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Abstract. This paper is dedicated to the study of adaptive finite-time synchronization (FTS)
for generalized delayed fractional-order reaction–diffusion quaternion-valued neural networks
(GDFORDQVNN). Utilizing the suitable Lyapunov functional, Green’s formula, and inequalities
skills, testable algebraic criteria for ensuring the FTS of GDFORDQVNN are established on the
basis of two adaptive controllers. Moreover, the numerical examples validate that the obtained
results are feasible. Furthermore, they are also verified in image encryption as the application.
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networks, image encryption.

1 Introduction

As we all know, synchronization has become an important research hotspot in neural
networks (NN) and has been considered in numerous fields, for instance, robotic fields,
biosystems, and control systems. Many types of synchronization issues have been studied
owing to different effects. For example, projective synchronization, quasi-synchronization,
H∞-synchronization, etc. Over the past two decades, fractional-order (FO) derivatives
have been considered to describe the models about engineering applications due to
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its advantages in describing memory and genetic properties. In particular, the study of
fractional NN (FONN) has attracted increasing attention because of its widely applicable
in systematic dynamics, for example, fluid mechanics, biological models, viscoelastic
systems, and so on [8, 16, 18, 34].

Note that many previous considered models mainly focused on NN without reaction–
diffusion (RD) term. Strictly speaking, diffusion phenomenon widely exists in NN and
electronic circuits [19]. In fact, when the electron passes through the asymmetric elec-
tromagnetic field, the NN and electronic circuit will have diffusion effect. Thereupon, it
is reasonable to discuss the neurons simultaneously with their changes in spatiotemporal.
The reaction–diffusion NN (RDNN) also shows unpredictable behaviors, such as periodic
oscillation, bifurcation, and chaotic attractor. The neuron state in RDNN depends on time
and space at the same time, which can perfectly describe the evolution of time and space.
Compared with the traditional NN, RDNN can achieve a better approximation of the
actual system and has been widely used in the shortest path solution, image encryption [4],
etc. Therefore, this paper combines the diffusion effect into the NN.

In recent years, some scholars have considered affect of the RD term on the FONN.
Actually, fractional-order RDNN (FORDNN) have been applied to hydrology [15], fi-
nance [5], and plasma turbulence [31]. Various interesting works have been studied in
[7, 21, 25, 28]. For instance, in [28], the problem of synchronization for competitive
FORDNN was investigated by combining FO Lyapunov theory with M-matrix. In [25],
the stability analysis of Riemann–Liouville FORDNN was studied by employing Lya-
punov direct method. Using Lyapunov method, the analysis of generalized FORDNN
with parameter mismatch was expanded in the paper [7]. Synchronization of complex-
valued FORDNN in finite-time interval was achieved by using Lyapunov function [21].

In practice, real-valued NN often need to extend to higher dimensions, and quaternion-
valued NN (QVNN) has unique merit in information processing. Thereupon, QVNN
has aroused researchers’ attention. Recently, FO has been inserted into QVNN forming
FOQVNN, and many significative results were presented [2, 9, 11, 24, 33]. For instance,
quasi-synchronization problem of delayed FOQVNN with parameter mismatches was
studied in [11]. The authors of [9] investigated finite-time control for fuzzy FOQVNN
with time delays and estimated the settling time. Stability and synchronization of the
fuzzy memristive FOQVNN were investigated in [24].

It is worth pointing out that above works focus on asymptotic synchronization of FO-
QVNN, which shows that synchronization achieved gradually with the infinite extension
of time. In practice, some systems were expected to realize synchronization as fast as
possible. Consequently, FTS has been introduced and widely applied in lots of fields.
It should be pointed out that FTS cannot only speeds up the convergence process, but
also enhance robustness. The FTS of dynamic networks has attracted widely attention, in
particulary, the synchronization in FTS was dealt with FOQVNN in [2,33]. The works on
studying dynamic behaviors of FOQVNN in the above literatures ignored diffusion terms,
which are filled in the model of this paper.

To realize synchronization of NN, many control approaches have been proposed,
which includes pinning control [12], impulsive control [22], sampled-data control [32],
and feedback control [29]. Recently, adaptive control method has become an important
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control strategy in networks systems, which can guarantee better performance due to
its powerful self-adjusting ability, and has been widely applied to synchronize NN [1,
24, 30]. However, there exists few works on FORDNN by applying adaptive controllers.
In [3], researchers discussed the quasi-synchronization of coupled FORDNN by using an
adaptive controller. In [23], the synchronization of memwristive FORDNN was derived
by adaptive controllers, which were designed by Gronwall–Bellman inequality. To our
knowledge, the issue of FTS for GDFORDQVNN via adaptive control strategy has not
been investigated previously.

In view of analysis above, this paper aims to investigate the FTS for GDFORDQVNN
by designing adaptive controllers. The principal novelties of this paper can be stated as
below. (i) Differt from previous works on QVNNs in [2, 24, 33] that without reaction–
diffusion terms and the models in [20] that without FO, the considered FO system takes
RD term into account in this paper. This suggests that the model is more general and
has more practical value. (ii) Through designing appropriate adaptive controller, synchro-
nization criteria of the proposed model is derived in finite time. (iii) The settling time is
estimated, which is an expansion and optimization in some existing work.

Notations. R and Q are real and quaternion values, respectively. Rm denotes m-dimen-
sional real vector. ρ is a quaternion, which can be described as ρ = hR+iρI +jρJ +kρK ,
where ρν ∈ R, i, j, k are the imaginary units, which obey: i2 = j2 = k2 = −1, ij =
k = −ji, jk = i = −kj, ki = j = −ik, ν = R, I, J,K stands for the quaternion
divided into four real parts. Let Ω = {x: x = (x1, x2, . . . , xm)T, |xk| 6 lk, lk > 0,
k = 1, 2, . . . ,mt} ∈ Rm be a bounded open set containing the origin. Moreover, the ∂Ω
is the smooth boundary, and Ω is measurable with mesΩ > 0.

