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1. Introduction

The wearable device technology is widely adopted in the health-
care community. For complex disease diagnosis and monitoring,

multiple physiological signals are continu-
ously streamed to a wearable device and
multiple decisions need to be intelligently
made within a short time window. The
integration of artificial intelligence (AI) into
smart wearable devices is particularly
needed for effective and accurate process-
ing of health data at the point of care.
Most wearable devices are embedded with
a sensor, a microprocessor, and a limited
memory flash to keep the system
small and lightweight. However, such
constrained computational environments
make the deployment of advanced AI
techniques very challenging.[1]

Cough and other audible sounds (e.g.,
wheezing, deviated voice quality, etc.)
have been used as digital audio bio-
markers for early disease detection or pre-
dicting acute exacerbations in airway
diseases such as asthma, chronic obstruc-
tive pulmonary diseases (COPD), and
COVID-19.[2–4] Most wearable health
devices for airway diseases are built on
audio sensing technology to detect afore-
said airway symptoms with an embedded
microphone.[5] These acoustic micro-

phones are often omnidirectional and capture both, a speak-
er’s voice and surrounding sounds. Wearing a constantly
recording microphone creates inevitable personal privacy
concerns.

R. Groh, A. M. Kist
Department Artificial Intelligence in Biomedical Engineering
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Werner-von-Siemens-Straße 61, 91052 Erlangen, Germany
E-mail: andreas.kist@fau.de

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/aisy.202100284.

© 2022 The Authors. Advanced Intelligent Systems published by Wiley-
VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is
properly cited.

DOI: 10.1002/aisy.202100284

Z. Lei, L. Martignetti, N. Y. K. Li-Jessen
School of Communication Sciences & Disorders
McGill University
Canada 2001 McGill College, 8th floor, Montreal, Quebec H3A 1G1,
Canada
E-mail: nicole.li@mcgill.ca

N. Y. K. Li-Jessen
Department of Otolaryngology-Head & Neck Surgery
McGill University
Montreal H3A 1G1, Canada

N. Y. K. Li-Jessen
Department of Biomedical Engineering
McGill University
Montreal, Canada 2001 McGill College, 8th floor, Montreal, Quebec H3A
1G1, Canada

Mobile health wearables are often embedded with small processors for signal
acquisition and analysis. These embedded wearable systems are, however,
limited with low available memory and computational power. Advances in
machine learning, especially deep neural networks (DNNs), have been adopted
for efficient and intelligent applications to overcome constrained computa-
tional environments. Herein, evolutionary algorithms are used to find novel
DNNs that are accurate in classifying airway symptoms while allowing
wearable deployment. As opposed to typical microphone-acoustic signals,
mechano-acoustic data signals, which did not contain identifiable speech
information for better privacy protection, are acquired from laboratory-
generated and publicly available datasets. The optimized DNNs had a low
model file size of less than 150 kB and predicted airway symptoms of interest
with 81.49% accuracy on unseen data. By performing explainable AI techni-
ques, namely occlusion experiments and class activation maps, mel-frequency
bands up to 8,000 Hz are found as the most important feature for the
classification. It is further found that DNN decisions are consistently relying on
these specific features, fostering trust and transparency of the proposed
DNNs. The proposed efficient and explainable DNN is expected to support
edge computing on mechano-acoustic sensing wearables for remote,
long-term monitoring of airway symptoms.
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As a promising alternative, mechano-acoustic sensing devi-
ces, such as those of neck surface accelerometers (NSAs), are
noise resistant and equally capable of generating airway
health-related information.[6–9] An NSA device detects and
transfers mechanical vibrations from the neck skin to electrical
voltage signals. The sensor captures negligible vocal tract reso-
nance information during phonation, which preserves a per-
son’s speech privacy.[10,11] The sensor is also insensitive to
air-borne acoustic waves,[12] which ensures high-quality data
acquisition due to its intrinsic anti-interference against back-
ground noise. In contrast, the attenuation of frequency infor-
mation in NSA signals may make the AI classification tasks
more challenging compared to that of microphone-acoustic
signals.

