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Abstract
Objective. Smart hearing aids which can decode the focus of a user’s attention could considerably
improve comprehension levels in noisy environments. Methods for decoding auditory attention
from electroencapholography (EEG) have attracted considerable interest for this reason. Recent
studies suggest that the integration of deep neural networks (DNNs) into existing auditory
attention decoding (AAD) algorithms is highly beneficial, although it remains unclear whether
these enhanced algorithms can perform robustly in different real-world scenarios. Therefore, we
sought to characterise the performance of DNNs at reconstructing the envelope of an attended
speech stream from EEG recordings in different listening conditions. In addition, given the
relatively sparse availability of EEG data, we investigate possibility of applying subject-independent
algorithms to EEG recorded from unseen individuals. Approach. Both linear models and nonlinear
DNNs were employed to decode the envelope of clean speech from EEG recordings, with and
without subject-specific information. The mean behaviour, as well as the variability of the
reconstruction, was characterised for each model. We then trained subject-specific linear models
and DNNs to reconstruct the envelope of speech in clean and noisy conditions, and investigated
how well they performed in different listening scenarios. We also established that these models can
be used to decode auditory attention in competing-speaker scenarios.Main results. The DNNs
offered a considerable advantage over their linear analogue at reconstructing the envelope of clean
speech. This advantage persisted even when subject-specific information was unavailable at the
time of training. The same DNN architectures generalised to a distinct dataset, which contained
EEG recorded under a variety of listening conditions. In competing-speakers and speech-in-noise
conditions, the DNNs significantly outperformed the linear models. Finally, the DNNs offered a
considerable improvement over the linear approach at decoding auditory attention in
competing-speakers scenarios. Significance.We present the first detailed study into the extent to
which DNNs can be employed for reconstructing the envelope of an attended speech stream. We
conclusively demonstrate that DNNs improve the reconstruction of the attended speech envelope.
The variance of the reconstruction error is shown to be similar for both DNNs and the linear
model. DNNs therefore show promise for real-world AAD, since they perform well in multiple
listening conditions and generalise to data recorded from unseen participants.

1. Introduction

Conventional hearing aids are known to provide
only a limited benefit to their users, especially when
operating in noisy conditions [1]. The ability to

determine the focus of a user’s attention could
enable the development of smart hearing aids with
improved outcomes for those who suffer with hearing
loss. Recent studies have demonstrated that auditory
attention in multi-speaker (‘cocktail party’) scenarios
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can be decoded noninvasively from electrophysiolo-
gical recordings such as the electroencephalogram
(EEG) [2–6]. One common paradigm for auditory
attention decoding (AAD) is the method of back-
ward linear modelling, whereby a set of coefficients
are estimated in order to linearly reconstruct a speech
feature from EEG recordings. In AAD applications,
the speech feature is typically chosen to be the speech
envelope, but other features can also be used, such as
a waveform related to the fundamental frequency of
speech [7, 8]. Both the speech envelope and the fun-
damental waveform of the attended speech stream are
more strongly represented in a listener’s EEG, and can
be more accurately reconstructed from EEG record-
ings than corresponding features of the unattended
speech streams. Therefore, in the backward model-
ling approach, a reconstruction score (typically Pear-
son’s correlation coefficient between the reconstruc-
ted and the actual speech feature) for each speech
stream serves as a marker of selective attention.

Since the processing in the auditory system is
inherently nonlinear, it is natural to ask whether
nonlinear methods for AAD can offer superior per-
formance over linear methods. Nonlinear methods
for backward modelling and AAD based on artifi-
cial neural networks have been introduced recently
[9, 10]. Here, we set out to undertake a compre-
hensive account of the use of deep neural net-
works (DNNs) for backward nonlinear modelling of
the speech envelope from EEG recordings. Artificial
neural networks are heavily-parameterised, nonlin-
ear models which are capable of representing a broad
class of functions. In fact, they are universal func-
tion approximators [11]. DNNs are artificial neural
networks which contain many layers of processing
units (neurons). The correlation-based AAD tech-
nique described above can be also be used in conjunc-
tion with a DNN, by exchanging the linear backward
model with a nonlinear DNN. Alternatively, audit-
ory attention can be decoded directly without first
reconstructing features from the EEG recordings, by
utilising a DNN-based classifier which accepts EEG
recordings as well as the candidate speech envelopes
as inputs [10].

Nonlinear forwardmodelling based onDNNs has
recently been employed to quantify the level of non-
linear processing that contributes to neural activity
evoked by continuous speech [12]. The authors of
that study found that as much as 25% of the evoked
response arises due to nonlinear processes which can
be captured byDNNs, thus justifying the use ofDNNs
for AAD. However, DNNs are known to suffer from
issues surrounding generalisability. This has been
highlighted by some recent investigations which did
not achieve a competitive AAD performance across
multiple datasets, when using DNNs which have else-
where been reported to be effective [10, 13].

In this work, we compared the performance
of two nonlinear DNNs as well as one linear

model for predicting the speech envelope from EEG
recordings. Following a recent study, we examined
a fully-connected (FC) feed-forward neural network
(FCNN) [9]. We also considered a more lightweight
convolutional neural network (CNN) based on the
EEGNet architecture, which has been proposed for a
range of brain-computer-interface applications [14].

