anticipated and real data is subsequently employed 
to revise the state estimation by means of the Kalman filter 
equations.

Through repetitive repetition of the prediction and update 
processes, the UKF is capable of accurately tracking the 
location and velocity of the target. This is particularly crucial in 
situations where the target’s movement is not in a straight line, 
or the measurements are susceptible to noise or uncertainty.

This is particularly crucial in situations where the target’s 
movement is not in a straight line, or the measurements are 
affected by noise or ambiguity. The subsequent actions are 
executed during the implementation of the UKF algorithm for 
target tracking.

6.1 Sigma Point Generation
Calculate the sigma points around the current state 

estimate: 

( ) ( ), ,x x L P x L Pl l Χ = + + - +                     (15)
where, x is the current state estimate, P is the state covariance 
matrix, L is a scaling parameter, and l is the offset parameter.

6.2 Sigma Point Propagation 
Propagate the sigma points through the process model to 

obtain the predicted state estimate and covariance: 

( )*hat i hatx w f P= Χ∑
( ) ( )*

T
i i hat i hatw f x f x Q= Χ - Χ - +      ∑                          (16)

where, f is the process model, Q is the process noise covariance 
matrix, wi are the weights of the sigma points, and Xi are the 
propagated sigma points.
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                (17)

And d should be a small positive number, for example 
d=10-5, ls is time steps.

6.3  Measurement Prediction
Predict the measurement from the predicted state estimate: 

( )*hat i iz w h= Χ∑                                                (18)
where, h is the measurement model.

6.4  Innovation Calculation
Calculate the innovation, or the difference between the 

actual measurement and the predicted measurement: 
haty z z= -                                                                 (19)

where z is the actual measurement.

6.5  Measurement Update
Calculate the cross-covariance between state and 

measurement:
[ ][ ]* ( ) T

xz i i i hatP w x h z= Χ - Χ -∑                                  (20)

6.6  Calculate the Innovation Covariance Matrix 

[ ][ ]* ( ) ( ) T
i i hat i hatS w h z h z R= Χ - Χ - +∑                              (21)

where, R is the measurement noise covariance matrix.

6.7  Calculation of Kalman Gain
1*xzK P S -=                                                             (22)

Calculate the updated state estimate and covariance:

*
* *

hat
T

hat

x x K yP
P K S K
= +

= -                                                (23)
where x is the updated state estimate, P is the updated state 
covariance, K is the Kalman gain, and y is the innovation.

7. INCORPORATION OF ML MODELS INTO 
UKF
The accuracy of a UKF’s state estimation and covariance 

update is influenced by the correct estimation of the standard 
deviation. An underestimation can lead to overconfidence in the 
estimate, while overestimation can lead to over-conservatism, 
both resulting in poor performance. To optimise UKF’s 
performance, it is necessary to estimate the standard deviation 
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(a)
(b)

(c) (d)

(e)
Figure 4.  Observer, target’s true, and estimated paths using (a) UKF only, (b) UKF with MLP, (c) UKF with CNN, (d) UKF with 

LSTM and (e) UKF with GRU

using prior knowledge of the system and measurement sensors. 
In UKF, the assumed standard deviation is represented by the 
process noise covariance matrix and the measurement noise 
covariance matrix, which are used to compute the sigma 
points during the unscented transformation step to estimate 
the state and covariance of the system. To design a machine 
learning based UKF, various parameters and features must be 
considered, including raw sensor data, sensor configuration, 
physical constraints, environmental factors, quality and 
quantity of training data, and ML algorithm parameters. These 
parameters are included in the standard deviation for the 
implementation of the UKF.

8. SIMULATION ANALYSIS AND RESULTS
A 2D space target tracking simulator was created to track 

a target using measurements of range and bearing, with noise 
added to the measurements. Machine learning models such as 

MLP, CNN, LSTM, and GRU were used to forecast standard 
deviations in range and bearing. These predictions, along 
with the measurements, were used in an Unscented Kalman 
Filter (UKF) to predict the unknown states of the target. The 
Monte Carlo method was used to model nonlinearities in the 
target motion and measurement models for more accurate 
predictions. The results of the 10th scenario from the table are 
shown. Moreover, the initial target’s state vector is computed 
using the initial distance of 6500 mtr and the velocity of 10 
meters per second. The state vector is assumed to follow 
a Gaussian distribution with a zero mean; therefore, the 
following expression is derived:

[ ](0) 15.0 15.0 6500*sin 6500*cossX b b=          (24)
Starting covariance matrix 

2( )0 4*
0 12

sX kP diagonal
   =   

        (25) 
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Table 2.  Performance comparison of LSTM, GRU, CNN and 
MLP models for target tracking: Results of a test 
case

Forecasted
True MLP CNN LSTM GRU

Sigma 
R 10.005 11.1987 10.969 10.122 10.156

Sigma 
B 0.0045 0.02364 0.005174 0.001249 0.003013

Multiple Monte Carlo simulations were employed 
to address randomness and improve estimates, as a single 
experiment would be insufficient. Machine learning algorithms 
estimated standard deviation and UKF was used to predict 
unknown target states. Estimated target path was plotted 
against true target paths and observer. Moreover, Root Mean 
Square (RMS) error values corresponding to target’s estimated 
was also plotted. Graphs below depict analysis outcomes.