AI and related deep learning technologies have been shown
to accelerate the time course and improve the quality of dis-
ease diagnosis and treatment monitoring.[13,14] Recently,
advanced AI methods have been adopted for classifying
airway-related symptoms such as cough[15,16] and deviated
voice quality[17] in various clinical populations. Lean models
have been proposed for the detection of cough in patients suf-
fering from chronic cough, COPD, asthma, and lung cancer.[5]

Cough detection is also helpful in predicting COVID-19
infection.[4] However, these deep neural networks (DNNs)
have barely been optimized for wearable devices. Further,
not many algorithms are capable of multiclass classification in
detecting more than one airway symptom[18] Also, given the
black-box-character of AI algorithms, explainable AI has been
advocated to increase trust among users and decision-
makers,[19–22] especially in the development of health
wearable devices.[23,24]

In this work, we aimed to optimize multiple neural network
topologies using evolutionary algorithms to allow explainable,
personalized airway symptom detection as well as deployable
on a wearable device (Figure 1 for study overview). In this work,
research questions were: 1) Would NSA signals be on par with
audio signals in terms of classification accuracy? 2) Which AI
technologies would suit for classifying airway symptoms?
3) Would the proposed evolutionary algorithms be capable of
optimizing DNN topologies to gain neural networks for the
deployment on wearable devices operating with low memory
and computing resources? 4) Would the optimized DNNs be able
to cope with new, unseen datasets? 5) Would the optimized
DNNs rely on specific features, i.e., frequencies of NSA signals
in airway symptom classification?

2. Experimental Section

2.1. Datasets

Three individual datasets, which contained airway symptoms of
interest, were curated from laboratory-generated or public sour-
ces. These datasets were from: 1) a study of reading a standard
passage scripted with airway symptom productions (Rainbow
Passage dataset), 2) a published study of vocal loading tests
(Vocal Stress dataset)[9] and 3) a crowdsourcing COVID-19 cough
sound project (COUGHVID dataset).[25]

2.1.1. Rainbow Passage Dataset

This human study was approved by McGill University Research
Ethics Office (A11-B62-19A). All participants of this study gave
their informed, written consent. Six female adult participants,
who were vocally healthy with ages ranging between 20 and
35, were recruited for this experiment. Both audio (ICD-
UX565F, Sony Inc., Japan) and NSA data were recorded simul-
taneously (Figure 2A) in a sound-proof booth. Participants were
first prompted to produce isolated cough, throat clear, and dry
swallow sounds. Participants were then asked to read the
Rainbow Passage, which was scripted with the three airway
symptoms interspersed throughout, using their conversational
pitch and loudness. They read this script three times in a row
(Figure 2B, Supplementary Material).

The main unit of the NSA was a printed circuit board embed-
ded with a one-axis accelerometer (BU-27 135, Knowles Inc., IL,
USA) and a custom amplification module to pre-process and
transmit the signal to a recording device. A total of 294 coughs,
287 dry swallows, and 382 throat clears were obtained in this
dataset. Figure 2C shows representative examples (paired
audio/NSA signals and the corresponding log-mel-spectrograms)
for the three symptom classes. Data were annotated by two
experts who had more than five years of clinical voice evaluation
experience, using a custom graphical user interface written in
Python.

2.1.2. Vocal Stress Task Dataset

In addition to the Rainbow Passage dataset, we sought to obtain
data samples of airway symptoms that were elicited in a relatively
natural setting. Our published dataset, in which the airway symp-
toms were produced spontaneously by speakers during a vocal
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Figure 1. Overview of this study as a flow diagram. Orange circles indicate milestones in the project, where the milestones 1-5 are reflected in Figures 2–6
in this study.
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stress task, was selected for this study.[9] In brief, nine female
adult participants were asked to read parts of the novel “Harry
Potter and the Sorcerer’s Stone”[26] for up to 3 h. Both audio
and NSA signals were obtained in a sound-booth environment
using the same devices as those of the aforesaid Rainbow
Passage dataset experiment. A total of 19 coughs, 258 dry swal-
lows, and 11 throat clears were annotated in this dataset.

