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Abstract

Traditional hardware description languages (HDLs), such as VHDL and Verilog,
are widely used for designing digital electronic circuits, e.g., application-specific
integrated circuits (ASICs), or programming field-programmable gate arrays (FPGAs).
However, using HDLs for implementing complex algorithms or maintaining large
projects is tedious and time-consuming, even for experts. This also prevents the
widespread use of FPGAs. As a solution, High-Level Synthesis (HLS) has been studied
for decades to increase productivity by, ultimately, taking a behavioral description
of an algorithm (what the circuit does?) as design entry and automatically generating
a register-transfer level (RTL) implementation. Commercial HLS tools start from
well-known programming languages (e.g., C, C++ or OpenCL), which were initially
developed for programmable devices with an instruction set architecture (ISA). Yet,
these tools deliver a satisfactory quality of hardware synthesis results only when
programmers describe hardware-favorable implementations for their applications
(how the circuit is built?) exploiting, e.g., a specific memory architecture, control
path, and data path. This requires an in-depth understanding of hardware design
principles. To adopt software programming languages for hardware design, each
HLS tool uses its own language dialect and introduces a non-standard set of pragmas.
The mixed-use of software and hardware language abstractions hinders a purely
behavioral design and makes optimizations hard to understand since the expected
code is neither a pure hardware description nor a regular software implementation.
Furthermore, a code optimized for one HLS tool has to be changed significantly to
target another HLS tool and performs poorly on an ISA. We believe that the next
step in HLS will be on the language side, overcoming productivity, portability, and
performance hurdles caused by behavioral design deficiencies of existing tools.

This dissertation presents and evaluates three distinct solutions to separate the
description of the behavior (what?) of an algorithm from its implementation (how?)
while providing high-quality hardware synthesis results for the class of image pro-
cessing applications. This is achieved by generating highly optimized target-specific
input code to commercial HLS tools from high-level abstractions that capture par-
allelism, locality, and memory access information of an input application. In these
approaches, an image processing application is described as a set of basic building

v



blocks, namely point, local and global operators, without low-level implementation
concerns. Then, optimized input code is generated for the selected HLS tool (Vi-
vado HLS or Intel OpenCL SDK for FPGAs) using one of the following different
programming techniques: (i) a source-to-source compiler developed for an image
processing domain-specific language (DSL), or (ii) template metaprogramming to
specialize input C++ programs at compile time, (iii) a partial evaluation technique for
specializing higher-order functions.

We present the first source-to-source compiler that generates optimized input
code for Intel OpenCL SDK for FPGAs from a DSL. We use Heterogeneous Image
Processing Acceleration (Hipacc), an image processing DSL and a source-to-source
compiler initially developed for targeting graphics processing units (GPUs). The
Hipacc DSL offers high-level abstractions for point, local, and global operators in form
of language constructs. During code generation, the compiler front end transforms
input DSL code to an abstract syntax tree (AST) representation using Clang/LLVM
compiler infrastructure. By leveraging domain knowledge captured from input DSL
code, our backend applies several transformations to generate a description of a
streaming hardware pipeline. At the final step, Hipacc generates OpenCL code
as input to Intel’s HLS compiler. The quality of our hardware synthesis results
rivals with those obtained from Intel’s hand-optimized OpenCL code examples in
terms of throughput and resource usage. Furthermore, Hipacc’s code generation
achieves significantly higher throughput and uses fewer resources compared to
Intel’s parallelization intrinsics.

Second, we present an approach based on template metaprogramming for de-
veloping modular and highly parameterizable function libraries that also deliver
high-quality hardware synthesis results when compiled with HLS tools. In this
approach, the library application programming interface (API) consists of high-level
generic functions for declaring building blocks of image processing applications, e.g.,
point, local, global operators, unlike typical libraries that offer functions for complete
algorithms, e.g., OpenCV. The library is optimized with Vivado HLS best practices
as well as hardware-centric design techniques such as deep pipelining, coarse-level
parallelization, and bit-level optimizations. The library contains more than one
template design for each algorithmic instance to be able to utilize implementations
optimized for input parameters. For example, it includes multiple implementations
of image border handling and coarse-level parallelization strategies considered for
different input parameters of a local operator specification. Furthermore, a compile-
time selection algorithm is proposed for selecting the most suitable implementation
according to an analytical model derived for resource usage, speed, and latency. In
this way, low-level implementation details are hidden from users.

In addition to the presented advantages of using high-level abstractions for raising
the abstraction level in HLS, we show that this approach is beneficial for achieving
performance portability across different computing platforms. Similar to FPGAs, the
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performance capabilities of central processing units (CPUs) and GPUs can fully be
leveraged only when application programs are tuned with low-level architecture-
specific optimizations. These optimizations are based on fundamentally different
programming paradigms and languages. As a solution, Khronos released OpenVX as
the first industrial standard for graph-based specification of computer vision (CV)
applications. The graph-based specification allows optimizing memory transfers
between different CV functions from a device-specific backend. Furthermore, the
standard hides low-level implementation details from the algorithm description. For
instance, memory hierarchy and device synchronization are not exposed to the user.
However, the OpenVX standard supports only a small set of computer vision func-
tions and does not offer a mechanism to incorporate user code as part of an OpenVX
graph. As the next step, HipaccVX is presented as an OpenVX implementation and
extension, supporting code generation for a wide variety of computing platforms.
HipaccVX leverages OpenVX’s standard API and graph specification while offering
new language constructs to describe algorithms using high-level abstractions that
adhere to distinct memory access patterns (e.g., local operators). Thus, it supports
the acceleration of user-defined code as well as OpenVX’s CV functions. In this
way, HipaccVX combines the benefits of DSL design techniques with an industrial
standard specification.

Finally, AnyHLS, a novel approach to raise the abstraction level in HLS by using
partial evaluation as a core compiler technology is presented. Solely one language
and one function library are used to generate target-specific input code for two
commercial HLS tools, namely Xilinx Vivado HLS and Intel FPGA SDK for OpenCL.
Hardware-centric optimizations requiring code transformations are implemented as
higher-order functions, without using tool-specific pragma extensions. Extending
AnyHLS with new functionality does not require modifications to a compiler or a
code generator written in a different (host) language. Contrary to metaprogramming,
the well-typedness of a residual program is guaranteed. As a result, significantly
higher productivity than the existing techniques and an unprecedented level of
portability across different HLS tools are achieved. Productivity, modularity, and
portability gains are demonstrated by presenting an image processing library as a
case study.
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1
Introduction

1.1 Compute Performance is Power Constrained

In 1965, Gordon Moore predicted that the number of transistors fabricated on a
chip of the same size would double every 18–24 months. His prediction (known
as Moore’s law) has held true for the past 50 years, making transistors smaller,
faster, and cheaper to manufacture. Correspondingly, transistor gate speed has been
improved by 100x since commercial CMOS microprocessors were introduced in the
mid-80s. Correspondingly, the performance of modern uniprocessors is increased by
over 3000x at the application level [Hor14].

Moore’s law is expected to be valid for at least another decade, but exploiting
its advantages has become very hard since power became the primary constraint
on performance [IRT16]. Dennard’s constant-field scaling meant that power con-
sumption per chip area stayed constant as the transistors shrank [DGY+74]. That
is, smaller transistors operate with a faster clock frequency but require less voltage,
current, and chip area and, therefore, consume less power. However, it is discovered
that leakage current in CMOS technology rises unacceptably high when the supply
voltage is decreased to below 1V. Consequently, Dennard Scaling broke down around
2005 [Tay12], and so did the exponential growth in computing performance achieved
by transistor technology scaling.

If the frequency scaling had been continued, chips would be running at 10-30 GHz
in 2011 [Gel01], dissipating heat equivalent to that of nuclear reactors (proportional
to size) [CCF+10]. However, commercial processors hit the power wall around 4GHz
of clock frequency in the early 2000s (see Figure 1.1) [IRT16]. The rate of heat transfer
to the environment defines thermal limits. A low-cost heatsink air cooling system
that produces noise at an acceptable level for an office allows desktop computers and
servers to be powered around 130W [MCC06; Hor14]. The requirements are more
stringent for laptops (15-20W) and hand-held devices such as smartphones (2-3W)
and tablets (7-10W) [GPW+16; MCC06].
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Figure 1.1: Performance of computing has grown exponentially until the processors
hit the power wall around 4GHz of clock frequency. Despite the expo-
nential growth of the transistor count, the performance of a sequential
processor performance reached its limit. Power has become a critical
constraint on performance. (© 48 Years of Microprocessor Trend Data
by Karl Rupp used under CC BY 4.0)

1.2 Post-Dennard Scaling Era

Despite the limitations of technology scaling, the demand for computing significantly
increased in the last decade and is expected to rise even with a higher speed in the next
decade [IRT16; IDC16]. Every day, large volumes of digital data are created, replicated,
and consumed. According to International Data Corporation (IDC), this amount was
59 zettabytes (ZB) in 2020 [IDC16], and the world will create more than three times
the data over the next five years than it did in the previous five. The widespread craze
of embedded media devices made computing and communication over the internet
ubiquitous, e.g., more than one million mobile phones are sold every year [DBB+08].
Communicating through a 100-Mbs orthogonal frequency-division multiplexing
(OFDM) channel requires 210 to 290 giga operations per second (GOPS) [SJ07].
Entertainment services such as Netflix and Amazon prime have become a regular
part of daily life, demanding high-bandwidth data streaming from the "cloud "for
millions of users. Netflix is accounted for more than one-third of internet traffic in
USA [Jon18]. Advancements in science, e.g., in astrophysics, require hundred- to
thousandfold increases in data volumes from supercomputers, accelerators, sensor
networks, telescopes, satellites, and high-throughput instruments compared to a
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1.2 Post-Dennard Scaling Era

decade ago [BHS09].
In 2018, the Information and Computing Technologies (ICT) ecosystem accounted

for more than 2 % of the global carbon emission [Jon18]. For instance, training one
of the common natural language processing models can emit 626,155 lbs of carbon
dioxide – that is nearly five times the lifetime emissions of the average American
car [SGM19]. According to forecasts [Jon18], ICT will consume 8 % of total electricity
demand by 2030 in the best-case scenario, whereas more pessimistic scenarios predict
this amount to be 21 % of the whole globe. For these reasons, energy consumption
and the carbon footprint of computation have become a serious concern.

Moore’s law started to slow down around 2000 but remained valid for the last two
decades (see Figure 1.1). The International Technology Roadmap for Semiconduc-
tors (ITRS) organization expects transistor density to increase for at least another
decade [IRT16]. However, Dennard scaling almost diminished by 2012. Having an
abundance of transistors but a limited power budget encouraged computer architects
to improve energy efficiency (measured by Joules per operation (J/op)) by exploring
a new class of architectural techniques [Hor14; HP19]. This boosted the so-called
multicore evaluation [Mar14; BC11].

1.2.1 Ongoing Multicore Evaluation has Hit the Power Wall

Computer architects achieved a yearly performance improvement of 50 % during the
Dennard scaling era (between 1986 - 2002) mainly by frequency scaling of transistors
along with exploiting instruction-level parallelism (ILP) (see Figure 1.2). Processors
are designed with deep pipelines that simultaneously fetch and execute several
instructions using branch prediction techniques. However, power becoming the
primary constraint on performance, computer architects noticed that ILP wastes
significant energy in real-world applications because of branch mispredictions. For
instance, reducing a processor’s computation "waste" to 10 % requires a branch
prediction mechanism to work correctly 99.3 % of the time [HP19].

Instead, manufacturers started including more processor cores in each die to
exploit parallelism in algorithms. The power spent from a single core is decreased by
operating processor cores at a lower peak performance. This technique decreases the
performance of a single core but multiplies the overall performance and increases
energy efficiency since several cores are able to perform operations in parallel using
the power budget at the thermal limits.

This approach was initially beneficial but quickly reached its diminishing returns
at a point where increasing energy efficiency causes huge performance penalties
and vice versa [Hor14]. Consequently, the era of "dark silicon" started, where frac-
tions of a chip were turned off, dimmed to idle or underclocked to decrease power
dissipation. These approaches are seen as »spending« area for »buying« energy
efficiency [Tay12].
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Figure 1.2: Forty years of growth in computer performance, where the benchmarks
use integer programs. (© Used with permission of ACM, from [HP19];
permission conveyed through Copyright Clearance Center, Inc.)

Furthermore, real-world applications are never fully parallel or sequential; in
fact, they vary significantly. As Amdahl states: "the effort expended on achieving
high parallel processing rates is wasted unless it is accompanied by achievements in
sequential processing rates of very nearly the same magnitude " [Amd67]. Therefore,
executing an application with an optimal parallelization factor according to Amdahl’s
law remains a complex problem for general-purpose computing despite the research
efforts summarized below: The concept of turbo modes is one solution to avoid
performance decrease for serial code, where the supply voltage of one core increases
while the other cores are put in a low-power state. Dynamic voltage and frequency
scaling (DVFS) techniques are developed to optimize battery life for mobile processors
by adjusting frequency and supply voltage. Finally, three classes of multicores have
emerged to tackle the limitations of Amdahl’s law: symmetric, asymmetric, and
dynamic architectures [HM08]. While the symmetric multicore processors include a
number of the same processor cores, the asymmetric architectures consist of one or
more cores that are more powerful than others and utilized to execute sequential code.
Dynamic multicore chips provide a more balanced parallelism support that allows
configuring multiple small cores to a larger one at runtime, similar to superscalar
processors [MSD17; IKK+07]. However, scheduling software tasks for asymmetric
and dynamic multicore chips is difficult and often adds overhead.

What is more, multicore processors periodically waste energy to communicate
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1.2 Post-Dennard Scaling Era

Figure 1.3: 70% of the processor’s energy is spent on supplying data and instructions,
whereas only 6% is spent on arithmetic operations. (Figure reprinted
from [DBB+08], © 2008 IEEE)

and synchronize with each other. The data distribution to cores adds additional
overhead because of the underlying complexity. The research on multicore chips is
ongoing. However, the performance improvements are decreased to a few percents
per year (see Figure 1.2). The fraction of a multicore chip running at full peak
performance frequency decreases with each process generation [Tay12; IRT16].
For these reasons, multicore processing is not seen as the final solution to satisfy
exponentially increasing customer demand for performance [Hor14; HP19; Tay12;
IRT16].

1.2.2 Supplying Data and Instructions has High Energy Cost

Modern processors spend much more energy on supplying data and instructions
than actual computations. For instance, Dally et al. ’s analysis on an embedded
processor [DBB+08] shows that only 6 % of the processor’s energy is used for per-
forming arithmetic operations (see Figure 1.3). Of this 6 %, 59 % is spent on useful
computations, while 41 % is spent on operations like calculating memory addresses
or updating loop indices [DBB+08]. The control logic of the fetch-decode-execute
architecture uses 24 % of the processor energy. Further research [DBB+08] shows
that an average processor fetches 1.7 instructions for every useful instruction, where
algorithmic calculations are considered as useful operations.

This huge inefficiency is better understood when the instruction energy cost
breakdown shown in Figure 1.4 is analyzed. An addition instruction costs 70 pJ,
while a 32-bit integer addition operation costs only 0.1 pJ. This means only 0.15 %
of the energy consumption is used for the actual computation, whereas 55.65 %
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Figure 1.1.7:  Power breakdown of an 8 core server chip. Figure 1.1.8:  Energy efficiency of specialized processing, from [10].

Figure 1.1.9: Rough energy costs for various operations in 45nm 0.9V.
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Figure 1.4: Instruction energy cost breakdown of a simple in-order processor for
various operations in 49nm 0.9V. (Figure reprinted from [Hor14], © 2014
IEEE)

overhead is introduced solely for the control logic. It is also clearly seen that memory
access costs significantly more than arithmetic operations. External memory (DRAM)
access costs 1.3-2.6 nJ, spending 130x to 260x energy than the cache access. Yet,
access to the cheapest cache for the processor shown in Figure 1.4 consumes 10 pJ,
which is 100x of a 32-bit integer addition and 2.7x of a multiplication.

A cache is a small on-die memory that is fast and more energy efficient. Modern
processors use multi-level caches to minimize external memory access. This decreases
the external memory (DRAM) access, thus significantly optimizes energy efficiency.
However, caches still consume roughly half the energy of the processor [Hor14] and
work well only when the locality is very high, and data is not very large [HP19].

1.2.3 Specialized Hardware Provides Energy Efficiency

Flexibility (programmability) costs energy efficiency, as shown in Figure 1.5. Proces-
sors are designed to be more flexible at the cost of inefficiencies, such as high control
overhead and energy waste caused by a complicated memory hierarchy.

FPGAs and ASICs are quite different compared to programmable processors such
as CPUs and GPUs since they do not follow the concept of an ISA. An ISA is an
abstract computer architecture model that serves as an interface between software
and hardware. It defines the format of the instructions and how they are fetched
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1.1: Computing’s Energy Problem: (and what we can do about it)
© 2014 IEEE 
International Solid-State Circuits Conference 30 of 46
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Figure 1.5: Specializing hardware implementations for ASIC could improve energy
efficiency by 100x. 20 chips from ISSCC, the top international conference
in chip design, over 5 years (2009-2013) are analyzed in terms of energy
efficiency. (© Used with permission of Springer, from [MB12]; permission
conveyed through Copyright Clearance Center, Inc.)

from program memory, decoded, and then executed on a number of arithmetic logic
units (ALUs). ALUs operate on a fixed memory system – that is, data resides in a
register file or is loaded from memory.

Domain-Specific Architectures

Domain-specific architectures (DSAs) are ISA designed for a class of applications [HP19].
They are often Turing-complete, but they provide good performance only for the tar-
get application domain. DSAs include tensor processing units (TPUs) developed for
artificial intelligence (AI), GPUs that exploit massive data-level parallelisms (DLPs) in
application domains such as graphic processing, and various digital signal processor
(DSP) architectures designed for different classes of applications, e.g., audio process-
ing. As shown in Figure 1.5, DSAs are able to provide 10x better energy efficiency
since they allow

(i) tailoring control- and data-path of an ISA to a target application domain
for exploiting parallelism more effectively. For instance, single instruction,
multiple data (SIMD)1 engines reduce instruction overhead and exploit DLP

1Single Instruction, Multiple Data (SIMD) units are CPU components for vector processing, i.e., they
execute the same operation on multiple data elements in parallel.
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at the cost of flexibility. The optimal size of a SIMD unit and amount of
SIMD engines utilized for an ISA depends on the target application and the
performance goal. GPUs have many cores with their own SIMD ALUs, called
single instruction, multiple threads (SMT). Similarly, a DSA could be designed
as a very long instruction word (VLIW) or as an out-of-order superscalar
processor.