2. Materials andmethods

2.1. Datasets and preprocessing
Two datasets from our research group were used
in this work. The first dataset (termed Dataset 1
hereafter) was collected by Weissbart et al [15]. A
total of 13 native English-speaking participants were
instructed to attend to a single speaker narrating
an audiobook in English, in noiseless and anechoic
listening conditions. The EEG was recorded from all
13 participants, and each participant listened to 15
audiobook chapters in one recording session. The
duration of each chapter was approximately 2.5 min,
and each participant took breaks between chapters.
This dataset therefore consists of 40 minutes of EEG
responses to clean speech per participant. During the
breaks, the participants were asked to answer a com-
prehension question in order to ensure attendance to
the audiobook.

The second dataset (termed Dataset 2 hereafter)
was collected by Etard and Reichenbach [16]. A total
of 18 native English-speaking participants attended
to a speaker narrating an audiobook chapter in sev-
eral listening conditions: clean speech, speech in
noisy conditions, and speech in competing-speaker
scenarios. For the noisy speech, background babble
noise was synthesised and combined with the speech
at three different signal-to-noise ratios (SNRs) of
0.4 dB, −1.4 dB, and −3.2 dB. The comprehension
levels for each SNR condition were 81%, 60%, and
34%, respectively, as measured through behavioural
experiments. For the competing-speaker scenarios,
two audiobooks were narrated simultaneously by a
male and female speaker. There were two competing-
speaker scenarios; in the first, the listener was instruc-
ted to attend to the male speaker whilst ignoring the
female speaker, and in the second they were instruc-
ted to attend to the female speaker whilst ignoring
the male speaker. Additionally, 12 of the participants
listened to a speaker narrate an audiobook in a foreign
language, Dutch. In this listening condition, the com-
prehension level was 0%. All stimuli were delivered
binaurally. As with Dataset 1, the participants were
asked comprehension questions in order to ensure
attendance to the target audiobook. For each listen-
ing condition, the EEG was recorded in four trials
of approximately 2.5 min in duration. This dataset
therefore consists of 10 min of EEG recorded for each
listening condition per participant.

In both datasets, 64-channel scalp EEG was
recorded with the same equipment inside the same
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anechoic chamber. The EEG was sampled at a rate
of 1 kHz, with electrodes positioned according to
the standard 10–20 system via the actiCAP electrode
cap (BrainProducts, Germany). The EEG signals were
then amplified and digitised with the actiCHamp
amplifier (BrainProducts, Germany). In Dataset 1,
the left earlobe was used as the physical EEG refer-
ence, whereas the right earlobe was used for this pur-
pose in Dataset 2. In order to align the stimulus with
the recorded EEG, the acoustic adapter for StimTrack
(BrainProducts, Germany) was used to record the
audio at 1 kHz whilst simultaneously presenting it
to the participant (at 44.1 kHz). The resulting sound
channel was used to align the original audio tracks
with the EEG recordings during post-processing.

Preprocessing was performed using default
routines available in MNE-Python version 0.24.1
[17]. To obtain the speech envelopes, we computed
the absolute value of the Hilbert transform of each
speech stream. The speech envelopes were low-pass
filtered below 50 Hz (linear phase type 1 FIR anti-
aliasing filter, Hamming window, 12.5 Hz transition
bandwidth, −6 dB attenuation at 56.25 Hz, −53 dB
stopband attenuation) and resampled to 125 Hz. To
preprocess the EEG recordings, all channels were
low-pass filtered below one of several upper pass-
band edges (linear phase type 1 FIR anti-aliasing
filters, Hamming windows, −53 dB stopband atten-
uation). The considered upper passband edges were:
8 Hz (order 1651, 2 Hz transition bandwidth, −6 dB
attenuation at 9 Hz), 12 Hz (order 1101, 3 Hz trans-
ition bandwidth, −6 dB attenuation at 13.5 Hz),
16 Hz (order 825, 4 Hz transition bandwidth, −6 dB
attenuation at 18 Hz) and 32 Hz (order 413, 8 Hz
transition bandwidth, −6 dB attenuation at 36 Hz).
The EEG recordings were subsequently resampled to
125 Hz and high-pass filtered above one of two lower
passband edges in order to remove slow drifts (linear
phase type 1 FIR filters, Hamming windows, −53 dB
stopband attenuation): 0.5 Hz (order 825, 0.5 Hz
transition bandwidth,−6 dB attenuation at 0.25 Hz),
or 2Hz (order 207, 1Hz transition bandwidth,−6 dB
attenuation at 1.5 Hz). Finally, for every trial, each
EEG channel was standardised to have zero mean and
unit variance.

2.2. Linear models
A linear backward model can be specified in the time
domain by a matrix of parameters θi,j. These are con-
volved with the EEG recordings to produce an estim-
ate of the speech envelope:

ŷt =
C∑

i=1

L−1∑
j=0

xt−j,iθi,j. (1)

In this expression, ŷt denotes an estimate of the speech
envelope sampled at time t, xt,i designates the EEG
sampled at time t from electrode i, C represents the
number of EEG channels being considered, and L is

the filter length which describes how many temporal
EEG samples are employed to estimate the speech
envelope. In other words, the speech envelope is rep-
resented as a linear combination of the EEG record-
ings xt−j,i, which are weighted by the parameters θi,j.

The parameters of the linear model are
obtained by minimising the sum of squared errors∑T

t=1(yt − ŷt)2, where T is the total number of time
samples available in the training dataset. We used
ridge regression, which employs an L2 regularisation
term λ

∑C
i=1

∑
j=0 θ

2
i,j within the objective function.

