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Abstract
Alloys-by-design is a term used to describe new alloy development techniques
based on numerical simulation. These approaches are extensively used for
nickel-base superalloys to increase the chance of success in alloy develop-
ment. During alloy production of numerically optimized compositions, una-
voidable scattering of the element concentrations occurs. In the present paper,
we investigate the effect of this scatter on the alloy properties. In particular, we
describe routes to identify alloy compositions by numerical simulations that
are more robust than other compositions. In our previously developed alloy
development program package MultOpt, we introduced a sensitivity parameter
that represents the influence of alloying variations on the final alloy properties
in the post-optimization process, because the established sensitivity calcula-
tions require high computational effort. In this work, we derive a regression-
based model for calculating the sensitivity that only requires one-time
calculation of the regression coefficients. The model can be applied to any
function with nearly linear behavior within the uncertainty range. The model is
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then successfully applied to the computational alloys-by-design work flow to
facilitate alloy selection using the sensitivity of a composition owing to the
inaccuracies in the manufacturing process as an additional minimization goal.

Keywords: sensitivity, CALPHAD, regression analysis, alloys-by-design,
superalloys

(Some figures may appear in colour only in the online journal)

1. Introduction

The conventional trial-and-error-based property testing method to develop new alloys
demands large experimental effort. Especially for modern high performance alloys containing
more than eight alloying elements, this approach is relatively expensive because of the high
number of different alloy compositions [1]. The numerical alloy-by-design approach [2, 3],
which is supported by the calculation of phase diagrams (CALPHAD) method [4], is the state
of the art to predict new highly complex alloys.

We have successfully applied alloy-by-design methods and predicted the highly pro-
mising Ni-base superalloys ERBO/13 [5, 6] and ERBO/15 [7, 8]. Other researchers have
also shown the capability of these design tools for various alloy classes [9–13].

During the manufacturing process of nickel-base superalloy components, various pro-
cesses can lead to scattering of the element concentrations. In the course of the heat pro-
duction of an alloy by vacuum inductive melting such a scattering occurs due to measurement
inaccuracies of the scales, low purity of the master alloys, chemical reactions with the crucible
or contaminated atmosphere [14]. In the state of the art process for casting of nickel-based
superalloys called high rate solidification (HRS), the molten alloy is poured into a preheated
mould under high vacuum and slowly withdrawn from the heating zone into the cooling zone
[15]. Due to the liquid phase dwell time of several hours, volatile elements such as Al and Cr
can evaporate [16]. The recently developed FCBC process is performed under a low pressure
atmosphere and at higher withdrawal rates, preventing evaporation of these elements [17], but
industrial application is still pending. Figure 1(a) shows an exemplary distribution of the
element concentrations5 along the withdrawal direction in a single crystal HRS casting
process. In addition, the root mean squared error (RMSE) of the achieved element con-
centration from the target concentrations and the standard deviation of six independentantly
produced castings of one experimental alloy with separately produced heats are shown.
Besides a scattering of the Mo concentration and a systematic deviation of the Ti content, the
decrease of the Al and Cr concentrations along the solidification path is visible. That means,
that both the dispersion of the concentrations in the component (RMSE) and the reproduci-
bility (standard deviation) of various heats and castingsD


c must be considered regarding the

sensitivity of the alloy properties.
The concept of sensitivity is shown schematically in figure 1(b). The slope of a plot of a

property model function f against the element concentration indicates how strong a change in
the concentration affects the spread of the respective property. Thus, a low sensitivity alloy
exists in a concentration range where the slope is small. Therefore, it will only exhibit small
variations in its properties for a given variation of the concentrations of the alloying elements.

5 Measured by the optical emission spectrometry on Ametek Spectromaxx (SPECTRO Analytical Instruments
GmbH, Kleve, Germany).
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In this case, the alloy

cL is the preferred alloy compared to the alloy


cH, although both have the

same property value =
 ( ) ( )f c f cL H .

The sensitivity of the alloy properties is rarely been taken into account [18] during complex
optimization processes because of the lack of fast models for the property robustness, which is
defined as the inverse of the sensitivity. The general concept of multi-objective robust optim-
ization was initially developed by Deb et al [19] from single-objective robust optimization
[20, 21], and it is has been summarized in detail by Beyer et al [22]. Rettig et al [5] applied
sensitivity analysis of the alloy properties in a post-optimization process using the alloy
development program package MultOpt. An improvement of MultOpt called MultOpt++ has
been briefly summarized by Markl et al [23].

In the current work, a new regression-based model for online sensitivity evaluation was
derived. This will allow robust optimization of the alloy properties by including the property
sensitivity as an additional minimization goal.