2 Model description and preliminaries

Considering GDFORDQVNN as follows:

∂αhi(t, x)

∂tα
= di∆hi(t, x)− cihi(t, x)

+

n∑
l=1

ailfl
(
wlhl(t, x)

)
+

n∑
l=1

bilgl(w̄lhl
(
t− τ(t), x)

)
+Oi(t, x), i = 1, 2, . . . , n, t > 0, (1)

in which 0 < α 6 1, hi(t, x) ∈ Q denotes the state variable, ∆ =
∑m
j=1 ∂

2/∂x2j repre-
sents the Laplace operator on Ω, di > 0 is the transmission diffusion coefficient. ci > 0
stands for the self-feedback coefficient, ail, bil ∈ Q are connection coefficients, wl, w̄l
denote synaptic connectivity, fl(·), gl(·)∈Q represent activation functions, Oi(t, x)∈Q
is external input, τ(t) denotes time-varying delay that satisfies 0 < τ(t) < τ (τ = const).

Remark 1. Since RD is ubiquitous in practical, which could effect the performance of the
system, it is significant to study the delayed spatiotemporal FONN. Different from [33],
RD phenomenons are taken into consideration to study FTS of FOQVNN, which is more
novel and widely applied.
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By virtue of Hamilton rule, system (1) can be divided into four parts:

∂αhRi (t, x)

∂tα
= di∆h

R
i (t, x)− cihRi (t, x) +

n∑
l=1

[
aRilf

R
l (hRl (t, x))

− aIilf Il
(
hIl (t, x)

)
− aJilfJl

(
hJl (t, x)

)
− aKil fKl

(
hKl (t, x)

)]
+

n∑
l=1

[
bRilg

R
l

(
hRl
(
t− τ(t), x

))
− bIilgIl

(
hIl
(
t− τ(t), x

))
− bJilgJl

(
hJl
(
t− τ(t), x)

)
− bKil gKl

(
hKl
(
t− τ(t), x

))]
+ORi (t, x),

and ∂αhIi (t, x)/∂tα, ∂αhJi (t, x)/∂tα, ∂αhKi (t, x)/∂tα can be gained similarly.
Consider Dirichlet boundary conditions

hνi (t, x) = 0, t ∈ [−τ,+∞), x ∈ ∂Ω,

and initial values

hνi (s, x) = ϕν0i(s, x), s ∈ [−τ, 0], x ∈ Ω,

in which ϕν0i(s, x) ∈ R is a continuous function defined on [−τ, 0]×Ω.
To further discuss, we list the relevant assumption, definitions and lemmas.

Assumption 1. There exist constants Mν
l > 0, Nν

l > 0 such that for all µ1, µ2 ∈ R,∣∣fνl (µ1)− fνl (µ2)
∣∣ 6Mν

l |µ1 − µ2|,
∣∣gνl (µ1)− gνl (µ2)

∣∣ 6 Nν
l |µ1 − µ2|.

Definition 1. (See [17].) The Caputo derivative of FO α of function φ(t) : [0,+∞)→R
is defined by

Dαφ(t) =
1

Γ(1− α)

t∫
0

(t− s)−αφ′(s) ds, α > 0.

Definition 2. (See [17].) For a continuously differentiable φ(t, x) : [0,+∞) × Ω → R,
the time Caputo derivative of FO α is given as

∂αφ(t, x)

∂tα
=

1

Γ(1− α)

t∫
0

∂φ(s, x)

∂s
(t− s)−α ds, 0 < α 6 1.

In particular, if φ(t, x) = φ(t), then ∂αφ(t, x)/∂tα = dαφ(t)/dtα.

Lemma 1. (See [22].) For any x ∈ Ω, suppose that φ(t, x) : [0,+∞) × Ω → R has
continuous derivatives function on t. Then

∂αφ2(t, x)

∂tα
6 2φ(t, x)

∂αφ(t, x)

∂tα
, 0 < α 6 1.
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Lemma 2. (See [13].) LetΩ be a cube |xk| < lk (k = 1, 2, . . . , n), and letψ(x) : Ω → R
be continuously differentiable function with ψ(x)|∂Ω = 0. Then∫

Ω

ψ2(x) dx 6 l2k

∫
Ω

∣∣∣∣∂ψ(x)

∂xk

∣∣∣∣2 dx.

Lemma 3. (See [14].) Let function f(t, x) : [0,+∞) × Ω → R be integrable on Ω and
derivable with respect to t. Assume that V (t) =

∫
Ω
f(t, x) dx. Then

DαV (t) =

∫
Ω

∂α

∂tα
f(t, x) dx.

Lemma 4. (See [10].) LetW (t) be a nonnegative and continuous function, which satisfies

DαW (t) 6 −aW (t) + bW
(
t− τ(t)

)
− cW β(t),

where 0 < α < 1, 0 < β 6 1, 0 < τ(t) < τ , γ = sup−τ<s<0W (s), a > b > 0, c > 0.
Then V (t) converges to 0 within the time T ∗ estimated by

T ∗ =

[
Γ(1 + 1

1−β )Γ(2− α)Γ(1 + α)

Γ(1 + 1
1−β − α)(a− b)

ln
(a− b)γ1−β + c

c

]1/α
.