This results in a better-posed regression problem
which is less susceptible to overfitting [18, 19]. The
L2 penalty penalises large weights, and the strength
of the penalty is controlled by the hyperparameter λ.

2.3. DNNs
The linear models in (1) depend on L×C paramet-
ers. Nonlinear models implemented as DNNs typic-
ally employ a much larger set of parameters and pos-
sess a more complicated functional form. The DNNs
in this work can therefore be considered as more gen-
eral functions relating the EEG recordings and the
speech envelope.

The fundamental unit of any neural network is the
‘neuron’. A neuron receives a pre-determined num-
ber of inputs, which it linearly combines according to
its set of parameters (or weights). A nonlinear activ-
ation function is then applied to the resulting scalar
quantity. Common choices for the activation func-
tion are the sigmoid and the hyperbolic tangent, as
well as the rectified linear unit (ReLU) [20]. The latter
is defined as the function f(x) = x if x> 0 and f(x) = 0
otherwise.

A feed-forward neural network consists of layers
of neurons, with neurons in a particular layer receiv-
ing as inputs the outputs of neurons in preceding lay-
ers (neurons within a single layer do not connect with
one another). If each neuron in a particular layer is
connected with each neuron in the preceding layer,
the neural network is described as ‘fully connected’
(FC). The fully-connected feed-forward neural net-
work (FCNN)used in this work is depicted in figure 1.
If each neuron in a particular layer is instead only
connected to a neighbourhood of input neurons, and
all neurons in the same layer share the same para-
meters (weight sharing), then the neural network is
described as a convolutional neural network (CNN).
The CNN that was used in this work is shown in
figure 1. Other types of connectivities exist, includ-
ing skip connections (e.g. residual neural networks
[21]) and feedback connections (recurrent neural
networks [11]).

The FCNN used in this work was inspired by the
architecture used by de Taillez et al [9]. A spatiotem-
poral segment of EEG recordings is passed through
several FC feed-forward layers, with each layer con-
taining fewer neurons than the preceding layer. The
activation function is the hyperbolic tangent. The
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Figure 1. The two neural network architectures used in this work. A spatiotemporal segment of T EEG samples and C channels is
presented to both of the neural networks. Top: the FCNN architecture consists of several fully-connected hidden layers. The Lth
hidden layer consists of NDL neurons. A nonlinear activation function is applied to the output of each hidden layer, followed by a
dropout layer. Bottom: the CNN architecture employs convolutional layers, which make use of local connectivity and
weight-sharing to reduce the number of parameters in the network. The 1st convolutional layer consists of F1 convolutional
filters, each sharing a common input but comprising distinct parameterisations. The 2nd convolution flattens the channel
dimension, and consists of D× F1 convolutional filters. The 3rd convolutional layer implements the so-called depthwise separable
convolution, which is similar to an ordinary convolutional layer consisting of F2 low-rank convolutional filters. Following [14],
we set F2 = D× F1 to reduce the dimensionality of the hyperparameter search. Several operations may be applied to the
activations of each convolutional layer, including a non-linear activation function, batch normalisation, and spatial dropout.
Average pooling is a form of downsampling whereby the activations of a neighbourhood of neurons are replaced by the average
activation. This form of downsampling is only applied along the temporal dimension.

number of inputs is equal to C×T, with C as the
number of EEG channels used, and T as the number
of temporal samples in the segment. The scalar out-
put represents a point estimate of the speech envelope
at the onset of the segment. Following de Taillez et al,
the number of neurons in each hidden layer decreases
linearly fromC×T to 1. The number of hidden layers
is a tunable parameter.

In this work, two types of regularisation are used
to help control overfitting. The first type, dropout,
randomly sets the activation of some neurons to
zero according to some probability [22]. This regu-
lates how strongly the neural network can depend on
the activation of any particular neuron. The second
type, L2 regularisation or ‘weight decay’, uses a term
λ
∑N

k=1 |wk|2 within the objective function, where wk

denotes the kth parameter of the neural network.
This term penalises neural networks for which some
weights are much larger than others, and promotes
neural networks which do not rely too much on
any particular neuron. The tunable hyperparameter
λ controls the strength of the regularisation penalty.

The number of weights required to fully connect
two adjacent layers consisting respectively of N1 and
N2 neurons is N1 ×N2 or N1 ×N2 +N2, depending

on whether a bias term is used. The number of para-
meters in an FCNN therefore grows quickly with the
number hidden layers, and the FCNN can become
over-parameterised. Due to local connectivity, CNNs
can often represent similar functions to FCNNs with
far fewer parameters, thus helping to prevent overfit-
ting. We therefore investigated the performance of a
CNNat reconstructing the speech envelope fromEEG
recordings.

Our choice of CNN was inspired by the EEGNet
architecture of Lawhern et al [14], which employs the
exponential linear unit (ELU) as a nonlinear activ-
ation function, as well as batch normalisation and
average pooling [23]. Batch normalisation improves
convergence during training by making the optim-
isation problem smoother [24, 25]. Average pooling
is a form of downsampling, in which the average
activation of a neighbourhood of neurons is taken
and used as the input to the next layer. To regular-
ise the CNN, we used L2 regularisation and a variant
of dropout known as spatial dropout [26], whereby
entire weight-sharing layers are dropped from the
training process according to some probability. This
technique can be more effective than ordinary dro-
pout for training CNNs, since weight sharing dilutes
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the effect of dropping the activation of individual
neurons. The CNN architecture includes a ‘depthwise
separable convolution’ layer, which utilises low-rank
approximations to ordinary convolutional filters. The
scalar output of the CNN is formed by taking a linear
combination of all of the activations in the final con-
volutional layer.