(ii) deploying a more suitable memory hierarchy, often controlled by the user for
the target application, instead of a standard cache mechanism. This special-
ization decreases external memory access as well as energy and performance
waste caused by cache misses.

(iii) using a lower precision, e.g., 8-16 bit integer arithmetic units instead of floating
point.

DSAs are often controlled by a CPU, and called accelerators. Today’s computing
systems are typically heterogeneous, consisting of different computing architectures
for different tasks. In fact, modern processor chips consist of a bunch of dedicated
circuits and accelerators, such as GPUs. This diversity makes both designing and
programming today’s computing platforms challenging.

Application-Specific Integrated Circuits

Chips dedicated to one or a limited set of applications sacrifice programmability for a
few orders of magnitude better energy efficiency. Designing dedicated chips (ASICs)
allows

(i) utilizing only the required resources,

(ii) reducing the bit-precision to a minimum,

(iii) exploiting the parallelism of an algorithm with a dedicated data path, thus
achieving the targeted throughput with a slower clock frequency,

(iv) eliminating unnecessary instructions and the control logic that would be
required for fetch-decode-execute stages of an ISA, and

(v) reducing memory access by exploiting locality and the overheads of a compli-
cated memory hierarchy.

However, designing a chip specific to one application is often not worthwhile even
when programmability is not required or inaccessible for application developers
due to its high monetary cost and lengthy time-to-market. Furthermore, the costs
of designing chips increases even more with the transistor technology scale since
designing, verifying, and validating more transistors are more complex tasks.
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1.2 Post-Dennard Scaling Era

Field-Programmable Gate Arrays

In between dedicated chips and processors, FPGAs provide both programmability
and high specialization of the hardware. Similar to dedicated chips, an FPGA im-
plementation can be tailored and highly parallelized for the target application by
utilizing only the necessary amount of resources. An FPGA consists of a mass of
reconfigurable digital logic cells surrounded by a sea of reconfigurable interconnects
(conductors and switches) for wiring up the logic cells. Reconfiguration happens in
the field. The end-user, who can implement any logic function—even a processor—,
is only limited by physical constraints.

FPGAs especially shine whenever huge amounts of data can stream through the
FPGA circuitry while being processed at high speed, low latency, and with high
energy efficiency since instruction decoding becomes needless and off-chip memory
accesses can be reduced to a minimum. Higher throughputs are achieved via very
deep pipelines with hundreds (even thousands) of stages that are not stalled by
branch mispredictions. This paradigm is also known as data-flow computing, where
a great many computing units (CUs) can work in parallel, similar to GPUs. However,
FPGA designs can be fully application-tailored since each CU can be specialized
differently.

A drawback of FPGAs compared to ISAs, e.g., state-of-the-art CPUs and GPUs,
is that typically FPGA implementations offer a lower achievable clock frequency.
Another is the expensive market prices, caused by many factors, including large
chip area, engineering cost, and lower market volume. Therefore, FPGAs are used
in industry when they provide significantly better results regarding a design goal,
which could be power, energy, or performance. Mostly, FPGA implementations
provide better results only when the hardware implementation of an application is
tailored (specialized) to its specification. That is, a custom memory hierarchy, data
path, and control path have to be implemented to exploit a given application’s spatial
and temporal locality.

1.2.4 Specializing Software for Hardware is Crucial for
Achieving High Performance

The performance of a programmable architecture depends on how fast software
does its task on that hardware. Typically, programmers write software in a high-
level programming language such as C++ or Python and compile it to a machine
code (instructions) to obtain an executable binary for a device. The content of a
machine code depends on the target device’s instruction set and the compiler that
translates the high-level program description into instructions. Through this phase,
compilers apply transformations on user code to improve performance, yet these are
not enough to achieve optimal performance. Often, modifying user code can lead to
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Figure 1.6: Software that runs hardware has a dramatic effect on performance. This
is shown with five different versions of a matrix-multiplication program.
The width and height of matrixes are 4096-by-4096, and the initial code is
written with three nested loops using Python’s xrange. The results show
that optimizing a program for a target device significantly improves
performance. However, this requires rewriting the program, leading to
non-portable, lengthy code. For instance, hereby, the fastest program
is written with AVX instructions and 20x longer than the slowest code.
(© Used with permission of ACM, from [HP19]; permission conveyed
through Copyright Clearance Center, Inc. The data is from [LTE+20])

performance gains of several orders of magnitude.
One factor that affects the performance of a program is the quality of an algorithm

– that is, a program is considered to be more efficient when it requires less compu-
tational work or fewer resources to accomplish a task. Typically it is hard to find
an optimal algorithm that provides the best performance for all possible inputs and
the selected computing platform. For instance, many-core processors perform better
when an algorithm has fewer sequential dependencies. Similarly, the time spent on
each instruction depends on the target device. Thus, the optimality of an algorithm
depends on how the target platform executes that algorithm.

Another factor is how well a description of an algorithm (software) is tailored for a
specific architecture. Leiserson et al. [LTE+20] show that a performance improvement
of 62.9x is achieved by rewriting the same matrix multiplication algorithm (see Fig-
ure 1.6). Initial python code is written with three nested loops. Simply rewriting this
in a more efficient language increases the speed by 47x. Then, restructuring the code
to leverage specific features of the underlying processor improves the performance
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by 1300x faster. These include parallelizing loops to utilize all 18 processor cores and
exploiting memory hierarchy. In the last step, Intel’s Advanced Vector Extensions
(AVX) instructions are used to better utilize the SIMD units. These optimizations
require programmers to understand the underlying computing platform and consume
a considerable time. The final code becomes 20x longer than the initial one, which
is hard to read and understand. Furthermore, the optimized code is not portable –
it cannot be run on platforms that do not support AVX instructions and perform
poorly on devices with fewer processor cores or a different memory system.

1.2.5 The Cost of Mapping Algorithms to Specialized
Hardware is High

Despite the enormous benefits, designing a specialized accelerator is not available to
a great portion of application developers because of its high cost. The expensive cost
of lithography masks and tooling, in addition to the high engineering effort required
for place and route, and verification, makes ASIC design unattractive for small-scale
products. FPGAs do not entail the aforementioned costs and offer higher flexibility
by reconfiguration of logic. However, one needs to design hardware for FPGA-based
acceleration (similar to ASIC design), unlike traditional software programming. In
fact, a hardware implementation that is not specialized for the target algorithm
is rarely beneficial since FPGAs have significantly slower clock frequency (speed)
compared to alternative solutions, i.e., CPUs, GPUs, and mostly higher price per
processing capacity.

An ASIC or an FPGA implementation, mostly, needs to be controlled by a CPU
in a heterogeneous system. This introduces further development costs for drivers
and controlling software. What is more, executing portions of an algorithm by
the controlling software (instead of an additional specialized logic, which might
require additional memory copies) often optimizes overall energy efficiency and
performance.

In summary, designing a hardware accelerator, deploying it in a heterogeneous
system (e.g., FPGA/CPU system), and optimizing the software is a complex and time-
consuming task, which requires both hardware design and software programming
skills as well as using different tools and programming languages. Modern systems-
on-chips (SoCs) and data centers handle the complexity of the computing tasks,
performance, and power requirements by such heterogeneity. However, the afore-
mentioned costs hinder the development of such systems for small-scale products. A
major aim of this thesis is to decrease the development costs of application-specific
hardware design and controller software programming for a large class of image
processing applications.
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1.3 Traditional Hardware Design Flow

Today’s industrial practice separates algorithm development, software optimiza-
tion, and hardware design tasks to different developers, teams, or departments in a
company. Many tools and frameworks increase an algorithm developer’s produc-
tivity by hiding low-level programming details. However, this is not the case for a
hardware designer. Figure 1.7 shows the typical design flow for designing digital
circuits for a given algorithm.

A hardware designer starts with an algorithm (or compute-intensive parts of it)
and a set of product requirements. The behavior of an algorithm is often described as
a software program that abstracts from the execution model of an ISA (e.g., sequential
execution of loops). The product requirements contain physical constraints such as
chip area, number of FPGA resources, or design goals such as speed and throughput.
Design constraints and goals highly depend on circuit implementation. Therefore,
a team of chief architects (or the hardware designer) makes a rough estimation
in the initial phase. This point in the design flow is called system-level abstrac-
tion level [GAG+09; Tei12], which also deals with early design space exploration
of alternative hardware/software implementations, specification of interfaces and
protocols, and ultimately, computing system design. This thesis takes as input a sys-
tem specification (e.g., an FPGA/CPU system with a finite number of resources) and
concentrates on solving the challenges of accelerator design for a given algorithm2.

Traditionally, accelerator hardware is designed at register-transfer (RT) level. At
this abstraction level, a digital circuit is described by modeling digital signals flowing
between registers, their timing, and operations performed on them. Typically, a
digital circuit contains two parts: a datapath and a control logic. The datapath consists
of data storage (e.g., memories, multiplexers (MUXs), data buses) and computational
circuits that produce output signals from input data (e.g., ALU, multipliers). The
control logic produces control signals for the datapath (e.g., a finite state machine
with data paths (FSMDs)). The behavior of a circuit is manually described clock cycle
by clock cycle. Since all these low-level concerns are exposed to hardware designers
in the traditional flow, design times are measured in weeks or months for software
development tasks that usually take hours or days. Furthermore, reiterating an
RTL design is a tedious task, even for experts: Small modifications require spending

2Mapping an algorithm into a heterogeneous system is a complex task. Electronic system-level (ESL)
design methodologies [GAG+09; Tei12] offer a systematic approach to cope with this complexity,
refining from a high-level functional specification to a low-level physical implementation. Tools
and methodologies developed for profiling and partitioning an input algorithm for hardware-
software co-design help specify design requirements and accelerator systems. This is a complex
task and not the scope of this thesis. However, we will use the well-established terminology used
to define abstraction layers in an ESL design flow and discuss how our work could contribute to
the implementation of top-down ESL methodology in Chapter 7.

12



1.3 Traditional Hardware Design Flow

Specify Algorithm
Define Design Goals &

Design Constraints
(Timing, Physical)

Specification (Input)

Functional Modelling of
Hardware Behaviour for
Simulation & Verification

Hardware Design
at RTL

Logic Synthesis &
Technology Mapping

Physical Design
(Place & Route)

Generate FPGA
Bitstream

>
FPGA

Fabrication &
Packaging

>
ASIC

 

 

Ô

Ô

ÔÔ

Mathematical Description, Pseudo Code, . . . ,
Software Code (MATLAB/Python/C/C++/. . . )

Timing/Area Constraints,
Requirements (e.g., XML)

Simulation/Verification Code (e.g., HDL, System Verilog, SystemC)

RTL Code (Mix of Behavioral and Structural Descriptions)

Circuit Level Netlist (Structural)

Figure 1.7: Traditional hardware design flow, which takes as input the specification of the
algorithm, design specifications, and design constraints (denoted by green).
Hardware design and synthesis tasks are colored blue, whereas inputs to these
tasks are colored beige. The   denotes the manual work of a hardware designer
and Ó denotes the tasks automated by electronic design automation (EDA)
tools.
A hardware designer must understand the input algorithm to design a circuit at
RTL, which is an error-prone task that might take days to months. Typically, a
test code is written for simulation and verification purposes before developing
the hardware, mostly in a HDL using non-synthesizable behavioral language
features. Further steps include the tasks of logic synthesis and physical design.
Outputs of every design step must be simulated and verified, which might result
in reiterating the RTL description and/or changing the design specifications.
These requirements make hardware design time-consuming and complex for
programmers without hardware design expertise.
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many hours to debug the errors. Modifying the implementation of an algorithm
for different design goals/constraints often entails designing a completely new RTL
circuit.

Fortunately, mapping RTL descriptions to billions of transistors is highly auto-
mated through EDA tools. Given an RTL description, multiple synthesis steps are
applied at the RT-level, gate-level, and circuit level (from abstract to concrete). First,
control flow (state machines) and datapath are parsed from the given user code.
Then, logic synthesis generates a logic gate network (also called gate-level netlist)
from the Boolean expressions. This is a structural representation of the generated
circuit in terms of technology-independent logic gates (such as OR, NOT, AND)
and wires. Then, technology mapping transforms the gate-level logic into a set of
pre-characterized and pre-designed gate layouts (cells) from a specific technology
library. In the case of FPGAs, the technology mapping transforms a gate-level logic
into an equivalent netlist of lookup table (LUT) blocks. Various optimizations are
applied before and after technology mapping to increase design quality without
changing functionality, e.g., synthesizing circuits that use fewer resources and/or
perform faster.

Finally, the physical design step transforms the circuit-level netlist into a geometric
description. The main concern of the physical design is to define the cells’ positions
and the routing between them by minimizing the chip area and wire length. A
typical ASIC physical design cycle has the following main steps: logic partitioning,
floorplanning, power planning, placement, clock tree synthesis, routing, and timing
closure. Similarly, the FPGA physical design flow configures actual resources (e.g.,
LUTs, DSPs) and wiring connections.

Producing an actual ASIC from an RTL description still requires verification
efforts in every step. Companies employ physical design experts to decrease the
risk of producing incorrect circuits, thus wasting a tremendous amount of time and
capital. FPGA designers have to verify the functionality and timing before and after
physical design, but this is significantly easier. However, designing RTL circuits
requires hardware design knowledge, where the learning curve is steep. Eliminating
the required hardware design knowledge in RTL design would make FPGAs more
amenable to software developers as an acceleration platform.

To sum up, most of the EDA tools take an RTL description as input for simulation
and synthesis of circuits (as in Figure 1.7). This design flow has many limitations
that decrease productivity:

(i) A hardware designer needs to understand the algorithm and extract the ben-
eficial parallelism (i.e., exploit temporal and spatial parallelism) by looking
at a source code initially written for sequential program execution. The de-
sign task becomes even more challenging when the code consists of function
calls to a compiled runtime library where the code is not visible or low-level
optimizations specific to an ISA (e.g., AVX instructions for an Intel processor).
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(ii) Designing hardware at RTL is a time-consuming and complex task where
developers are exposed to low-level details. At this abstraction level, designers
describe a digital circuit by modeling digital signals flowing between registers,
their timing, and operations performed on them. The behavior of a circuit is
described by writing finite state machines (FSMs) to produce control signals
for every clock cycle and a datapath such as an ALU to produce output signals
from input data. A custom memory architecture is designed to increase data
reuse and decrease off-chip communication. The precision of the memory
elements and operations is defined at the bit level.

(iii) HDLs such as Verilog or VHDL provide language abstractions to describe
hardware at a low level but require significant coding effort and verification
time. They lack language features for writing generic and modular code, which
are common in software programming languages. This makes design itera-
tions time-consuming and error-prone, even for experts: The code needs to be
rewritten for different performance or area objectives. In modern hardware
description languages such as Chisel [BVR+12], VeriScala [LLQ+19], and My-
HDL [Dec04], programmers can create a functional description of their design
but stick to the RTL.

(iv) Furthermore, the gap between the concerns of algorithm development and
hardware design prevents exploring optimizations at the algorithm level. Ex-
ploring/optimizing algorithms for ASIC/FPGA requires hardware design knowl-
edge, whereas modifying algorithms for optimized hardware implementations
requires algorithm knowledge.

High-Level Synthesis (HLS) was introduced to remedy these issues and has received
much attention over the last 50 years.

1.4 High-Level Synthesis

High-level synthesis (HLS) is an automated method that generates a structural
representation of a circuit at the RTL from a behavioral description at the algorithmic
level. The input description could be untimed or partially timed [CLN+11]. The
generated circuit must have the same functionality as the behavioral description.
The main goal is to increase the productivity of hardware designers by raising the
abstraction level from RT level by automating the low-level tasks such as register
allocation and clock-level timing.

Figure 1.8 shows the design flow of a typical HLS tool. It starts by parsing (or
compiling) the (behavioral) input description into a formal model. This model must
be suitable for being used as an intermediate representation of the HLS flow, where
data dependencies and control constructs, such as loops and branches, are expressed
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within an acceptable memory footprint. It must also be capable of representing
transformations applied for synthesis and optimization tasks, such as loop unrolling
and loop merging. Many HLS tools use a control and data flow graph (CDFG)
representation [NPP+20] for this purpose, where edges represent the control flow
and nodes represent a sequence of statements with no branches, internal exit and
entry points [CGM+09; GAG+09].

Further analysis and transformations are required to expose parallelism between
nodes, extract useful information for the synthesis tasks, and minimize the effects
of syntactic variations of the input code (behavioral description) on the generated
circuit. Typically, the initial parsing/compilation is followed by optimizations such
as strength reduction, dead code elimination, and constant folding. A great portion
of HLS compilers rely on the algorithms used by software compilers for these opti-
mizations and use the Low Level Virtual Machine (LLVM) compiler infrastructure
for the compilation of user code.

In HLS, synthesis refers to three major tasks: allocation, scheduling, and bind-
ing [GR94; Tei12]. The allocation task deals with selecting the hardware resources
that are necessary to map the behavioral functionality. It defines both the type
and amount of resources according to a set of design constraints. The allocated
resources could be for functional units, storage, or communication and interface
synthesis. Defining the memory hierarchy, clocking scheme, and pipelining style is
part of the allocation tasks. Achieving higher performance often requires using more
resources. For instance, allocating multiple adders to compute in parallel increases
the performance but uses more chip area. The allocation step aims to optimize the
trade-offs between the performance requirements and resource usage constraints.
For this, the allocation tools need to have exact specifications of resources (in terms
of their area and performance values) as well as accurate metrics to reflect perfor-
mance and resource usage [GR94] to help the user to select the appropriate design
for his/her needs. Typically, allocation algorithms select from an RTL component
library, in which specifications of common hardware building blocks such as physical
components for the target chip design process or FPGA resource types are stored.