3 Main results

Taking (1) as the master model, the slave model can be constructed as

∂αh̄i(t, x)

∂tα
= di∆h̄i(t, x)− cih̄i(t, x)

+

n∑
l=1

ailfl
(
wlh̄l(t, x)

)
+

n∑
l=1

bilgl
(
w̄lh̄l(t− τ(t), x)

)
+Oi(t, x) + ui(t, x), i = 1, 2, . . . , n, (2)

in which ui(t, x) is the controller.
We defined the error system as ei(t, x) = h̄i(t, x) − hi(t, x). From (1) and (2) it

yields:

∂αeRi (t, x)

∂tα
= di∆e

R
i (t, x)− cieRi (t, x) +

n∑
l=1

[
aRilf

R
l

(
eRl (t, x)

)
− aIilf Il

(
eIl (t, x)

)
− aJilfJl

(
eJl (t, x)

)
− aKil fKl

(
eKl (t, x)

)]
+

n∑
l=1

[
bRilg

R
l

(
eRl
(
t− τ(t), x

))
− bIilgIl

(
eIl
(
t− τ(t), x

))
− bJilgJl

(
eJl
(
t− τ(t), x

))
− bKil gKl

(
eKl
(
t− τ(t), x

))]
+ uRi (t, x),
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where

fRl
(
eRl (t, x)

)
= fRl

(
wlh̄

R
l (t, x)

)
− fRl

(
wlh

R
l (t, x)

)
,

gRl
(
eRl
(
t− τ(t), x

))
= gRl

(
w̄lh̄

R
l

(
t− τ(t), x

))
− gRl

(
w̄lh

R
l

(
t− τ(t), x

))
,

and ∂αeIi (t, x)/∂tα, ∂αeJi (t, x)/∂tα, ∂αeKi (t, x)/∂tα can be gained similarly.
In order to save the energy, adaptive controller is considered in the following. The

control strategy uνi (t, x) is chosen by

uνi (t, x) =

{
−(ξνi (t) + ξ̄∗νi )eνi (t, x)− θ̄νi [eνi (t, x)]1−2β , eνi (t, x) 6= 0,

0, eνi (t, x) = 0,
(3)

where ξ̄∗νi , θ̄νi are constants, and adaptive control law ξνi (t) satisfies

Dαξνi (t) = δνi

∫
Ω

[
eνi (t, x)

]2
dx, δνi > 0.

For writing convenience, the notations are given below:

ηνi =

m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aνilwlMν
l

∣∣− n∑
l=1

Mν
i |wi|

[∣∣aRli ∣∣+
∣∣aJli∣∣+

∣∣aKli ∣∣+
∣∣aIli∣∣]+ 2ci,

λRi = ηRi −
n∑
l=1

∣∣aIilwlM I
l

∣∣− n∑
l=1

∣∣aJilwlMJ
l

∣∣− n∑
l=1

∣∣aKil wlMK
l

∣∣− n∑
l=1

∣∣bRil w̄lNR
l

∣∣
−

n∑
l=1

∣∣bIilw̄lN I
l

∣∣− n∑
l=1

∣∣bJilw̄lNJ
l

∣∣− n∑
l=1

∣∣bKil w̄lNK
l

∣∣,
λIi = ηIi −

n∑
l=1

∣∣aRilwlM I
l

∣∣− n∑
l=1

∣∣aKil wlMJ
l

∣∣− n∑
l=1

∣∣aJilwlMK
l

∣∣− n∑
l=1

∣∣bIilw̄lNR
l

∣∣
−

n∑
l=1

∣∣bRil w̄lN I
l

∣∣− n∑
l=1

∣∣bKil w̄lNJ
l

∣∣− n∑
l=1

∣∣bJilw̄lNK
l

∣∣,
λJi = ηJi −

n∑
l=1

∣∣aKil wlM I
l

∣∣− n∑
l=1

∣∣aRilwlMJ
l

∣∣− n∑
l=1

∣∣aIilwlMK
l

∣∣− n∑
l=1

∣∣bJilw̄lNR
l

∣∣
−

n∑
l=1

∣∣bKil w̄lN I
l

∣∣− n∑
l=1

∣∣bRil w̄lNJ
l

∣∣− n∑
l=1

∣∣bIilw̄lNK
l

∣∣,
λKi = ηKi −

n∑
l=1

∣∣aJilwlM I
l

∣∣− n∑
l=1

∣∣aIilwlMJ
l

∣∣− n∑
l=1

∣∣aRilwlMK
l

∣∣− n∑
l=1

∣∣bKil w̄lNR
l

∣∣
−

n∑
l=1

∣∣bJilw̄lN I
l

∣∣− n∑
l=1

∣∣bIilw̄lNJ
l

∣∣− n∑
l=1

∣∣bRil w̄lNK
l

∣∣,
Nonlinear Anal. Model. Control, 29(5):958–982, 2024
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λ̄ν1 = min
16i6n

{
λνi + 2ξ̄∗νi

}
, λ̄ν2 = max

16i6n

{
n∑
l=1

Nν
i

∣∣w̄i∣∣[∣∣bRli ∣∣+
∣∣bIli∣∣+

∣∣bJli∣∣+
∣∣bKli ∣∣]

}
,

λ̄ν3 = min
16i6n

{
2θ̄νi
}
,

λ̄1 = min
{
λ̄R1 , λ̄

I
1, λ̄

J
1 , λ̄

K
1

}
, λ̄2 = max

{
λ̄R2 , λ̄

I
2, λ̄

J
2 , λ̄

K
2

}
,

λ̄3 = min
{
λ̄R3 , λ̄

I
3, λ̄

J
3 , λ̄

K
3

}
.

Theorem 1. Under the adaptive controller (3) and Assumption 1, if the inequalities

ξ̄∗νi +
1

2
λνi > 0, λ̄1 > λ̄2 > 0, λ̄3 > 0 (4)

persist, then systems (1) and (2) can reach FTS with

T̄ ∗ =

[
Γ(1 + 1

β )Γ(2− α)Γ(1 + α)

Γ(1 + 1
β − α)(λ̄1 − λ̄2)

ln
(λ̄1 − λ̄2)γβ + λ̄3

λ̄3

]1/α
. (5)

Proof. We use Lyapunov function

V (t) = V R(t) + V I(t) + V J(t) + V K(t)

in which V ν(t) =
∫
Ω

∑n
i=1[eνi (t, x)

]2
dx+

∑n
i=1[ξνi (t)]2/δνi .

We take the fractional derivative of V (t) of order α

DαV (t) = DαV R(t) +DαV I(t) +DαV J(t) +DαV K(t).