2.1.3. COUGHVID Dataset

Cough is onemost common symptoms in airway disease diagnosis
andmonitoring. To further evaluate our AI algorithm, a highly het-
erogeneous dataset of coughs containing more than 20 000

recordings from all gender groups was collected from the
COUGHVID crowdsourcing dataset.[25] The predictions of the clas-
sifiers were already stored in the original COUGHVID data files by
the original authors.[25] We thus pre-selected the cough admissions
with more than 98% classifier probability. Given that non-cough
parts were also contained in the recordings, we computed the roll-
ing standard deviation with a window size of 5,000 sampling points
and an energy threshold of 8,000 to determine the onset of the
cough event. As a result, a total of 3,388 cough events were
obtained for the evaluation of our AI algorithms in this study.
Of note, as these cough sounds were microphone audio signals,
an auto-encoder DNN architecture was applied to convert the audio
samples to NSA space (Figure S5, Supporting Information).
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Figure 2. Airway symptoms in neck surface accelerometer (NSA) signals. A) Recording condition of the Rainbow Passage dataset. B) Schematic of the annotated
paired audio andNSA data. Silence and speech are labeled both as “no event”, whereas cough, throat clear, and dry swallow are distinct categories. C) Representative
log-mel-spectrograms of paired audio and NSA signals for each airway symptom. D) t-SNE representation of all categories described in panel B.
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2.2. Data Preprocessing

During preprocessing, both audio and NSA data were divided
into 500ms frames. For each frame, the mel-spectrogram was
calculated using 64 mel-frequency-bands, an FFT window length
of 1024, a hop length of 64, an upper frequency bound of
16 384Hz, and the HTK-formula[27] for conversion from
Hertz to mel. The advantage of mel-spectrograms is that the
center frequency and bandwidth of the chosen triangular filters
roughly match the auditory critical band filters.[28] Using the
Python package librosa,[29] each 500ms frame resulted in a
mel-spectrogram with 64 frequency points and 345 time
frames.

Other preprocessing steps included calculating the
log-mel-spectrogram, scaling the values in the range of �1 to
1 (min-max normalization), flipping the spectrogram such that
lower frequencies were at the bottom of the spectrogram, and
resizing the spectrogram to 64� 64 data points, which we
further used as an image-like object in pixels. Finally, a class label
was assigned to each of the log-mel-spectrograms. If more than
70% of the 500ms window belonged to an annotated event, the
log-mel-spectrogram was labeled accordingly, i.e., Cough, Dry
swallow, Throat clear, or No event. These log-mel-spectrograms
and their associated labels were treated as inputs and outputs,
respectively, to various DNN architectures for the classification
of airway symptoms.

2.3. Data Visualization

The t-distributed stochastic neighbour embedding (t-SNE)
dimensionality reduction technique[30] was used to visualize
the relationship between the three airway symptoms. Input to
the t-SNE algorithm were log-mel-spectrogram-derived
features, including the mean, min, max, median, mode, and

standard deviation of each coefficient of one mel-frequency band.
These extracted features were then projected onto two t-SNE
dimensions. The t-SNE algorithm was implemented using the
scikit-learn library[31] with the perplexity set as 40, the learning
rate as 30, and the number of iterations as 1500. We computed
the alpha shape of each class and reported individual clusters to
illustrate the possible overlapping of multiple classes.