2. Methods

2.1. Alloy property prediction

Consider a multicomponent alloy consisting of n alloying elements. The chemical compo-
sition of this alloy can be represented as a n-dimensional vector: = ¼

 ( )( ) ( )c c c, , n1 , where c( i)

(i=1, K, n) is the concentration of ith alloying element. The typical design space for alloy
development is given by a 2×n matrix containing the concentration range defined for
a certain optimization problem  =

 [ ]c c,op min max , where = ¼
 ( )( ) ( )c c c, , n

min min
1

min and
= ¼

 ( )( ) ( )c c c, , n
max max

1
max are n-dimensional vectors containing the minimum and maximum

concentration values of the ith alloying elements, respectively. In some cases, the considered
design space is extended by the temperature range r, which is usually defined as
 = [ ]T T,r min max , where Tmin and Tmax are the minimum and maximum temperatures relevant
for alloy development.

Figure 1. (a) Element concentration of an experimental nickel-base superalloy along a
single crystal casting produced by the HRS process with the RMSE of the target
composition. The standard deviation represents the reproducibility of target
concentrations measured at six castings. These variations lead to the concentration
deviation D


c from the nominal composition


c . (b) Schematic showing that a steeper

function slope causes higher sensitivity SH than SL for two different compositions

cL

and

cH with the same function value =

 ( ) ( )f c f cL H and the same inaccuracyD

c . The

examples for property models can be found in table 3.
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Transformation from the design space  = ´D op op to the objective space = ´


O c T
requires the availability of property models:

 Î Î ( ) ⟼ ( )c T f c T, , .op op

Here, the property model is a functional description of the alloy properties, which can be
obtained during a model development process. This model can be constructed based on
known physical relationships or using statistical regression analysis with experimental data or
empirical rules.

In this study, the applied models are based on CALPHAD calculations, combining both
of the previously mentioned approaches. CALPHAD calculations are a very powerful tool for
alloy development and allow prediction of several properties, even for complex compositions
with more than eight alloying elements, such as Ni-base superalloys. The common thermo-
dynamic calculations performed by the CALPHAD method during the optimization routine in
this work are the calculation of transformation temperatures such as liquidus, solvus and
solidus temperature and the amount of phases and their compositions. The databases used for
such calculations are being continuously improved and show good agreement with exper-
imental data [24–26] and less agreement for the prediction of topologically close packed
(TCP) phases [27, 28].

2.2. Sensitivity

In general, the sensitivity D
 ( )S c c T, ,fk , where k is the property index, describes the variation

of the objective function
( )f c T,k with the variation or uncertainty of one Δc( i) or all D


c

design variables with n elements. The widely used approaches for local sensitivity calcul-
ation, such as

D = D
¶
¶

D
¶
¶

 





( )
( ) ( )

( )( )
( )

( )
( )S c c T c

f c T

c
c

f c T

c
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1f

k n k
n

1
1k

as well as the standardized equation with distribution width s ( )c i of the ith element within the
range Δc( i) and the corresponding property distribution of s ( )( )f c T,k
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are summarized in [29]. Equation (2) is recommended for sensitivity analysis, but it does not
take into account the interactions between the design variables c( i) (i=1,K, n) and it is only
valid for nearly linear functions [30]. To include these effects in sensitivity calculations, we
focus on a variation-based method (3):

s
D =

D

-
º 

 
( )

( )
( ¯̄ ) ( ¯̄ )

( )S c c T
c c T

f c f c
S, ,

, ,
, 3f

f

k k

fmax
par

min
par

k

k

k

where s D
 ( )c c T, ,fk is the total distribution width (standard deviation) of the objective

function fk owing to the uncertainty in the input variables within the range  D
 
c c , in which

c is the mean value (nominal composition) andD

c is double of the standard deviation of the

concentration distribution, respectively. For simplification, we do not divide D
 ( )S c c T, ,fk

into the single effect of each variable on the objective function fk. The comparability of the
sensitivities for different functions

( )f c T,k is ensured by the normalization value
-( ¯̄ ) ( ¯̄ )f c f ck k

max
par

min
par , which is ideally set during the optimization process as the objective

function range from the set of the optimal Pareto-compositions ¯̄cpar.
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The sensitivity of a multi-objective optimization problem (MOOP) has to combine the
sensitivities of each objective function in a similar way to that proposed by Wang et al [31]:

å å
s

D = =
D

-= =

 
 ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

( )
( ¯̄ ) ( ¯̄ )

( )S c c T S
c c T

f c f c
, ,

, ,
. 4

k

n

f
k

n
f

k k

op
1

2

1
max

par
min

par

2

k

k
goal goal

2.3. Regression analysis of the property distribution

Equation (4) is based on the property distribution s D
 ( )c c T, ,fk , whose calculation during the

optimization process is time consuming because of the large number of design variables. By
ignoring the interactions between n variables, the required number of function calls can be
reduced from 2n in the simplest case of permutating all boundary values  D

 
c c0 to only 2n.

This causes difficulties in locating good solutions for complex optimization problems, such as
single-crystal Ni-base superalloy development. Depending on the number of optimization
goals and input variables, each objective function has to be called for a typicall alloys-by-
design routine in our approach up to 104−109 times. A simple optimization including
interactions will then take 104×28×5 ms≈4 h using surrogate models [5]. The use of
direct Thermo-Calc6 (TC) calculations significantly increases the optimization time (in our
alloy-by-design tool by a factor > 50).