According to Lemmas 1 and 2, we have

DαV R(t) 6
n∑
i=1

∫
Ω

2eRi (t, x)
∂αeRi (t, x)

∂tα
dx+

n∑
i=1

2

δi
ξRi (t)DαξRi (t)

=

n∑
i=1

∫
Ω

2eRi (t, x)

{
m∑
j=1

di
∂2eRi (t, x)

∂x2j
− cieRi (t, x)

+

n∑
l=1

[
aRilf

R
l

(
eRl (t, x)

)
− aIilf Il

(
eIl (t, x)

)
− aJilfJl

(
eJl (t, x)

)
− aKil fKl

(
eKl (t, x)

)]
×

n∑
l=1

[
bRil + gRl

(
eRl
(
t−τ(t), x)

)
− bIilgIl

(
eIl
(
t−τ(t), x)

)
− bJilgJl

(
eJl
(
t−τ(t), x

))
− bKil gKl

(
eKl
(
t−τ(t), x

))]
+ uRi (t, x)

}
dx

+

n∑
i=1

2ξRi (t)

∫
Ω

[
eRi (t, x)

]2
dx.

https://www.journals.vu.lt/nonlinear-analysis
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By using Green’s theorem and zero Dirichlet boundary conditions,
n∑
i=1

∫
Ω

2die
R
i (t, x)

m∑
j=1

∂2eRi (t, x)

∂x2j
dx

=

n∑
i=1

∫
∂Ω

2die
R
i (t, x)

m∑
j=1

∂eRi (t, x)

∂xj
dx−

n∑
i=1

∫
Ω

2di

m∑
j=1

(
∂eRi (t, x)

∂xj

)2

dx

= −
n∑
i=1

∫
Ω

2di

m∑
j=1

(
∂eRi (t, x)

∂xj

)2

dx 6 −
n∑
i=1

∫
Ω

m∑
j=1

2di
l2j

[
eRi (t, x)

]2
dx. (6)

In addition, from Assumption 1
n∑
i=1

∫
Ω

2

n∑
l=1

eRi (t, x)
[
aRilf

R
l

(
eRl (t, x)

)
− aIilf Il

(
eIl (t, x)

)
− aJilfJl

(
eJl (t, x)

)
− aKil fKl

(
eKl (t, x)

)]
dx

6
n∑
i=1

∫
Ω

2

n∑
l=1

∣∣eRi (t, x)aRilwlM
R
l e

R
l (t, x)

∣∣dx
+

n∑
i=1

∫
Ω

2

n∑
l=1

∣∣eRi (t, x)aIilwlM
I
l e
I
l (t, x)

∣∣ dx
+

n∑
i=1

∫
Ω

2

n∑
l=1

∣∣eRi (t, x)aJilwlM
J
l e

J
l (t, x)

∣∣dx
+

n∑
i=1

∫
Ω

2

n∑
l=1

∣∣eRi (t, x)aKil wlM
K
l e

K
l (t, x)

∣∣ dx
6

n∑
i=1

∫
Ω

n∑
l=1

∣∣aRilwlMR
l

∣∣[(eRi (t, x)
)2

+
(
eRl (t, x)

)2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aIilwlM I
l

∣∣[(eRi (t, x)
)2

+
(
eIl (t, x)

)2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aJilwlMJ
l

∣∣[(eRi (t, x)
)2

+
(
eJl (t, x)

)2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aKil wlMK
l

∣∣[(eRi (t, x)
)2

+
(
eKl (t, x)

)2]
dx. (7)

Similarly, for the delayed term,
n∑
i=1

∫
Ω

2

n∑
l=1

eRi (t, x)
[
bRilg

R
l

(
eRl
(
t− τ(t), x

))
− bIileIl

(
eIl
(
t− τ(t), x

))
× bJilgJl

(
eJl
(
t− τ(t), x

))
− bKil gKl

(
eKl
(
t− τ(t), x

))]
dx
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6
n∑
i=1

∫
Ω

n∑
l=1

∣∣bRil w̄lNR
l

∣∣[(eRi (t, x)
)2

+
(
eRl
(
t− τ(t), x

))2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bIilw̄lN I
l

∣∣[(eRi (t, x)
)2

+
(
eIl
(
t− τ(t), x

))2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bJilw̄lNJ
l

∣∣[(eRi (t, x)
)2

+
(
eJl
(
t− τ(t), x

))2]
dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bKil w̄lNK
l

∣∣[(eRi (t, x)
)2

+
(
eKl (t− τ(t), x)

)2]
dx. (8)

Applying controller (3) gives

n∑
i=1

2

∫
Ω

uRi (t, x)eRi (t, x) dx+

n∑
i=1

2ξRi (t)

∫
Ω

[
eRi (t, x)

]2
dx

= −
n∑
i=1

∫
Ω

2(ξRi (t) + ξ̄∗R)
[
eRi (t, x)

]2
dx−

n∑
i=1

∫
Ω

2θ̄Ri
[
eRi (t, x)

]2−2β
dx

+

n∑
i=1

2ξRi (t)

∫
Ω

[
eRi (t, x)

]2
dx

= −
n∑
i=1

∫
Ω

2ξ∗Ri
[
eRi (t, x)

]2
dx−

n∑
i=1

∫
Ω

2θ̄Ri
[
eRi (t, x)

]2−2β
dx. (9)

From (6)–(9)

DαV R(t)

6 −
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aRilwlMR
l

∣∣− n∑
l=1

∣∣aRliwiMR
i

∣∣− n∑
l=1

∣∣aIilwlM I
l

∣∣
−

n∑
l=1

∣∣aJilwlMJ
l

∣∣− n∑
l=1

∣∣aKil wlMK
l

∣∣− n∑
l=1

∣∣bRil w̄lNR
l

∣∣− n∑
l=1

∣∣bIilw̄lN I
l

∣∣
−

n∑
l=1

∣∣bJilw̄lNJ
l

∣∣− n∑
l=1

∣∣bKil w̄lNK
l

∣∣+ 2ci + 2ξ∗Ri − |ηRi |

]∫
Ω

[
eRi (t, x)

]2
dx

+

n∑
i=1

[
n∑
l=1

∣∣bRli w̄iNR
i

∣∣+
∣∣ηRi ∣∣

] ∫
Ω

[
eRi
(
t− τ(t), x

)]2
dx

−
n∑
i=1

∫
Ω

2θ̄Ri
[
eRi (t, x)

]2−2β
dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aIliwiM I
i

∣∣(eIi (t, x)
)2

dx
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+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aJliwiMJ
i

∣∣(eJi (t, x)
)2

dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aKli wiMK
i

∣∣(eKi (t, x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bIliw̄iN I
i

∣∣(eIi (t− τ(t), x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bJliw̄iNJ
i

∣∣(eJi (t− τ(t), x
))2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bKli w̄iNK
i

∣∣(eKi (t− τ(t), x
))2

dx.