The scheduling maps the behavioral description, i.e., operations and memory
access, into control steps (or states), and ultimately, to clock cycles. Existing schedul-
ing algorithms have different strategies according to optimization goals and design
constraints. For instance, a resource-constrained scheduling algorithm optimizes
performance, i.e., minimizes the number of clock cycles for a given set of resources
and clock cycle length. A time-constrained scheduling algorithm minimizes the
number of resources (i.e., functional units) for a given number of control steps. A
scheduler can assign multiple operations to the same control step or an operation to
multiple control steps (by multicycling): Operations with no data dependencies could
simply be assigned to the same control step(s) for parallel processing. Alternatively,
multiple operations with small component delays could be chained according to their
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Figure 1.8: Typical HLS tool flow takes as input a behavioral description and gener-
ates a fully timed description of a circuit at RTL. The synthesis refers to
three major tasks: allocation, scheduling, and binding. The generated
code typically describes a control path and a data path in the form of an
FSMD.

data dependencies to schedule them into fewer control steps. These methods increase
performance by decreasing the total number of control steps, thus, the latency of
the synthesized hardware. Multicycling an operation with a high component delay
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decreases the time spent for a control step; thus, it improves the achievable clock
frequency.

The binding assigns each operation to a specific hardware resource. That is,
variables are bound/mapped to storage units (e.g., registers, register files, memory
units), operations are assigned to functional units (e.g., adders, multipliers), and
data transfers to interconnection units such as multiplexers or data buses. The
binding algorithms optimize area usage by resource sharing, where nonoverlapping
values/operations or mutually exclusive data transfers are mapped to the same
hardware resource. For instance, when possible, using (sharing) the same adder for
multiple addition operations without changing the functionality instead of utilizing
multiple adders reduces the area cost. Doing so, fewer resources are utilized in the
actual hardware (fewer stalls in their execution), and the utilized hardware is used
more efficiently. Another goal of binding algorithms is reducing the wiring used in
the synthesized hardware. For instance, utilizing regular structures like register files
or n-port memories instead of distributed registers reduces the interconnection cost.

Finally, an RTL code is generated from the output of the synthesis tasks (allocation,
scheduling, and binding). The generated code typically describes a control path
and a data path in the form of an FSMD. The FSMD model is expressive enough to
represent both control-dominated and data-dominated circuits [GR94]. The states are
mapped to clock cycles in the implementation. The datapath is mainly defined from
the output of allocation and binding [WCC09]. The controller FSM is synthesized
using the information derived by scheduling and binding steps [WCC09].

Usually, the behavioral input description of an HLS tool is a magnitude of an order
shorter than its RTL implementation. In the traditional flow (see Section 1.3), the
tasks of allocation, scheduling, and binding must be done by hand. This becomes
a complex task very easily. For instance, using multi-cycle pipelined hardware
is crucial for implementing floating point operations in hardware to avoid slow
clock frequencies or/and large circuits. That is, operations such as additions and
multiplication take more than one clock cycle to finish. Even for implementing a few
operations, a hardware designer needs to deal with allocating the right amount and
type of resources, coming up with an efficient schedule, and mapping the operations
to the allocated resources. Such a design uses unnecessary resources unless the
arithmetic circuits are shared among different operations. What is more, all of these
tasks need to be done again when design constraints are changed, i.e., the designer,
most probably, is required to allocate a new set of resources better suited to the
task. For instance, high-speed multipliers not using significantly more area resources
require more clock cycles to finish the task (i.e., they operate at a higher clock
frequency at the cost of a higher latency). Changing the multipliers to accelerate an
existing hardware requires repeating the allocation, scheduling, and binding steps,
thus the RTL code. A similar scenario in HLS does not require modifications to the
behavioral description since the functionality remains the same. Hence, HLS eases
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exploring the design space of a hardware implementation, increases the productivity
of hardware design, and improves the readability, maintainability, and extensibility
of its description in code.

1.4.1 A Brief History of HLS Tools: Analysis of Past Successes
and Failures

HLS is still not fully embraced by the community, i.e., neither by algorithm/soft-
ware developers nor by hardware designers, despite the research interest almost
over the last five decades. It is essential to understand the reasons for the failure
and success stories of past HLS tools as well as the lessons learned to go one step
further. We refer to [NSP+15; CLN+11; NPP+20] for a detailed look at the history and
evaluation of HLS tools, and to [CLN+11; MS09; BRS13] for analysis of past failures.
Here we provide a brief overview.

Early works in the 1970s have produced pioneering HLS tools, such as CMU
design automation system (CMU-DA) [PTS+79]. These tools were already based
on hardware synthesis, doing the tasks such as datapath allocation and controller
generation, as well as code transformations used in software compilers, such as
dead code elimination, common subexpression extraction, and constant propagation.
Later in the 1980s and the early 1990s, many fundamental HLS techniques were
developed [GR94; Mic94]. These include scheduling algorithms (e.g., [PK89; PPM86]),
resource sharing techniques (e.g., [KP87; PK86]), and design space exploration solu-
tions (e.g., [JPP88]). The so-called layered approach that separates the tasks of code
compilation, synthesis, and code generation (see Figure 1.8) became well-established.
Correspondingly, a number of HLS tools have been developed in this era by academia,
e.g., ADAM [GKP85], HAL [PK86], MIMOLA [Mar84], Hercules [DKM+90], Hyper-
LP [CPR+92], as well as by industry, e.g., Cathedral [DRS+86], Yorktown Silicon
Compiler [Cam88], BSSC [YJH+87]. These efforts led to many important innovations
that have built the foundations of HLS. However, RTL synthesis was not mature back
then. Hence the HLS tools developed in this era could not synthesize circuits that
deliver high quality of results (QoR). In the hardware design context, QoR design
refers to the ratio between the performance of the circuit (latency, throughput) and
design cost (circuit area, energy consumption).

Subsequent to improvements in RTL synthesis, the so-called second generation of
HLS tools has been built by the industry [CLN+11; MS09]. Major EDA companies
offered commercial HLS tools, including Behavioral Compiler [Kna96] from Synopsis,
Visual Architect from Cadance, and Monet [Ell99] from Mentor Graphics. Further-
more, semiconductor companies such as IBM, Siemens, Philips, and Motorola built
proprietary HLS tools [BOS+95; BKL+93; LvMvdW+91; KCG+98]. The performance of
HLS tools was promising, but they failed to be an integral part of the digital hardware
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design flow. Users were expected to learn behavioral HDLs to describe their hard-
ware, but they could not rival with handwritten RTL designs. In fact, they provided
poor results for control-oriented applications. EDA tools could not support HLS
tools, yet good enough, to iterate over the area, power, and performance parameters
of final ASICs [CLN+11]. The timing closure problem between logic and physical
design only matured in the late 2000s. Very little or no support is given for interface
synthesis, validation, and system integration. Despite all these limitations, HLS tools
were overpromoted, causing high expectations, thus high disappointments [MS09].

Interest in HLS has been piqued again in the last two decades. The improvements
in FPGA technology and the spread of their use have been two of the factors that
derive this interest as well as the critical need for energy efficiency gains in the post-
Dennard scaling era (see Section 1.2), widespread use/need of heterogeneous SoCs,
and the increased design complexity caused from huge silicon capacity. HLS has been
seen as a great way to map algorithms into hardware, especially for FPGAs, which
requires less validation compared to designing ASICs and is significantly cheaper. In
fact, a number of HLS tools solely target FPGAs and generate device-specific code to
achieve even a higher performance [CLN+11].

The latest generation of HLS tools seem to have higher commercial success than
the previous ones [CLN+11; MS09; BRS13; NSP+15]. These tools aim to attract pro-
grammers with very little or no hardware expertise by offering a programming
language that is more familiar, mostly based on C or C++. They have become capable
enough to provide high-quality results, especially for DSP and datapath-oriented
applications. Learned from the past, tool developers are more careful at promoting
their tools while focusing on domain-specific applications where HLS are more suc-
cessful and FPGAs provide great benefits [CLN+11; NSP+15]. Furthermore, they offer
system-level integration tools (e.g., Intel OpenCL SDK for FPGAs, Xilinx Vitis) for
integrating generated hardware into a heterogeneous system. For instance, existing
HLS tools decrease the time spent communicating a hardware implementation via a
peripheral component interconnect express (PCIe) interface to an order of minutes
for a non-experienced developer from months of work at RTL. They even offer sys-
tem synthesis to map program parts to either software or hardware. This enables
software-like development for library design and verification.

Most of the existing HLS tools now support integrating RTL code descriptions into
a higher-level description (often as a black box). This allows using high-detailed low-
level descriptions and legacy code as part of a high-level description. Furthermore,
existing HLS tools allow users to simulate and verify their code at every level of design
(i.e., algorithmic level, RTL, post-synthesis) by automatically generating simulation
files from a high-level description. This increases the productivity of hardware
system design significantly.

What is more, HLS tools significantly ease design space exploration. This is signifi-
cantly important because hardware designers expect different design specifications to
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result in different hardware implementations (with different area, power, and speed
parameters) even when the functional description is the same. For instance, current
tools support modifying the description of a hardware architecture for a faster or a
slower clock frequency, which mostly requires changing a parameter defined by a
pragma. They mostly fail at finding the implementation variations when a different
memory implementation or a complex control structure is required. Yet, the required
code modifications are significantly less compared to applying similar changes to a
hardware description at RTL. It must be noted that support for writing generic code
in programming languages such as C++ is significantly better than languages at RTL,
e.g., Verilog, VHDL. Therefore, providing generic descriptions that support different
design parameters without modifying the code is way easier when an HLS tool is
used.

In summary, improvements in EDA technology as well as HLS techniques (to a
level that rivals with handwritten implementations), higher motivation to embrace
a new design methodology (e.g., caused by the need for energy efficiency, the rise
of FPGAs, and increased complexity of huge silicon capacity), focusing on domain-
specific applications, offering system-level integration tools along with a familiar
language and a mechanism to explore design space have been seen the key features
that the latest generation of tools to achieve more commercial success.

1.4.2 Limitations of Existing HLS Tools

Most of the algorithm developers are not familiar with hardware design at all.
However, today’s HLS tools require a description of hardware behavior (how the
circuit works) rather than its functionality (what the circuit does), as shown in
Figure 1.9. Even when a program optimized for an ISA (e.g., a CPU) is successfully
compiled through current tools, the generated circuits deliver unacceptably bad
performance or use too much area, demolishing the benefits of using specialized
hardware. Therefore, users have to deal with hardware design tasks such as exploiting
the parallelism of an algorithm for its hardware implementation, coming up with
an application-specific memory architecture reducing off-chip communication, and
minimizing bit-precision in order for HLS tools to synthesize hardware circuits
delivering expected performance within an acceptable resource budget. Then, they
are expected to describe the hardware implementation of an application using the
language abstractions of software (e.g., registers and arrays to specify a memory
hierarchy, and loops to describe the execution of a hardware pipeline). This makes
the learning curve steep for programmers with no hardware design experience.

Most of the existing HLS tools take as input a behavioral description written
in a popular programming language, such as C, C++, or OpenCL. However, they
support only a subset of these programming languages. That is, users are not allowed

21



1 Introduction

Specify Algorithm
Define Design Goals &

Design Constraints
(Timing, Physical)

Specification (Input)

Describe Hardware Behaviour
using subset of a programming language

extended with hardware abstractions

Add HLS (compiler)
tool pragmas and directives

without refactoring code

High-Level Synthesis
(using existing tools)

Logic Synthesis &
Technology Mapping

Physical Design
(Place & Route)

Generate FPGA
Bitstream

>
FPGA

Fabrication &
Packaging

>
ASIC

  

Ô

Ô

Ô

ÔÔ

p Unrecommended Way:
Generally ends with
compilation failure

or poor performance

✓ Recommended
Way

Mathematical Description, . . . ,
Pseudo Code, Software Code
(MATLAB/Python/C/C++/. . . )

Timing/Area Constraints,
Requirements (e.g., XML)

Input Code for an HLS tool
(C++ + pragmas + synthesis directives, . . . )

RTL Code Simulation Code

Circuit Level Netlist (Structural)

Figure 1.9: Hardware design flow using existing HLS tools. It takes as input the specifica-
tion of the algorithm, design specifications, and design constraints (denoted by
green). Hardware design and synthesis tasks are colored blue, whereas inputs
to these tasks are colored beige. The   denotes the manual work of a hardware
designer, and Ó denotes the tasks automated by synthesis tools.
In order to synthesize circuits providing good quality results in terms of re-
source usage and performance, users have to describe the behavior of hardware
(how the circuit works) rather than its functionality (what the circuit does).
Therefore, current HLS tools do not eliminate the need for hardware design
knowledge. HLS users can use a common programming language, such as C, C++,
or OpenCL, extended with tool-specific language features and pragmas. This
mixed-use of hardware and software abstractions makes the input description
cumbersome, tool-specific, and not portable.
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to use language features such as pointers, dynamic memory allocation, threads,
and recursion. HLS tools such as Vivado HLS, LegUp, Bambu, and Catapult-C
usually use different C dialects [NSP+15]. They extend the input language with
tool-specific language features and/or pragmas since these programming languages
are not designed for hardware description (i.e., they are tailored for execution on
ISAs). However, pragmas cannot be used in a modular way because the preprocessor
already resolves them (e.g., pragmas cannot be passed as function parameters), and
they are tool-specific [ÖPM+20a].

Another problem is that syntactic variations affect the performance of HLS. That
is, for instance, using if-else statements instead of a switch statement leads to a
completely different hardware implementation even when the same hardware is
described3. These limitations force users to tune their code for one specific HLS
tool. Similarly, an input code tuned for an HLS tool performs poorly even when it is
successfully compiled and executed on a CPU or on another ISA. Furthermore, the
lack of standardization in HLS languages and compilers hinders the portability of
code across them.

1.5 Our Approach: Raising the Abstraction Level in
HLS for a Restricted Application Domain

We believe that the next step for HLS requires innovations at the language level.
More specifically, the abstraction level in HLS must be raised to the algorithm descrip-
tion (what the circuit does?) from its implementation (how the circuit works?) to
deliver the promise of bridging the productivity gap between algorithm development
and its hardware design.

As discussed in Section 1.4.2, modern HLS tools offer a familiar language for
HLS, but they expect users to write tool-specific and cumbersome code, mixing the
programming abstractions of software and hardware descriptions. Writing such a
description is only possible by understanding both hardware design principles and
software programming languages. That is, even experienced hardware designers
have to learn how to describe the behavior of hardware expected by the selected HLS
tool. They should consider hardware design techniques and optimizations despite
using a software programming language. Further software engineering skills are
required to develop a readable, modular, extensible, and maintainable code [ÖRH+17a;
dSBL19; EZI+19; RAK18].

3Note that syntactic variations affect the performance of RTL synthesis as well. However, the effects
on the quality of synthesis are not as significant as it is in HLS. Therefore, it is not seen as a big
problem by the hardware design community
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Synthesizing good hardware circuits (delivering good performance and resource
usage trade-offd from a purely behavioral description that contains no information
about its implementation has been proven to be a challenging task when a program-
ming language designed for an ISA is used for design entry. Programming languages
such as C, C++, OpenCL, CUDA, and OpenMP are designed for a fixed memory and ex-
ecution model of sequential, multi-threaded, and/or multi- and many-core execution.
This means that an algorithm described in a language such as OpenCL is specific to
a processor architecture in the first place. Furthermore, to maximize performance,
programmers must tune their implementation with low-level optimizations specific
to the target device [SFL+15]. Extending one of these languages with hardware
description-centric features, thus creating an ambiguous language as design entry,
burdens not only users but also HLS compilers. That is, an HLS compiler must
transform the execution model of a fixed computer architecture (e.g., memory model
of a many-core processor architecture such as GPU) to an application-specific circuit.
Furthermore, a specialized software code must be generated for the synthesized
application-specific hardware in the case of system generation tools.

We suggest decoupling the description of algorithm behavior from its implemen-
tation as shown in Figure 1.10. We avoid having a heroic approach of providing a
general-purpose language for design entry. Instead, we advocate providing a set
of algorithm-level, declarative, and domain-specific abstractions (in the form of
a DSL or a function library) for the description of an application. Then, we use
code generation techniques (i.e., source-to-source compilation, metaprogramming,
or partial evaluation) to generate a concise description of the hardware behavior.
We leverage decades of research on HLS techniques by using a modern HLS tool
for synthesizing an RTL circuit from an untimed but application-specific, low-level,
target-specific, highly-optimized hardware description. In this way, we use domain
knowledge to capture memory-access patterns as well as the intrinsic parallelism
from the algorithmic abstractions. Then, we solve the allocation, scheduling, and
binding problems at a higher level, e.g., allocating registers, on-chip memory blocks
for the described memory hierarchy, parallelization and software pipelining of loops
according to latency and throughput constraints.

In this thesis, we focus on the domain of image processing applications as a proof
of concept solution since image processing applications are susceptible to leveraging
the benefits of designing application-specific circuits. A large portion of image
processing applications are computation-intensive algorithms that have high data
locality. Often these algorithms apply many operations on the same data through
dependent algorithmic steps having temporal locality. Therefore, designing deeply
pipelined circuits reducing external memory access allows for achieving higher
throughput and lower power consumption.