In our approach, we first calculate the spatial distribution of s D
 ( )c c T, ,fk within rea-

sonable concentration and uncertainty ranges, as summarized in table 1. Additionally, some
implicit and explicit constraints for development of single-crystal nickel-based superalloys for
turbine blade production are defined to prevent calculation of impractical solutions. Extensive
regression analysis of approximately 50 000 calculated points is then performed to obtain the
free parameters of the model and select the most appropriate regression model from a set of
considered models for each alloy property distribution. The number of required calculations is
comparable with the number of function calls for one complex alloy development problem
(∼107 calls), but they only have to be performed once and can be more easily parallelized
because no communication between processes is required.

During statistical analysis, three different linear regression models (5)–(7) with and
without stepwise variable selection [32] are applied and compared with each other to identify
the most appropriate model (MAM) for prediction of the sensitivity of each alloy property:

ås = +

  
( ) ( )( ) ( ) ( )x a x a , 5f

i

i iFL SL

pure elements

0
k

ås s= +
>

 

  
( ) ( ) ( )( ) ( ) ( )x x a x x , 6f f

i j i j

i j i jFLI SLI FL SL

, ,

,

interactions

k k

ås s= + 

  
( ) ( ) ( ) ( )( ) ( )x x a x , 7f f

i

i iFLIQ SLIQ FLI SLI 2

quadratic terms

k k

where = D
  ( )x c c T, , T is the vector of the merged input parameters and a( i) (i=1, K, p)

are unknown parameters to be defined from the precalculated data points. In the first place, the
differences between these models lie in their complexity. The goal is to find a simple model,

6 Thermo-Calc Software AB, Solna, Sweden.
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which allows to describe the true function with as few coefficients as possible. Here, L, I, and
Q correspond to the linear, interaction, and quadratic terms involved in the model
construction, and S and F in the superscript denote regression models with and without
stepwise selection of variables. For example, SLIQ describes a model with linear, interaction,
and quadratic terms calculated by stepwise regression analysis.

By substituting the property distribution s
( )xfk into equations (3) and (4) with the

regression-based s
( )xf

reg
k

(one of the previously determined (5)–(7)), we define fast models for
prediction of the sensitivity of a single function as S f

p
k
and of all optimized goals as Sop

p ,
respectively.

The value s D
 ( )c c T, ,f

reg
k

can be also used to predict the property variation within a
certain specification limit D


cs by replacing the uncertainty D


c with D


cs.

2.4. Optimization

The computer-based development process for indentifying good alloy candidates is usually
applied in the objective space (properties), where the algorithm attempts to achieve the best
property value available in the whole design space (concentrations). Simultaneous optim-
ization of several goals has to be able to handle so-called MOOPs, which also contain a
certain number of constraints. The result of such a calculation is a Pareto-front describing the
best possible combinations of non-dominated function values for a given optimization pro-
blem. The effectivity of evolutionary algorithms (EAs) for solving MOOPs has already been
shown by many researchers in a wide range of approaches [21, 33–37].

The model for prediction of the sensitivity derived by regression analysis was applied to
the optimization problem described in [5], which was slightly modified and extended by

Table 1.Design variable range = ´ D = D ´
    [ ] [ ] [ ]c c c c T T, 0, ,reg min max min max min max

and implicit and explicit constraints for development of single-crystal nickel-based blade
superalloys for regression analysis. ISSS, ρ, g¢, dg g¢, Wht, p, g¢T , Tsol, and Tliq are the solid
solution strengthening index, density, misfit between the γ and g¢ phases, g¢ fraction, heat
treatment window, cost, g¢ solvus, and solidus and liquidus temperatures, respectively.

Design variables range: reg

Al Co Cr Mo Re Ta Ti W Ru T[°C]
 [ ]c wt%min 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 900 [ ]c wt%max 7.0 20 15 12 10 15 7.0 15 10 1100
D
 [ ]c wt%max 0.3 0.4 0.3 0.4 0.5 0.5 0.3 0.5 0.4 —

Functions constraints Concentrations constraints

fk fk
min fk

max c0 [ ]c at%0
max

r -[ ]kg m 3 7500 9200 å ¹
( )ci

n i
Co 50

g¢[ ]mol% 30 75 å =
( )ci

n i
Ta,Ti 2·c(Al)

Tliq [°C] 1250 1500 å =
( )ci

n i
Al,Ta,Ti 25

dg g¢[ ]% −1.0 0.5

[ ]p € kg — 700
ISSS [at%] — 50

[ ]◦T Csol 1200 1500

g¢[ ]◦T C 1000 1400
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additional constraints (see table 2). It should be noted that the fast sensitivity calculation for
the formation of third phases D

 ( )S c c T, ,3rd
p is not performed in the current work and has to

be applied in post-optimization for the whole Pareto-front or selected alloys only with direct
and therefore extensive sensitivity calculations D

 ( )S c c T, ,3rd as given by equations (1) or
(2), if required.