2.4. Network Architectures and Training

We evaluated five state-of-the-art network architectures in
the classification of cough, dry swallow, throat clearing,
and no event (Figure 3A). We focused on convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs), specifically, the ResNet architecture (ResNet18 and
ResNet34[32]), EfficientNetB0,[33] the MobileNetV2,[34] an
Encoder–Decoder–RNN,[35] and a vanilla RNN that we developed
specifically for this study. The vanilla RNN consisted of three
Long Short-Term Memory (LSTM) layers[36] of 128, 64, and 32
cells, respectively, followed by a fully connected layer with
softmax activation function. We included this straightforward
architecture in our experiments to have a second RNN architec-
ture as a reference.

All experiments were implemented using Google TensorFlow
(version 2.5.0 with keras API) on an NVIDIA GeForce RTX 3090
GPU and an Intel Core i9-10900X CPU. During network train-
ing, the Adam optimizer[37] was used to minimize the categorical
cross-entropy loss. The learning rate was 10�4 with an exponen-
tial decay over time. Since the entire dataset had an imbalance of
events and non-events, scikit-learn was used to calculate class-
dependent weights for model training.[31] Models were trained
on the whole Rainbow Passage dataset and optimized with the
Vocal Stress and COUGHVID datasets. As the Rainbow
Passage dataset was generated from six speakers only, a six-fold
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Figure 3. Training of six convolutional neural networks (CNN) and recurrent neural networks (RNN) architectures for classifying airway symp-
toms. A) Overview of the classification pipeline. Log-mel-spectrograms obtained as preprocessing step are the input of neural network archi-
tectures for predicting airway symptoms after softmax activation. B) Validation accuracy for different training/validation splits of the Rainbow
Passage dataset for audio and NSA signals. C) Median test accuracy from all test accuracies determined by cross-validation. D) Fps during model
inference and median test accuracy from cross-validation for NSA data. The size of the points correlates with the number of trainable parameters
of each architecture.
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cross-validation approach was used in the scheme of four speaker
dataset for model training, one speaker dataset for model valida-
tion, and one speaker dataset for model testing.

2.5. Domain Adaptation

COUGHVID crowdsourcing dataset was used to further eval-
uate the performance of our network architectures in handling
complex and heterogeneous data. Since the recordings are
microphone audio samples, each COUGHVID sound sample
was converted to NSA space for our application. We utilized a
U-Net[38] autoencoder that was already trained with the paired
audio and NSA signals from the Rainbow Passage dataset. The
architecture consisted of four encoder and four decoder layers
with 8, 16, 32, and 64 convolutional filters at each depth layer
that was connected via skip connections. During the training,
mean squared errors were minimized using the Adam
optimizer with an exponentially decaying learning rate. We
used the tanh-activation function in the output layer to ensure
that the output log-mel-spectrograms would contain values in
the range from �1 to 1 as noted in the Data Preprocessing
section.

2.6. Evolutionary Optimization

To find a small and efficient CNN architecture, we utilized an evo-
lutionary algorithm (see[39] for an overview) to select the best pos-
sible combination of neural network elements as noted in Table 1.
In other words, we used the gene pool in Table 1 to determine a
novel neural network topology that would be ideally as accurate as
state-of-the-art models, but usable in wearable computing. The
algorithm was allowed to evolve for 20 generations with a popula-
tion size of 50 in each generation. The individuals of the first gen-
eration were created randomly. After each generation, 15 models
with the highest fitness scores were selected and used for breeding
the next generation’s population. We further employed a mutation
rate of 10% during breeding. The fitness for each architecture was
calculated using the validation accuracy and the inference time
and was defined as follows

Fi ¼ ai þ β ⋅
1
ti

(1)

with F as fitness, a the validation accuracy, β the inference time
weight, and ti the inference time in seconds of a single frame for

each architecture i. For objective 1 (O1), we set β ¼ 0 to evolve only
based on accuracy. For objective 2 (O2), we set β ¼ 0.05 to balance
accuracy and time dependence. Each architecture was trained for
12 epochs.