Similarly,

DαV I(t)

6 −
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aIilwlMR
l

∣∣− n∑
l=1

∣∣aRliwiM I
i

∣∣− n∑
l=1

∣∣aRilwlM I
l

∣∣
−

n∑
l=1

∣∣aKil wlMJ
l

∣∣− n∑
l=1

∣∣aJilwlMK
l

∣∣− n∑
l=1

∣∣bIilw̄lNR
l

∣∣− n∑
l=1

∣∣bRil w̄lN I
l

∣∣
−

n∑
l=1

∣∣bKil w̄lNJ
l

∣∣− n∑
l=1

∣∣bJilw̄lNK
l

∣∣+ 2ci + 2ξ∗Ii −
∣∣ηIi ∣∣

] ∫
Ω

[
eIi (t, x)

]2
dx

+

n∑
i=1

[
n∑
l=1

∣∣bRli w̄iN I
i

∣∣+
∣∣ηIi ∣∣

] ∫
Ω

[
eIi
(
t− τ(t), x

)]2
dx

−
n∑
i=1

∫
Ω

2θ̄Ii
[
eIi (t, x)

]2−2β
dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aIliwiMR
i

∣∣(eRi (t, x)
)2

dx

+
n∑
i=1

∫
Ω

n∑
l=1

∣∣aKli wiMJ
i

∣∣(eJi (t, x)
)2

dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aJliwiMK
i

∣∣(eKi (t, x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bIliw̄iNR
i

∣∣(eRi (t− τ(t), x
))2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bKli w̄iNJ
i

∣∣(eJl (t− τ(t), x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bJliw̄iNK
i

∣∣(eKi (t− τ(t), x)
)2

dx, (10)

DαV J(t)

6 −
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aJilwlMR
l

∣∣− n∑
l=1

∣∣aKil wlM I
l

∣∣− n∑
l=1

∣∣aRilwlMJ
l

∣∣
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−
n∑
l=1

∣∣aRliwiMJ
i

∣∣− n∑
l=1

∣∣aIilwlMK
l

∣∣− n∑
l=1

∣∣bJilw̄lNR
l

∣∣− n∑
l=1

∣∣bKil w̄lN I
l

∣∣
−

n∑
l=1

∣∣bRil w̄lNJ
l

∣∣− n∑
l=1

∣∣bIilw̄lNK
l

∣∣+ 2ci + 2ξ∗Ji −
∣∣ηJi ∣∣

] ∫
Ω

[
eJi (t, x)

]2
dx

+

n∑
i=1

[
n∑
l=1

∣∣bRli w̄iNJ
i

∣∣+
∣∣ηJi ∣∣

] ∫
Ω

[
eJi
(
t− τ(t), x

)]2
dx

−
n∑
i=1

∫
Ω

2θ̄Ji
[
eJi (t, x)

]2−2β
dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aJliwiMR
i

∣∣(eRi (t, x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aKli wiM I
i

∣∣(eIi (t, x)
)2

dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aIliwiMK
i

∣∣(eKi (t, x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bJliw̄iNR
i

∣∣(eRi (t− τ(t), x
))2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bKli w̄iN I
i

∣∣(eIi (t− τ(t), x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bIliw̄iNK
i

∣∣(eKi (t− τ(t), x
))2

dx, (11)

DαV K(t)

6 −
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aKil wlMR
l

∣∣− n∑
l=1

∣∣aJilwlM I
l

∣∣− n∑
l=1

∣∣aIilwlMJ
l

∣∣
−

n∑
l=1

∣∣aRliwiMK
i

∣∣− n∑
l=1

∣∣aRilwlMK
l

∣∣− n∑
l=1

∣∣bKil w̄lNR
l

∣∣− n∑
l=1

∣∣bJilw̄lN I
l

∣∣
−

n∑
l=1

∣∣bIilw̄lNJ
l

∣∣− n∑
l=1

∣∣bRil w̄lNK
l

∣∣+ 2ci + 2ξ∗Ki −
∣∣ηKi ∣∣

] ∫
Ω

[
eKi (t, x)

]2
dx

+

n∑
i=1

[
n∑
l=1

∣∣bRli w̄iNK
i

∣∣+
∣∣ηKi ∣∣

] ∫
Ω

[
eKi
(
t− τ(t), x

)]2
dx

−
n∑
i=1

∫
Ω

2θ̄Ki
[
eKi (t, x)

]2−2β
dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aKli wiMR
i

∣∣(eRi (t, x)
)2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aJliwiM I
i

∣∣(eIi (t, x)
)2

dx+

n∑
i=1

∫
Ω

n∑
l=1

∣∣aIliwiMJ
i

∣∣(eJi (t, x)
)2

dx
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+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bKli w̄iNR
i

∣∣(eRi (t− τ(t), x
))2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bJliw̄iN I
i

∣∣(eIi (t− τ(t), x
))2

dx

+

n∑
i=1

∫
Ω

n∑
l=1

∣∣bIliw̄iNJ
i

∣∣(eJi (t− τ(t), x)
)2

dx. (12)

Combining (10)–(12), we obtain

DαV (t)

6 −
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aRilwlMR
l

∣∣− n∑
l=1

MR
i |wi|

[∣∣aRli ∣∣+
∣∣aJli∣∣+

∣∣aKli ∣∣+
∣∣aIli∣∣]