2.4. Training procedure
For both of the DNNs as well as the linear model,
the spatio-temporal input segment consisted of 63
EEG channels and 50 time samples (C=63; T=50).
The temporal length of the segment was therefore 400
ms, since a sampling rate of 125 Hz was used. For
the CNN, average pooling was performed across the
temporal axis using a neighbourhood of two neurons
after the spatial convolution layer, and a neighbour-
hood of five neurons after the depthwise convolution
layer. Therefore, the values of the temporal dimen-
sions T′ and T′′ in figure 1 were 25 and 5, respectively.

The coefficients of the linear model were fitted
through ridge regression, as discussed in section 2.2.
Ridge regression permits a simple closed-form
expression for the optimal (least-squared-error) coef-
ficients, given a training dataset and a regularisation
parameter. In contrast, DNNs can rarely be solved
analytically, and gradient-descent methods are com-
monly used to train them (that is, to fit their para-
meters). Following [9], in this work we optimised the
DNN parameters by minimising the negative correl-
ation coefficient between the reconstructed speech
envelope and the target speech envelope. The NAdam
optimiser was used, which employs adaptive step
sizing and accelerated gradient descent through a
Nesterov-like momentum term [27].

Dataset 1 consisted of 15 trials per participant,
each of approximately 2.5 min in duration. We
reserved nine of these trials for model training, three
for validation, and three for evaluation. Dataset 2
consisted for four trials per listening condition, per
participant. Each trial had a duration of approx-
imately 2.5 min. We used eight trials for model
training (four clean-speech trials and four high-SNR
speech-in-noise trials), and four trials for validation
(from the low-SNR speech-in-noise condition). The
remaining trials were used for evaluation.

During training, batches of EEGdatawere presen-
ted to the DNNs, and a corresponding batch of pre-
dicted speech envelope values was produced. These
were correlated against the actual speech envel-
ope values, and the DNN parameters were updated
via a NAdam gradient descent step in order to
maximise the correlation coefficient. After iterating
through all batches of data (one epoch), the cor-
relation score was evaluated on the validation data-
set. An early-stopping procedure was used with a
patience factor of P: if the validation correlation
score did not increase within P consecutive epochs,
training was terminated. Otherwise, the process was

repeated for another epoch. The model parameters
which produced the highest validation correlation
score were saved. During hyperparameter tuning, P
was set to 3. Once the hyperparameters were fixed,
the DNNs were trained with an increased patience
factor of 5.

For each analysis, we trained 15 linear mod-
els with different regularisation parameters spaced
evenly on a logarithmic scale (ranging from 10−7 to
107 inclusive). The model that achieved the highest
correlation score on the validation dataset was selec-
ted for testing.

The DNN hyperparameters were tuned by ran-
domly sampling 80 hyperparameter configurations
(random search), and the configuration that led to
the highest validation score (correlation coefficient)
was selected for testing. The DNN hyperparameters
included an L2 regularisation (weight decay) para-
meter, the initial optimiser step size (learning rate),
the number of hidden layers or convolutional filters,
and the number of filters belonging to each convo-
lutional layer. We only tuned these hyperparameters
once per DNN, for the population models trained
using Dataset 1.

For the FCNN, the parameters of the random
search were as follows: batch size= (64, 128, or 256);
weight decay = (10−8, 10−7, ..., or 10−2); number of
hidden layers = (1, 2, 3 or 4); weight decay = (10−8,
10−7, ..., or 10−2); initial learning rate= (10−6, 10−5,
..., or 10−2). The dropout rate was a real number
sampled uniformly between 0 and 0.5.

For the CNN, the parameters of the random
search are as follows: batch size = (64, 128, or 256);
weight decay= (10−8, 10−7, ..., or 10−2); initial learn-
ing rate = (10−6, 10−5, ..., or 10−2). The spatial
dropout rate was a real number sampled uniformly
between 0 and 0.4. In order to reduce the dimension-
ality of the random search we used the condition F2
= F1 × D, with D= (2, 4, or 8) and F1 = (2, 4, or 8).

Since the task of fitting subject-specific mod-
els is quite different to fitting a population model,
the optimal hyperparameters for each subject-specific
DNN might vary. In this work, we re-tuned the ini-
tial learning for each subject-specific DNN using a
similar random search procedure, whilst holding the
other hyperparameters fixed. For the FCNN popula-
tion model, we found that the following hyperpara-
meters were suitable: three hidden layers; a dropout
rate of 0.45; a batch size of 256; and a weight decay
value of 1× 10−4. Therefore, the number of neurons
in each hidden layer were, in order, 2363, 1576, and
788. For the CNN population model, we found the
following parameters to be suitable: F1= 8; D= 8; a
spatial dropout rate of 0.20; a batch size of 256; and a
weight decay value of 1× 10−8. Recall from figure 1
that F1 is the number of convolutional filters in the
first convolutional layer, and F1×D is the number of
convolutional filters in each of the second and third
convolutional layers.
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2.5. Analysis procedure
To evaluate the models, the EEG data were split into
contiguous windows without overlap. Window sizes
of 250 samples (two seconds) were considered unless
otherwise stated. As in the training step, the predicted
speech envelope values in each window were correl-
ated against the actual speech envelope values. The
mean and variance of the correlation score over all
windows were then calculated, since these quantit-
ies are of interest in AAD applications. To construct
a null distribution, the predictions for each window
were also correlated against the true speech envelope
in unrelated windows.

