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We apply recently developed version of a density functional theory [Z. Wang, L. Liu, and I.
Neretnieks, J. Phys.: Condens. Matter 23, 175002 (2011)] to study adsorption of a restricted primi-
tive model for an ionic fluid in slit-like pores in the absence of interactions induced by electrostatic
images. At present this approach is one of the most accurate theories for such model electric dou-
ble layers. The dependencies of the differential double layer capacitance on the pore width, on the
electrostatic potential at the wall, bulk fluid density, and temperature are obtained. We show that
the differential capacitance can oscillate as a function of the pore width dependent on the values of
the above parameters. The number of oscillations and their magnitude decrease for high values of the
electrostatic potential. For very narrow pores, close to the ion diameter, the differential capacitance
tends to a minimum. The dependence of differential capacitance on temperature exhibits maximum
at different values of bulk fluid density and applied electrostatic potential. © 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4771919]

I. INTRODUCTION

The problem of description of ionic fluids in contact with
single charged surface, or confined to pores of nanoscopic di-
mensions with charged walls, is of much importance for ba-
sic research, as well as for various applications. In spite of
reached progress in understanding of basic features of mi-
croscopic structure, thermodynamic and electric properties
of these systems in equilibrium, the problem still represents
challenge for statistical mechanical theory and computer
simulations.

Theoretical modelling of the microscopic structure and
thermodynamic properties of homogeneous and inhomoge-
neous electrolytes is most commonly performed in the frame-
work of the primitive models (PM), in which ions are con-
sidered as charged hard spheres with arbitrary diameters and
charges. Moreover, in several approaches the simplifying as-
sumption of equality of diameters of ionic species is applied,
yielding the restricted primitive model (RPM). In both, the
PM and RPM, the solvent subsystem is mimicked by a uni-
form dielectric continuum characterized by a certain constant
value of dielectric susceptibility.

In temporal retrospective, initial theoretical approaches
for the description of inhomogeneous (i.e., in an external
field or with intrinsically broken symmetry, e.g., in the case
of ionic vapor–ionic liquid separation) RPM fluids were
based on singlet,1, 2 as well as on second-order3 integral
equations. However, later studies have shown that for con-
fined uncharged,4 as well as for charged fluids, the density

a)Electronic mail: pizio@unam.mx.

functional (DF) methods provide an attractive alternative.5

These theories yield more accurate results comparing to the
predictions of the singlet theory. Moreover, they are compa-
rable to the accuracy of second-order integral equations, but
are considerably easier to implement. In addition, the density
functional approaches permit to study an ample set of ther-
modynamic properties involving phase equilibria in nonuni-
form fluid systems with different geometry of confinement,
see, e.g., Refs. 6–9.

Usually, in DF theories of nonuniform electrolytes, the
ion–ion correlations are divided into the direct Coulomb con-
tribution, the hard-sphere contribution and the electric resid-
ual contribution that results from coupling between Coulomb
and hard-sphere interactions.10–16 The difference between var-
ious DF approaches is due to different ways of evaluation of
the residual contributions. According to the compressibility
route approaches,10–14 the residual contribution is evaluated
using a perturbation of the intrinsic Helmholtz free energy
around a bulk reference state. The residual free energy func-
tional is calculated then as an integral involving the residual
term of the direct pair correlation function. A more sophisti-
cated approach, called “the reference fluid DF theory”15 intro-
duces a method for defining a “smoothed,” nonuniform fluid
as the reference state instead of the bulk fluid. However, it also
belongs to the compressibility route developments.

In our previous works16–20 we have proposed and ap-
plied the approach that uses nonuniform fluid weighted den-
sities as the reference state and the free energy functional for
the residual contribution from the MSA energy route for the
bulk equation of state.21, 22 This development can be called
“an energy route MSA-based solution.” In contrast to the
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compressibility route approaches, the energy route theory is
the only method capable to predict ionic gas–ionic liquid
transition for confined RPM,16, 17 as well as the existence of
a maximum of the double layer capacitance on temperature
dependence.18, 19 However, at high temperatures comparing to
the critical temperature of the RPM, for quite high bulk elec-
trolyte densities as well as for high wall charges, the micro-
scopic structure of electric double layer predicted by the en-
ergy route approach is less accurate than that emerging from
some compressibility route theories.12, 23, 24

Our principal focus in the deliberation above was con-
centrated on the ionic fluid side of the problem that actually
involves solid phase as well. Description of the latter solely
as a source of an external field is not sufficient in dealing with
several important important issues, however.

Recently, the so-called electric double layer capacitors
(DLCs) have received much attention25–30 because of their
power delivery performance that fills the gap between dielec-
tric capacitors and traditional batteries. With the growing de-
velopment of renewable energy sources, these systems are
thought to play an important role complementing or even re-
placing batteries in the energy storage field. The DLCs are
microporous solids and their excellent electrochemical per-
formance is mainly due to reversible ion adsorption in porous
electrodes.31–33 It was found that in some cases an anoma-
lous behavior manifested as an increase of the capacitance of
DLCs can occur as the pore size decreases and approaches
the dimension of ions.31, 32 Moreover, it was observed that
dependent on the size of the pores, substantial separation
of the positive and negative ions can take place inside the
pores.33, 34

The problem of description of DLCs has been tack-
led using computer simulations,33, 35–42 as well as theoreti-
cal methods.34, 41, 43–45 These works made clear an important
problem relevant for the description of electrostatic forces in
model systems involving different phases. If the solid walls
are considered as a dielectric continuum, then the difference
of the dielectric constant of the confined fluid (even under
simplifying assumption that it is the same as for the fluid
in the bulk reservoir) and of solid walls must be taken into
account in order to properly work out the ion–ion and ion–
charged wall interactions. In other words one has to consider
not only the presence of “real” ions but also of their elec-
trostatic images, resulting from the difference in dielectric
constants.35–37, 41 The appropriate expressions for the interac-
tion potentials can be derived from classical electrostatics.46

Of, course, this is not necessary in the framework of an al-
ternative approach, which relies on modelling of a system at
entirely molecular level. In other words one should take into
account molecular (or atomistic) model for solid walls42 and
the presence of a molecular solvent (e.g., water), if necessary.
Unfortunately, while such a method of modelling can be im-
plemented in computer simulations, its application in theoret-
ical approaches would be difficult.