−
n∑
l=1

∣∣aIilwlM I
l

∣∣− n∑
l=1

∣∣aJilwlMJ
l

∣∣− n∑
l=1

∣∣aKil wlMK
l

∣∣− n∑
l=1

∣∣bRil w̄lNR
l

∣∣
−

n∑
l=1

∣∣bIilw̄lN I
l

∣∣− n∑
l=1

∣∣bJilw̄lNJ
l

∣∣− n∑
l=1

∣∣bKil w̄lNK
l

∣∣+ 2ci + 2ξ∗Ri −
∣∣ηRi ∣∣

]
×
∫
Ω

[
eRi (t, x)

]2
dx

−
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aIilwlMR
l

∣∣− n∑
l=1

M I
i |wi|

[∣∣aRli ∣∣+
∣∣aIli∣∣+

∣∣aJli∣∣+
∣∣aKli ∣∣]

−
n∑
l=1

∣∣aRilwlM I
l

∣∣− n∑
l=1

∣∣aKil wlMJ
l

∣∣− n∑
l=1

∣∣aJilwlMK
l

∣∣− n∑
l=1

∣∣bIilw̄lNR
l

∣∣
−

n∑
l=1

∣∣bRil w̄lN I
l

∣∣− n∑
l=1

∣∣bKil w̄lNJ
l

∣∣− n∑
l=1

∣∣bJilw̄lNK
l

∣∣+ 2ci + 2ξ∗Ii −
∣∣ηIi ∣∣

]
×
∫
Ω

[
eIi (t, x)

]2
dx

−
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aJilwlMR
l

∣∣− n∑
l=1

MJ
i |wi|

[∣∣aRli ∣∣+
∣∣aJli∣∣+

∣∣aKli ∣∣+
∣∣aIli∣∣]

−
n∑
l=1

∣∣aKil wlM I
l

∣∣− n∑
l=1

∣∣aRilwlMJ
l

∣∣− n∑
l=1

∣∣aIilwlMK
l

∣∣− n∑
l=1

∣∣bJilw̄lNR
l

∣∣
−

n∑
l=1

∣∣bKil w̄lN I
l

∣∣− n∑
l=1

∣∣bRil w̄lNJ
l

∣∣− n∑
l=1

∣∣bIilw̄lNK
l

∣∣+ 2ci + 2ξ∗Ji −
∣∣ηJi ∣∣

]
×
∫
Ω

[
eJi (t, x)

]2
dx
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−
n∑
i=1

[
m∑
j=1

2di
l2j
−

n∑
l=1

∣∣aKil wlMR
l

∣∣− n∑
l=1

MK
i |wi|

[∣∣aRli ∣∣+
∣∣aKli ∣∣+

∣∣aJli∣∣+
∣∣aIli∣∣]

−
n∑
l=1

∣∣aJilwlM I
l

∣∣− n∑
l=1

∣∣aIilwlMJ
l

∣∣− n∑
l=1

∣∣aRilwlMK
l

∣∣− n∑
l=1

∣∣bKil w̄lNR
l

∣∣
−

n∑
l=1

∣∣bJilw̄lN I
l

∣∣− n∑
l=1

∣∣bIilw̄lNJ
l

∣∣− n∑
l=1

∣∣bRil w̄lNK
l

∣∣+ 2ci + 2ξ∗Ki −
∣∣ηKi ∣∣

]

×
∫
Ω

[
eKi (t, x)

]2
dx

+

n∑
i=1

[
n∑
l=1

NR
i |w̄i|

[∣∣bRli ∣∣+
∣∣bIli∣∣+

∣∣bJli∣∣+
∣∣bKli ∣∣]+

∣∣ηRi ∣∣
] ∫
Ω

[
eRi
(
t−τ(t), x

)]2
dx

+

n∑
i=1

[
n∑
l=1

N I
i |w̄i|

[∣∣bRli ∣∣+
∣∣bIli∣∣+

∣∣bKli ∣∣+
∣∣bJli∣∣]+

∣∣ηIi ∣∣
] ∫
Ω

[
eIi
(
t−τ(t), x

)]2
dx

+

n∑
i=1

[
n∑
l=1

NJ
i |w̄i|

[
|bRli |+ |bIli|+ |bJli|+ |bKli |

]
+
∣∣ηJi ∣∣

] ∫
Ω

[
eJi
(
t−τ(t), x

)]2
dx

+

n∑
i=1

[
n∑
l=1

NK
i |w̄i|

[∣∣bRli ∣∣+
∣∣bIli∣∣+

∣∣bJli∣∣+
∣∣bKli ∣∣]+

∣∣ηKi ∣∣
] ∫
Ω

[
eKi
(
t−τ(t), x

)]2
dx

−
n∑
i=1

∫
Ω

2θ̄Ri
[
eRi (t, x)

]2−2β
dx−

n∑
i=1

∫
Ω

2θ̄Ii
[
eIi (t, x)

]2−2β
dx

−
n∑
i=1

∫
Ω

2θ̄Ji
[
eJi (t, x)

]2−2β
dx−

n∑
i=1

∫
Ω

2θ̄Ki
[
eKi (t, x)

]2−2β
dx

6 −λ̄1V (t) + λ̄2V
(
t− τ(t)

)
− λ̄3V 1−β(t). (13)

According to Lemma 4 and conditions (4) in Theorem 1, systems (1) and (2) can reach
synchronization with (5).

Remark 2. According to the adaptive controller (3), when the synchronization is realized,
Dαξνi (t) tends to zero, and ξνi (t) approaches a constant with the help of the properties of
the Caputo FO derivative. Figures 3 and 4 in Example 1 show the evolutions of the ξνi (t),
which verify the above results.