In section 3.4 we applied the linear model as
well as both DNNs to EEG recorded in competing-
speakers scenarios. The correlation-based method
was used to decode auditory attention using each
DNN or the linear model. The performance of each
backwardmodelwas quantified through the attention
decoding accuracy for a given window size W. The
information transfer rate (bit rate) B was also calcu-
lated according to [28, 29]:

WB= log2N+ P log2P+(1− P) log2
1− P

N− 1
, (2)

where N is the number classes in the classification
problem (two in this case), and P is the attention
decoding accuracy. The bitrate in (2) is scaled by
the latency of the decoder, W, to obtain an effective
bitrate that takes into account the temporal resolu-
tion of the decoder. In this work, W was calculated by
adding the duration of the temporal receptive field (T,
which corresponds to 0.4 s in this study) to the dur-
ation of the window which was used to calculate the
correlation coefficients.

The neural networks were implemented in PyT-
orch version 1.10.0 [30]. Statistical analyses were con-
ducted using Scipy version 1.7.1 and Statsmodels ver-
sion 0.11.1 [31, 32].

3. Results

3.1. Subject-specific models
In Dataset 1, thirteen participants listened to a
single speaker who narrated an audiobook in English
without backgroundnoise. The participants’ EEGwas
recorded from 63 scalp channels whilst they listened.
For our first analysis, we fitted linear and nonlinear
models to each participant’s EEG in order to recon-
struct the envelope of the speech stream. We tested
the performance of the models by dividing the test
data into windows of a duration of two seconds. The
reconstructed speech stream was subsequently cor-
related against the actual speech stream in each win-
dow. We performed this procedure using several dif-
ferent EEG frequency bands, and we found that using
the 0.5–8 Hz band yielded linear decoders with the
greatest reconstruction scores (Pearson correlation
coefficients) (figure 2(a)). For this frequency band,
the spread of reconstruction scores for all participants

is reported in figure 2(b). We used this frequency
band for all subsequent analyses.

Null distributions for the reconstruction scores
were obtained by correlating each reconstructed
speech envelope with the true speech envelope from
an unrelated window. The median values of the null
distributions are shown in green on figure 2(b).
Since the reconstruction scores and null distribu-
tions were approximately normally distributed, we
tested the reconstruction scores for significance with
a t-test (single-tailed unpaired t-test, FDR-corrected).
In addition, we compared the reconstruction scores
of each pair of models for every participant (paired
t-tests, FDR corrected). The corrected p-values are
reported in table 1. All of the models achieved sig-
nificant reconstruction scores for every participant.
There were somewhat significant differences between
the performances of the two DNNs for 5 participants.
The CNN (FCNN) outperformed the linear model
with significance for 11 (9) of the participants.

To analyze the performance on the population
level, we calculated the mean reconstruction score
for every participant and model. We then compared
the 13 mean reconstruction scores achieved by each
model. We found no significant difference between
the two DNNs (p= 0.91, two-tailed paired t-test).
However, both DNNs significantly outperformed the
linear model (CNN: p= 1.1× 10−04; FCNN: p=
2.1× 10−04; single-tailed paired t-tests, Bonferroni
corrected.)

The mean and standard deviation of the recon-
struction score varied with window duration. We
determined the dependence of the mean and stand-
ard deviation of the reconstruction scores on the win-
dow duration by performing the analysis procedure
with windows of various sizes (ranging from 0.1 s and
10 s). The mean and standard deviation of the recon-
struction scores were averaged over all participants
(figure 3). The mean reconstruction scores of both
linear and nonlinearmodels are strongly degraded for
window sizes less than 2 s. For window sizes greater
than 2 s, themean reconstruction score for eachDNN
was around 30% above that of the linear model. The
mean of the set of 13 standard deviations was very
similar for all three methods across all window sizes.

3.2. Subject-independent models
To test whether the models generalise between parti-
cipants, we left one participant’s data out of the train-
ing procedure, and instead trained each of themodels
on the data from the 12 remaining participants. We
then repeated this process 13 times, leaving out a dif-
ferent participant each time. In this way, we trained
13 subject-independent models and applied them to
data from the unseen participant. For comparison, we
also trained population models using training data
from all of the participants, and applied these to dis-
tinct test data (recorded from the same 13 parti-
cipants). Our results are summarised in figure 4.

6



J. Neural Eng. 19 (2022) 046007 M Thornton et al

Figure 2. Two distinct DNN architectures, as well as a linear model, were used to relate EEG recordings to the envelope of clean
speech. The decoding performance for all three methods when different EEG frequency bands are used is shown in (a). Each
boxplot comprises the mean envelope reconstruction score (correlation coefficient) for each participant. The subject-level results
for the EEG frequency band 0.5–8 Hz are depicted in (b). Each boxplot represents the median and range of the reconstruction
score when a 2 s correlation window is employed. The median reconstruction scores of the null distributions are shown in green.