Implementation of the expressions for ionic interactions
resulting from continuous electrostatics (involving external
field and pair interaction due to images) in the integral equa-
tion approaches would require the second-order level of the
theory. It is feasible, but prohibitively difficult numerically,

and does not guarantee of accuracy of the results because
of approximations involved, see, e.g., Ref. 47 for the state-
ment of the problem. In the case of DF approaches, account
of electrostatic images has not been attempted so far, because
of methodological problems in constructing the electrostatic
free energy functional.

Validity and accuracy of theoretical approaches can be
evaluated confronting their results with computer simula-
tions data for a solid wall–RPM fluid interface that have
been carried out assuming constancy of the dielectric con-
stant throughout the entire system.48–50 The aim of computer
simulations, as well as of theoretical calculations is twofold.
On one hand, theoretical results can be used to get an in-
sight into molecular mechanism of a given phenomenon and
to attempt interpretation of the experimental data. Instanta-
neously, such a comparison permits to evaluate validity of the
employed modelling. On the other hand, the calculations per-
formed for well established models can predict new phenom-
ena or relationships between measurable quantities. Valida-
tion of a given model is not a simple task. Usually, performing
theoretical calculations one applies the simplest model, pos-
sible or a minimal model. Even the model that neglects some
seemingly essential ingredients of a real system can be useful
in interpreting the existing data from other sources and can
possess predictive power, like it happens with the RPM in the
theory of electrolyte solutions.

The interpretation of the experimental data for DLCs
suggested on the basis of computer simulations performed
in Refs. 37 and 41 is that the difference in the dielectric
constants of the nanopore interior and exterior is the cause
of the experimentally observed anomalous behavior of the
capacitance.31, 32 However, recent DF calculations34 carried
out for the RPM fluid in a slit-like pore using common com-
pressibility route approach10, 51 with the assumption of a con-
stant value of the dielectric constant throughout the entire sys-
tem also led to an oscillatory behavior of the capacitance as a
function of the pore width. The DF calculations suggest thus
that such a behavior is primarily due to the interference of
double layers at two pore walls.34 Similar conclusion concern-
ing the capacitance was also obtained by Henderson,44 who
used the MSA solution for the bulk RPM and an extended
version of the linearized Poisson-Boltzmann approach. Ac-
cording to Henderson, the results of Refs. 34 and 44 do not
imply that the polarization does not occur, it just is not nec-
essary to produce oscillations in the capacitance.44 Also, the
dependence of capacitance versus pore width (for very nar-
row pores) was found to exhibit oscillating shape with two
maxima by using computer simulations of model room tem-
perature ionic liquid between flat walls, both of which were
taken as three graphene layers.42

We should stress, however, that the theoretical results re-
ported in Refs. 34 and 44 differ in several aspects. In partic-
ular, it is difficult to reconcile their predictions with respect
to the behavior of capacitance for very narrow pores, to the
positions of local density peaks and troughs, as well as to the
number of oscillations and their magnitude. One can suspect
that DF results of the double layer capacitance are very sen-
sitive not only to the model details but also to the accuracy
of a theoretical approach, as it happens, for example, with

Downloaded 16 Jan 2013 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234705-3 Pizio, Sokołowski, and Sokołowska J. Chem. Phys. 137, 234705 (2012)

the predictions concerning the existence of the vapor-liquid
phase transition for the RPM under confinement and surface
tension, or with the predictions of the dependence of electric
double layer (EDL) capacitance on temperature.18, 19

Quite recently Wang et al.23, 24 developed a new den-
sity functional approach to study RPM fluids in contact with
charged surfaces. Although their method also belongs to the
class of compressibility route approaches, but it uses spe-
cial weighting procedure to evaluate the change of the di-
rect correlation function of the system relative to that of
a reference state. This weighting procedure can be particu-
larly important in the case of strongly confined systems. A
comparison with computer simulations showed that at tem-
peratures higher than the bulk gas-liquid critical tempera-
ture, the theory is essentially more accurate in predicting
the structure of the RPM fluid near a highly charged sur-
face than previous compressibility route approaches. In par-
ticular, the approach is able to capture several fine structural
features like layering of ion density and the charge inversion
phenomena.

In this work our principal objective is to study adsorp-
tion of the RPM in slit-like pores of different width and to
determine the dependence of the double layer capacitance on
the pore width by using the developments of Wang et al.23, 24

Contrary to previous works,34, 44, 52 we investigate the differ-
ential double layer capacitance that is a directly measurable
quantity,53, 54 rather than the (integral) capacitance. We also
pay attention to the questions that have been omitted in the
previous studies, namely how the relationship of the differen-
tial double layer capacitance on the pore width is dependent
on the value of the electrostatic potential at the wall and on
the bulk fluid density. We believe, and it was already demon-
strated in the case of ions in contact with a single wall,23

that the DF approach used in the present work is one of the
most accurate methods in describing the EDL at tempera-
tures well above the critical temperature of the RPM under
confinement.