2.7. Microcontroller Deployment

To evaluate the scalability of our DNNs, we converted evolution-
ary optimized models to TensorFlow Lite according to standard
procedures. We deployed the converted model to a development
board (EdgeBadge, Adafruit Industries) as a C array and mea-
sured the inference time per single forward pass. An average
of 100 single forward passes were reported herein.

2.8. Class Activation Maps and Occlusion Experiments for
Explainable AI

Class activation maps (CAMs)[40,41] and occlusion experiments[42]

were employed to explain neural network decisions. We created
the CAMs for each log-mel-spectrogram of the test split of the
Rainbow Passage dataset. We calculated the weighted sum of
each output of the last convolutional layer as described in.[40]

The class weights of the last network layer (fully connected layer)
were used for weighting purposes. Further, we averaged all
resulting CAMs of each input log-mel-spectrogram to determine
which mel-frequency bands would be of high importance for
classification.

The occlusion experiments were performed using a sliding
window of size 16� 16 pixels and a stride of four pixels. The
values in the windowed regions were set to �1 to hide the
corresponding information. We then used our trained neural
networks for inference to obtain and store the corresponding
prediction probabilities for each occluded log-mel spectro-
gram. Due to overlapping windows, we averaged the pixel
values gained from the multiple predictions for reporting
purposes.

2.9. Statistical Testing

Wilcoxon matched-pair tests and paired t-tests were used for
sample populations with non-normal (Figure 3) and normal dis-
tribution, respectively (Figure 4). Bonferroni correction was used
to adjust the significance level for multiple testings to reduce
Type 1 error. For instance, with three groups and three compar-
isons (Figure 4), the corrected significance level became
αnew ¼ 0.05=3 ¼ 0.017.

3. Results

3.1. Detectable Airway Symptoms from NSA Signals

Labels were created for “no event” (continuous speech and
silence) and “event” (cough, throat clear, and dry swallow) of
the Rainbow Passage dataset during the expert annotation task
(Figure 2B). Representative audio and NSA data pairs for
the three airway symptoms are shown in Figure 2C. We found
that audio and NSA data shared qualitative similarities in the
low-frequency bands. Given the low-pass filter quality of the

Table 1. Overview of the used gene pool in evolutionary optimization.

Parameter Set of possible values

Number of convolutional layers [1-5]

Number of convolutional filters [8, 16, 32, 64, 128]

Convolutional filter size [3]

Max pooling layer [True, False]

Residual Connections [True, False]

Batch Normalization layer [True, False]

Activation function [ReLU, ReLU6, LeakyReLU]
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NSA, higher frequencies were less present as expected.
Distinctive clusters were noted in cough, throat clear, and speech
(Figure 2D) under t-SNE representation. Whereas the clusters of
dry swallow and silence were highly overlapping, which might
lead to difficulty in detecting dry swallow events. Based on these
results, airway symptom information was reliably preserved and
detected in NSA signals.

3.2. Multi-Class Classification of Airway Symptoms with DNNs

Two major DNN technologies, namely CNNs and RNNs, were
evaluated for their suitability of airway symptom detection. A
library of standardized log-mel-spectrograms was generated
from the annotated Rainbow Passage dataset to train, validate
and test each DNN by forcing the network to choose one of
the four classes (Figure 3A). The examined CNNs and RNNs
were found to operate within a similar validation accuracy range
and were largely independent of the recording modality
(Figure 3B, Figure S1 and S2, Supporting Information).
MobileNetV2 was the only architecture that notably underper-
formed compared to other architectures (Figure 3B).

We next determined the test accuracy for each architecture
using cross-validation. The median test accuracy for each
architecture in airway symptom prediction was slightly worse
with NSA signals but not statistically significant compared to
audio signals (Wilcoxon test of paired samples, p¼ 0.06)
(Figure 3C). CNN-based models were also found to be more
accurate than RNN-based models. However, CNN-based models
were in general slightly slower in terms of frames per second
(fps) (Figure 3D). The distribution of all test accuracies across
all cross-validations can be found in detail in Figure S3,
Supporting Information.