On the subject level, the use of the linear subject-
independent models resulted in significant mean
reconstruction scores for 9 of the 13 participants
(single-tailed unpaired t-test, FDR corrected). Both
the subject-independent CNN and FCNN yielded
significant reconstruction scores for 12 participants.
For each participant, we compared the use of each
pair of subject-independent models using paired t-
tests (FDR corrected). The CNN and FCNN did
not perform significantly differently for any of the
13 participants. The CNN (FCNN) outperformed
the linear method with significance for 1 (3) par-
ticipants. On the population level, both subject-
independent DNNs significantly outperformed the
subject-independent linear models (CNN: p= 9.2×
10−5; FCNN: p= 0.01; single-tailed t-tests, Bonfer-
roni corrected). There was no significant difference
between the subject-independent DNNs on the pop-
ulation level.

The subject-independent decoders yielded scores
which were approximately 50% below those of the
subject-specific decoders. The population decoders
performed better than the subject-independent
decoders, but worse than the subject-specific
decoders. This is to be expected, since the subject-
specific and subject-independent decoders respect-
ively represent the two extremes in which either there
is only subject-specific information available, or there
is no subject-specific information available.

3.3. Performance of subject-specific models in
different listening conditions
For real-world applications, a decoder needs to per-
form well across a range of listening conditions.
We therefore trained subject-specific decoders using
Dataset 2, which consisted of EEG recorded under a
number of different listening conditions. We used the
clean speech in native English, as well as speech in the

highest SNR condition (0.4 dB) to train the decoders.
We used the lowest SNR condition (−3.2 dB) to
validate the training procedure, and we evaluated
the trained decoders on the medium SNR condition
(−1.4 dB), as well as on competing-speaker scen-
arios, and the clean speech in foreign Dutch condi-
tion (for which the comprehension level was 0%).
For eachmethod, we calculated the mean reconstruc-
tion score for each participant. The spread of mean
reconstruction scores in each condition are shown in
figure 5. To compare the performance of the trained
models in each listening condition, we compared the
sets of mean reconstruction scores achieved by each
pair of models within each listening condition using
two-tailed paired t-tests (FDR corrected). There was
no significant difference between the DNNs in any
listening condition. However, both DNNs signific-
antly outperformed the linear model at reconstruct-
ing the attended speech stream in the competing-
speakers conditions, as well as in the background
babble noise condition. The DNNs performed sim-
ilarly to the linear models at reconstructing the envel-
ope of clean speech in a foreign language, as well as at
reconstructing the unattended speech envelope in the
competing-speakers conditions.

3.4. Attention decoding performance
For our final case study, we investigated whether
the subject-specific decoders described in section 3.3
could actually be used for AAD in the competing-
speaker scenarios. We compared the reconstruction
score (correlation coefficient) for the attended and
unattended speakers in each window, and counted
how many times the reconstruction of the attended
envelope was greater than that of the unattended
envelope. This number was taken to be the num-
ber of correct classifications, from which the bin-
ary classification accuracy could be directly calculated
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Figure 3. The mean (a) and standard deviation (b) of the reconstruction score (Pearson’s correlation coefficient), averaged over all
participants from Dataset 1, is plotted against the size of the correlation window used during evaluation. For window sizes less
than 2 s in duration, the mean reconstruction score was considerably degraded. The variability of the reconstruction score
increases sharply with decreasing window size, but is similar for all three methods. The dotted lines show the mean and standard
deviation of the null reconstruction scores for the three methods.

Figure 4. Comparison between subject-specific and
subject-independent decoders applied to clean speech
(Dataset 1). The boxplots represent the spread of the mean
reconstruction scores achieved for each participant. The
first group (subject-specific models) shows the mean
reconstruction scores achieved by subject-specific
decoders applied to Dataset 1. The second group
(leave-one-subject-out experiment) shows the mean
reconstruction scores achieved by the subject-independent
decoders described in section 3.2. For the third group
(population models), population models were trained with
Dataset 1 and subsequently applied them to data recorded
from individual subjects in Dataset 2. Statistical significance
is denoted by asterisks (none, p >=0.5; ∗, 0.5 > p >= 0.1;
∗∗, 0.1 > p >=0.01; ∗∗∗ , 0.01 > p >= 0.001; ∗∗∗∗, 0.001 >
p >=0.0001; ∗∗∗∗∗, p < 0.0001).

as a percentage of the total number of windows in
the trial. The decoding accuracies for three differ-
ent window durations (2 s, 5 s, 10 s) are shown in
figure 6. Both DNNs offered clear accuracy improve-
ments over the linear model across all three window
durations.

Following [9], we also calculated effective bitrates
for attention decoding using different window sizes.
The bitrate is related to the time-rate of correct

Figure 5. The spread of mean reconstruction scores for the
participants in Dataset 2 when subject-specific decoders
were applied in different listening conditions. Statistical
significance is denoted through asterisks as detailed in the
caption of figure 4.

classifications, and was calculated according to
equation (2). We found that a window size of 2 s
maximises the decoding performance of the CNN as
well as that of the linear model (figure 6(b)). A win-
dow size of 5 s was marginally more suitable for the
FCNN. Both DNNs achieved much higher bitrates
than the linear model.