II. THE MODEL AND THEORY

We consider adsorption of the restricted primitive model
for electrolyte solutions in slit-like pores. The fluid consists
of cations and anions of the valence Z1 and Z2, both species
are modelled as charged hard spheres of equal diameter, σ .
The solvent is not considered explicitly, it is a continuum of a
given (relative) dielectric permittivity ε. The interactions be-
tween ions are given by

uαγ (r) =
⎧⎨
⎩

∞, r < σ

e2ZαZγ

4πεε0

1
r
, r > σ

, (1)

where α, γ = 1, 2 and ε0 is the vacuum permittivity. We as-
sume that the dielectric permittivity ε is constant throughout
the entire system.

The fluid is confined to a slit-like pore of the width H.
The interaction of ions of species α along normal to the
pore walls at z = 0 and at z = H wall is described by the

potential

v(α)(z) = Vhw(z) + V
(α)
el (z), (2)

where Vhw(z), is the hard wall potential

Vhw(z) =
{

∞, for z < σ/2 or z > H − σ/2

0, otherwise
, (3)

and V
(α)
el (z) = V

(α)
el,1(z) + V

(α)
el,1(H − z) with

βV
(α)
el,1(z′) = −2πlB(Q̃/2)Zαz′. (4)

In the above β = 1/kT, Q̃ = Q/e, Q is the surface charge
density on both pore walls (we assume that the surface charge
density of each wall is the same) and lB = e2/(4πεε0kT) is
the Bjerrum length. It is convenient to introduce the reduced
“electrostatic” temperature as T* = σ /lB.

The confined fluid is in equilibrium with a bulk fluid. The
bulk densities and chemical potentials are, respectively, ρb, α

and μα , α = 1, 2. The bulk densities of ionic species satisfy
the electro-neutrality condition Z1ρb, 1 + Z2ρb, 2 = 0. The to-
tal bulk density is ρb = ρb, 1 + ρb, 2.

The system is studied in the grand canonical ensemble.
The equilibrium density profiles are obtained by minimizing
the thermodynamic potential

	 = F +
∑

α=1,2

∫
drρα(z)[v(α)(z) − μα] +

∫
drq(z)
(z).

(5)
In the above F is the free energy functional, ρα(z) is the local
density of species α, and q(z) is the charge density

q(z) = e
∑

α=1,2

Zαρα(z). (6)

The electrostatic potential, 
(z), satisfies the Poisson
equation

∇2
(z) = − 1

εε0
q(z). (7)

The solution of the differential equation (7) is given in
Refs. 2 and 55. It requires the choice of the boundary
condition, i.e., of the value of the electrostatic potential
at the wall, V0 = 
(z = 0) = 
(z = H ). From the electro-
neutrality condition of the system it follows that

Q +
∫

dzq(z) = 0. (8)

We recall that the surface charge density on a single pore wall
is Q/2.

The principal task in DF theory is to derive an expres-
sion for the Helmholtz energy, F, as a functional of the lo-
cal densities. We use here the theory from Refs. 23 and 24,
and, therefore we present here the most essential points of the
approach only. The free energy, F, is divided into an ideal,
hard-sphere and residual electrostatic excess terms F = Fid

+ Fhs + Fel (the direct Coulomb interactions have been al-
ready incorporated into the electrostatic potential). The ideal
term is Fid = ∑

α=1,2

∫
drρα(r)[ln ρα(r) − 1]. The excluded

volume (the hard-sphere) term, Fhs, is calculated according to
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the Fundamental Measure Theory, cf. Ref. 56

Fhs/kT =
∫

dr

{
− n0 ln(1 − n3) + n1n2 − nV 1 · nV 2

1 − n3

+ 1

36π

[
n3 ln(1 − n3) + n2

3

(1 − n3)2

]

× n3
2 − 3n2nV 2 · nV 2

n3
3

}
, (9)

where ni, i = 0, 1, 2, 3 and nVj , j = 1, 2 are, respectively,
scalar and vector total weighted densities. The total weighted
densities are the sums of the weighted densities of individ-
ual species. The equations defining the weighted densities are
given in Ref. 56. Following Wang et al.,23, 24 the residual elec-
trostatic contribution Fel,

Fel/kT = −1

2

∑
α,γ=1,2

∫
drdr′�c̄αγ (r, r′)

× [ρα(r) − ρb,α][ργ (r′) − ρb,γ ], (10)

is determined using analytical expression for the direct corre-
lation functions, cαγ (r, r′), that result from the Mean Spher-
ical Approximation and the so-called “weighted correlation
approach,” WCA-k2, see Refs. 23 and 24. We have

�c̄αγ (r) =
{

0, r > σ

uαγ (r)
[
1 − 2B1( r

σ
) + B2

(
r
σ

)2 ]
, r ≤ σ

,

(11)
where

Bi(z) =
∫

dz′Bi(z′)κ2(z′)
(|z − z′| − σ )∫
dz′κ2(z′)
(|z − z′| − σ )

, (12)

and

B(z) = 1 + κ(z)σ − √
1 + 2κ(z)σ

κ(z)σ
. (13)

In the above 
(z) is the step-function and κ(z) is the “local”
Debye screening parameter,

κ2(z) = βe2

εε0

∑
α=1,2

ρα(z)Z2
α. (14)

At equilibrium the density profiles minimize thermodynamic
potential, 	, i.e.,

δ	

δργ (r)
= 0, γ = 1, 2. (15)

This condition leads to the equation for the density profiles,

ργ (r) = exp[−βμγ − βλ(γ )(z)], (16)

where

λ(γ )(z) = δ[Fhs + Fel]

δργ (z)
+ v(γ )(z) + eZγ 
(z). (17)

The theory reported above was tested against computer
simulation results and a very good agreement was found.23

Therefore, we are convinced that the DF results presented

below should correctly capture all the discussed phenom-
ena and that the theory is also more accurate than previous
ones.