2.5. Implementation details

Regression analysis with stepwise variable selection and testing of the null hypothesis H0 (an
extended review of the method is given by Nickerson [38]) were performed with the built-in
functions of MATLAB7 software (version 2016a 64-bit), such as stepwise [32], swtest [39],
lillietest [40, 41], adtest [42], and jbtest [43]. The in-house-developed alloy-by-design tool
MultOpt++ (for details the readers are referred to [5] and [23]) was used for the CALPHAD
calculations with the programming library TC-API version 2017b (64-bit) based on Thermo-
Calc version 2017b8. All of the Thermo-Calc calculations were performed with the TTNi89

database and deactivated global minimization. The optimization kernel of MultOpt++ is the
Geneva Ivrea–Via Arduino 1.6.110 optimization library [44] and it was modified to enable
storage of a whole Pareto-front during the optimization process. For multi-criteria optim-
ization, the EA was applied.

3. Results and discussion

3.1. Model selection

One of the main aims of statistical analysis was to identify the MAM of each alloy property to
be used in MOOP. Usually, physical-based models are preferred to any formal mathematical

Table 2.Definition of the optimization problem for the current work. ISSS, ρ, g¢, dg g¢,Wht,
p, g¢T , Tsol, and Tliq are the solid solution strengthening index, density, misfit between the γ
and g¢ phases, g¢ fraction, heat treatment window, cost, g¢ solvus, and solidus and
liquidus temperatures, respectively.


cr represents the whole optimization range.

Optimization goals r
-

= 




⎡
⎣⎢

⎤
⎦⎥

( )
( )

I c T
c T

Minimize
,

,c T

SSS r

r, 1100 Cr

Constraints

Design variables: op Objective functions

 [ ] [ ]( )c3.0 wt% 7.0 wt%r
Al  g¢

[ ] ( ) [ ]c T45 mol% , 55 mol%r

 [ ] [ ]( )c0.2 wt% 5.0 wt%r
Ti  d- -g g¢

[ ] ( ) [ ]c T0.6 % , 0.4 %r

 [ ] [ ]( )c5.0 wt% 15 wt%r
Cr ( ) [ ]◦W c T, 70 Cht r

 [ ] [ ]( )c0.2 wt% 15 wt%r
Co g¢

( ) [ ]◦T c T, 1240 Cr

 [ ] [ ]( )c0.2 wt% 10 wt%r
Mo ( ) [ ]◦T c T, 1330 Crsol

 [ ] [ ]( )c0.2 wt% 10 wt%r
Ta ( ) [ ]◦T c T, 1355 Crliq

 [ ] [ ]( )c0.2 wt% 12 wt%r
W ( ) [ ]p c 230 € kgr

 [ ] [ ]( )c0.2 wt% 5.0 wt%r
Re r -( ) [ ]c T, 8300 kg mr

3

7 MathWorks GmbH, Ismaning, Germany.
8 Thermo-Calc Software AB, Solna, Sweden.
9 Thermotech, Surrey, UK.
10 Gemfony Scientific UG, Eggenstein-Leopoldshafen, Germany.
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description, such as linear regression, and, ideally, the investigator who collects or generates
the data should select such a model. However, if it is not possible to determine which model is
the MAM based on expert knowledge, some quantitative statistical goodness-of-fit measure
can be applied to compare competing models, such as the Akaike information criterion (AIC)
(for detailed information refer to [32]), RMSE, or the coefficient of determination (R2).
Compared with the well-known RMSE and R2 measures, application of the AIC for model
comparison has the advantage that the number of model parameters is taken into account as a
penalty term and it can thus avoid the so-called over-fitting problem. Taking into account all
of the considered criteria, the MAM is the model with the smallest values of the AIC and
RMSE statistics and the highest R2 value. Thus, for all of the property distributions described
with regression-based models using stepwise variable selection, we prefer the model that can
achieve at least the same quality of prediction according to the best values of the considered
statistical goodness-of-fit measures with full models but reduces the number of regression
coefficients. Therefore, the s

( )xf
SLIQ

k
model from equation (7) was selected for further sen-

sitivity predictions. Because of the large number of coefficients of the s
( )xf

SLIQ
k

model (up to

210), we focus in discussion on the s
( )xf

FL
k

or s
( )xf

SL
k

linear model.

3.2. Distribution calculation

The assumption of a normal distribution of objective function values s sD º
 ( )c c T, ,f fk k

owing to variation of the design variables is satisfied for more than 90% (see table 3) of the
CALPHAD-based functions used in the current work by the null hypothesis H0

rej test. This
means that the function values of the remaining compositions have either a nonlinear trend
close to the selected points within theD


c range or the distribution of randomly selected alloys

is already a non-Gaussian distribution, for example, because of cutting off negative con-
centration values owing to limitation by the lower boundary.