In Eq. (3), the adaptive controller is related to time t. We will introduce the adaptive
controller that takes both time t and space x:

uνi (t, x) =

{
−(ξνi (t, x) + ξ̃∗νi )eνi (t, x)− θ̃νi [eνi (t, x)]1−2β , eνi (t, x) 6= 0,

0, eνi (t, x) = 0,
(14)
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in which ξ̃∗νi , θ̃νi are constants, and the adaptive control law ξνi (t, x) satisfies

∂α

∂tα
ξνi (t, x) = δ̃νi

[
eνi (t, x)

]2
, δ̃νi > 0.

For simplicity, the notations are given below:

λ̃ν1 = min
16i6n

{
λνi + 2ξ̃∗νi

}
, λ̃ν2 = λ̄ν2 , λ̃ν3 = min

16i6n

{
2θ̃νi
}
,

λ̃1 = min
{
λ̃R1 , λ̃

I
1, λ̃

J
1 , λ̃

K
1

}
, λ̃2 = max

{
λ̃R2 , λ̃

I
2, λ̃

J
2 , λ̃

K
2

}
,

λ̃3 = min
{
λ̃R3 , λ̃

I
3, λ̃

J
3 , λ̃

K
3

}
.

Theorem 2. Under controller (14) and Assumption 1, if the inequalities

ξ̃∗µi +
1

2
λνi > 0, λ̃1 > λ̃2 > 0, λ̃3 > 0 (15)

hold, then systems (1) and (2) can reach FTS with

T̃ ∗ =

[
Γ(1 + 1

β )Γ(2− α)Γ(1 + α)

Γ(1 + 1
β − α)(λ̃1 − λ̃2)

ln
(λ̃1 − λ̃2)γβ + λ̃3

λ̃3

]1/α
. (16)

Proof. Let us apply the Lyapunov function

V (t) = V R(t) + V I(t) + V J(t) + V K(t)

in which V ν(t) =
∫
Ω

∑n
i=1[eνi (t, x)]2 dx+

∑n
i=1

∫
Ω

[ξνi (t, x)]2 dx/δ̃νi .
Take the fractional derivative of V R(t) of order α, then by using Lemmas 1 and 2,

DαV R(t) 6
n∑
i=1

∫
Ω

2eRi (t, x)
∂αeRi (t, x)

∂tα
dx+

n∑
i=1

∫
Ω

2

δ̃νi
ξRi (t, x)

∂αξRi (t, x)

∂tα
dx

=

n∑
i=1

∫
Ω

2eRi (t, x)

{
m∑
j=1

di
∂2eRi (t, x)

∂x2j
− cieRi (t, x) +

n∑
l=1

[
aRilf

R
l

(
eRl (t, x)

)
− aIilf Il

(
eIl (t, x)

)
− aJilfJl

(
eJl (t, x)

)
− aKil fKl

(
eKl (t, x)

)]
+

n∑
l=1

[
bRilg

R
l

(
eRl
(
t− τ(t), x

))
− bIilgIl

(
eIl
(
t− τ(t), x

))
− bJilgJl

(
eJl
(
t− τ(t), x

))
− bKil gKl

(
eKl
(
t− τ(t), x

))]
+ uRi (t, x)

}
dx

+

n∑
i=1

2

∫
Ω

ξRi (t, x)
[
eRi (t, x)

]2
dx.

Nonlinear Anal. Model. Control, 29(5):958–982, 2024

https://doi.org/10.15388/namc.2024.29.36100


972 W. Zhang et al.

Applying controller (14), we have

n∑
i=1

2

∫
Ω

uRi (t, x)eRi (t, x) dx+

n∑
i=1

2

∫
Ω

ξRi (t, x)
[
eRi (t, x)

]2
dx

= −
n∑
i=1

∫
Ω

2
(
ξRi (t, x) + ξ̃∗R

)[
eRi (t, x)

]2
dx−

n∑
i=1

∫
Ω

2θ̃Ri
[
eRi (t, x)

]2−2β
dx

+

n∑
i=1

2

∫
Ω

ξRi (t, x)
[
eRi (t, x)

]2
dx

= −
n∑
i=1

∫
Ω

2ξ̃∗Ri
[
eRi (t, x)

]2
dx−

n∑
i=1

∫
Ω

2θ̃Ri
[
eRi (t, x)

]2−2β
dx. (17)

Similarly, we can obtain

DαV (t) 6 −λ̃1V (t) + λ̃2V
(
t− τ(t)

)
− λ̃3V 1−β(t). (18)

According to Lemma 4 and conditions (15) in Theorem 2, systems (1) and (2) can reach
synchronization with (16).

Remark 3. From the adaptive controller (14) in Theorem 2, for any given x ∈ Ω,
Dαξνi (t, x) is close to zero as systems achieve synchronization, and ξνi (t, x) approaches
a certain constant that related to time t according to the properties of the Caputo FO
derivative. It is worth noting that ξνi (t, x) is variable with respect to x when the time t
is fixed. Figures 7, 8 in Example 1 reveal the evolutions of the ξνi (t, x), which verify the
above results.

Remark 4. In fact, some factors are inevitable, such as the environment, equipment,
etc., the controller gains will unavoidably take disturbances. Thereupon, it is reasonable
and necessary that the selected controllers depend on time and space, which is closer to
practice.

Remark 5. In [26, Lemma 3], the settling time is obtained via inequality DαH(t) 6
−ϑH(t) − ς . Compared with existing works, Lemma 4 contains power and time-delay
terms, which makes the form of the inequality more general.

Remark 6. The FST synchronization criteria are obtained in [6, 27, 33], which con-
centrated on delays and FOQVNN. However, RD terms were ignored, and it could in-
crease the conservativeness of the results. Up to now, the FTS synchronization analysis
of GDFORDQVNN has not been discussed. In this paper, the RD term was added to
the synchronization condition, which makes the obtained results more general and less
conservative.