III. RESULTS AND DISCUSSION

The ion diameter, σ , is used as the unit of length, thus
the dimensionless pore width and the distance are H* = H/σ
and z* = z/σ , respectively. The reduced densities are ρ∗

b,α

= ρb,ασ 3. We recall that the reduced temperature is T*
= σ /lB. Moreover, the reduced electrostatic potential and the
reduced charge density at the wall are V ∗ = eV0/kT and Q*
= Qσ 2/e, respectively. Similar units have been used in sev-
eral previous works, see, e.g., Ref. 51. Conversion coefficients
from the reduced dimensionless units to volts and between
other units one can find in Refs. 36, 37, and 51. All our cal-
culations were carried out for an 1:1 electrolyte (|Z(α)| = 1)
and majority of them (unless otherwise stated) at the temper-
ature T* = 0.15. This temperature is nearly twice of the crit-
ical RPM temperature, resulting from the energy-route MSA
equation of state.57

A. Distribution of ions in pores, adsorption
and selectivity

We begin our presentation with the examples of the den-
sity profiles of both ionic species in the pore of the width H*
= 6, the bulk fluid is at ρ∗

b = 0.3. Note that due to symmetry,
only one-half of the profiles is plotted in Fig. 1. The consecu-
tive curves in Figs. 1(a)–1(d) have been obtained for increas-
ing values of V ∗, keeping the bulk density of ions constant.

At low values of V ∗, the counter-ions are mainly ad-
sorbed at the pore walls (Fig. 1(a)), but at higher volt-
ages the development of the second layer of counter-ions
is observed at z ≈ 2.4 (Figs. 1(b) and 1(c)). The co-ions
are expelled from the contact layer with increasing V ∗ and
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z
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*
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V
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V
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V
*
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*
=31.5

V
*
=46.1

V
*
=75.4

FIG. 1. Density profiles of ions in the pore H* = 6 at different values of V ∗.
Solid and dashed lines are for counter-ions, dotted and dashed-dotted lines
are for co-ions.
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predominantly occupy the layer at z* ≈ 1.5 covering the con-
tact layer of counter-ions beneath. This structure results from
the effect of electric field yielding separation of ions, as well
as from the attraction between counter-ions adsorbed on the
pore walls and co-ions.

Up to V ∗ ≈ 30 the height of the maximum of the pro-
file describing co-ions increases with increasing voltage, but
then it starts to decrease (Fig. 1(c)). This serves as a manifes-
tation that the layer of co-ions reaches saturation at a certain
value of V ∗. The amount of co-ions in the layer at satura-
tion depends on fluid density, temperature, pore width, and
V ∗. At high values of V ∗ the co-ion–wall repulsion prevails
over the ion–ion attraction such that the height of the co-ion
maximum decreases. Instantaneously, the counter-ions start
to accumulate in the layer at z* ≈ 1.5. This change of struc-
ture does not mean that counter-ions substitute co-ions at this
distance from the pore wall, rather the co-ions are expelled
from the pore as the result of enhanced separation of two ionic
species with increasing voltage. At even higher value of V ∗,
cf. Fig. 1(d), two dense counter-ion layers are formed on the
pore walls whereas the co-ions tend to attain positions farther
from the walls, over this counter-ion structure. The distribu-
tion of ions in Fig. 1(d) qualitatively resembles the so-called
crowding structure of ionic liquid double layer observed by
Bazant et al.43 from Landau-Ginzburg-type continuum theory
and simulations.

Attained structure of counter-ions and co-ions in the pore
can be quantitatively characterized by adsorption isotherms,
or, equivalently by the average densities of ions and selectivity
isotherms. From the obtained density profiles we calculated
the average densities of ion species in the pore,

Aα = 1

(H − σ )

∫ H−σ/2

σ/2
dzρα(z) (18)

and the selectivity coefficients,

Sα = Aα

A
, (19)

where A is the total average ionic density, A = A1 + A2.
Figure 2(a) shows how the selectivity of adsorption de-

pends on V ∗ for three pores of different width H* = 1.2, 1.6,
and 2.2. Each case is described by two branches, the lower
branch is for co-ions, while the upper branch is for counter-
ions. In the case of very narrow pores the change of the se-
lectivity of adsorption with the applied voltage is very fast.
Indeed, the pore of H* = 1.2 contains almost counter-ions
only already at V ∗ ≈ 6. For H* = 1.6 the voltage needed to
attain the counter-ion selectivity of the order of 0.99 is higher,
V ∗ ≈ 7.5, whereas in the pore of the width H* = 2.2, the
voltage must be as high as 27.5 in order to attain the same
selectivity. In wider pores, the separation of ions in terms of
selectivity is incomplete unless one considers rather high val-
ues of V ∗.