Our approach has the following main steps:

1. identify performance-relevant abstractions [ÖOQ+21; ÖPM+18]
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Figure 1.10: The design flow proposed in this thesis, which takes as input the specification
of the algorithm, design constraints, and design specifications (denoted by
green). Hardware design and synthesis tasks are colored blue, whereas inputs
to these tasks are colored beige. the   denotes the manual work of a hardware
designer, and Ó denotes the tasks automated by synthesis tools.
Unlike existing HLS tools (see Figure 1.9 for their design flow), our approach
eliminates the need for describing hardware behavior. It takes a description
of the algorithm behavior as input, specified by a set of high-level domain-
specific abstractions. Then, a code generation mechanism uses the inherent
parallelism information captured from the input application and the domain
knowledge (e.g., image processing) to transform user code to highly-optimized
input code for HLS.
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2. investigate efficient implementation techniques for the considered abstractions
and optimize the code at low level [ÖRH+17b; ÖRH+17a; ÖRH+16; ÖPM+18;
RÖH+18]

3. develop libraries, DSLs, and/or compilers to increase productivity, modular-
ity, and portability without sacrificing the performance of the generated cir-
cuits [ÖRH+16; ÖRH+17a; RÖM+17a; ÖPM+18; ÖPM+20a; ÖOQ+21]

1.6 Contributions

The idea of using a DSL (or a set of high-level abstractions) to eliminate device-
specific control flow, and thus, provide productivity, performance, and portability,
is not new. Writing so-called high performance code is also a challenging and te-
dious task for modern CPUs as well as domain-specific computing platforms such
as GPUs, DSPs, and TPUs [HP19; CCF+10; LTE+20; RBA+13; SMB+16; BRR+19].
DSLs have been seen as a promising solution in this field to circumvent readability,
portability, and modularity deficiencies of device-specific program optimizations and
eliminate the need for device knowledge to achieve high performance. Examples
include SQL, MATLAB as well as the recently built image processing DSLs such as
Hipacc [MRH+16], Halide [RBA+13], and PolyMage [MVB15].

However, this thesis includes pioneering work that targets FPGAs by using state-
of-the-art HLS tools from a DSL designed for productivity, performance, and
portability. As a result, we aim to use the same application description to provide
portability of performance across different computing platforms, including FPGAs.
Furthermore, we investigate modern code generation techniques such as partial
evaluation, metaprogramming, and source-to-source code compilation for this task.

More specifically, the main contributions of this thesis are summarized as follows:

• In Chapter 3, we propose novel hardware implementation techniques for
loop coarsening and image border handling [ÖRH+17b]. These are crucial
techniques for accelerating stencil-based image processing applications and
are also relevant for RTL designers. They require drastic modifications in the
control path and memory architecture, as well as in the datapath. Therefore,
they are hard to be inferred by HLS compilers unless the input code is written
in a so-called hardware design manner [ÖRH+16], an approach we introduced
for concisely describing hardware for modern HLS tools and provides good
QoRs that rivals with RTL descriptions [ÖRH+17b; ÖRH+17a]. This makes
them good test cases to show the effectiveness of our approach explained in
Section 1.5.

• In Chapter 4, we present a novel source-to-source compiler that generates
input code for Intel FPGA SDK for OpenCL from a DSL (embedded into C++)
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without sacrificing QoR [ÖRH+16]. To the best of our knowledge, this is the
first scientific paper targeting Intel HLS tools by generating OpenCL code from
a DSL. It uses several hardware-centric optimizations, including our proposed
loop coarsening techniques. We show that our approach can achieve five times
higher throughput while using 60 % fewer hardware resources compared to the
parallelization intrinsics provided by the Intel compiler. Developing or modify-
ing a source-to-source compiler is a complex task. In order to alleviate the task
of our DSL compiler, we used metaprogramming techniques to develop a mod-
ular and highly parameterizable function library that allows users to describe
image processing algorithms as stream-based data flow graphs [ÖRH+17a]. It
is highly optimized with hardware-centric design techniques such as bit-level
optimizations, deep pipelining, loop coarsening, and with best practices for
Xilinx Vivado HLS. This library has the following novel features compared
to previous work, such as Xilinx’ OpenCV implementation: (i) Users are not
restricted to complete algorithm calls, such as Harris Corner. Instead, our
approach provides domain-specific abstractions (similar to Hipacc [MRH+16])
as well as crucial hardware design elements, such as line buffers and sliding
window. (ii) It provides multiple implementations for the domain-specific
abstractions such that users can select speed or area as an optimization goal.

• In Chapter 5, we demonstrate the benefits of using a DSL-based code generation
from OpenVX, a royalty-free industrial standard based on a graph-based execu-
tion model, by providing a novel implementation called HipaccVX [ÖOQ+21].
HipaccVX is able to generate highly-optimized target-specific code for FPGAs
as well for CPUs and GPUs. Our approach allows accelerating user-defined
kernels for the selected computing platform as part of an application graph
that includes OpenVX’ CV functions, a feature that is not supported in the
standard [The19]. It also enables additional optimizations that cannot be ap-
plied from a typical OpenVX backend that solely includes implementations of
OpenVX’ CV functions.

• In Chapter 6, we present AnyHLS, a novel approach to raise the abstraction level
in HLS by using partial evaluation as a core compiler technology [ÖPM+20a]. It
provides significantly higher productivity for developing higher-order zero-cost
functions and an unprecedented level of portability across different HLS tools.
AnyHLS uses solely one language and one function library to generate target-
specific highly optimized input code for two commercial HLS tools, namely
Xilinx Vivado HLS and Intel FPGA SDK for OpenCL. Unlike metaprogramming,
it guarantees the well-typedness of the generated program. Furthermore,
extending AnyHLS with new functionality does not require modifications to a
compiler or a code generator written in a different (host) language. We showed
the productivity, modularity, and portability gains by presenting an image
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processing library as a case study.

Before introducing our contributions listed above, Chapter 2 briefly gives the back-
ground information necessary to understand this thesis and provides a motivational
example (in Section 2.3.2) to outline optimization challenges required for C-based
HLS tools.
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Mapping Image Processing
Algorithms to Hardware
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2
Image Processing with Hardware

Pipelines

This chapter provides the fundamental knowledge necessary to understand the
contributions of this thesis. First, Section 2.1 gives an overview of image processing
applications and image processing operators that we use as performance-relevant
abstractions in our proposed declarative programming techniques. Then, Section 2.2
briefly explains the background knowledge and necessary optimization techniques
for C-based HLS tools. Finally, Section 2.3 present implementation techniques for
image processing operators and challenges of using C-based HLS for this task by
showing a motivational example.

2.1 Image Processing Applications

Image processing is the manipulation and analysis of images using mathematical
algorithms. It can be used to improve the quality of an image, extract useful informa-
tion, or compress the image for storage or transmission. Image processing is a broad
field that encompasses many different techniques and applications, some of which
are listed below.

• Image enhancement refers to techniques used to improve the visual quality of
an image. Examples include adjusting the brightness and contrast, removing
noise, and sharpening the edges of objects in the image.

• Image restoration refers to techniques used to remove distortions or defects
from an image. Examples include removing blur caused by camera shake or
atmospheric turbulence and filling in missing pixels caused by image compres-
sion or transmission errors.

• Image analysis refers to techniques used to extract useful information from an
image. Examples include identifying objects or features in an image, measuring
their properties, and tracking them over time.
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• Computer vision uses computers to understand and interpret images and video.
Applications include object recognition, facial recognition, and gesture recog-
nition.

• Photography, where image processing algorithms are used to improve the
visual quality of images captured by a camera. These algorithms include image
enhancement, color correction, and white balance to produce a final output
image that is ready to be shared or printed.

• Medical Imaging techniques like X-ray, CT, MRI, and ultrasound are used to
create detailed pictures of the inside of the body. Doctors can then analyze
these images to diagnose and treat injuries and illnesses.

• Autonomous vehicles rely on image processing to understand and navigate their
environment. Cameras mounted on the vehicle capture images of the road,
and image processing algorithms are used to detect and track other vehicles,
pedestrians, and road signs.

• Robotics, where image processing is used to give robots the ability to "see" and
understand their environment. Applications include navigation, grasping, and
manipulation.

• Remote sensing, where image processing is used to extract information from
images and videos captured by satellites and drones. Applications include
monitoring crop growth, detecting forest fires, and mapping urban areas.

• Quality control, where cameras and image processing are used to inspect
products on assembly lines, looking for defects such as scratches, dents, or
misaligned parts.

• Biometrics, where image processing is used to identify and authenticate indi-
viduals based on their unique physical characteristics, such as fingerprints,
facial features, or iris patterns.

• Surveillance, where cameras are used to monitor public spaces for security
purposes. Image processing algorithms analyze the video feed in real time,
detecting and tracking people and vehicles, and alerting security personnel to
suspicious activity.

• Entertainment, where special effects and realistic graphics are created in movies
and video games. Image processing algorithms are also used in video editing
and post-production.

• Art and design, where image processing is used to create and manipulate digital
images, animations, and videos.
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The field of image processing is broad and constantly evolving, where new ap-
plications are being developed all the time. The emergence of cheap, low-power
cameras and embedded platforms have boosted the use of intelligent systems with
computer vision capabilities in a broad spectrum of markets, ranging from consumer
electronics, such as mobile, to real-time automotive applications and industrial au-
tomation, e.g., semiconductors, pharmaceuticals, and packaging. The global machine
vision market size was valued at $16.0 billion already in 2018, and yet, is expected
to reach a value of $24.8 billion by 2023 [BCC18]. Many of these systems are asso-
ciated with stringent requirements regarding performance, energy efficiency, and
power, where image processing is used for preprocessing, feature extraction, and/or
post-processing operations.

2.1.1 The Power and Computational Requirements

Image processing algorithms are often computation hungry since they mostly consist
of multiple stages of computationally intensive mathematical operations (e.g., con-
volutions at preprocessing followed by matrix multiplications and thresholding at a
feature extraction) dealing with large amounts of pixels. Processing a high-resolution
image requires applying an input algorithm to thousands of pixels, whereas process-
ing a video with many frames requires processing millions of pixels.

Many image processing systems are required to work in real-time, which refers
to capturing an image and processing it immediately in a way that the output is
produced as soon as the image is captured. The output is produced with minimal
delay, so the image processing system can promptly act upon the information from
the image. For instance, in autonomous vehicles, cameras mounted on the vehicle
capture images of their environment, and image processing algorithms are used to
detect and track other vehicles, pedestrians, and road signs. This system allows the
car to safely navigate the road and make decisions based on the information from
the image. In medical imaging modalities such as CT, MRI, and PET scans, real-time
image processing allows for faster, more accurate diagnoses and improved patient
outcomes. In these scenarios, millions of pixels should be processed every second.

Furthermore, power and energy efficiency are essential considerations for image
processing systems used in battery-powered devices, such as mobile phones, tablets,
and drones. In embedded systems and IoT devices, power and energy efficiency are
important to minimize power consumption, reduce heat dissipation, and extend the
device’s lifetime. In robotics and drones, power is a critical resource to enable the
devices to function for a long time, where these devices are often used in remote or
hard-to-reach locations. Furthermore, these systems often need to work in real-time.

FPGAs are often a good choice for implementing a wide variety of image processing
algorithms since they provide a high degree of flexibility and can be reprogrammed
to adapt to different image processing tasks. Often traditional processors are not
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able to deliver the required power and speed goals of real-time image processing
systems. GPUs and DSPs can exploit the data-level parallelism in image processing
thanks to their multicore architectures and/or vector units. However, designing
specialized circuits allows utilizing only the necessary amount of resources, thus
providing better efficiency compared to ISA (as explained in Section 1.2.3). Similar to
ASICs, FPGAs allow designing an application-specific memory architecture to reduce
off-chip communication, hence providing significantly better power efficiency and
speed for an algorithm that deals with millions of pixels every second. Furthermore,
designing application-specific deep pipelines consisting of thousands of stages allows
for exploiting temporal locality and data locality, thus providing high throughput.
Unlike GPUs, FPGA implementations can deliver deterministic latencies and satisfy
the reliability requirements of critical applications, for instance, medical devices,
military, and space applications.

2.1.2 Performance-Relevant Abstractions for Domain-Specific
Code Generation

Image processing algorithms can be classified into three categories based on their
scope of operation in the spatial domain [Bai11b; Ban08]: point operators, local
operators, and global operators (see Figure 2.1).

• Point operators apply a mathematical function to each pixel independently,
without considering the values of neighboring pixels. Examples of point
operators include the following:

– Thresholding: Converting an image to black and white by setting a
threshold value and converting all pixels with intensity values above the
threshold to white and all pixels below the threshold to black.

– Brightness adjustment: Increasing or decreasing the intensity of each
pixel in the image by a fixed amount.

– Contrast adjustment: Scaling the intensity of each pixel in the image by
a fixed factor.

– Quantization: Each pixel is mapped to a predefined set of discrete values.

– Negation: The value of each pixel is inverted.

• Local operators, also known as neighborhood operators, apply a specific opera-
tion to each pixel based on the values of that pixel and its neighboring pixels.
Example applications include:
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input image output image

(a) Point operators produce an output from
an input pixel.

input image output image

(b) Local operators calculate an output from the
neighboring pixels in a local window.

input image output image

(c) Global operators use the whole image
as input to calculate an output.

Figure 2.1: Image processing operators can be classified into three categories based
on their scope of operation in the spatial domain. Based on these opera-
tors, in this thesis, we provide high-level abstractions for the description
of image processing algorithms. This approach allows our code genera-
tion techniques to capture an application’s memory access patterns and
generate descriptions of highly-optimized dedicated circuits as input to
HLS.

– Image smoothing, the value of each pixel is replaced by the average value
of its neighboring pixels, which reduces noise and preserves the overall
texture of the image.

– Edge detection: Detecting the boundaries of objects in an image by taking
the gradient of the intensity values of the pixels in the neighborhood of
each pixel.

– Sharpening filter: Enhancing the edges in an image by subtracting the
average intensity of the pixels in the neighborhood of each pixel from
the intensity of the target pixel.

– Erosion and dilation: Morphological image processing operations that
remove and add pixels to the objects’ boundaries, respectively. These are
commonly used as part of image segmentation and feature extraction
algorithms.

– Median filter: Reduces noise in an image by replacing each pixel with the
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median value of its neighboring pixels.

– Opening and closing: Morphological operations are used to remove small
objects or fill small holes in an image.

Stencil functions are local operators, where the neighborhood (local window)
shape defines the stencil pattern. Typically, a stencil pattern contains a matrix
of values used by the local operator function (also called stencil function).

• Global operators, also known as spatial-domain operators, are applied to the
entire image as a whole rather than to individual pixels or small groups of
pixels. Example applications include:

– Reduction: A category of global operator application that calculates an
output value from the whole image, such as finding the maximum or
minimum pixel value.

– Histogram: A global reduction algorithm that creates the frequency of a
mapping function calculated from input pixels of an image. For instance,
it can be used to analyze an image’s overall brightness, contrast, and color
distribution.

Existing compilers are not able to deliver high performance for modern ISAs from
an input application written by a general-purpose language such as C++ [CCF+10;
HP19; RBA+13; SFL+15] unless the input code is manually optimized at low-level.
These optimizations are tedious, error-prone, and not portable. Overcoming this
limitation requires capturing the inherent parallelism of the input application to op-
timize memory operations and parallelize selected operations on the target platform.
Halide [RBA+13], PolyMage [MVB15], and Hipacc [MRH+16] are modern image pro-
cessing DSLs that show decoupling an algorithm description from its implementation
by providing a set of domain-specific language constructs allows generating target-
specific highly-optimized code for various ISAs (such as CPUs and GPUs) from the
same input description. These DSLs primarily focus on stencil-based image process-
ing applications, which are power-hungry and are heavily used in many applications
from photography to medical imaging, for preprocessing, feature extraction, and
post-processing purposes [RBA+13]. Our work follows the same philosophy to raise
the abstraction level in HLS for image processing. We provide high-level abstractions
to express an application as a dataflow graph of point, local, and global operators.
Similar to previous work, we support only global reductions since they consist of
many applications with highly different characteristics. Figure 2.2 shows example
image processing applications that can be described by design flows presented in
this thesis. Identification of these performance-relevant abstractions and the idea of
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(a) Bilateral (Edge-preserving) Filter (b) Sobel Edge Detection

(c) Harris Corner Detection (d) Optical Flow

(e) Night Filter (f) Bokeh Effect

Figure 2.2: Example image processing applications that can be described using the
frameworks presented in this thesis. A bilateral filter is a preprocessing
algorithm that smooths an input image while preserving the edges. Sobel
and Harris are feature detection algorithms that find edges and corners,
respectively. The optical flow algorithm detects motion vectors between
two input images. Night filter and Bokeh Effect are post-processing algo-
rithms used in computational photography. We presented FPGA, CPU,
and GPU implementation of these applications at the university booth
of the DATE conference in 2019 [ÖRQ+19]. Thereby, the applications are
described at a high-level using Hipacc DSL, and the FPGA implementa-
tions are automatically generated from the compiler backend explained
in Chapter 4.
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expressing image processing applications in terms of image processing operators is
not new and not one of the main contributions of this thesis. However, we present
novel approaches and frameworks that automatically generate highly-optimized
hardware implementations by leveraging modern high-level synthesis tools and the
parallelism information captured from a declarative application description based on
image processing operators.

2.2 Mapping Algorithms to FPGAs using C-based
HLS

In this section, we discuss architectural features relevant to HLS and briefly explain
fundamental optimization techniques for C-based HLS tools, specifically for Xilinx
Vivado HLS and Intel FPGA SDK for OpenCL.

2.2.1 An Introduction to FPGAs

Modern FPGAs comprise logic cells that can be configured to implement user func-
tions and have a fixed number of inputs and outputs. Most of the FPGAs use static
random-access memory (SRAM) for programming routing interconnects and logic
cells. Typically, logic cells in these FPGAs are composed of a LUT, flip-flop (FF) (also
referred to as registers), and a MUX.

A LUT is essentially a memory element programmed at the FPGA configuration
time to implement a Boolean function as a truth table. This mimics the functionality
of digital circuit design. A typical modern FPGA is built from 6-input LUTs tech-
nology [Xil19], which allows implementing (26)6 functions for its 6 inputs. More
complex Boolean functions are realized by cascading multiple LUTs. Typically, FFs
are paired with LUTs. This design decreases the logic delay of consecutive LUTs by
storing intermediate results in FFs, a logic design technique known as pipelining.
Furthermore, registers and LUTs enable fast-access data storage around an arithmetic
datapath.

In addition to the functionality mentioned above, modern FPGAs include a large
number of hard blocks that embed common functionality at a higher granularity
(word-level instead of bit-level) into the generic silicon blocks for DSP, on-chip
memory blocks, off-chip memory controllers and high-speed transceivers. DSPs are
optimized at the ASIC level for a limited range of functionality, including multiplier,
multiplier–accumulator, barrel shifter, or multipliers. FPGA designers can program
the DSP blocks, and accordingly, wire them with the logic cells. Using DSP blocks
often reduces the required resources and improves the implementation performance.