For simulation of the uncertainty of a manufacturing process, the content of each element (i)
is assumed to be normal distributed  m s( ), with a mean value μ( i) equal to the nominal alloy
composition c( i). Here, the standard deviation σ( i) is defined as half of the respective process
inaccuracyΔc( i), resulting in 95.45% of all of the alloys lying within the  D

 
c c concentration

range. The corresponding property inaccuracy s sD = D
   ( )( )( )c c T c c T, , , ,f f

1

2k k
is then

calculated with 1000 randomly selected derivatives

crnd from a composition distribution defined

by

 m s
p

= = D =
D

-
-

D
   


 

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟ ( )c c

c

c c

c
,

1

2

1

2
exp

1

2
. 8

1
2

rnd
1
2

2

In this case, the relative error in comparison with the distribution width calculated with
25 000 points is ≈2%. The inaccuracy defined in equation (8) can be adapted to a particular
manufacturing process. So, e.g. a uniform distribution of elements can also be assumed within
the inaccuracy range or the specification limits. Since such values of a process are usually
known in weight percent, the concentration units in our model are also in weight percent. The
variations in molar fraction can be recalculated by the CALPHAD method, if required. The
property distribution calculation was performed with the TTNi811 database, which can differ for
other databases but can still be used as a guidance value.

11 Thermotech, Surrey, UK.
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3.3. Regression coefficients

In general, for a given linear function

å a=
=

( ) ( )( )f x x , 9
i

N

i
i

0

where the regression coefficients αi indicate the influence of a single design variable on the
function variation. For further details, see [45]. The correctness of a linear model is correlated
with the determination value R2 and should ideally be close to 1 [29]. The mean R2 value for
all of the SLIQ property models calculated in the current work is 0.958±0.013, while for FL
it is 0.851±0.051 (table 4). Nevertheless, as previously mentioned, the smaller number of
coefficients in the FL model simplifies interpretation of the effect of each element and their
uncertainty with respect to the whole property distribution s D

 ( )c c T, ,fk . For better
comparison of each predictor and thus its influence on the models in weight and atomic
fractions, we used the standardized regression coefficients. Each input parameter x( i), as
defined in equations (5)–(7), was standardized by the mean parameter value ⟨ ⟩( )x i and the
corresponding mean values of the standard deviations within the whole design variables range
defined in table 1 in weight s( )i

wt and atomic s( )i
at fractions:

s s
=

-

+

· ( ⟨ ⟩)
( )( )

( ) ( )

( ) ( )x
x x2

. 10j
i j

i i

i i
at wt

The coefficients for each function were normalized by the absolute coefficient value.
From a materials science point of view, the alloy designer can directly derive the effect of

each element on the alloy sensitivity and its variation from the coefficient value, as shown for
s D

 ( )c c T, ,f
FL

k
in weight (figure 2(a)) and atomic (figure 2(c)) fractions. According to

Table 3. Rejected fraction of null hypothesis H0
rej tests of the composite normality

(Matlab functions: swtest for the Shapiro–Wilk parametric hypothesis test [39], lillietest
for the Lilliefors test [40, 41], adtest for the Anderson–Darling test [42], and jbtest for
the Jarque–Bera test [43]) at the 0.05 [−] significance level for test alloys within the
range defined in table 1. The mean rejected fraction ⟨ ⟩H0

rej represents the fraction of
nonlinear property variations of the s fk value within the D


c range. The analyzed

property function
( )f c T,k distribution was calculated with 1000 derivatives randomly

selected from the Gaussian distribution  m s= = D
 ( )( )c c,0

2 1
2

2
. ISSS, ρ, g¢, dg g¢, p,

g¢T , Tsol, and Tliq are the solid solution strengthening index, density, misfit between the
γ and g¢ phases, g¢ fraction, cost, g¢ solvus, and solidus and liquidus temperatures,
respectively.

H0
test Swtest Lillietest Adtest Jbtest ⟨ ⟩H0

rej [−]
fk

r D
 ( )c c T, , 0.058 0.040 0.038 0.044 0.045±0.009

g¢ D
 ( )c c T, , 0.091 0.059 0.069 0.066 0.071±0.014

D
 ( )T c c T, ,liq 0.083 0.052 0.067 0.076 0.070±0.013

d Dg g¢
 ( )c c T, , 0.065 0.047 0.060 0.028 0.050±0.016

D
 ( )p c c T, , 0.065 0.049 0.061 0.039 0.053±0.012

D
 ( )I c c T, ,SSS 0.078 0.048 0.055 0.078 0.065±0.016
D

 ( )T c c T, ,sol 0.088 0.061 0.076 0.044 0.067±0.019
Dg¢

 ( )T c c T, , 0.098 0.067 0.096 0.086 0.087±0.014
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figure 2, the influence of each element on the property value
( )f c T,k (figures 2(b) and (d))

and the corresponding distribution s D
 ( )c c T, ,fk (figures 2(a) and (c)) can be easily

determined.
Let us, for example, consider an optimization with the aim of a high amount of solid solution

strengthening elements in the matrix given by the
( )I c T,SSS value. According to figure 2(b), the

most effective elements for increasing the ISSS index are Al and Ti, because they reduce the matrix
phase fraction, and Re, Mo, and W, which act as solid solution strengthening elements. However,
high amounts of these elements increase the sensitivity of thes D

 ( )c c T, ,ISSS value, which can be
seen in figure 2(a) (red squares). A slightly positive effect on the sensitivity can be achieved by
increasing the amount of Cr (see figure 2(a)) (blue squares), which also has a negative effect on
the solidus and liquidus temperatures (figure 2(b), blue squares).