Figure 2(b) illustrates how the total average fluid density
in the pores, A, changes with voltage at different bulk fluid
density. For a narrow pore, H* = 1.2, A grows fast in rather
narrow window of V ∗. Next, the total average density growth
slows down with increasing V ∗ and a complete saturation is
expected to occur at even higher voltage, at V ∗ > 50. Similar
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FIG. 2. (a) The dependence of the selectivity of adsorption of ionic species
on applied voltage in the pores of different H* = 1.2. Upper and lower sets of
curves are for counter- and co-ions, respectively. (b) The dependence of total
average density in the pore A on V ∗ for two pore widths and for two bulk
fluid densities.

behavior is seen for ρ∗
b = 0.05 and 0.3. Moreover, the values

for A close to saturation, are almost independent of the fluid
density in the bulk, indicating that the pore attains its maxi-
mum capacity. The pore at this conditions is filled by counter-
ions only (see Fig. 2(a)) that neutralize the pore walls charge
in accordance with Eq. (8). For a wider pore, H* = 2.2, trends
for saturation are less pronounced, comparing to the previ-
ous case, within the range of V ∗ studied. Undoubtedly, the
saturation will be reached at higher V ∗. Also, the difference
between the values of A for two different bulk fluid densi-
ties becomes smaller upon increasing V ∗, indicating that the
limit of maximum pore capacity is determined mostly by the
pore width rather than by chosen bulk fluid density value. We
will discuss other aspects of saturation of adsorption in nar-
row pores, namely in terms of surface charge density, slightly
below.

B. Charge and capacitance dependence on
electrostatic potential

Knowledge of the density profiles permits to proceed and
to explore relation between the surface charge density and ap-
plied electrostatic potential. In particular, the capacitance (in-
tegral capacitance) is defined as the stored charge between
two surfaces divided by the voltage,

C = Q/V0. (20)

Another relation between the rate of change of the stored (or
surface) charge divided by the rate of change of the voltage,
or the electric surface potential,

Cd =
(

∂Q

∂V0

)
μ,T ,H

, (21)

determines the “differential capacitance.” It is the measurable
property directly accessible from experiments.53, 54 Of course,
if the stored charge is directly proportional to the voltage, i.e.,
the dependence between Q and V0 is linear, then C = Cd. The
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reduced capacitance and the reduced differential capacitance,
C* and C∗

d , respectively, are defined as C∗ = (Q∗/V ∗) and
C∗

d = ∂Q∗/∂V ∗.
For the systems under study the dependence between Q*

and V ∗ is linear only for very small values of V ∗. This point
is illustrated in Fig. 3. Namely, in Fig. 3(a) the dependence
of Q* on the electrostatic potential for the pores of different
width, H* = 1.2, 1.6, and 2.2 is given. On the other hand, the
differential and integral capacitances are shown in panel (b) of
Fig. 3. Both capacitances coincide in the vicinity of V ∗ = 0,
confirming linear dependence of surface charge density on V ∗

only in a very narrow interval.
For the narrowest pore of three cases considered (H*

= 1.2), the surface charge almost saturates attaining a plateau
at high voltage, higher than V ∗ ≈ 30. This is the region where
the average density in the pore saturates as well, cf. Fig. 2(b).
For a slightly wider pore there is no well pronounced plateau,
but for V ∗ > 40 the growth of the surface charge with V ∗

is slow. However, for H* = 2.2 a significant increase of the
charge occurs for all investigated values of V ∗.

The observed behavior can be explained as follows. For
very narrow pores, the local density of counter-ions attains
its maximum value at a certain value of V ∗ and further in-
crease of counter-ion adsorption becomes impossible due to
excluded volume effects. The existence of saturation of ad-
sorption is expected for any pore width H*. Consequently, for
each pore width Q* vs. V ∗ curve should possess a plateau, but
at quite high values of V ∗.

The dependence of the charge on voltage determines the
behavior of capacitance and differential capacitance. Part (b)
of Figure 3 shows the plots of differential double layer capac-
itances, C∗

d , on V ∗ for the systems from the panel (a) of this
figure (Fig. 3(a)). We have also displayed here the integral ca-
pacitances, C*, for the sake of comparison. We see that except
for very low values of V ∗, the differences between C∗

d and C*
are big. This is particularly manifested for the narrowest pore,
H* = 1.2, where for V ∗ > 35 the differential capacitance, C∗

d ,
is close to zero, while the values of C* are even higher that
the values of the differential capacitance for the pore of H*

= 2.2. Similarly as in the case of Q* vs. V ∗ dependence in
Fig. 3(a), the differential capacitances curves cross, but now
the crossings occur at lower values of V ∗. On the other hand,
the crossings of the capacitances C* on V ∗ occur nearly at the
same values of V ∗ as the crossings of Q* vs. V ∗ curves.

The conclusion emerging from Fig. 3 is the following.
While discussing the electric properties of double layers in
porous systems under high voltage conditions and comparing
theoretical predictions with experimental results, one should
not assume that the behavior of C follows the behavior of Cd,
because the differences between these quantities are signifi-
cant. In what follows, we discuss the differential capacitance
only, as it is the quantity directly accessible from experiments.

We would like to summarize this subsection with brief
comments concerning the dependence of surface charge den-
sity on the electrostatic potential obtained by other authors for
other model ionic fluids in narrow pores. Specifically, Kon-
drat et al.37 obtained well defined plateau on the dependence
of Q* on V ∗ in their simulations of the RPM in slit-like metal-
lic nanopores (cf. Fig. 1 of Ref. 37). The model interactions
of that work include contributions coming from electrostatic
images of single and pair type. The observed growth of sur-
face charge on V ∗ was monotonous and almost linear before
well defined threshold voltage. At higher values of V ∗, the
surface charge remained constant, i.e., it did not change with
increasing applied voltage. On the other hand, Wu et al.41 in
the simulations of ionic liquid in slit-shaped subnanometer
pores with polarizable walls, obtained weak trends for satu-
ration of surface charge density with electrode potential (cf.
Fig. 1(b) of that work), much less pronounced comparing to
Ref. 37.