FPGAs are not restricted with a cache or a unified memory space. Instead, a fast
application-specific memory system can be designed using on-chip memory blocks,
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registers, and LUTs. A FF is the smallest storage unit in an FPGA. FPGA synthesis
tools can configure several LUTs and registers to implement distributed random-
access memory (RAM) that is localized and fast. However, the storage offered by
FFs and LUTs is limited. This constraint makes them expensive to use for large data.
The on-chip memory blocks provide a larger storage capacity compared to registers.
Furthermore, data stored in them can be read and written one clock cycle after the
request, which is as fast as a FF. On-chip memory blocks can be configured for
parallel access. However, on-chip memory blocks can be accessed via, at maximum
(for a typical FPGA), two memory access ports that can be used as either read or
write. Therefore, the required number of parallel access directly affects the number
of on-chip memory blocks utilized for the same amount of data. Often, the storage
space offered by FFs, LUTs, and on-chip memory blocks is insufficient to hold all
the intermediate results, thus not entirely eliminating the need for external memory.
For this reason, designing an application-specific memory system to reach optimal
performance is not an easy problem for non-experts.

Xilinx1 and Intel2 are the leading FPGA vendors. While they use different termi-
nologies for describing their FPGA architectures, implementation results reported
from their tools can be interpreted similarly: Logic cells of Xilinx FPGAs reside in
configurable logic blocks (CLBs), where each CLB contains multiple (typically two
or four) slices. These slices include a fixed number of logic cells, thus LUTs, FFs,
MUXs, and latches. Intel uses the term logic array block (LAB) for a CLB and reports
the number of used logic elements (LEs) instead of slices. Xilinx refers to on-chip
memory blocks as block random access memory (BRAM)3 while Intel refers to them
as M10K, M20K memory blocks according to their storage capacity. Finally, Intel
synthesis results inform the number of used adaptive logic modules (ALMs), which
are used to implement 6-input or 8-input LUTs in their technology. We will mainly
use Xilinx’ terminology wherever it is correct to use.

2.2.2 Area and Speed Considerations in FPGA Design

An FPGA has a limited number of programmable logic blocks and connections, and a
limited amount of memory. These resources are used by a synthesis tool to implement
hardware.

From the design perspective, FPGAs can be seen to have two types of resources:

i) Memory resources: Data is mainly stored in registers and BRAMs whereas LUTs
can be used to implement a distributed memory. FPGA designers should be

1acquired by AMD
2formerly known as Altera
3Xilinx also introduced UltraRAMs with UltraScale+ FPGA series. These on-chip memory blocks

have a fixed configuration of 72 bits wide and 4,096 bits deep.
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careful not to waste a significant amount of LUTs or registers instead of a small
number of BRAMs to store data.

ii) Computational resources: Implementing an arithmetic operation or a boolean
logic mainly requires LUTs and DSPs. Additionally, registers are partitioned
around an arithmetic datapath for highly parallelized computation and pipelin-
ing. As a good practice, DSPs should be preferred over LUTs for implementing
expensive operations such as multiplication.

The following three are the primary metrics measuring the performance of a
digital circuit:

i) Maximum Achievable Speed (Clock Frequency): The maximum achievable fre-
quency of a circuit is determined by many factors, including the propagation
delay of the longest combinatorial logic path between two clocked elements
(critical path), the technological characteristics (such as setup hold times of
FF), the performance of input/output (IO) interfaces, power supply noise, and
operating temperature. Often the speed of a circuit refers to the maximum
operating clock frequency that a circuit can reliably operate, typically in a
range from a few MHz to several GHz. FPGA vendors inform the maximum
clock frequency of a device. However, the speed of a circuit heavily depends
on the input hardware description and the optimizations reducing critical path
(e.g., pipelining) 4

ii) Latency: In FPGA design and HLS, latency refers to the total number of clock
cycles required for producing a result from an input. The term Overall Latency
(of a loop or an application) often refers to the total number of clock cycles
required for processing all the inputs.

iii) Throughput: The number of data processed (or tasks finished, operations
performed) within a time unit. Throughput is often measured in terms of
samples (or bits) per second (or in a clock cycle). Often, the initial delay
spent to produce the first output (called initial latency) is ignored when the
throughput of a circuit is measured.

In image and video processing (and many applications where FPGAs are favorable),
throughput is important since thousands to millions of pixels are processed every
second. The clock frequency is another key factor that linearly affects the processing
time.

4Hardware synthesis tools estimate the delay of the critical path and the clock uncertainty to
calculate the minimum period that would reliably drive a sequential circuit without creating
metastability issues. HLS users can simply analyze the static timing analysis of RTL synthesis and
validate the final circuit with post-place and route timing results to see if the generated hardware
satisfies the input timing constraints.
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Table 2.1: Typical mapping of C-based language constructs to RTL.
C/C++ Constructs OpenCL RTL Mapping
Functions Kernels HDL Modules
Func. Arguments Kern. Arguments IO Ports
Operators Operators Functional Units
Scalars Scalars Wires or Registers
Arrays Arrays Memories
Control Flows Control Flows Control Logics

void func1(/* ... */) {/* ... */}

void func3(/* ... */) {/* ... */}

void func2(/* ... */) {

// ...

func2(/* ... */);

// ...

}

void func_top(/* ... */)

{

func1(/* ... */);

func2(/* ... */);

}

func_top

func1
func2

func3

Figure 2.3: C/C++ functions and OpenCL kernels are mapped to RTL modules unless
inlined. HLS tools create a hierarchy of these functions/kernels according
to their call hierarchy.

2.2.3 Writing Software for C-based HLS

This section briefly overviews key optimization strategies required for describing
hardware circuits that deliver good synthesis results by using modern C-based
HLS. In this thesis, we use Xilinx Vivado HLS and Intel OpenCL SDK for FPGA,
whereas alternative commercial/academic C-based HLS tools benefit from similar
optimizations. We refer to [NPP+20] for a survey of these HLS tools.

As summarized in Table 2.1, HLS tools generate RTL modules from C functions
and OpenCL kernels. Unless the functions are inlined, the function call hierarchy is
sustained in the generated circuit description, as shown in Figure 2.3. Inlining can
explicitly be requested by using C language syntax or HLS tool pragmas, but the
HLS compiler will make the final choice. Xilinx Vivado HLS requires users to define
one top function that calls all the other accelerator functions, whereas this is not a
requirement for Intel FPGA SDK for OpenCL.

Function arguments are interpreted as input or output parameters of the generated
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out = (x + y) * z + k

FF+

FFx

FF +

FF
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FF

Figure 2.4: Data path circuits are mostly generated from expressions consisting of
arithmetic operations. Users do not have to deal with low-level timing
and scheduling problems. The HLS compiler decides the degree of reg-
istering according to timing constraints, e.g., circuits doing arithmetic
operations can further be pipelined to achieve higher speed. Correspond-
ingly, a control path is created to schedule the operations according to
the input program.

circuits. Users can define the interface communication protocol (such as AXI, AXI-
Lite, or bit vector) by writing tool-specific pragmas. When required, HLS tools
automatically add control signals to the interface, such as clock and reset. HLS
tools create a data path and a control path for the input description after scheduling,
allocation, and binding steps (see Section 1.4 for more details). Data path circuits
are mostly generated from arithmetic operations, as illustrated in Figure 2.4. HLS
users do not have to deal with low-level timing and scheduling details. The degree of
registers is automatically changed according to a given timing target. For instance,
HLS compilers can utilize arithmetic circuits with several pipeline stages for a higher
speed target. In this case, a control path for the new schedule would be generated
automatically. For RTL designers, the same task would require manual scheduling of
the new circuit and severe modifications in the HDL code.

Scalars (constants and variables) at the input program are implemented by wires
and registers. Arrays are mapped to memory elements. Intel FPGA SDK allows
using external memory (DDR Memory) on the FPGA board using OpenCL’s external
memory. Xilinx Vivado HLS allows reading global arrays only by using a function
interface, which does not always represent external memory. HLS compilers map
OpenCL’s local memory and C arrays with automatic storage class to on-chip memory
resources, which can be LUTs, registers, or on-chip memory blocks unless explicitly
defined by tool-specific pragmas. Often, the large arrays are implemented with
on-chip memory blocks, not to consume registers and LUTs for storing large data.

HLS users are encouraged to write loop iterations (e.g., using for, while) with
constant bounds to describe the execution behavior of a circuit. Writing all the
functionality of a circuit within a main loop allows HLS tools to analyze the latency
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of the whole function and data dependencies between functions. The number of
loop iterations represents the amount of data and amount of operations for the
described task. For instance, the following code tells the HLS compiler to generate
a circuit executing 100 iterations, multiplying the data stored on a and b arrays.
void func(/* ... */)

{

// ..

for(int i = 0; i < 100; ++i)

{

c[i] = a[i] * b[i]

// ..

}

}

The latency of the generated circuit depends on the scheduling of the HLS compiler.
The FSM at the generated control path runs as long as a clock signal is supplied,
where a typical implementation reads and produces meaningful data according to
valid and done signals at the interface.

2.2.4 Optimizing Software for C-based HLS

This section briefly summarizes the critical optimization strategies crucial to achiev-
ing high-quality synthesis results using current HLS tools.

Increasing Spatial (Data-Level) Parallelism

Designing custom hardware allows exploiting the data locality of an algorithm by
replicating a functional unit multiple times to execute multiple operations in parallel.
For instance, Figure 2.5 shows 3 alternative hardware implementations for the same
expression, including 9 addition and 1 multiplication, where the multiplication has
to be applied after the additions because of data dependency. The HW-3 exploits the
DLP of the summation expression by utilizing 9 adders in parallel to calculate the
result in 1 clock cycle. The improvement in latency comes at the cost of a higher
resource usage.

HLS tools generate sequential circuits for loop iterations. However, they offer
loop unrolling pragmas, where users can define an unrolling factor to specify the
level of spatial parallelism. For instance, HW-1 in Figure 2.5 consists of a sequential
loop for the additions, whereas this loop is fully unrolled in HW-3. Restructuring the
input code by manually unrolling a loop describes the parallelized functional units
at the input program more concisely compared to using tool-specific loop unrolling
pragmas.

Increasing the spatial parallelism of a hardware implementation should be thought
of as designing a circuit with a different area/performance trade-off (i.e., replicating
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Figure 2.5: Utilizing several functional units in parallel to exploit data-level paral-
lelism (DLP) improves the latency at the cost of using more resources.
HW-1 uses 1 adder to execute 9 additions sequentially while HW-2 and
HW-3 use 2 and 9 adders, respectively. HLS tools generate sequential
circuits for loops, where unrolling the loops means utilizing parallel
resources for the body function.

a hardware accelerator to increase throughput increases resource usage). However,
exploiting the resource sharing between replicated hardware accelerators could
significantly decrease the resource usage cost of DLP, as presented in Chapter 3. Fur-
thermore, in most applications, an FPGA implementation can achieve a throughput
close to the memory bandwidth of modern external memories (e.g., double data rate
synchronous dynamic random-access memory (DDR SDRAM)) only by processing
multiple inputs simultaneously due to current FPGA’s low logic speed limitations.

For this purpose, the DLP of the hardware implementation must be increased (to
the compute-bound at best) according to the Roofline model [WWP09]. However,
this parallelization can be applied to the resource budget.
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Pipelined Scheduling

Temporal locality eliminates the data communication overhead between different
processor cores, and also introduces a different type of parallelism called pipelining
for the algorithms composed of sequentially dependent functional blocks.

Instruction-Level (Structural) Pipelining The clock speed of a hardware imple-
mentation is limited by the slowest combinational path, which can be divided into
stages via registers until the desired logic speed is reached. This technique is called
pipelining and mostly improves the throughput despite the increased latency in terms
of clock cycles. For instance, the operations (denoted as Op) in Figure 2.6 represent
smaller combinational circuits, similar to the instructions of a software program.
Structural pipelining is applied in Figure 2.6b to divide the combinational circuit in
Figure 2.6a into 3-stages, thus the critical path is decreased to Op-2’s propagation
delay.

Op-1 Op-2 Op-3

Op-1 Op-2 Op-3FF FF

input output

input output

FF FF

FF FF

Combinatorial logic (pipeline stage)

Combinatorial logic  
(pipeline stage)

Combinatorial logic  
(pipeline stage)

Combinatorial logic  
(pipeline stage)

(a) nonpipelined

Op-1 Op-2 Op-3

Op-1 Op-2 Op-3FF FF

input output

input output

FF FF

FF FF

Combinatorial logic (pipeline stage)

Combinatorial logic  
(pipeline stage)

Combinatorial logic  
(pipeline stage)

Combinatorial logic  
(pipeline stage)

(b) pipelined

Figure 2.6: Pipelined schedule

HLS tools automatically apply structural pipelining for a given clock speed target.
For instance, the multiplier block in Figure 2.5 has a considerably larger propagation
delay than adders. When run with a higher speed target, HLS compiler would
automatically pipeline this multiplier circuit to multiple stages (or replace it with
a faster multiplier block). RTL developers have to describe structural pipelining
by hand, thus needing to rewrite their circuit description when the speed target is
changed.

Loop (Instruction-level) Pipelining An algorithm can be pipelined at the func-
tional level, similar to structural pipelining. Thereby, operations of a function (or
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an iteration block of a loop) are divided into stages and overlapped according to
functional dependencies. Consequent stages process the previous stage’s output,
allowing hardware to read a new input even before the previous result is calculated.
In this way, a fixed throughput is achieved after the first output is produced, although
the latency of an individual functional block increases or stays the same. For instance,
the iteration block in Figure 2.7a is structurally pipelined to 3 stages in Figure 2.7b.
The next iteration can be calculated 1 clock cycle after the previous one has started
(e.g., iteration 1 can start 1 cycle after iteration 0). In this way, a new result is produced
in every cycle after an initial latency. Another example is given in Figure 2.8, where
functions of an algorithm are pipelined according to their dependencies. Often, HLS
tools provide a special pragma (e.g., dataflow pragma in Xilinx Vivado HLS) to apply
this optimization.

Subsequent iterations of a functional pipeline can produce correct results only if
all the dependency data is available for the subsequent calculation. This is indicated
by the term initiation interval (II), which shows the longest waiting time between
any of two subsequent iterations to acquire correct results. For instance, II equals to
1 clock cycle in Figure 2.7b but would be 3 if iteration-2 depends on the results of
iteration-1 (i.e., if Op-1 would depend on the result of Op-3 calculated in the previous
iteration).

The latency 𝐿 of a functional pipeline can be formulated as below, where 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

denotes the number of required iterations to process all inputs:

𝐿 = 𝐿initial + 𝐿process = 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝐼 𝐼 · 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 cycles (2.1)

Memory design

As explained in Sections 1.2.2 and 1.2.3, designing an application-specific on-chip
memory is crucial to reduce off-chip communication and achieving high performance.
Similar to RTL designers, HLS users have to describe a caching mechanism using
arrays and registers in the input program. The tools provide pragmas for mapping
arrays to specific resources, such as on-chip memory blocks.

HLS tools often fail to pipeline loops unless the arrays that are read and written
are not restructured to prevent loop-carried dependencies, a term used for functional
dependencies between loop iterations. Users can reshape, merge, and partition arrays
using tool-specific pragmas (or by hand) to explicitly describe the bitwidth, size, and
number of ports on an on-chip memory block.

Stream Processing

Inter-kernel dependencies of an algorithm can mostly be accessed on the fly in
combination with fine-granular communication (i.e., once data is produced, the next
block can consume) so that the whole FPGA implementation can be pipelined to
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Figure 2.7: Loop pipelining increases the throughput by dividing the operations of
a loop into stages and overlapping their executions according to their
functional dependence. The initiation interval (𝐼 𝐼 ) refers to the number
of clock cycles between two successive loop iterations.

have a fixed throughput. In the best case on a per-datum basis (single register or
small buffer) instead of reading or writing the whole intermediate images as shown
in Figure 2.9. In this case, off-chip communication can be reduced, and the whole
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Figure 2.8: An example of task-level pipelining at the function level (also known
as dataflow optimization). Executions of the function are overlapped
according to their dependencies.

latency can be decreased significantly.

Kernel1 on-chip
mem Kernel2 regs Kernel3

(Global) Device Memory

on-chip
mem

Figure 2.9: FPGA implementations can reduce off-chip communication with their
reconfigurable application-tailored on-chip memory. Stream processing
exploits this for data transmission between operators.

This is most effective when the whole pipeline has a constant reading and pro-
cessing speed for every input. Yet, such an implementation has two challenges: (1)
determination of the memory types and sizes of the buffers between the kernels,
(2) synchronization between kernels. The design of such a system needs integer
programming [HBD+14] for calculating the dependency pixels’ size and designing
a generic and lightweight interface. HLS tools provide special data structures (i.e.,
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stream in Xilinx Vivado HLS and channel in Intel FPGA SDK for OpenCL) for this
purpose.

2.3 The Challenge of Designing Image Processing
Circuits with C-based HLS Tools

In this section, we briefly explain the hardware implementation of image processing
operators, the implementation of a local operator, and finally provide an overview of
the approach developed in this thesis.

2.3.1 Hardware Implementation of Image Processing
Operators

Image processing applications are favorable to FPGA implementations as they have
high spatial locality. Pixels stored in external memory can be accessed in burst mode
by reading and writing images in raster order as shown in Listing 2.1. The nested
for loop above scans the two-dimensional input image of size width × height across
each row of pixels from left to right and from top to bottom, where an output pixel is
calculated for every input pixel by using the function f. Pipelining these loops allows
exploiting the temporal locality of the image processing operators, at best producing
a result in every iteration where II = 1 clock cycle. On a modern computing platform,
external memory access requires 130x to 260x more energy than accessing to a large
SRAM scratchpad, as discussed in Section 1.2.2. Hence, decreasing external memory
usage by designing an on-chip memory structure is crucial to leverage the benefits
of designing custom hardware. Similarly, data between image processing operators
should be transferred using HLS streams (which hold the data in on-chip memory
resources as shown in Figure 2.9), and the size of these streams must be minimized
for efficient use of memory resources.