4. Discussion

We have investigated the performance of two types of
DNNs at estimating the speech envelope from EEG
recordings. The performance of each DNN was com-
pared to that of a standard linear model. A compre-
hensive evaluation has shown that the two DNNs can
achieve very similar performances when reconstruct-
ing the envelope of clean speech, whilst exceeding that
of the linear model by about 30%. The advantage

9
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Figure 6. Comparison of the attention decoding accuracies of the three methods, across three different window sizes (a). The
information transfer rate for the three methods, which quantifies the tradeoff between decoding accuracy and window
duration (b).

of using the DNNs over the linear models persisted
even when the models were applied to subjects whose
EEG data had not been seen during training. Import-
antly, the DNN architectures and hyperparameters
have been shown to generalise to a distinct data set,
and subject-specific models have been applied effect-
ively to data in which speech was presented in differ-
ent types of noise. Our results have demonstrated that
DNNs have the ability to robustly enhance the decod-
ing of speech features from EEG recordings.

4.1. Deep learning methodology
To use the DNNs effectively, some special steps were
taken. Firstly, rather than presenting batches of con-
secutive EEG windows to the DNNs during training,
we shuffled the order of the windows in the training
dataset. This is a departure from the approach sugges-
ted in de Taillez et al [9]. We also used much smaller
batch sizes to train the DNNs. Small batch sizes are
often desirable in deep learning, since they can help
to avoid overfitting via noise injection [33, 34]. We
note that amuch larger batch size of 1024 samples was
used in the study by Cicarelli et al [10], and no weight
decay was employed. In comparison to other stud-
ies, we performed a more complete hyperparameter
search, which included a search over L2 regularisa-
tion parameters, training batch sizes, initial learning
rates, dropout rates, and the number of hidden layers/
convolutional filters. Furthermore, we re-tuned the
initial learning rate for each subject-specific DNN
and participant, whilst keeping the other hyper-
parameters fixed. Future work will explore further
individualisation of additional hyperparameters, for
example the weight decay parameter. In our study,
we found that it was most effective to use three hid-
den layers within the FCNN,whereas previous studies
have made use of just one hidden layer [9, 10].

The power of EEG signals vary between par-
ticipants, and may vary over time and between

recording sessions for a single participant. This is of
little consequence for trained linear models, the out-
puts of which are equivariant with respect to scal-
ings of the inputs (thus leaving correlation-based
reconstruction scores invariant). However, the scores
achieved by the DNNs are sensitive to changes in
the power of the input channels, due to the nonlin-
ear activation functions employed by the DNNs. In
order to fix the power of the inputs, we standard-
ised each EEG channel to have zero mean and unit
variance, for all subjects in all trials. This re-scaling
is non-causal, and for real-world applications it may
be preferable to standardise the EEG recordings by
first removing the mean via high-pass filtering, and
then normalising the power of each EEG channel by
dividing the recordings by a rolling estimate of the
standard deviation. Full-cap EEG signals may altern-
atively be standardised across the channel axis, i.e.
by removing the mean and dividing by the standard
deviation of all EEG signals at each sample. However,
thismethodwould not be appropriate for low-density
wearable montages such as concealed EEG or ear-
EEG [5, 6]. We note that the calculation of the speech
envelope via the Hilbert transform is also a non-
causal operation whichmust be adapted for real-time
applications.

The scores achieved by the two DNNs invest-
igated in this work were remarkably close. In fact,
the outputs of the two neural networks were them-
selves highly correlated, which suggests that the two
DNNs had learned to represent very similar func-
tions. Owing to local neuron connectivity, the CNN
required far fewer parameters than the FCNN: about
nine thousand versus twelvemillion, respectively. The
linearmodel required about three thousand paramet-
ers, which is comparable to the number of paramet-
ers in the CNN. The CNN may therefore be a prefer-
able, lightweight alternative to the FCNN for practical
applications. Future investigationmay reveal effective

10
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architectures which are even more lightweight, for
example by removing or ‘pruning’ neurons which
are of low importance [35, 36]. Additionally, prior
information about this signal processing problem
could be exploited by imposing inductive biases on a
DNN [37]. For example, the neural response to the
speech envelope has been well characterised in the
literature, and the spatial arrangement of the EEG
sensors is known by the experimentalist.

4.2. Subject-specific decoders
The existing literature surrounding DNNs for AAD
focuses almost exclusively on the attention decod-
ing accuracy of the correlation-based algorithm, with
DNNs being used to reconstruct the attended speech
stream. It is natural to also investigate how well the
DNNs perform at the fundamental task of recon-
structing the attended speech stream. In order to
do this, we began by training subject-specific mod-
els to predict the envelope of clean speech from
EEG recordings. The effect of broadening the EEG
frequency band from 0.5–8 Hz to 0.5–32 Hz had
no discernible impact on the performance of the
DNNs, as measured via Pearson’s correlation coef-
ficient between the actual and reconstructed speech
envelopes. However, the use of the frequency band
0.5–8 Hz in place of the frequency band 2–8 Hz led
to considerably improved results when decoding the
envelope of clean speech. De Taillez et al found it
beneficial to use broadband EEG signals in the range
1–32 Hz instead of signals in the range 2–8 Hz, since
this resulted in a higher information transfer rate
when usingDNNs to decode auditory attention [9]. It
is likely that much of this benefit can be attributed to
the incorporation of lower-frequency components of
the EEG signals. The effect of incorporating higher-
frequency EEG components on the attention decod-
ing accuracy in competing-speakers conditions can-
not be directly inferred from our analysis, since we
only considered the effect of the spectral content of
the EEG signals in the context of reconstructing the
envelope of clean speech in quiet conditions.