Subsequently, we evaluated if the accuracy of a CNN-based
model could be traded for inference speed. As a baseline, we

chose the ResNet-18 architecture, as it provided a high median
test accuracy of 85.0% as well as 15.3 fps in classifying airway
symptoms, and was already a smaller variant of the ResNet-34
architecture. Both RNNs showed higher fps (17.9 for RNN
Amoh and 19.8 for Vanilla RNN) with comparable, but lower
median test accuracy (83.17% and 83.73%) to those of CNNs
(Figure 3D).

In summary, we were able to show that NSA signals contained
sufficient data features for airway symptom detection in combi-
nation with DNN techniques. All investigated DNNs were, how-
ever, too large for wearable deployment. We thus proceeded to
optimize the network topology with the focus on CNNs next,
given their superior accuracy in airway symptom classification.

3.3. CNN Topology Optimization Using an Evolutionary
Algorithm

An efficient classifier is integral for mobile health wearable
deployment. Here, we investigated how to optimize CNNs in
a directed fashion to allow both fast and accurate classification
by being wearable and deployable. Evolutionary algorithms
(Figure 4A) were used to optimize CNN topology using either
of the following two objective functions. Objective 1 (O1) was
to maximize the validation accuracy of a CNN topology.
Objective 2 (O2) was to maximize both validation accuracy
and the model’s processing fps. Both objective functions were
found to increase their median and maximum fitness across gen-
erations (Figure 4B). Due to the evolutionary algorithm and its
mutation and cross-over features, there was a gap between
median and maximum possible fitness. The distribution of indi-
vidual topology genetics across generations is shown in
Figure S4, Supporting Information.

Paired t-tests were performed to compare the accuracy and
inference speed across the three architectures (Figure 4C,D).
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Regarding the prediction accuracy, the baseline ResNet-18, O1
and O2 achieved comparable results as 83.84%, 87.91%, and
81.49%, respectively (t-tests: ResNet-18 vs O1 p¼ 0.145;
ResNet-18 vs O2 p¼ 0.124)(Figure 4C). With respect to the infer-
ence speed, the evolutionary algorithm was noted to boost the
processing speed significantly from 13.3 to 32.2 fps
(Figure 4D, Table 2). The O2model was found significantly faster
than the ResNet-18 and the O1 architectures (both t-tests:
p < 0.017).

To test the network performance in a real-world microcontrol-
ler environment, we deployed the ResNet-18 and the optimized
O1 and O2 architectures to a developmental Deep Learning-
enhanced board (EdgeBadge Board, see also Methods).
Unfortunately, due to the large model sizes (44 and 3.5MB
for ResNet-18 and O1, respectively), we were not able to deploy
these models to the microcontroller, which was restricted to
512 kB of memory. However, once we converted and deployed
the evolutionary optimized model O2 with TensorFlow Lite,
we were able to gain 3.5 fps, which is considered a reasonable
result for a non-optimized hardware board. In summary, the
final O2 architecture consisted of 7,692 trainable parameters,
which was 0.069% of ResNet-18’s parameter space (11 186 692
trainable parameters), with a model file size of less than
150 kB (Table 3). This new O2 fitness design was shown capable
to trade accuracy with inference speed in support of wearable
computing (Table 2).

3.4. Adaptability of Evolutionary Optimized CNNs to New Data

We used the pre-trained O2 model on the Rainbow Passage data-
set of the previous section for further analysis. To evaluate how
well this evolutionary optimized CNN would be capable to adapt
to new data, we performed experiments involving transfer learn-
ing and fine-tuning techniques (Figure 5A).