Listing 2.1: Raster order scan of an image processing operator

1 for (size_t row = 0; row < height ; row ++) {

2 for (size_t col = 0; col < width ; col ++) {

3 output_image[row][col] = f(input_image[row][col]);

4 }

5 }

The DLP of the implementation can be increased by unrolling (coarsening) the
deepest-level horizontal scan loop by a factor 𝑣 similar to vectorization such that
multiple consecutive 𝑣 datum is packed as a data-beat and processed in parallel,
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as shown in Listing 2.2. Accessing DDR memory through data-beats (increasing
the bit width of read/write requests) mostly improves the bandwidth rate between
programmable logic and accelerator device (depending on the interface and 𝑣). Hence,
the memory access remains in burst mode, and the throughput is increased by 𝑣 as
follows:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑣/𝐼 𝐼 pixels/cycle (2.2)
This loop coarsening transformation is often subject to further optimizations, such as
utilizing fewer resources for data paths with subexpression optimizations. However, it
requires a careful modification of the on-chip memory architecture to prevent creating
loop-carried dependencies. Chapter 3 presents novel implementation techniques for
loop coarsening of stencil-based image processing applications.

Listing 2.2: Coarsening horizontal scan loop of an image processing algorithm by a
factor of 𝑣 to increase DLP (width is a multiple of v)

1 for (size_t row = 0; row < height ; ++row) {

2 for (size_t col = 0; col < width ; col += v) {

3 output_image[row][col] = f(input_image[row][col]);

4 output_image[row][col + 1] = f(input_image[row][col + 1]);

5 // ...

6 output_image[row][col + v - 1] = f(input_image[row][col + v - 1]);

7 }

8 }

Point operators (e.g., image scaling and color transformation) calculate an output
result pixel for every pixel of the input image (see Figure 2.1). Therefore, a special
on-chip memory architecture is not needed. Correspondingly, the total latency 𝐿 is
given as below, where 𝐿𝑎𝑟𝑖𝑡ℎ is the latency of the datapath and 𝑁𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the image
size:

𝐿 = 𝐿initial + 𝐿process = 𝐿𝑎𝑟𝑖𝑡ℎ + (𝐼 𝐼 · 𝑁𝑝𝑟𝑜𝑐𝑒𝑠𝑠) cycles (2.3)

Reading and writing from streams, pipelining the raster order scan, and unrolling the
column iteration by 𝑣 provide a throughput of 𝑣 pixels per cycle. Typical optimiza-
tions such as bit precision, subcommon expression reduction, strength reduction,
and reducing the number of expensive operations (such as multiplications) reduce
resource usage.
Local operators, such as Gaussian smooth and Sobel filtering (edge detection),

calculate an output using the neighboring pixels in a local window. For instance, a
convolution description is shown in Listing 2.35.

5A local operator depends on the pixels outside the image at the borders. The border_handling
in Listings 2.3 and 2.4 prevents out-of-border access by one of the well-known algorithms (e.g.,
mirroring). Chapter 3 explains these techniques in detail.
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Listing 2.3: Sequential implementation of a convolution function.

1 // input/output images: arr , out

2 // coefficients: mask

3

4 for(int y = 0; y < IMAGE_HEIGHT , y++)

5 for(int x = 0; x < IMAGE_WIDTH , x++)

6 for(int j = 0; j < MASK_HEIGHT; j++)

7 for(int i = 0; i < MASK_WIDTH; i++)

8 out[j][i] = mask[j][i] * border_handling(arr , x, y, i, j);

A local operator similar to Listing 2.3 requires reading the neighboring pixels
of the window MASK_WIDTH × MASK_HEIGHT for every input pixel (where the input
image size is IMAGE_WIDTH × IMAGE_HEIGHT. This costs hundreds of clock cycles
delay if the access is from an external memory. However, applying a local operator
to two adjacent windows of size MASK_WIDTH × MASK_HEIGHT requires the same
(MASK_WIDTH−1) · MASK_HEIGHT pixels to calculate results at the image coordinates
(𝑥 , 𝑦) and (𝑥 + 1, 𝑦). This locality can be exploited by processing the image in raster
order for burst mode and processing the next pixels sequentially, thus holding the
overlapping (MASK_WIDTH−1) · MASK_HEIGHT pixels on registers with a sliding window
that only reads MASK_HEIGHT new pixels in every shift, as shown in Figure 2.10. In
this way, a throughput of one pixel per II cycle can be achieved at the cost of an initial
latency (𝐿initial), spent for caching neighboring pixels of the first window (𝑁initial).
The total latency of this implementation is given below:

𝐿 = 𝐿initial + 𝐿process = 𝐿arith + 𝐼 𝐼 · (𝑁initial + 𝑁process) cycles (2.4)

Literature provides many global operators with highly different memory access
patterns. We refer to [Bai11a; KMN18] for their hardware implementations. In this
thesis, we develop methods that support global reduction. However, our approach
can be extended for other global operators. Hardware implementation of a reduction
is very similar to point operators, where a streaming pipelined implementation
without a special memory design provides good performance. Intermediate results
are stored in on-chip memory and updated in every iteration. Unlike point operators,
the output of a reduction is updated only when the whole image is traversed.

2.3.2 Motivational Example

This section presents a motivational example to show that hardware design knowledge
is crucial for using C-based HLS tools. The unoptimized implementation in Figure 2.11
shows the resource usage and throughput results of the convolution function shown
in Listing 2.3. Listing 2.4 optimizes the convolution in Listing 2.3, solely by using
Xilinx Vivado HLS pragmas. It is shown in Figure 2.11 that these optimizations
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Figure 2.10: Line-buffered pipeline implementation of a local operator reduces the
external memory read by storing dependency pixels of a local neighbor-
hood in on-chip memory. The image is read in raster order. Line buffers
contain the dependency pixels in on-chip memory blocks and act like
multiple first in first out (FIFO) buffers, where line buffers read a new
pixel, and sliding window reads a new column in every iteration. The
sliding window holds the local window in registers and thus provides
parallel access for the local operator function. Ultimately, exploiting
the raster scan’s temporal locality, a throughput of 1 pixel per II cycles
is provided. (Figure reprinted from [RSH+14], © 2014 IEEE)
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Figure 2.11: Different implementations using Xilinx Vivado HLS

increase the throughput by 29.2×, at the cost of almost 13% more resource usage.
However, describing a line-buffered pipeline implementation (similar to Listing 2.5)
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Listing 2.4: Optimization of a convolution description using pragmas for Vivado HLS.

1 // input/output images: arr , out

2 // coefficients: mask

3

4 for(int y = 0; y < IMAGE_HEIGHT , y++)

5 for(int x = 0; x < IMAGE_WIDTH , x++)

6 #pragma HLS pipeline II=1

7 for(int j = 0; j < MASK_HEIGHT; j++)

8 #pragma HLS unroll factor=MASK_HEIGHT
9 for(int i = 0; i < MASK_WIDTH; i++)

10 #pragma HLS unroll factor=MASK_WIDTH
11 out[j][i] = mask[j][i] * border_handling(arr , x, y, i, j);

increases the throughput by 237.9%, at the cost of 182.5% more FPGA slices. The
line-buffered implementation uses on-chip memories (i.e., 4 BRAMs for a 5-by-5
window), whereas the other versions do not leverage their benefits.

Listing 2.5: Line-buffered pipelined implementation of a convolution function. The
synthesized circuit provides 1 pixel per clock cycle throughput, holding de-
pendency pixels on an application-specific memory hierarchy and pipelin-
ing the algorithm. It exploits the locality of the convolution algorithm at
the cost of writing non-portable, tedious C++ code optimized for VivadoHLS.
Only the lines 72 to 77 describe iteration over the local window (behavior
of the algorithm), which only corresponds to approx. 6 % of the whole
implementation.

1 // input/output images: arr , out

2 // coefficients: mask

3 // compile -time constants: MAX_IMAGE_WIDTH , MAX_MASK_HEIGHT ,

MAX_MASK_WIDTH , ROW_BW , COL_BW

4

5 // Further optimization is possible when these are compile -time constants

6 const int image_size = image_height * image_width;

7 const int initial_latency = image_width * mask_height / 2 + mask_width /2;

8

9 in_data_t lbuf[MAX_MASK_HEIGHT - 1][ MAX_IMAGE_WIDTH ];

on-chip memory (BRAM)
to hold dependency pixel

10 #pragma HLS array_partition variable=lbuf dim=1 complete
11 #pragma HLS dependence variable=lbuf inter false
12 #pragma HLS dependence variable=lbuf intra false
13

14 in_data_t swin[MAX_MASK_HEIGHT ][ MAX_MASK_WIDTH ];

on-chip memory (registers)
to hold dependency pixel

15 #pragma HLS array_partition variable=swin dim=0 complete
16

17 // Registers to keep memory access addresses

18 ap_uint <ROW_BW > row = 0;

19 ap_uint <COL_BW > col = 0; Bit-level precision to
avoid unnecessary resource usage20

21 for(ap_uint <ROW_BW + COL_BW > clock_tick = 0;

22 clock_tick < initial_latency + image_size;

Life time
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23 ++ clock_tick)

24 {

25 #pragma HLS pipeline II=1

26

27 // **********************************************************

28 // Read new pixel

29 // **********************************************************

30 in_data_t newPixel = 0;

31 if(clock_tick < image_size)

32 {

33 newPixel = in[clock_tick ];

34 }

35

36 // **********************************************************

37 // Shift line buffers

38 // **********************************************************

39 in_data_t new_swin_row[mask_height ];

40 for(int i = 0; i < mask_height; ++i)

Update strategy for
On-chip memory (BRAMs)

41 {

42 #pragma HLS unroll

43 if (i == 0)

44 {

45 new_swin_row[i] = lbuf[i][col];

46 }

47 else
48 {

49 data_t temp = (i == mask_height - 1) ? newPixel : lbuf[i][col];

50 lbuf[i - 1][col] = temp;

51 new_swin_row[i] = temp;

52 }

53 }

54

55 // **********************************************************

56 // Shift sliding window

57 // **********************************************************

58 for(int i = 0; i < mask_height; ++i)

Update strategy for
on-chip memory (registers)

59 {

60 #pragma HLS unroll factor=MAX_MASK_HEIGHT
61 for(int j = 0; j < mask_width - 1; ++j)

62 #pragma HLS unroll factor=MAX_MASK_WIDTH
63 swin[i][j] = bh(&swin [0][j + 1], i, col , MAX_MASK_WIDTH);

64

65 // store the last column of line buffers to swin

66 swin[i][ mask_width - 1] = bh(new_swin_row , j, row , MAX_MASK_HEIGHT);

67 }

68

69 // **********************************************************

70 // Compute the convolution (actual algorithm)

71 // **********************************************************

72 out_data_t result = 0;

73 for(int j = 0; j < mask_height , ++j)

Computation of convolution
74 #pragma HLS unroll factor=MAX_MASK_HEIGHT
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75 for(int i = 0; i < mask_width , ++i)

76 #pragma HLS unroll factor=MAX_MASK_WIDTH
77 result += swin[j][i] * mask[j][i];

78

79 if(clock_tick >= initial_latency )

80 {

81 // **********************************************************

82 // Write Result

83 // **********************************************************

84 out[clock_tick - initial_latency] = result;

85

86 // **********************************************************

87 // Update image indexes

88 // **********************************************************

89 ++col;

90 if(col == image_width)

91 {

92 col = 0;

93 ++row;

94 }

95 }

96 }

2.3.3 Proposed Approach

As explained in Section 2.2, current HLS tools can generate RTL circuits from untimed
C-based programs but deliver a good quality of synthesis results only when users are
able to adequately describe the behavior of the hardware implementation for their ap-
plication. Optimization strategies include describing an application-specific on-chip
memory hierarchy, pipelining, increasing spatial parallelism, strength reduction, and
decreasing the bit-width of variables and operations. Triggering these optimizations
requires hardware design knowledge and writing tedious, unportable code that is
tool-specific and error-prone. Furthermore, a C++ code or an OpenCL program that
is optimized for an HLS tool would perform very poorly when executed on a CPU
or a GPU. For instance, the convolution implementation in Listing 2.5 can only be
written by understanding hardware design principles and performs poorly on other
platforms. What is more, this description ignores image border handling and can
further be improved with loop coarsening. These extensions would significantly
increase the code’s length (e.g., approximately 10× longer code depending on the
description style and implementation technique).

This thesis mitigates these problems by domain-specific high-level abstractions
to express applications as a dataflow graph consisting of point, local, and global
operators. The data is expressed by special types, such as images. Users describe
the mathematical function of these operators in a declarative way. Then, a domain-
specific code generation mechanism (e.g.,, a source-to-source compiler) captures
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the inherent parallelism of the input application to generate a highly sophisticated
specification of an efficient application-specific circuit as input to HLS. Our approach
still requires the developer of the code generation method (e.g., DSL developer) to
understand hardware design techniques for the target image processing applications.
However, thanks to code generation, it does not expose these low-level details
to application developers. For instance, only Line 77 in Listing 2.5 describes the
mathematical function of the convolution operator. Hence, this one-line description
would be enough to describe the convolution function when described in a declarative
way.
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Hardware Design and Analysis of

Efficient Loop Coarsening and
Border Handling for Image

Processing

FPGAs and ASICs excel at exploiting ILP by allowing to implement deeply pipelined
circuits, where the execution of successive loop iterations are overlapped to provide
high throughput. In addition, exploiting DLP by processing multiple pixels in ev-
ery clock cycle is crucial to increase throughput for high-speed execution (to the
memory-bound at best) according to the Roofline model [WWP09]. This optimiza-
tion is especially critical for FPGA implementations since a typical modern FPGA’s
programmable logic is slower than the frequencies of modern external memory tech-
nologies. While existing HLS tools are good at exploiting ILP from the application
description, they provide poor results or very little support for extracting DLP.

In this chapter, we propose novel techniques that exploit DLPs in stencil-based
image processing applications for FPGA and ASIC implementations [ÖRH+17b].
Our implementations are based on a technique called loop coarsening, where outer
loops of an image processing algorithm are coarsened to read and write multiple
pixels at a time. Correspondingly, we develop hardware implementations for image
border handling that supports loop coarsening. These implementation techniques
are automated through a code generation mechanism in Chapters 4 to 6. The FPGA
synthesis results show that the proposed coarsening architecture uses 32 % fewer
registers for a 5-by-5 convolution with a coarsening factor of 64 compared to previous
works, whereas the proposed border handling architectures decrease the LUT usage
by 36 %.

Similar to many other hardware design problems, it is hard to find a one-size-
fits-all solution, i.e., whether an implementation strategy using fewer resources and
providing higher performance than others depends on application parameters such
as image width and stencil size. Therefore, we provide an analysis of the investigated
implementation techniques for loop coarsening and border handling. This allows us
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to develop an algorithm that selects the most resource-efficient technique from a set
of implementations of a stencil-based image processing application for a given set of
input parameters.

3.1 Introduction

In many application domains, the bit width of input and output data elements is much
smaller than what modern memory technologies and communication interfaces
offer. Furthermore, the logic speed of a typical "modern" FPGA is much lower
than the memory technologies. For instance, AXI4 interfaces used in the Xilinx
implementation for direct memory access (DMA) supports transferring 1, 024 bits
of data concurrently into the reconfigurable logic [Xil17b]. Each DDR3 channel on
a "modern" FPGA (Xilinx Zynq zc706) supports 12 GBytes/s memory bandwidth,
allowing to have 512-bit wide interfaces for around 200 MHz logic frequency. User
logic in Xilinx Alveo boards can access each high bandwidth memory (HBM) channel
by 256-bit wide interfaces at 400 MHz [CCW+20]. What is more, high-speed serial
transceiver technology enables higher data rate communication channels between
FPGA and external devices [Xil17a].

In order to read and write at the speed of a communication interface, multiple data
elements can be streamed in parallel into FPGA logic as shown in Figure 3.1. To also
run an algorithm at the memory bandwidth limit by using an FPGA (or ASIC), data
path of its hardware implementation must sufficiently be parallelized. For instance,
the data bit width of a typical image ranges between 8 bits (grayscale) and 32 bits
(RGBA). This means that a hardware implementation operating on a grayscale image
at 200 MHz must be parallelized by a factor of 16 to read, write, and process at
the memory speed of a DDR3 channel on a Zynq FPGA. A naive approach is to
clone the entire accelerator by a factor of 16, but this is not resource-efficient. First,
it is often possible to use one optimized control structure for all parallelized data
paths, arithmetic calculations operating on input data. Second, and more importantly,
redundant data is stored when a hardware accelerator circuit is replicated with its
memory architecture (e.g., holding dependency pixels) to process multiple input in
parallel. This is the case for local operators.

For instance, assume that the output of a local operator at image coordinates 𝑖
and 𝑗 depends on the 𝑤 · ℎ pixels at the input image, where the rectangular region is
bounded by the coordinates (𝑖 − ⌊𝑤/2⌋, 𝑗 − ⌊ℎ/2⌋) and (𝑖 + ⌊𝑤/2⌋, 𝑗 + ⌊ℎ/2⌋). Then,
outputs of 𝑣 consecutive pixels depend on (𝑤 + 𝑣 − 1) · ℎ input pixels. Replicating
the line-buffered implementation of a local operator by a factor of 𝑣 , as shown in
Figure 3.2b, requires holding 𝑣 · 𝑤 · ℎ pixels, where each of the replicate has its
own line buffers and sliding window. Instead, resource and memory usage (thus
power) can be reduced significantly through better resource sharing where a spe-
cially designed control structure as well as memory architecture is used for all the
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Figure 3.1: FPGAs have a lower logic speed compared to modern memory interfaces.
Yet, memory can be read at a higher speed, and multiple pixels can be
streamed in parallel into the reconfigurable logic. Therefore, exploiting
DLP in image processing algorithms allows hardware implementations
to compute at memory speed. In the example, 4 iterations of the loop
nest are processed at a time and 4 result pixels are processed as a result.

arithmetic function replicates, as illustrated in Figure 3.2c. This chapter presents
novel resource-efficient implementation techniques for parallelizing stencil-based
image processing applications by processing multiple consecutive pixels at a time as
shown in Figure 3.1.