Remark 7. If α = 1, systems (1) and (2) reduced to the classical RDQVNN models with
time varying, which are investigated in [20].
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4 A numerical example and an application

Example 1. Let us consider the following GDFORDQVNN:

∂αhi(t, x)

∂tα
= di

1∑
j=1

∂2hi(t, x)

∂x2j
− cihi(t, x) +

2∑
l=1

ailfl
(
wlhl(t, x)

)
+

2∑
l=1

bilgl
(
w̄lhl

(
t− τ(t), x

))
+ Ii(t, x), i = 1, 2, t > 0,

in which α = 0.38, d1 = d2 = 0.9, c11 = 0.25, c22 = 0.85, τ(t) = et/et + 1,
w1 = w2 = 1, w̄1 = w̄2 = 1,

(aij)2×2 =

[
1.48− 1.26i− 0.75j + 0.06k, 0.11− 0.6i + 0.28j + 0.44k
−1.09 + 0.47i + 0.85j + 0.1k, −0.21− 1.31i− 0.31j + k

]
,

(bij)2×2 =

[
0.54 + 0.46i + 1.45j− 2.27k, −0.12 + 1.25i− 0.25j + 0.75k
0.35− 0.76i + 0.16j− 0.61k, −1.05− 1.3i− 1.3j + 1.08k

]
,

the active functions

f
(
x(t, x)

)
= g
(
x(t, x)

)
= x(t, x) + sign

(
x(t, x)

)
,

the external inputs I1 = I2 = 0, Ω = [−0.5, 0.5]. The initial values are selected as

h1(t, x) = 6 cos(−1 + x− 0.001t),

h2(t, x) = 8 cos(−1 + x− 0.001t),

h̄1(t, x) = −8.7 tanh(−1 + x− 0.001t),

h̄2(t, x) = −6.5 tanh(−1 + x− 0.001t).

(i) First, we choose the control gains as ξ̄∗1 = 5.95 + 4i + 7.9j + 6.91k, ξ̄∗2 = 9.3 +
2.31i+1.67j+11.3k, θ̄1 = θ̄2 = 1.01+1.01i+1.01j+1.01k, β = 0.7, it can be
calculated that the conditions of Theorem 1 hold. Thus, the error system can reach
FTS with time T̄ ∗ = 4.56. Figures 1, 2 describe the synchronization trajectories
of errors eνi (t, x). Figures 3, 4 show that the adaptive control gains ξνi (t) converge
with time growth and gradually reach some positive constants.

(ii) Next, we choose the control gains as θ̃1 = θ̃2 = 1.01 + 1.01i + 1.01j + 1.01k,
β = 0.7, it can be calculated that the conditions of Theorem 2 satisfied. Thus,
the error system can reach FTS with time T̃ ∗ = 4.35. Figures 5, 6 describe the
synchronization trajectories of errors eνi (t, x) (i = 1, 2). Figures 7, 8 show that
for any x ∈ Ω, the adaptive control gains ξνi (x, t) converge to constants of time t.
However, ξνi (x, t) are still functions with respect to space variable x at any fixed
time.

(iii) Finally, Figs. 1–8 show that Theorems 1 and 2 are correct. Namely, the drive-
response systems (1) and (2) can reach finite-time synchronization under the adap-
tive control schemes (3) and (14), respectively.
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(a) eR1 (x, t) (b) eI1(x, t)

(c) eJ1 (x, t) (d) eK1 (x, t)

Figure 1. The synchronization trajectory of eν1(x, t) with controller (3).

(a) eR2 (x, t) (b) eI2(x, t)

(c) eJ2 (x, t) (d) eK2 (x, t)

Figure 2. The synchronization trajectory of eν2(x, t) with controller (3).
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(d) ξK1 (t)

Figure 3. The evolutions of adaptive control law ξν1 (t).
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(d) ξK2 (t)

Figure 4. The evolutions of adaptive control law ξν2 (t).
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(a) eR1 (x, t) (b) eI1(x, t)

(c) eJ1 (x, t) (d) eK1 (x, t)

Figure 5. The synchronization trajectory of eν1(x, t) with controller (15).

(a) eR2 (x, t) (b) eI2(x, t)

(c) eJ2 (x, t) (d) eK2 (x, t)

Figure 6. The synchronization trajectory of eν2(x, t) with controller (15).
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(a) ξR1 (x, t) (b) ξI1(x, t)

(c) ξJ1 (x, t) (d) ξK1 (x, t)

Figure 7. The evolutions of adaptive control law ξν1 (x, t).

(a) ξR2 (x, t) (b) ξI2(x, t)

(c) ξJ2 (x, t) (d) ξK2 (x, t)

Figure 8. The evolutions of adaptive control law ξν2 (x, t).
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Example 2. Due to the complex dynamic behavior of GDFORDQVNN, image encryption
and decryption are derived based on system (1).

For an image named “Lena”, (see Fig. 9(a)), we apply system (1) and the XOR
algorithm, the encrypted image is presented in Fig. 9(b). With the decryption process of
the considered model, we can obtain the corresponding decrypted image, which is given
in Fig. 9(c). The corresponding histograms are shown in Fig. 10.

(a) (b)

(c)

Figure 9. Encryption and decryption of color image.

Figure 10. The histograms of plain image and cipher image.
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(a) horizontal correlation

(b) vertical correlation

(c) diagonal correlation

Figure 11. Correlations of plain image and cipher image.

The two adjacent pixels of the plain images and the ciphered images are correlated
within a certain range, which is shown in Fig. 11. Moreover, the correlation coefficients
of two adjacent pixels are listed in Table 1. Both Fig. 11 and Table 1 reveal that the results
we obtained can better solve the problem of image encryption.
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Table 1. Correlation coefficients for two adjacent pixels.

Cameraman Horizontal Vertical Diagonal
Plain image 0.9631 0.9593 0.9502
Cipher image −0.0021 −0.0043 0.0065

5 Conclusion

In fact, diffusion phenomenon and delays inevitable exist in NN and have an influence on
the dynamical behaviours of the systems. In this paper, the FTS conditions of FOQVNN
with RD and time-varying delay are derived by employing Lyapunov method. Numerical
simulations and application examples intuitively show that the obtained theoretical results
are effective and feasible. This paper extended and developed the previous research study.
In future works, we will further investigate the fixed time stability of FORDQVNN with
leakage delay under impulsive controller.
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