We used the 0.5–8 Hz EEG frequency band for
subsequent analyses. Both of the DNNs as well as the
linear modelling method achieved significant recon-
struction scores for all participants. On the popu-
lation level, the improvement offered by the DNNs
was statistically significant. The overall performance
of the DNNs was around 30% greater than that of
the linear model. Even on the subject level, the CNN
(FCNN) offered a statistically significant perform-
ance increase compared against the linear model for
11 (9) participants.

We found that for windows smaller than around
2 s in duration, the reconstruction accuracy of all
three methods was severely degraded. The latency of
a real-world decoder which is based on the correla-
tion method may therefore be limited to this times-
cale, unless techniques such as state-space models are

employed [3]. Indeed, we found that a window size
of about 2 s maximises the information transfer rate
of the correlation-based AAD algorithm. The vari-
ability in the reconstruction score followed similar
power-law dependencies on window size for all three
methods. This finding contrasts with a previous study
which found that the reconstruction score of a DNN
similar to the FCNNused in thisworkwasmuchmore
variable than that of a linear model, when applied in
a competing-speaker scenario [38].

4.3. Subject-independent decoders
Using Dataset 1, we trained 13 versions of each
DNN and linear model to reconstruct the envelope
of clean speech from EEG recordings. Each version
was obtained by leaving out one of the thirteen par-
ticipants during training. The DNNs and the linear
model were then applied to the data of the ‘unseen’
participant. This allowed us to compare the perform-
ance of subject-independent methods with subject-
specific methods whilst holding constant certain
factors such as the experimentalist, the experi-
mental protocol, the stimuli, and the duration of the
experiment.

All three subject-independent decoders yielded
reconstruction scores that were significantly differ-
ent from the null distribution for the majority of
the participants (9 for the linear model; 12 for both
the CNN and the FCNN). We found that all three
subject-independent decoders performed very sim-
ilarly on the subject level. However, on the popula-
tion level, the subject-independent DNNs both signi-
ficantly outperformed the subject-independent linear
model.

The subject-independent decoders performed
significantly worse than their subject-specific coun-
terparts (the performance decrease was around 50%
for all three methods). Whilst a performance penalty
is to be expected when subject-independent inform-
ation is unavailable, a penalty of this magnitude
may imply that some subject-specific information is
required for real-world applications.

4.4. Application to EEG recorded under different
listening conditions
For real-world decoding applications, the decoder
must perform well across a variety of listening con-
ditions. It was recently found that linear models can
assess neural speech tracking in two-speaker scenarios
in a manner that is robust against distortions to the
two speech streams [39]. Our investigation furthers
this research by studying how well linear and nonlin-
ear models can assess neural speech tracking in clean
and noisy listening conditions with varying levels of
speech clarity and comprehension.

Decoders for auditory attention to one of two
competing speakers are usually trained on the EEG
data obtained when the participants listen to two
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competing talkers [9, 10]. Here, due to the lim-
ited amount of competing-speakers data available
in Dataset 2, we used a somewhat different approach
in which we trained linear and nonlinear subject-
specific decoders using a mixture of clean speech
and speech-in-babble-noise conditions. The single-
speaker conditions used to train the decoder provide
a more stable teaching signal than the competing-
speaker conditions, in which participants may some-
times direct their attention to the speaker labelled
ùnattended’. However, the clean- and speech-in-
noise- single-speaker conditions may not elicit the
same attention dynamics that are exhibited in the
competing-speakers conditions. It was therefore
important to find that our DNNs were able to recon-
struct the attended speech envelope in the competing-
speakers conditions as well. It is likely that even
greater reconstruction scores could be achieved if
competing-speakers conditions were represented in
the training dataset.

We found that the DNNs outperformed the linear
model by a considerable margin when reconstructing
the envelope of an attended speaker in competing-
speaker scenarios, as well as in background babble
noise. All three methods performed very similarly at
the task of reconstructing the unattended speaker in
the competing-speaker scenarios.

The three methods also performed very simil-
arly at reconstructing the envelope of clean speech
in foreign Dutch. The comprehension score in this
listening condition was 0%, and it is has been shown
that cortical speech tracking in the delta band is mod-
ulated by the speech comprehension level [16]. Since
very low comprehension levels were not represented
in the training data, this may explain why the DNNs
did not perform as well in this listening condition.

4.5. Attention decoding performance
Finally, we decoded auditory attention in competing-
speaker scenarios using the subject-specific decoders
that were trained with Dataset 2. It was found that
the use of DNNs was advantageous for this pur-
pose, as was shown in [9]. We also replicated the
finding that a short window length of about 2 s
was optimal for real-time applications, in the sense
that the information transfer rate (ITR) defined in
equation (2) is maximised.We note that this ITR does
not account for the total delay required by the pro-
posed decoding algorithm: EEG filtering operations
and audio processing operations have been neglected.
The number of samples used to calculate the correl-
ation coefficients as well as the number of temporal
input samples T have been included. The bitrates that
were achieved by the DNNs in this work were some-
what lower than those reported in [9], and the dif-
ferences cannot be fully explained by the fact that
we accounted for the temporal receptive field dura-
tion T in our calculation. The differences might be
explained by the fact the authors trained their DNN

using EEG recorded in a competing-speaker scenario,
which was the same listening condition as was used
for evaluation. Despite these differences, our study
provides conclusive evidence that DNNs can be used
for enhanced and robust decoding of selective atten-
tion in competing-speaker scenarios.
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