Table 4. Comparison of the regression models. The best values are shown in italics and
the selected model for further calculations is shown in bold. For better comparability of
the RMSE, the standardized function values were used. ISSS, ρ, g¢, dg g¢,Wht, p, g¢T , Tsol,
and Tliq are solid solution strengthening index, density, misfit between the γ and g¢
phases, g¢ fraction, heat treatment window, cost, g¢ solvus, and solidus and liquidus
temperatures, respectively.

fk s f
FL

k
s f

SL
k

s f
FLI

k
s f

SLI
k

s f
FLIQ

k
s f

SLIQ
k

ρ AIC · 103 54.08 54.07 31.83 31.76 −27.13 −27.21
RMSE 0.322 0.322 0.286 0.286 0.210 0.210
R2 0.897 0.897 0.918 0.918 0.956 0.956

Wht ·AIC 103 79.16 79.16 −38.57 −38.62 −82.18 −82.23
RMSE 0.367 0.367 0.197 0.197 0.157 0.157
R2 0.865 0.865 0.961 0.961 0.975 0.975

Tliq AIC·103 72.96 72.96 20.55 20.53 −23.25 −23.27
RMSE 0.355 0.355 0.269 0.269 0.214 0.214
R2 0.874 0.874 0.928 0.928 0.954 0.954

dg g¢ ·AIC 103 125.0 125.0 37.12 37.08 1.675 1.644

RMSE 0.467 0.467 0.294 0.294 0.244 0.244
R2 0.782 0.782 0.914 0.914 0.941 0.941

p AIC·103 31.84 31.83 −9.737 −9.818 −38.32 −38.44
RMSE 0.286 0.286 0.230 0.230 0.198 0.198
R2 0.918 0.918 0.947 0.947 0.961 0.961

Tsol ·AIC 103 63.62 63.62 −17.76 −17.78 −71.03 −71.04
RMSE 0.338 0.338 0.220 0.220 0.166 0.166
R2 0.886 0.886 0.952 0.952 0.972 0.972

ISSS AIC·103 132.7 132.7 37.71 37.65 12.59 12.55
RMSE 0.486 0.486 0.295 0.295 0.258 0.258
R2 0.764 0.764 0.913 0.913 0.933 0.933

g¢T AIC·103 113.5 113.5 −2.463 −2.505 −66.43 −66.47

RMSE 0.439 0.439 0.239 0.239 0.170 0.170
R2 0.807 0.807 0.943 0.943 0.971 0.971

g¢ AIC·103 75.34 75.34 −5.219 −5.271 −34.31 −34.37
RMSE 0.360 0.360 0.235 0.235 0.202 0.202
R2 0.871 0.871 0.945 0.945 0.959 0.959
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According to figure 2, the variations of Al and Ti cause the strongest property deviations
for almost all of the properties, so their contents should be set as precisely as possible.
Conversely, variation of cobalt has almost no effect because it exhibits similar characteristics
to nickel. It should be noted that the variation of one element is balanced by the variation of
the main element nickel, and therefore the coefficients describe the effects of both elements.
In addition, the effect of ruthenium for CALPHAD-based calculations is insignificant, partly
because of an incomplete description in the TTNi8 database, which has previously been
shown by Matuszewski et al [46] and Ritter et al [26].

The evaluated coefficients for the SL model are given in table 5. These coefficients can
be stored in thermodynamic databases for faster prediction of the distribution width of
available properties. Direct calculation of distributions is already implemented in Thermo-
Calc 2016b software, but it requires a high number of samples (several hundred for a complex
Ni-based superalloy) to be calculated and cannot be included in the optimization routine.

Figure 2. Normalized standardized regression coefficients of each element and their
variations in wt% and at% for the (a) and (c) property variation s D

 ( )c c T, ,f
FL

k
and (b)

and (d) property value within the FL regression model. The input parameters have been
centered and divided by the mean distribution width of input parameters in weight and
atomic fraction: s s= - +[ · ( ⟨ ⟩)] [ ]( ) ( ) ( ) ( ) ( )x x x2j

i
j
i i i i

at wt . Normalization was performed

with the maximal absolute value of the coefficients for a certain function. The influence
of each element on a given property is given by the color of the square: blue and red
indicate increasing and reducing effect of the property distribution or property value,
respectively. ISSS, ρ, g¢, dg g¢, Wht, p, g¢T , Tsol, and Tliq are the solid solution
strengthening index, density, misfit between the γ and g¢ phases, g¢ fraction, heat
treatment window, cost, g¢ solvus, and solidus and liquidus temperatures, respectively.
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Table 5. Regression coefficients ( )a i of the stepwise calculated linear model for the distribution width s D
 ( )c c T, ,f

SL
k

defined in equation (5) in
dependence on element concentrations ( )c i and their variations D ( )c i in weight fraction. ISSS, ρ, g¢, dg g¢, p, g¢T , Tsol and Tliq are solid solution
strengthening index, density, misfit between γ and g¢ phases, g¢-fraction, price, g¢-solvus, solidus and liquidus temperatures, respectively.