In contrast to these observations, the dependence of
charge density on voltage in narrow pores presented by Jiang
et al. (from their version of DF theory) for the model with-
out electrostatic images’ interactions does not exhibit trends
for saturation, see Fig. 2 of Ref. 34. In view of the results
given in Fig. 3(a), we can make conclusion that the accuracy
of the DF theoretical constructions is crucial for the correct
description of surface charge–electrostatic potential relation.
It is worth mentioning that in spite of apparent difference in
shape, the sequence of our Q* vs. V ∗ curves for different pore
width is similar to the results of Kondrat et al.37 Evidently, the
model in question and that of Ref. 37 are different. However,
it seems that the way in which the adsorption of ions grows
under the influence of increasing potential and the maximum
capacity of a given pore determine overall shape of these
dependencies.

C. Dependence of differential capacitance
on pore width

As a preliminary to the discussion of the dependence of
capacitance on pore width, we would like to describe briefly
the available very recent results of other authors obtained by
using theoretical methods for the models without electrostatic
images. It was demonstrated that simple compressibility route
DF approach10, 51 leads to the integral capacitance C of the
RPM fluid as an oscillating function of H.34 The observed be-
havior was attributed to the interference of the overlapping

Downloaded 16 Jan 2013 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234705-7 Pizio, Sokołowski, and Sokołowska J. Chem. Phys. 137, 234705 (2012)

electric double layers formed at opposing walls. According
to given explanation, the maxima in capacitance appear when
superposition of electric double layers from two walls is the
most constructive, i.e., peaks coincide with peaks. This type
of explanation of the behavior of C* on H* has also been used
and shown to be successful in the interpretation of the simu-
lation results for the model with explicit atomic structure of
pore walls.42 One drawback of the data presented in Ref. 34
is that the existence of the first peak for narrow pores is just
a supposition, it is impossible to attribute certain values of
capacitance for pores close to unity.

The oscillatory behavior of the capacitance C* was
also observed from a “modified” (the modification takes
into account non-zero diameter of ions) linearized Poisson-
Boltzmann approach.44 For narrow pores the capacitance falls
down to zero. Comparing the results of Refs. 34 and 44 one
can realize striking differences, namely the C* vs. H* curves
are shifted in phase and the period of oscillation is different.
In the approach of Ref. 44 the values of capacitance do not
depend on the applied electrostatic potential because of as-
sumed linearization, whereas the curves in Figs. 3 and 4 of
Ref. 34 correspond to a high value of electrostatic potential,
V = 1.5 Volts. This can be one of the reasons of the discrep-
ancy discussed above. Nevertheless, it seems that the differ-
ence between two above sets of results can be attributed to
different accuracy of each theory. The Poisson-Boltzmann ap-
proach, modified by Henderson44 is, of course, less accurate
in describing the structure of EDL than DF approaches, but
also the DF approach of Refs. 10, 34, and 51 is less accu-
rate (in comparison with simulation results for the models that
do not involve electrostatic images) than the theory of Wang
et al.,23, 24 applied in the present study.

In Figure 4 we show the dependencies of the differential
capacitance, C∗

d , on the pore width H* for different values of
the reduced electrostatic potential at the pore walls, V ∗. The
bulk density is constant and rather high, ρ∗

b = 0.4, in this se-
ries of calculations. We observe that the way of C∗

d changes
with H* depends on the value of electrostatic potential V ∗.
The most pronounced oscillations occur when the value of the
electrostatic potential is low, V ∗ = 0.5, and close to the poten-
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tial of zero charge, V ∗
PZC = 0 for the RPM model in question.

Two well pronounced maxima are observed on the curve for
pores in the interval between 1 and 5. Actually, we observed
the third, weakly pronounced maximum for the pore slightly
wider than H* = 5.

The maxima are separated by a distance approximately
equal to two diameters of ions. Similar value for character-
istic distance is seen between two troughs. The value of the
first maximum of capacitance located at z* = 1.28, approxi-
mately is 1.6 times the value at the first trough. In contrast to
this regular pattern, at a higher value of V ∗ (V ∗ = 5) we ob-
serve one maximum for very narrow, quasi-two-dimensional
pore (H* ≈ 1.08). The second and third maximum are seen at
H* ≈ 1.6 and 3.3, respectively. Still, the capacitance tends to
a minimum for H* → 1. For higher values of V ∗ the repeated
oscillations disappear. The capacitance C∗

d tends to zero for
very narrow pores. Solely one maximum preserves for pores
with H* > 2, its height with respect to the asymptotic value
for large values of H* decreases, when the applied electro-
static potential increases. Its worth to remind that our results
refer to the differential capacitance C∗

d (Eq. (21)), not to the
“integral” capacitance C*, Eq. (20), as in previous works.34, 44

We return to the discussion of the behavior of C∗
d for very

narrow pores slightly below.
The next question is how the differential capacitance de-

pends on the bulk fluid density. This issue is considered in
Fig. 5, where we have compared the C∗

d vs. H* curves eval-
uated at different values of V ∗ and at different bulk densities
ρ∗

b . In each panel the results at a fixed value of V ∗ and for
three values of bulk densities ρ∗

b are displayed. In Fig. 5(a)
(V ∗ = 0.5) regular pattern is seen for three bulk fluids densi-
ties in question. However, the absolute values of capacitance
decrease and the magnitude of oscillations becomes smaller
for smaller bulk fluid density. For example, at ρ∗

b = 0.2 the
second maximum of C∗

d at H* ≈ 3.3 is weakly pronounced.
In Fig. 5(b) (V ∗ = 5) the curves corresponding to two

higher densities, 0.4 and 0.3, exhibit similar pattern with the
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maximum of capacitance for quasi-two-dimensional pores.
The value of capacitance at this maximum is higher at lower
fluid density. In contrast, for wider pores the capacitance is
lower for lower fluid density, in close similarity to the re-
sults given in panel (a) of this figure. Well pronounced oscil-
lations appear again at this voltage. However, the maximum
around H* = 1.5 that is seen at high density, ρ∗

b = 0.4, de-
creases in magnitude for less dense fluid, ρ∗

b = 0.3, and dis-
appears at even lower density, ρ∗

b = 0.2. For large values of
V ∗ the differential capacitance tends to a minimum for very
narrow pores, oscillations diminish and higher capacitance is
obtained for lower bulk fluid densities, see Figs. 5(c) and 5(d).
This is in contrast to what was observed at low voltage, cf.
Fig. 5(a).