The test accuracy of the Rainbow Passage dataset was
preserved when fine-tuning the pre-trained O2 model with a
combination of the Rainbow Passage dataset and a subset of
the Vocal Stress dataset,[9] which also contains airway symptom
data in NSA space. However, the test accuracy of the new dataset
converged at about 0.7, suggesting that the model was only able
to adapt to the additional data from the Vocal Stress dataset to a
certain extent (Figure 5B, right panel). When we relied on a pure
transfer learning task and used only the Vocal Stress dataset in
the training process, the pre-trained model was able to learn the
Vocal Stress dataset representation quickly (Figure 5B, left
panel). While performing better on the test set, the test accuracy
of the Rainbow Passage dataset dropped from 80% to 22.2%. In
summary, we were able to show that the proposed evolutionary
O2 model was capable to retain the Rainbow Passage dataset
representation when used in a fine-tuning task, and to adapt
to new data quickly, despite its small parameter space
(Figure 5B, Table 2).

Next, we sought to test the adaptability of our proposed archi-
tecture to a separate data source. We utilized the COUGHVID
dataset that contains a variety of cough audio samples gained
from a crowdsourcing effort. To convert the audio samples to
NSA space, a crucial step for testing the data on the O2 CNN, we
trained a U-Net-like architecture with the paired audio/NSA data
extracted from the Rainbow Passage dataset by minimizing the
mean squared error across spectrograms (Supplementary
Figure 5 for workflow). We analyzed the conversion quality using
the structural similarity index measure (SSIM,[43]). Our conver-
sion procedure was able to produce valid spectrograms in NSA
space: SSIM results showed that converted NSA spectograms
were closer to real NSA spectrograms (mean SSIM¼ 58.1%)
compared to audio-derived spectrograms (mean SSIM¼ 37.6%).

We next analyzed the O2 model to classify the obtained NSA
samples of the COUGHVID dataset. The prediction probabilities
of cough samples were relatively low before transfer learning
(Figure 5C, gray bars). However, by fine-tuning the model on
a few samples of previously unseen data (50 converted NSA
cough samples from the COUGHVID database), the test accu-
racy on the remaining 3,138 cough samples increased dramati-
cally from 22.8% to 70% on average (see Figure 5C, pink bars).
After 48 epochs, the model reached a similar performance for
both datasets before overfitting was observed (Figure 5C, left
panel).

Although the O2 model might not be robust to different sour-
ces, the model was shown to quickly adapt to new datasets. This
feature is particularly useful to support personalized wearable
health technology. For cases like chronic airway diseases, an indi-
vidual’s health data are dynamically evolved as functions of time
history and personal profiles. The adaptability of the O2 model
will allow continuous integration of novel data, focusing on fine-
tuning, to improve its prediction accuracy when further data are
supplied from individual patients.

3.5. Airway Symptoms Cluster on Specific Frequency Bands

Our next interest was to investigate if the optimized CNN O2
relied on specific frequency bands for airway symptom detection.
That way, in case of confined frequencies, we would be able to

Table 2. Evolutionary algorithm results compared to the baseline model.

Architecture Test Accuracy FPS Number of parameters

ResNet-18 (Baseline) 0.838� 0.068 13.29 � 2.22 11 186 692

Objective 1 0.879� 0.017 21.4� 5.34 289 988

Objective 2 0.815 � 0.055 32.2� 13.3 7 692

Table 3. Architecture determined by evolutionary algorithm and optimized
with objective 2. Each row i is one building block with operators ℱ̂i, input
resolution Ĥi, Ŵi

� �
and output channels Ĉi determined from the set of

possible values shown in Table 1.