fk ρ g¢ Wht Tliq dg g¢ p Tsol ISSS g¢T
( )a i

( )a 0 2.399 −0.010 20.15 −2.040 0.020 0.715 −3.613 0.592 18.66
( )a Al — −21.49 −181.0 16.45 1.128 −0.786 23.46 13.17 −159.1
( )a Ti 1.620 −13.89 −130.9 8.909 0.768 −1.204 10.83 10.28 −108.6
( )a Cr — −8.122 −46.03 3.755 0.019 −0.211 7.931 −1.525 −43.75
( )a Co — −0.996 −0.322 2.115 — — 6.610 −0.330 −6.435
( )a Mo — −4.709 −34.24 6.150 0.341 −0.261 8.324 3.007 −34.61
( )a Ru −1.094 −0.081 3.469 5.886 0.097 −0.585 14.35 0.487 −8.787
( )a Ta 2.468 −4.488 −46.97 6.513 0.291 −0.238 9.694 3.680 −38.43
( )a W 3.951 −2.374 −24.52 5.431 0.211 — 8.361 2.470 −24.35
( )a Re 2.885 −1.202 −17.94 3.585 0.295 2.448 6.501 5.218 −20.10

´D -( )a 10Al 2 10.94 5.594 21.45 2.838 0.081 −0.104 3.866 0.650 17.23
´D -( )a 10Ti 2 1.142 2.388 10.60 4.178 0.026 −0.132 4.742 0.392 5.681
´D -( )a 10Cr 2 0.333 0.041 0.122 0.750 0.001 0.719 0.798 — 0.874
´D -( )a 10Co 2 0.199 — — 0.051 — 0.077 0.190 — —

´D -( )a 10Mo 2 0.631 0.070 0.276 0.707 0.029 — 0.972 0.217 0.427
´D -( )a 10Ru 2 0.955 — 0.098 0.063 0.004 8.641 0.284 −0.012 0.099
´D -( )a 10Ta 2 12.07 0.443 3.584 1.275 0.005 0.314 2.526 0.098 1.455
´D -( )a 10W 2 15.54 0.119 0.308 0.198 0.012 0.060 0.295 0.145 0.212
´D -( )a 10Re 2 14.11 0.049 0.066 0.103 0.015 12.921 0.080 0.468 0.156

´ -( )a 10T 3 — 2.052 — — −0.105 — — −1.462 —

M
odelling

S
im

ul.
M
ater.

S
ci.

E
ng.

27
(2019)

024001
A
M
üller

et
al

12



3.4. Optimization

The sensitivity of the optimization problem defined in equation (4) can be extended by any
number of constraint functions ncon, as well as user-defined weighting factors wk for each
sensitivity depending on the requirements of the optimization goals

åD = D
=

+   ( ) [ ( )] ( )S c c T w S c c T, , , , . 11
k

n n

k fop
1

2
k

goal con

Such an extension plays an important role if robust values of the constrained functions are
also required (for example, a more stable cost of an alloy).

The result of the optimization problem (see table 2) by minimization ( ) of
= +r( ) ( )S S SIop

p p 2 p 2
SSS

is shown in figure 3.
With this additional information, more robust alloys can be selected accepting somewhat

inferior values of ISSS, ρ or both. The density sensitivity only has a minor influence on the Sop
p

value. In the case of equal weighting factors of wISSS
and wρ, the preferred alloy will be the one

with a low ISSS value because this will lead to lower sensitivity. Because the Sop
p value is the

squared sum of all of the single sensitivities, the sensitivity of each S f
p
k
value can be recal-

culated in a post-optimization process, if required. Alternatively, each sensitivity S fk can be
used as an additional optimization goal accepting a longer optimization time.

In the first instance, the different function slopes of the property functions fk will have an
effect on the property sensitivity S fk, as shown in figure 1(b). In addition, switching between
interpolation functions within a CALPHAD database independently of the different temp-
erature ranges, especially if temperature deviation ΔT is also considered, which is ignored in
the current work, also influences S fk. Therefore, the sensitivity S fk can also be interpreted as
the maximum relative error for a given input parameter distribution of optimized properties,
giving the alloy designer the ability to select candidates with properties that are more stable or
predicted more accurately by CALPHAD. This is indicated in figure 3 by the expected

Figure 3. Pareto-front r  ( )I S, ,SSS
p

op of optimization with predicted sensitivity

= +r( ) ( )S S SIop
p p 2 p 2

SSS
as an additional minimization  goal. The arrows indicate the

direction to more robust solutions with inferior (ISSS, ρ) values. Two alloys with high
and low ISSS sensitivity are selected as examples to indicate the different expected
errors ( = ( )I 13.0 1.0 at%SSS

high and = ( )I 8.50 0.38 at%SSS
low ). The corresponding

uncertainty value of each element is Δci=0.2 wt%.
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absolute errors for alloys with high and low sensitivity ( = ( )I 13.0 1.0 at%SSS
high compared

with = ( )I 8.50 0.38 at%SSS
low ).