Our contributions of this chapter are summarized as follows1:

• Two novel hardware design techniques for loop coarsening that use signif-
icantly fewer registers than previous work (see Figure 3.3). Depending on
the choice of operator parameters, either the first or the second architecture
requires fewer resources. These are automatically generated from a DSL or a
high-level function library presented in Chapters 4 to 6.

• The analysis and design of hardware architectures that support image border
handling with a guaranteed throughput of the input stream for the processing
of local image operators in combination with loop coarsening (see Figure 3.3).

• A systematic analysis of the investigated loop coarsening and border handling
techniques. We formulate the resource usage of all the considered implemen-
tation techniques in terms of registers and MUX. In this way, we provide an
algorithm for suggesting the most efficient hardware implementation for a
given coarsening factor and input parameters of an algorithm, such as image
width and stencil size.

1The contents of this chapter are based on and partly published in [ÖRH+17b], which has appeared
in the Proceedings of the 28th Annual IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP), and [RÖH+18], which has appeared in Journal of
Signal Processing Systems.
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(a) Data flow graph (DFG) representation of Harris Corner based on image processing operators.
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(b) A naive approach for parallelizing Harris Corner would be replicating the accelerator hardware.
This requires utilizing replicates of the memory hierarchy (e.g., line buffers, sliding window) as
well as the control and data paths.
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(c) A resource-efficient approach to exploit DLP in the Harris Corner algorithm is to modify
its implementation to handle multiple pixels. This requires understanding the algorithm and
implementing an application-specific memory hierarchy, data path and control path.

Figure 3.2: The hardware implementation of an algorithm must be parallelized to
reach the speed of modern a communication and memory interface
designed for data transfer. This is illustrated for data flow graph (DFG)
representation of a Harris Corner application.
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Figure 3.3: Suggested loop coarsening architectures, border handling types, and
border handling modes considered.

• An analysis of the results obtained by Vivado HLS for both proposed variants
and mentioned naive implementations.

3.1.1 Loop Coarsening

Loop coarsening is an implementation technique for parallelizing image processing
applications by processing multiple consecutive pixels at a time as shown in Figure 3.1.
The name is coined by Schmid et al. [SRH+15] since, as shown in Algorithm 1, the
outer loop of an image processing algorithm is coarsened (Line 3) to aggregate
multiple consecutive pixels into so-called superpixels (Line 3) and then process them
in parallel (Line 9). It has the following advantages:

1. Memory access remains in burst mode, which allows highest external memory
bandwidth.

2. Loop coarsening solely uses one optimized control structure for all parallelized
data paths, which will be the hardware implementation of the arithmetic
calculations operating on input data (𝑓 in Line 9).

3. One memory architecture is used for all the consecutive pixels, allowing to
leverage temporal locality of the algorithm and increase data reuse.

Algorithm 1 considers that the typical implementation of an algorithm (e.g., local
operator) uses an on-chip memory architecture (Line 5, e.g., line buffers) to reduce
off-chip communication. This is the case for a great portion of algorithms where
their hardware implementations deliver high-performance and/or energy efficiency.
Implementing such a memory architecture depends on the application, thus the
modifications required for loop coarsening.
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Algorithm 1: A simplified description of the behaviour of a hardware ar-
chitecture supporting loop coarsening. It shows that the image read/write
schedule as well as on-chip memory architecture is modified to operate on
superpixels. Only the arithmetic functions (𝑓 ) are replicated whereas one
control structure and memory is used for all the replicates. This increases
resource sharing. However, modifications to on-chip memory and the way
Split, and Assemble functions are implemented depend on the target applica-
tion. Image border handling is ignored for simplicity, whose implementation
also depends on the memory access pattern of the input algorithm.
input : imageIn, Image Width, Image Height, v, 𝑓
output : imageOut

1 func Coarsening(imageOut, imageIn, Image Width, Image Height, v, 𝑓 )
2 for 𝑦 ← 0 to Image Height do
3 for 𝑥 ← 0 to ⌈Image Width/v⌉ do

// read new superpixel

4 supPxl← Read(imageIn, 𝑥 , 𝑦)

// update on-chip memory

5 onchipMem← Update(onchipMem, supPxl, 𝑥 , 𝑦)

// get an accessor for the superpixel

6 supAcc[𝑘]← Read(onchipMem, 𝑥 , 𝑦)

// compute result for the input superpixel

7 for 𝑘 ← 0 to v − 1 do
// data separation for subcomputations

8 subAcc[𝑘]← Split(supAcc)

// subcomputation for the input pixel

9 subPxl← 𝑓 (k);
// memory packing

10 supPxl← Assemble(subPxl, 𝑘)
11 end

// write the output superpixel

12 Write(imageOut, supPxl, 𝑥 , 𝑦)
13 end
14 end
15 end

For this reason, HLS tools provide very little or no support to automatically
apply such a parallelization optimization for an algorithm described in a C-based
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Figure 3.4: Implementation of loop coarsening for point operators is straightforward
since it is a one-to-one mapping function.

language.2 This is not a surprise since compiler-based parallelization techniques such
as autoparallelization and autovectorization have been researched for over 50 years
to leverage multicore acceleration and CPU vector units, yet did not meet the level of
performance expectations [CCF+10]. Considering that implementing an application
for an FPGA or an ASIC is more complex than compiling an application for an ISA
where the underlying hardware is fixed, providing autoparallelization techniques
from C-based languages is not a challenging task. Instead, in this dissertation, we
raise the abstraction level in HLS by a domain-specific library or a language to extract
DLP of an image processing algorithm, thus automatically apply loop coarsening.

Implementation of loop coarsening is rather straightforward for point operators
as illustrated in Figure 3.4. The output of a point operator solely depends on the
input pixel at the same image coordinates. Therefore, its hardware implementation
does not require a complex on-chip memory architecture. Utilizing hardware logic
similar to SIMD units by simply replicating the arithmetic functions is enough for
the coarsening of point operators.

Loop coarsening of global operators such as reduction and histogram follows Al-
gorithm 1 and requires only small modifications on implementation of their memory
architectures. Contrarily, loop coarsening of local operators is complex, and even
more, it complicates hardware implementation of image border handling. As nearly
all image processing applications include multiple local operators and FPGAs be-
come top-notch platforms in terms of throughput per energy for the implementation
of fixed-point applications based on local operators. Therefore, even the smallest
improvements in their implementations may provide significant improvements in
terms of resource requirements and throughput.

2In particularly, Xilinx HLS tools do not offer a mechanism for automatically exploiting DLP. Intel
FPGA SDK for OpenCL can parallelize an NDRange kernel with special attributes, which are
num_compute_units (similar to Figure 3.2b) and num_simd_work_items (similar to vector engines
of a multicore). Yet the kernel should be described similar to a GPU kernel, e.g., a line-buffered
stencil function cannot be parallelized [Int17]. We refer to Chapter 4 for more details.
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Figure 3.5: Loop tiling for local operators [RÖH+18]. The input image is split verti-
cally into multiple parts. DLP is increased by processing all the image
tiles in parallel. In the case of the hardware implementation of local
operators, loop tiling replicates the sliding window as well as the arith-
metic functions and requires more line buffers. Overlapping regions
between the image tiles need to be stored on each of these line buffers.
For these reasons, resource sharing is higher compared to the replication
approach shown in Figure 3.2b but less efficient than loop coarsening.
(Figure reprinted from [RÖH+18], © 2018 IEEE)

Comparison with Loop Tiling Loop tiling is a well-established approach for
increasing DLP by splitting an input image into multiple tiles and processing them
in parallel as shown in Figure 3.5. This introduces more overhead compared to loop
coarsening. First, splitting an input image into tiles requires distributing incoming
pixels to multiple buffers, which can be achieved in hardware or software. Second, the
same data might need to be transferred multiple times, e.g., overlapping regions must
be transferred multiple times for the implementation of local operators. Furthermore,
processing all the image tiles in parallel requires replicating the same hardware
logic. Therefore, accelerators share fewer resources in loop tiling compared to loop
coarsening. We refer to our work in [RÖH+18] for more details and benchmarks.

Another use case of loop tiling is to process each image tile sequentially. This
does not increase the DLP, in fact it often slows down the hardware execution. For
instance, each image tile in Figure 3.5 could be processed one after another. In
this scenario, loop tiling might have the following advantages: i) It can accelerate
data transfers between host and device by using one virtual page for each tile and
resizing the data transfer size to the optimum. These parameters depend on the
communication interface [PBY+17]. ii) Processing a tile that is smaller than the image
might reduce the resource usage, e.g., smaller line buffers are able to hold image tiles
(as in Figure 3.5) compared to storing the whole image lines. However, this is not the
focus of this chapter.
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3.1 Introduction

Table 3.1: Notation used in this chapter
𝑣 coarsening factor

𝑊 image width

𝐻 image height

𝑘in input image bit width

𝑘out output image bit width

𝑤 width of local operator window

ℎ height of local operator window

𝑟𝑤 ⌊𝑤/2⌋, horizontal radius

𝑟ℎ ⌊ℎ/2⌋, vertical radius

𝑟𝑤𝑣 ⌈𝑟𝑤/𝑣⌉, minimum number of data beats larger than or equal to 𝑟𝑤

MUX[𝑛] 𝑛 input multiplexer hardware

𝐶arch
FF register usage estimated for the implementation arch

𝐶arch
mux MUXs usage estimated for the implementation arch

𝐶arch
FF (type) 𝐶arch

FF for the selected border handling type

𝐶arch
mux (type) 𝐶arch

mux for the selected border handling type

𝑇
type
CriticalPath estimation of the critical path delay

Differences to Explicit Vectorization ISAs consisting of SIMD units support
operations on vector data types. Thereby, one instruction is used to apply the
same type of operation on multiple data, i.e., mostly arithmetic operations such as
multiplication. One example is to apply convolution on a red, green, blue, alpha
channel (RGBA) image, where the same multiplication and addition is applied to
all image channels. However, vectorizing a local operator on consecutive pixels is
much more complex: new vector data types must be created by extracting pixels
from neighbor vectors. Unlikely, superpixel contains a continuous pixel space in
loop coarsening.

3.1.2 Notation

This section introduces the notation of important parameters used in this chapter to
increase clarity (see Table 3.1). Column and row image coordinates are represented
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by 𝑥 and 𝑦. 𝑊 /𝐻 and 𝑤/ℎ refer to the width and height of an image and the width
and height of a local operator, respectively. Based on that, 𝑟𝑤 = ⌊𝑤/2⌋ and 𝑟ℎ = ⌊ℎ/2⌋
represent the integer radius of the operator. Parameter 𝑣 represents the so-called
coarsening factor and 𝑘in, 𝑘out are input and output bit widths of a local operator.

Moreover, we introduce two types of area cost functions: 𝐶FF and 𝐶mux. 𝐶arch
FF

denotes the number of registers that are estimated to be used for arch. Similarly,
𝐶arch

mux indicates the number of MUXs. 𝐶arch
FF (type) and 𝐶arch

mux (type) represent the cost
functions for a selected border handling type. Furthermore, we denote MUX[𝑛] to
refer to a multiplexer with 𝑛 inputs. As a speed measure,𝑇 type

CriticalPath denotes the time
estimation of the critical path of an architecture that implements border handling of
type.

3.2 Schmid’s Loop Coarsening

DLP of local operators reading data in raster order can be increased by processing
groups of data elements, so-called data beats, in each cycle. Schmid et al. [SRH+15]
denote this technique as loop coarsening, since coarsening is applied to the outer
loop of a stencil operation, reading data in raster order.

A representation of Schmid’s loop coarsening architecture is given in Figure 3.6.
The line buffer and sliding window are modified to store data beats consisting of 𝑣
pixels. The calculation is replicated by a factor of 𝑣 followed by a unit for packing
the results into a single output data beat. Coarsening the loop of a local operator by
a factor 𝑣 provides the throughput (𝑇ℎ) and latency (𝐿) equations given Eq. (3.1).

𝑇ℎout = 𝑇ℎin = 𝑣 pixels/cycle
𝐿 = (⌊ℎ/2⌋ · ⌈𝑊/𝑣⌉ + ⌊⌈𝑤/𝑣⌉/2⌋ + 𝐿calc) + (⌈𝑊/𝑣⌉ · 𝐻 )

(3.1)

3.3 Proposed Loop Coarsening

In the following, we propose two novel architectures supporting loop coarsening
with equal performance as in Eq. (3.1), but with less area usage [ÖRH+17b]. While
the first one, called Fetch and Calc (F&C) is an optimized version of Schmid’s loop
coarsening architecture [SRH+15], the other, named Calc and Pack (C&P) uses a
different schedule. In Section 3.6, it is shown that which of these is the more efficient
architecture depends on the parameters𝑤 , ℎ, 𝑘in, 𝑘out, and the border handling mode.
Both architectures have in common that the sliding window is shifted in each cycle
by 𝑣 steps.

For explanation purposes, we group the registers holding the pixels of a sliding
window into regions (denoted by 𝑅) according to their temporal content as shown
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Figure 3.6: Schmid’s loop coarsening [SRH+15] with two pixels processed at once
(𝑣 = 2) for a local operator of size 3×3. (Figure reprinted from [SRH+15],
© 2015 IEEE)

in Figure 3.8. 𝑅left and 𝑅right denote the registers that hold the neighboring pixels
to process 𝑣 pixels at 𝑅mid. Similarly, 𝑅fetch labels the registers that store the newest
data beats. We also use colors in the figures for the labels 𝑅fetch (red) and 𝑅mid (green)
since they can overlap.

3.3.1 Fetch and Calc

Ideally, coarsening a (𝑤,ℎ) local operator by 𝑣 requires a sliding window that holds
(𝑤 + 𝑣 − 1) · ℎ pixels. However, this is not the case in Schmid’s loop coarsening
implementation, where the sliding window always holds𝑤 ·ℎ · 𝑣 pixels. In each clock
cycle, Schmid’s loop coarsening reads (fetches) 𝑣 new pixels into register region 𝑅right
and produces 𝑣 result pixels stored in 𝑅mid as shown in Figures 3.7 and 3.8.

In the following cases, Schmid’s loop coarsening stores redundant pixels (which
are optimized in F&C):

i when 𝑣 > 𝑟𝑤 : 𝑣 number of pixels are stored in 𝑅right instead of only 𝑟𝑤 , which is
the required number of pixels to produce results for 𝑣 number of pixels stored
in 𝑅𝑚𝑖𝑑 .

ii when 𝑣 < 𝑟𝑤 : Schmid’s architecture requires 𝑣 − (𝑣 mod 𝑟𝑤 ) number of extra
FFs in 𝑅right, solely to store 𝑣 pixels that are required in the next iteration.

The number of required FFs in Schmid’s sliding window can be expressed by Eq. (3.2).

𝐶Schmid’s
FF = 𝑘in · ℎ · 𝑣 · (2 · ⌈𝑟𝑤/𝑣⌉ + 1) (3.2)

While the unnecessary pixels in 𝑅right are necessary for calculations in subsequent
cycles, it is not necessary to store more than 𝑟𝑤 pixels in 𝑅left. Hence, as an improve-
ment to [SRH+15], the number of pixels in 𝑅left may be reduced to 𝑟𝑤 as shown in
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shift input

f f f f

shift

(a) Schmid’s:

shift input

f f f f

shift

(b) Fetch and Calc

Figure 3.7: F&C optimizes resource usage in Schmid’s loop coarsening by eliminat-
ing unnecessary FFs from its sliding window. The difference is shown
for a (𝑤 = 3, ℎ = 3) local operator, and the coarsening factor is 𝑣 = 4. In
every iteration (i.e., clock cycle when II=1), the sliding windows of both
implementations read (fetch) 4 new pixels (which are held in 𝑅right) and
produce 4 results (for the pixels stored in 𝑅mid). Schmid’s implementa-
tion unnecessarily holds 9 pixels on its left side (𝑅left).

Figure 3.8b. Eq. (3.3) gives the number of pixels that need to be fetched in a row of a
coarsened sliding window for any given 𝑣 and 𝑟𝑤 .

𝐶F&C
FF = 𝑘in · ℎ · (𝑟𝑤 + 𝑣 · ( ⌈𝑟𝑤/𝑣⌉ + 1)) +𝐶F&C

FF (𝑏) (3.3)
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𝑡

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

fetchprocess
𝑅right

𝑅mid 𝑅right

𝑅left 𝑅mid 𝑅right

𝑅left 𝑅mid 𝑅right

(a) Schmid’s: Processing starts at the second cycle. Each row holds
𝑣 + 2 · (𝑣 · ⌈𝑟𝑤/𝑣⌉) = 24 pixels starting with the third cycle for 𝑣 = 8 and 𝑟𝑤 = 3.

𝑡

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

fetchprocess
𝑅right

𝑅mid 𝑅right

𝑅left 𝑅mid 𝑅right

𝑅left 𝑅mid 𝑅right

(b) Fetch and Calc: Processing starts at the second cycle. Each row holds
𝑟𝑤 + 𝑣 + (𝑣 · ⌈𝑟𝑤/𝑣⌉) = 19 pixels starting with the third cycle for 𝑣 = 8 and 𝑟𝑤 = 3.

𝑡

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

fetchprocess
𝑅right𝑅mid

𝑅left 𝑅right𝑅mid

𝑅left 𝑅right𝑅mid

𝑅left 𝑅right𝑅mid

(c) Calc and Pack: Processing starts at the first cycle. Writing starts at the second cycle. Writing
the overlap of fetch and process is delayed by one cycle. Each row holds 𝑣 + 2 · 𝑟𝑤 = 14
pixels starting with the second cycle for 𝑣 = 8 and 𝑟𝑤 = 3.