Stage Operators Resolution #Channels
i ℱ̂i Ĥi � Ŵi Ĉi

1 Conv3� 3 & Relu6 & Max Pooling 64� 64 8

2 Conv3� 3 & Relu6 & Max Pooling 32� 32 8

3 Conv3� 3 & Relu6 & Max Pooling 16� 16 32

4 Conv3� 3 & Relu6 & Global Average Pooling 8� 8 16

5 Dense & Softmax 16 4
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further optimize the preprocessing steps and the DNNs to gain
potentially even smaller or more robust models for mobile and
wearable applications. We focused on two complementary
approaches: occlusion experiments[42] and CAMs.[40] The
occlusion experiments (Figure 6A, Figure S6, Supporting
Information) showed that mel-frequency bands up to 8000Hz
were most important for classifying coughs, dry swallows and
throat clears (Figure 6D–F). Mel-frequency bands of up to
2000Hz were important for the correct classification of no event
(Figure 6C). When analyzing the respective CAMs, we found
confirming results for each event, with the exception of dry swal-
low (Figure 6C–F, Figure S7 and S8, Supporting Information).

Class activations were higher in the same mel-frequency bands
where predictions dropped off when the bands were occluded.
Taken together, airway symptom features were restricted to spe-
cific frequencies, allowing not only trustworthy applications but
also leaner future models.

4. Discussion

In this work, we showed that a scripted, tiny dataset was suffi-
cient to train DNNs in the classification of airway symptoms
on unseen data with satisfactory testing and validating
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accuracies. A new neural topology based on evolutionary algo-
rithms was optimized for accuracy, inference speed, and size.
In particular, this new DNN was less than 150 kB in size but
achieved prediction accuracies on par with those of large
state-of-the-art architectures. Such low-size model file sizes are
important for downstream applications on mobile and wearable
devices. Further, we found that specific frequency bands were
important for airway symptom identification, which is essential
for us to tailor the proposed DNNs in the future and to solidify
trust in wearable health devices.

4.1. Cough Prediction

Coughing is a common symptom across multiple airway-
related diseases such as asthma, COPD, and COVID-19.
Cough sounds have become a useful digital audio biomarker
in mobile health technologies.[15,16,35] For example, coughs
were used to predict COVID-19 positivity.[44,45] In this work,
we used the COUGHVID database,[25] a large crowdsourced
database containing audio recordings with a wide range of
perceptual audio quality of mainly cough sounds. A data
cleaning strategy was tailored to extract cough sounds and
convert the microphone audio signals to NSA space for
model evaluation. Our proposed models were able to adapt
to this diverse database. In contrast to other works, we specif-
ically aimed for deployment of our DNNs classification algo-
rithms on low-power, computational restrictive wearable
platforms.[46,47]

4.2. Unboxing Deep Neural Networks

Explainable AI is integral to advancing and translating the tech-
nologies to clinical applications.[48,49] The occlusion experiments
and CAMs (Figure 6) identified frequencies that were specific to
airway symptom prediction. As a sanity check, we confirmed that
log-mel-spectrograms classified as no event, which typically con-
tained human speech signals, showed important fundamental
and harmonic frequencies of up to 2000Hz as expected in
human speech. We also confirmed that CAMs were similar
across architectures (such as ResNet-18 and the O2 optimized
model), suggesting that the same concepts were learned, despite
the fact that the latter network features less than 1% of the train-
able parameters of the former. More recent model interpretation
methods such as Grad-CAM[50] and DeepLift[51] can also be
included in future studies as suggested by a recent review
article.[52]

4.3. Limitations and Shortcomings

In this work, we achieved the first step of developing effective
and explainable AI algorithms for long-term remote monitoring
of airway symptoms by mechano-acoustic wearables. Despite the
fact that coughs were classified with satisfactory accuracies with
our CNNs, the heterogeneity of the data resulted in a large frac-
tion of false positives. The expansion of our current training set,
i.e., the Rainbow Passage dataset, may help to further improve
the classification accuracy and especially robustness to various
sources. Nevertheless, we were able to gain competitive results

with our limited training dataset. We also noted that the genetic
pool in our evolutionary algorithm was relatively limited and
can be further expanded, for example, by using depth-wise
convolutions[53] or compound scaling.[33] In the future, we will
investigate additional topology optimizations and test the result-
ing topologies in a real-world application.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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