In Fig. 4 (a), the true path followed by the target and 
observer is displayed, along with the estimated target path 
using the UKF algorithm alone. The standard deviations 
used in the UKF algorithm are determined solely based on 
human intuition and experience and are assumed to be in the 
range of 0° to 3°. Despite this, the UKF algorithm alone has  
successfully estimated the target’s unknown states, indicating 
its effective performance.

However, it is crucial to note that relying solely on human 
judgment to determine the standard deviations used in the 
UKF algorithm may not always result in optimal performance. 
It is often advantageous to utilize data-driven approaches to 
estimate the uncertainty in the system, rather than relying on 
subjective assessments based on experience and intuition. Such 
an approach can lead to improved accuracy and robustness in 
the estimation process.

Figure 4 (a), (b), (c) and (d) display the true path of the 
target and observer, as well as the estimated target path obtained 
using different machine learning algorithms incorporated into 
the UKF algorithm. The specific machine learning algorithms 
used were the Multilayer Perceptron, Convolutional Neural 
Network, Gated Recurrent Unit, and Long Short-Term 
Memory.

Authors want to compare how different algorithms 
perform in terms of their error convergence when they are used 
in conjunction with the Unscented Kalman Filter, as well as 
when the UKF algorithm is used on its own.

The main objective of incorporating these machine 
learning algorithms was to address the issue of relying on 
human intuition to estimate the standard deviation. This 
reliance on human intuition can lead to problems and 
inaccuracies in estimating the standard deviation. By using 
pre-trained machine learning algorithms to learn patterns in 
measurements, the estimation of the standard deviation can be 
improved and the reliance on human intuition can be removed.

Figure 5(a) and (b) serves to compare the performance of 
the different machine learning algorithms incorporated into the 
UKF algorithm in estimating the target path. This comparison 
allows for the determination of which machine learning 
algorithm performs best in estimating the target path and how 
well it compares to the true path. However, the purpose was not 
achieved because of limited number of features and the results 
of MLP clearly demonstrates this.

8.1 Limitation
When analysing time series data, the number of features 

in a machine learning model can have a significant impact 
on its ability to make accurate predictions. If the number 
of features is too low, the model may not fully capture the 
complex relationships and patterns within the data. This 
can lead to incomplete representation of the data, decreased 
predictive power, and increased risk of overfitting. In this 
paper, the authors encountered this issue due to limited 
number of features within the initial model, and it was unable 
to capture the underlying patterns and relationships in the data. 
To address this an elevation measurement was incorporated as 
an additional feature and evaluated the results. Table 3 shows 
the simulated scenario.

Where, inr: starting range, Elev: starting elevation, opi: 
observer’s starting pitch, tpi: target’s starting pitch. sr, sb, 
se: are standard deviation of range, bearing and elevation 
respectively.

(a)

(b)
Figure 5.  Comparison in error convergence for all algorithms 

when used along with UKF and when UKF algorithm 
is only used, (a) RMS Error in course; and (b) RMS 
error in speed.

Table 3. Simulation results

scno ocrs inr b Vt Vo Tcrs Elev opi tpi sr sb se

1 45 3000 45 9 5 255 45 45 110 10 0.34 0.24
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(a)

(b)

(c) (d)

(e)
Figure 6.  Observer, target’s true, and estimated paths using (a) UKF with CNN, (b) UKF with LSTM, (c) UKF with MLP, (d) UKF 

only, and (e) UKF with GRU.

Bearing starting bearing, trgtv: Starting target’s velocity, 
obsrv: Observer’s starting velocity,  trgtc: Starting target’s 
course, elev: starting elevation, opi: Observer’s starting pitch,  
tpi: Target’s starting pitch, sr, sb, se: Standard deviation of 
range, bearing, and elevation respectively.

Findings revealed that including this additional feature 
significantly improved the model’s ability to capture the 
complexities of the time series data hence the prediction was 
improved, affected the UKF to use correctly estimated Standard 
deviations which ultimately provided accurate estimation of 
target unknown states. Figure 6 represents the obtained results.

Figure 6(a) shows the true and estimated paths of the target 
and observer using the Unscented Kalman Filter algorithm only 
which means the standard deviations used in the algorithm are 
based on human intuition, assumption, and experience and 

may not always result in optimal performance. Figure 6(b), 
(c) and (d) display the true and estimated paths obtained using 
different machine learning algorithms, including multilayer 
perceptron, convolutional neural network, gated recurrent unit 
and long short-term memory.

Text emphasises that relying solely on human intuition 
to estimate the standard deviation can lead to inaccuracies and 
problems, and using pre-trained machine learning algorithms 
can remove the reliance on human intuition and improve the 
estimation of the standard deviation. It should be noted that 
data-driven approaches, such as machine learning algorithms, 
to estimate the uncertainty in the system and improve the 
estimation process’s accuracy and robustness is shown in 
Fig. 7 in the form of RMS errors. We can assess how the 
error convergence of various algorithms is affected using 



PATRICK, et al.: UNSCENTED KALMAN FILTERS INTEGRATED WITH DEEP LEARNING APPROACHES

699

as deep learning is more complex and takes longer. While MLP 
can be used for time series prediction, it may not be able to 
capture the complex patterns and dependencies present in the 
data. LSTM, GRU, and CNN have more advanced structures 
that are designed for time series analysis and have been shown 
to be more effective at capturing the complexity of the data.
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