The shape of C∗
d vs. H* curves for V ∗ = 5 is slightly

puzzling. In order to clarify the issue in more detail, we per-
formed additional calculations for very narrow pores (in the
interval below H* = 1.4 at ρ∗

b = 0.3) and made a fine scan for
the values of applied surface potential. The results of calcula-
tions are given in Fig. 6. It appears that the first maximum of
the curves C∗

d versus H* exists for V ∗ starting from 0.5 up to
7. Its value substantially decreases with increasing V ∗, while
its position tends to H* close to unity, i.e., for almost two-
dimensional pores. The maximum disappears in the region of
V ∗ between 7 and 10. In summary, our data show that for en-
tire range of values of V ∗ studied, the differential capacitance
tends to a minimum in very narrow pores. Of course, both C*
and C∗

d should vanish for H* = 1 (strictly speaking for H*
lower than 1), because ions cannot enter such narrow pores
and thus the charge on the walls is zero. It does not mean,
however, that limH ∗→1+ C∗

d (H ∗) must vanish.
Now, we would like to make summarizing insight in or-

der to get hints for the explanation of observed trends of the
behavior of C∗

d . For the model under study, the differential ca-
pacitance depends on four parameters: the bulk fluid density
(or equivalently the chemical potentials of ions), temperature,

the surface charge density on the wall and on the pore width.
For wide pores the double layers at the opposite pore walls are
independent and the interference of the overlapping electric
double layers is vanishing. Thus, the capacitance is constant
as a function of H*, for all wide pores with non-overlapping
electric double layers at fixed values of ρ∗

b , T* and V ∗. From
the point of view of microscopic structure in this regime, one
must consider a pore in which the distribution of ions is char-
acterized by the bulk density in its central part and work at V ∗

such that the EDL at each pore wall is narrower comparing to
half width of the pore. At such conditions, the double layer
will be composed of counter-ions and co-ions. When the pore
width decreases, the interference of the double layers occurs
and starts to play significant role. Extension of the EDL can
be regulated by fluid density, temperature, and electrostatic
potential of the wall.

As we have already shown (cf. the discussion of
Figs. 2(a), 2(b), and 3(a)) in the case of narrow pores, the pore
space contains counter-ions as well as co-ions at low voltage.
With increasing voltage the amount of adsorbed co-ions de-
creases, and in the limit of very high voltages the entire pore
is filled with counter-ions only, until maximum capacity of
the pore is attained. Simultaneously, the charge Q* grows and
in the limiting case its saturation is reached. This behavior of
capacitance mirrors those trends and C∗

d tends to zero at very
high voltage. For narrower pores the adsorbed film attains its
maximum density at lower values of V ∗ comparing to slightly
wider pores.

At a low voltage a narrow pore is not completely filled
and the structure of the fluid results from the interference of
the double layers at two pore walls. If V ∗ = 0, the local den-
sities of co- and counter-ions are identical, Q* = 0 and the
structure is determined by excluded volume effects. At non-
zero electrostatic potential V ∗ the ionic species are separated
and the profiles of co- and counter-ions are different. The
structure of EDL in the pore results from an interplay between
volume exclusion and screened electrostatic interactions and
leads to the profiles discussed, for example, in the case of
Fig. 1. The density profiles minimize the thermodynamic po-
tential 	 and satisfy the electroneutrality condition. We be-
lieve that the mechanism of the formation of the maxima and
troughs of C∗

d on H* dependencies is in the constructive or
destructive interference of the EDL from two walls.34, 42 Un-
fortunately, similarly to previous publications,34, 44 the lack of
computer simulation data for the model in question does not
permit us to prove it unequivocally.

D. Temperature dependence of differential
capacitance

Finally, we would like to study the temperature depen-
dence of the double layer capacitance for the model in ques-
tion. Computer simulations of a RPM fluid near a charged
hard wall carried out by Boda and co-workers48–50 for a wide
temperature interval and from low to intermediate densities
showed that the temperature dependence of the capacitance
is characterized by a peculiar shape. Namely, the capacitance
has a negative slope at high temperatures and a positive slope
at low temperatures, i.e., the capacitance versus temperature
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FIG. 7. (a) The dependence of C∗
T on V ∗

0 at three different bulk fluid den-
sities and at T* = 0.1. (b) and (c) The dependence of C∗

T on V ∗
0 at dif-

ferent temperatures given in the figure. (b) ρ∗
b = 0.30 and (c) ρ∗

b = 0.079.
(d) Temperature dependence of C∗

T for V ∗
0 = 0.1 (black lines), V ∗

0 = 0.3 (red
lines), and V ∗

0 = 0.5 (green lines). The results are for ρ∗
b = 0.30 (solid lines)

and for ρ∗
b = 0.079 (dashed lines). All the calculations were performed for

H* = 12.

curve exhibits a maximum at a certain temperature. On the
other hand, an increase of capacitance values with temper-
ature, for ionic liquids in certain temperature interval, has
been documented experimentally.58 Common density func-
tional compressibility route approaches,10–15, 51 have failed to
reproduce simulation data. However, the use of the energy
route DF theory16–19 was quite successful in explaining the
temperature dependence of the capacitance of the electrical
double layer. The principal issue in this respect is to have the-
oretical tools that describe ionic distribution in the vicinity of
the charged surface adequately or in other words capture cor-
relations between ions in the presence of the external electric
field accurately.