3.5. Model accuracy

Because all of the proposed models are based on prediction of the property distributions, the
accuracy of sfk is important for the model correctness. The RMSE of the standardized
function values and R2 give a good indication of the model quality (table 4). The lowest
calculated R2 value for all of the models is 0.95 for the sdg g¢ model, meaning that only
approximately 5% cannot be described by the selected regression model. The recalculated
property distribution sfk of the randomly selected optimal compositions


cop is compared with

the predicted property distribution s f
p

k
in figure 4(a). Because the absolute distribution value

S fk depends on the Pareto-range -( ¯̄ ) ( ¯̄ )f c f ck k
max

op
min

op and therefore on the optimization
problem itself, we determined the relative deviation values. They are between 3% and 5% for
all of the sensitivities, except for g¢S with 8.5%. The overestimation of g¢S can be explained by
the reduced optimization range  Î Î¯̄cpar op reg compared with the whole regression ana-
lysis range  =

 [ ]c c,reg min max defined in table 1 or by stronger model deviations at the
regression range boundaries (e.g. at the maximum temperature value of 1100 °C in the current
case). Because we want to obtain a general model for the property distribution, we omit
recalculation of g¢S within the reduced op range. The accuracy of = +r( ) ( )S S SIop

p p 2 p 2
SSS

used as an optimized goal is shown in figure 4(b) with a relative error of 4.0%. With respect to
the sensitivity of all of the constrained functions defined in equation (11), the predicted
sensitivity error is equal to 13.0%.

3.6. Inaccuracy of the CALPHAD calculations

All of the CALPHAD calculations are assumed to be exact. However, scattering of the
experimental data or deviations in the ab initio simulations result in uncertainty in the
determined interaction parameters stored in the thermodynamic databases, and finally in

Figure 4. (a) Accuracy of the predicted sensitivity S f
p
k
for each property and (b) the

combined sensitivity = +rS S SIop
p 2 2

SSS
compared with the recalculated S fk and Sop for

optimal Pareto-alloys of the current optimization problem.
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uncertainty in the CALPHAD calculations [24, 25, 47]. Especially the description of the TCP
phases is quite poor [27, 28, 46]. Nevertheless, despite this insufficient accuracy, one has the
advantage of separating potentially TCP-forming from potentially non-forming alloys. The
predictive accuracy obtained is sufficient to test the stability of a large number of highly
promising alloys determined by optimizing well-known properties and to reduce the post-
processing effort in experimental validation significantly, taking into account the possible
neglection of even better alloys.

For some alloy properties, the CALPHAD prediction inaccuracy s f
db

k
with optional offset

fk
off of a certain measurement value

( )f c T,k can be estimated by comparing the experimental

and calculated data. Here, the offset fk
off describes the systematic over- or underestimation of

a particular value
( )f c T,k . A comparison between the liquidus, solidus, and g¢ solvus

temperatures calculated with Thermo-Calc using the TTNi7 database and the respective
experimental values can be found in Rettig et al [24]. Replacing s D

 ( )c c T, ,fk by a value s f
db

k

that may not be concentration dependent and replacing
( )f c T,k by the offset-corrected

function = +
 ˜ ( ) ( )f c T f c T f, ,k k k

off in equation (3) results in a modified equation for the
sensitivity ˜S

f
db
k
. In this case, the ˜S

f
db
k

value predicts the property distribution owing to the

inaccuracy of the thermodynamic database. The scattering of the element concentrations
during the manufacturing process D


c and the estimated database inaccuracy s f

db
k
can be

connected in the extended distribution s s sD = + D
   ( ) ( ) ( ( ))c c T c c T, , , ,f f f

ext db 2 2
k k k

. This

allows more confident alloy selection because s sD D
   ( ) ( )c c T c c T, , , ,f f

ext
k k

.

4. Conclusions

A fast regression-based model for the property sensitivity has been derived and implemented
in the optimization work flow of nickel-based superalloys, giving additional information
about the distribution width of the optimized properties caused by inaccuracies in the input
parameters. This novel contribution allows online sensitivity optimization with negligible
increase of the computational time. Here, the model allows the selection of optimal com-
positions with direct consideration of possible deviations during a manufacturing process or
of the property deviation within a certain specification limit. The derived method can be
applied to almost any CALPHAD-based or semi-empirical model for alloy properties
requiring only one-time pre-calculation of the regression coefficients. Furthermore, the model
can be easily extended to take into account the imprecision of the thermodynamic databases.

By minimizing the sensitivity as an additional goal, the resulting Pareto-front indicates
the direction to more stable alloys or alloys with smaller predicted property inaccuracy. Two
alloys with low and high sensitivities have been discussed as examples.

The contribution of each element to the property distribution has also been calculated,
which allows the most important elements that cause the greatest property uncertainty in the
designed optimal alloy to be identified and therefore allows possible deviations to be
controlled.

The average relative error of the predicted distribution width is ≈4%, and the resulting
Pareto-front can be recalculated in a post-optimization process with a more exact method.

In the future, the model has to be extended by the sensitivity calculation for third and
TCP phases, when better databases are available.
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