Thus it is important to explore whether the theory em-
ployed in this work23, 24 is capable in reproducing the exis-
tence of a maximum on the double layer capacity vs. tem-
perature curve. In order to make a comparison of the present
results with those obtained previously18, 19, 48–50 we introduce
the reduced capacitance C∗

T , defined as C∗
T = (1/2T ∗)C∗

d and
plot it against V ∗

0 , V ∗
0 = V ∗(T ∗/4π ). The reason for that is the

following. The definition of the reduced dimensionless poten-
tial, V ∗, already contains the temperature and to obtain a plot
of the temperature dependence of the capacitance in the scale
used in Refs. 18 and 19, we have to account for that.

In Figure 7, we show how C∗
T changes with the voltage

at a fixed temperature but for different bulk fluid density (part
(a)), as well at a fixed bulk fluid density, but at different tem-
peratures (parts (b) and (c)). In order to compare the results
with previous ones18, 19, 48–50 at a qualitative level, our cal-
culations have been carried out for a rather wide pore, H*
= 12. Nevertheless, one should remember that Refs. 18 and
19 present integral (not differential) capacities and that those
calculations were carried out at a constant surface charge.

Part (b) of Fig. 7 is for high bulk density, ρ∗
b = 0.3,

while part (c) is for much lower bulk density, ρ∗
b = 0.079.

The latter value is the same as one of the densities studied in
Refs. 18 and 19. Finally, Fig. 7(d) displays the temper-
ature dependence of C∗

T at ρ∗
b = 0.3 and ρ∗

b = 0.079. It
can be seen that unlike the “classical” compressibility route
approaches,10–15 the theory used in this study predicts the ex-
istence of a maximum of capacitance vs. temperature curve.
At a fixed T* the dependence of C∗

T on V ∗
0 is camel-shaped,

providing that the bulk density is not too high (Fig. 7(a)). At
high density this dependence is bell-shaped. These trends are
in agreement with the results of Ref. 51 Similarly, for a con-
stant bulk density (Figs. 7(b) and 7(c)) the dependence of C∗

T

on V ∗
0 is camel-shaped at all temperatures studied, providing

that the bulk density is not too high. The curves C∗
T vs. tem-

perature possess maxima at low and higher bulk density. The
maximum of the differential capacitance is more pronounced
at lower voltages. Note that at higher temperatures (T* > 1)
the sequence of the curves evaluated for different values of V ∗

0
at low and higher bulk densities is reversed. For ρ∗

b = 0.3 the
highest capacitance C∗

T is at V ∗
0 = 0.5, while for ρ∗

b = 0.079 –
at V ∗

0 = 0.1. The data given in Fig. 7 are in qualitative agree-
ment with the results of Refs. 18, 19, and 48–50.

IV. SUMMARY AND CONCLUDING REMARKS

In this study we investigated the microscopic structure,
adsorption, and electric properties of the restricted primi-
tive model for an ionic fluid confined to slit-like pores with
charged walls. Similarly to previous works in the framework
of density functional theory, it has been assumed that the di-
electric susceptibility is constant throughout the system, or,
in other words, the effects of electrostatic images are not in-
cluded into the model for potential energy. Our principal find-
ings concern the dependence of the surface charge density,
Q*, on applied electrostatic potential, V ∗. The surface charge
density follows from the density profiles of ions in such inho-
mogeneous systems. The profiles minimize the grand thermo-
dynamic potential and satisfy the electroneutrality condition.
It was found that the surface charge density saturates with in-
creasing electrostatic potential for different pore width. This
saturation is related to adsorption of ions in the pores. With
increasing voltage the adsorption of ions in a pore reaches
its maximum capacity, such that for high voltages the charge
density becomes independent on V ∗. The charge as a func-
tion of V ∗ yields the differential capacitance. All the results
presented suggest that the observed changes of the differen-
tial capacitance result from a quite complex interplay between
different factors (e.g., the pore width, bulk fluid density, volt-
age on the walls and temperature).

We have shown that the number of oscillations of the dif-
ferential capacitance on pore width and their magnitude de-
crease at high values of the electrostatic potential. Moreover,
for very narrow pores the differential capacitance tends to a
minimum value, in close similarity to Ref. 44 In our opinion,
the oscillatory dependence of the capacitance as a function of
the pore width can be explained in terms of the interference of
electric double layers formed at each pore walls. This mech-
anism has been documented in very detail in Refs. 34 and 42
to interpret theoretical34 and computer simulation data.42
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Reliability of the results obtained from a given theo-
retical approach crucially depends on its accuracy. Among
all existing “compressibility route” density functional theo-
ries, the approach proposed by Wang et al.23, 24 seems to be
the most accurate at temperatures higher than the bulk crit-
ical temperature of an RPM fluid. This approach not only
satisfactory reproduces the simulation results for local den-
sities of a fluid in contact with a single wall23, 24 but also leads
to qualitatively correct description of the temperature depen-
dence of the double layer capacitance.48–50 Therefore, in our
opinion, it should also lead to much more accurate predictions
of the electric capacitance in narrow pores. On the other hand,
there is room for improvement of modelling of this study to
put it closer to the models involving dielectric discontinuity
at the solid–fluid boundary, e.g., Refs. 36, 37 as well as the
procedure. Some of these issues will be considered in a future
work in our laboratory.
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