Figure 3.8: First 4 iterations (clock cycles) of the raster order image read schedule,
where x axis shows horizontal pixel coordinates of an image row, whose
width 𝑤 = 7, radius 𝑟𝑤 = 3 and coarsening factor 𝑣 = 8. For explanation
purposes, row of a one dimensional sliding window is divided into three
regions, namely 𝑅left, 𝑅right, and 𝑅mid as explained in Section 3.3. The
considered local operator calculates 𝑣 number of output values at the
image coordinates for the pixels hold in 𝑅mid. Output of 𝑅mid depends on
the neighboring pixels that stored in 𝑅left and 𝑅right. Similar to Figure 3.6,
Fetch (colored by red) and process (colored by green) represent pixels
read to sliding window and processed in each cycle, respectively. All the
considered loop coarsening implementations start writing an output data
beat (𝑣 output) in the second cycle. (Figure reprinted from [ÖRH+17b],
© 2017 IEEE)
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3.3.2 Calc and Pack

C&P reduces the number of FFs required to store new pixels in Schmid’s implemen-
tation and F&C (in other words, resources used for fetching) by using an alternative
schedule. In this schedule, the sliding window holds the minimum number of pixels
required for the stencil calculation according to Eq. (3.4), so that the newest input
data beat is not only stored in 𝑅right but also in 𝑅mid:

|𝑅left | = |𝑅right | = 𝑟𝑤, |𝑅mid | = 𝑣 (3.4)

The sliding window of C&P is shifted by 𝑣 in each cycle. This splits the processing
order at 𝑅mid into two cycles. Consequently, an output data beat is partially calculated
in two cycles and written in the second cycle using the memory packing scheme
in Eq. (3.5).

output( [𝑥, 𝑥 + 𝑣], 𝑡) = pack{out( [0, 𝑣 − 𝑟𝑤 − 1], 𝑡 − 1),
out( [𝑣 − 𝑟𝑤, 𝑣 − 1], 𝑡)} (3.5)

The described schedule is implemented using additional registers that are placed
after the leftmost 𝑣 − 𝑟𝑤 local operators in order to the hold results from the previous
cycle. For instance, C&P’s schedule for a kernel with 𝑤 = 7 and 𝑣 = 8 is given
in Figure 3.8c. As it can be seen, the number of pixels stored in a row remains ideal
𝑤 − 1 + 𝑣 = 14, but 𝑣 − 𝑟𝑤 = 5 additional registers are necessary in order to delay the
results of the previous cycle. Eqs. (3.6) and (3.7) give the costs necessary per row of a
coarsened sliding window for any given 𝑣 and 𝑟𝑤 .

𝐶C&P
FF (𝑑) = 𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣)) (3.6)

𝐶C&P
FF = 𝑘in · ℎ · (2 · 𝑟𝑤 + 𝑣) +𝐶C&P

FF (𝑑) +𝐶C&P
FF (𝑏) (3.7)

3.4 Analysis of Border Handling

A local operator may depend on pixels from outside the image at the image borders
defined as:

0 ≤ 𝑥 < ⌊𝑤/2⌋ ∨ 𝑥 >𝑊 − ⌈𝑤/2⌉
0 ≤ 𝑦 < ⌊ℎ/2⌋ ∨ 𝑦 > 𝐻 − ⌈ℎ/2⌉ (3.8)

A solution is handling the data according to well-known border patterns, as in
Figure 3.10. Clamping virtually extends the input image with the pixel value on the
border whereas constant pattern assigns the pixels at the virtually extended image
with a constant value. Mirroring pattern replicates the pixels on border according
to their distance to image border, as shown in Figure 3.10. A common solution
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(a) Fetch and Calc
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(b) Calc and Pack

Figure 3.9: C&P uses the minimum number of FFs to hold (𝑤 +𝑣 − 1) ∗ℎ pixels (only
the required pixels for stencil calculation) in its sliding window at the cost
of using additional registers to pack results at the output. The difference
is shown for a (𝑤 = 3, ℎ = 3) local operator, and the coarsening factor
is 𝑣 = 4. C&P starts processing input data one iteration before F&C as
shown in Figure 3.8, yet the latency of C&P is same with F&C.

is padding the input image to a larger size before local operators, but this may
stall the image pipeline and decrease the throughput. Alternatively, a non-stalling
implementation can be achieved by selecting appropriate data before the line buffers
and sliding window according to the vertical and horizontal image coordinates,
respectively [ÖRH+17b].
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Figure 3.10: Common border handling modes. (Figure reprinted from [ÖRH+17b],
© 2017 IEEE)

In the following, we analyze the hardware implementation properties of border
handling modes shown in Figure 3.10 to provide an analytical basis for hardware
architectures proposed in Section 3.4.

3.4.1 Naïve Border Handling

A straightforward approach for border handling, which is also common in software
implementations, is to process reads on the sliding window. Considering𝑊,𝐻,𝑤,ℎ
to be constant, and the read coordinates for the sliding window depend on the
combination of input indices 𝑥,𝑦, 𝑖, 𝑗 . The indices 𝑖 and 𝑗 address window elements
in the range [0,𝑤 − 1] and [0, ℎ − 1], respectively. Depending on the current position
of the operator within the image, we have to consider 𝑤 different border cases for 𝑥 ,
e.g., [0, 1, else,𝑊 − 2,𝑊 − 1] for 𝑤 = 5. Similarly, ℎ different border cases for 𝑦 need
to be considered. In total, this results in 𝑤2 · ℎ2 different input index combinations
for (𝑖, 𝑥) and ( 𝑗, 𝑦).

Assuming 𝐼𝑠 is the union of all input index combinations, then the cost of the data
selection hardware would be a function of |𝐼𝑠 |. Luckily, set 𝐼𝑠 can be separated into
two sets 𝐼𝑤 × 𝐼ℎ . Here, 𝐼𝑤 depends only on 𝑥 and 𝑖 indices, resulting in |𝐼𝑤 | = 𝑤2 index
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combinations and |𝐼ℎ | = ℎ2 analogously. Depending on the image size, not all
operator positions are relevant to every window element, e.g., the center element is
never subject to any border case, as it is always fetched from a valid image region.
Consequently, for an image size of at least ⌈𝑤/2⌉ × ⌈ℎ/2⌉ pixels, the number of input
index combinations can be reduced to a maximum of |𝐼𝑤 | = 1 + 2 ·∑⌈𝑤/2⌉𝑖=2 𝑖 . According
to Eq. (3.9), |𝐼𝑠 | can be reduced to only 121 instead of 625 output indices for a 5×5 local
operator.

|𝐼𝑠 | = |𝐼𝑤 | · |𝐼ℎ |
|𝐼𝑤 | = 𝐶 (𝑤), |𝐼ℎ | = 𝐶 (ℎ) 𝐶 (𝑛) = 1 + 2 ·

⌈𝑛/2⌉∑︁
𝑖=2

𝑖 (3.9)

3.4.2 Separated Border Handling

The following properties imply spatial and temporal features that can further improve
the so called naive border handling architecture:

1. A MUX circuit is required for the hardware implementation of an output data
selection from multiple inputs. Implementation of the naive border handling
approach introduced in Section 3.4.1 requires utilizing 𝑤2 · ℎ2 data selection
circuits (i.e., two input MUXs). However, MUX usage can be reduced for the
4 considered border handling modes in Figure 3.10 since number of required
data selections decreases towards the center of a local operator.

2. Assume that 𝐼ℎ and 𝐼𝑤 consist of all the𝑦 and𝑥 index combinations, then Eq. (3.10)
always satisfies

|𝐼𝑠 | = |𝐼𝑤 × 𝐼ℎ | = |𝐼𝑤 | · |𝐼ℎ | (3.10)

3. Every pixel read to the first register of a sliding window row is reused in the
following 𝑤 − 1 cycles, shown in Eq. (3.11).

in[𝑥,𝑦] = {wind[𝑖, 𝑗], 𝑡} = {wind[𝑖 − 1, 𝑗], 𝑡 + 1}
= . . . = {wind[𝑖 −𝑤 + 1, 𝑗], 𝑡 +𝑤 − 1} (3.11)

The first feature implies that the conditional selection through the 𝑥 and 𝑦 axes are
orthogonal to each other. This means that the row selection shown, in 𝑦-direction,
can be separated from the column selection, in 𝑥 , which is the same for all columns
of a local operator. Furthermore, the row selection can be implemented only once
before any pixel is read to the sliding window, which reduces the border handling
cost from |𝐼𝑠 | to |𝐼ℎ | + ℎ · |𝐼𝑤 |. By separating the row and column selection from each
other, |𝐼𝑠 | reduces from 11 · 11 = 121 to 6 · 11 = 66. The top-level architecture that
separates row selection and column selection is given in Figure 3.11.
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Figure 3.11: Separated border handling architecture: Row and column selection
consist of MUXs for implementing border handling index combination
sets 𝐼𝑤 and 𝐼ℎ , respectively. One row selection is placed before the
sliding window, contrary to the naïve type, deploying 𝑤 = 5 of them
after each column. (Figure reprinted from [ÖRH+17b], © 2017 IEEE)

Row Selection

The row selection circuit shown in Figure 3.11 reads from line buffers and writes
to the sliding window without increasing the critical path of the local operator.
Moreover, no locality can be exploited.

Column Selection

Whereas the column selection can use the same circuits with row selection, its output
is directly connected with the local operators’ data path, needing extra registers in
between for pipelining the critical path. Moreover, temporal locality can be exploited.
Therefore, we conduct an analysis to find minimum number of registers and MUXs
under certain assumptions.

A timed data flow for column selection is given in Figure 3.12, where 𝑅mid repre-
sents the center pixel of the local operator. Investigating the steps from 𝑥 =𝑊 − 4 to
process the next image row at 𝑥 = 1 reveals all the corner cases for border handling.
Investigating all 4 border handling modes shown in Figure 3.10 reveals that they can
be implemented with similar design patterns. It can be observed that the window
does not need to fetch a new pixel in the interval 𝑥 = [𝑊 − 3,𝑊 − 1]. However,
multiple pixels for the next image row must be read at once when 𝑥 = 0. Assuming
that the streaming is not stalled and one pixel is read in each cycle, at least 𝑟𝑤 pixels
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𝑥 =𝑊 − 3: 18 19 20 21 22 23 r0 22 23 0

𝑥 =𝑊 − 2: 19 20 21 22 23 r0 r1 23 0 1

𝑥 =𝑊 − 1: 20 21 22 23 r0 r1 r2 0 1 2

𝑥 = 0: l0 l1 l2 0 1 2 3 1 2 3

𝑥 = 1: l1 l2 0 1 2 3 4 2 3 4

Figure 3.12: Temporal data flow for row data selection Type-1 with a local operator
of size 𝑤 = 7. The blue background denotes valid image regions, while
lX and rX represent variable values depending on the corresponding
border handling mode. (Figure reprinted from [ÖRH+17b], © 2017 IEEE)

per row3 must be fetched at 𝑥 = 0 in order to initialize all column pixels. Eq. (3.12)
defines the minimum number of registers in a sliding window in terms of bits.

𝐶min
FF = ℎ · 𝑘in · (𝑤 +𝐶min

FF (𝑏)), 𝐶min
FF (𝑏) = 𝑟𝑤 (3.12)

Under this assumption, a column selection architecture using the minimum number
of registers has the following features:

i Except at 𝑥 = 0, border handling can be achieved only through data selection
that appropriately feeds 𝑅fetch and shifts the content stored in 𝑅right, 𝑅mid and
𝑅left.

ii All registers, except 𝑅fetch, should be able to read from 𝑅′right in order to initialize
all column pixels at 𝑥 = 0.

iii 𝑅′right fetches one pixel in every cycle, but only at𝑥 = 0, reads from𝑅′right become
indispensable. This fact renders the blue highlighted area in Figure 3.12 to be
needless.

Under the assumption that a selection can only be implemented using a MUX, the
minimum column selection for border handling uses at least the following resources:

3Note that additional registers utilized for border handling are represented by 𝑅′right.
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i There must be at least one MUX[2] before any register in 𝑅right and 𝑅left since
they must be able to read from 𝑅′right at 𝑥 = 0.

ii 𝑅mid can be implemented to read only from the leftmost register in 𝑅′right. If the
blue area is turned off, there must be at least one MUX[2] to read from 𝑅right.

iii The size of the MUX before 𝑅fetch depends on the border handling mode.

iv Only the data selection before 𝑅fetch and the blue portion of 𝑅′right can be
optimized. Resource usage is identical for all border handling modes.

In conclusion, for further optimization, the blue highlighted portion of 𝑅′right can be
shut down for the interval 𝑥 = [0,𝑊 − 𝑟𝑤 ) by modifying the selection before 𝑅fetch
and 𝑅mid. Eq. (3.13) shows the minimum number of MUXs for the discussed border
handling modes.

𝐶min
mux = ((2 · 𝑟𝑤 − 1)MUX[2] +MUX[2]) · ℎ · 𝑘in +𝐶new

mux (3.13)

3.5 Hardware Architectures for Image Border
Handling

In this section, we propose hardware implementations of the row and column selec-
tion circuits, provide their cost functions, and investigate their effects on the circuit
speed. In addition, we extend our proposed implementations to loop coarsening.

3.5.1 Row Selection

Row selection circuits for the considered border handling modes are shown in Fig-
ure 3.13. Clamp and mirror may be implemented by the same architecture with
different control paths. For clamp, 𝐼𝑤 can be reduced even more by wiring out(𝑦) to
out(𝑦 + 1) and out(𝑦 − 1) at the top and lower border, respectively. A corresponding
row selection circuit, called clamp2, is shown in Figure 3.13b. Despite the simplifica-
tion in selection size for clamp2, its longer critical path makes it barely appealing
for fast implementations. Cost functions for all architectures are given in Eqs. (3.14)
and (3.15), where 𝑇 (𝑀𝑈𝑋 [𝑛]) denotes the timing delay of the combinatorial circuit
utilize for an n-input multiplexer implementation and𝑇CriticalPath is the logic delay of
the longest path that limits the maximum achievable clock frequency.

𝐶RowSelect
mux = 2 ·


𝑟ℎ+1∑
𝑖=2

MUX[𝑖], mirror-101, mirror, clamp

𝑟ℎ ·MUX[2], clamp2
MUX[2], constant

(3.14)
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Figure 3.13: Border handling row data selection. (Figure reprinted from [ÖRH+17b],
© 2017 IEEE)

𝑇RowSelect
CriticalPath =


𝑇 (MUX[𝑟ℎ + 1]), mirror-101, mirror, clamp
𝑇 (𝑟ℎ ·MUX[2]), clamp2
𝑇 (MUX[2]), constant

(3.15)

3.5.2 Column Selection

In this section, we present three types to design the column selection hardware.
Type-0 is explained for comparison reasons only, since it is a commonly known
approach. On the other hand, Type-1 and Type-2 follow the analysis results discussed
in Section 3.4. Register requirements for both types are equal to the amount claimed
to be minimum in Section 3.4.

𝐶
Type-2
FF (𝑏) = 𝐶

Type-1
FF (𝑏) = 𝐶min

FF (𝑏) (3.16)

Similarly, their design approach assumes that there is one MUX[2] before every
register in 𝑅right and 𝑅left. The optimization focuses on the selection circuit before
𝑅fetch and 𝑅mid by restructuring 𝑅′right.

Type-0

Column selection can be implemented by transposing row selection architectures dis-
cussed in Section 3.5.1. Figure 3.14a shows the mirror border handling. Whereas the
cost of this common approach, shown in Eq. (3.17), is twice the registers of Eq. (3.16).

𝐶
Type-0
FF (𝑏) = ℎ · 𝑘in · (2 · 𝑟𝑤) (3.17)

77



3 Hardware Design and Analysis of Efficient Loop Coarsening and Border Handling for
Image Processing

input

(a) Type-0: Transpose of row selection followed by pipelining registers.

input

(b) Type-1: Minimal number of registers is used, and the selection at the upper right register
region (𝑅right’) is optimized according to Section 3.4.

64 input5

56 4

(c) Type-2: Minimal number of registers is used, and the selection before the input register
(𝑅fetch) is optimized according to Section 3.4.

Figure 3.14: Column data selections for mirror with 𝑤 = 7. Vivado HLS removes
the blue register in Figure 3.14a since it stores the same data as the
orange one. (Figure reprinted from [ÖRH+17b], © 2017 IEEE)

Similarly, the selection is also larger since there is more than one MUX[2] before
𝑅right and 𝑅left. The reason is that this type does not exploit temporal locality in
𝑥-direction. The MUX cost for the selection is the same as the cost in Eq. (3.14),
where 𝑟ℎ is replaced by 𝑟𝑤 . On the contrary, the critical path for clamp2, as defined
by Eq. (3.18), is shorter since the selection and temporal direction is the same.

𝑇
Type-0
CriticalPath =

{
𝑇 (MUX[𝑟𝑤 + 1]), mirror-101, mirror, clamp
𝑇 (MUX[2]), clamp2, constant

(3.18)
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𝑅fetch

shift

𝑅right 𝑅′right𝑅mid

𝑥 =𝑊 − 4: 20 21 22 23 r0 r1 r2

𝑥 =𝑊 − 3: 21 22 23 r0 r1 r2 0

𝑥 =𝑊 − 2: 22 23 r0 r1 r2 0 1

𝑥 =𝑊 − 1: 23 r0 r1 r2 0 1 2

𝑥 = 0: 0 1 2 3

Figure 3.15: Temporal data flow that minimizes the selection before 𝑅fetch (Type-2
row data selection). 𝑅left was omitted for demonstration purposes only.
(Figure reprinted from [ÖRH+17b], © 2017 IEEE)

Type-1

Temporal data flow for Type-1 for a ℎ×11 kernel is already given in Figure 3.12.
Registers in the blue highlighted region in 𝑅′right read from the previous one, thus,
no MUX is needed for any register in 𝑅′right. Moreover, the MUX before 𝑅mid can be
eliminated if 𝑅′right is not switched off. This MUX is highlighted in blue in Eq. (3.19).
By analyzing the registers for temporal data flow, it can be seen that there are types
for any arbitrary size. Example architectures for all border handling modes are given
in Figure 3.14b. The critical path and the selection cost in terms of MUXs are given
in Eqs. (3.19) and (3.20).

𝐶
Type-1
mux = (MUX[2] +

{
MUX[𝑟𝑤 + 1], mirror-101, mirror
MUX[2], clamp, constant

+ (2 · 𝑟𝑤 − 1)MUX[2]) · ℎ · 𝑘in

(3.19)

𝑇
Type-1
CriticalPath =

{
𝑇 (MUX[𝑟𝑤 + 1]), mirror-101, mirror
𝑇 (MUX[2]), clamp, constant

(3.20)

Type-2

The size of the MUX before 𝑅fetch, depending on 𝑟𝑤 , as Eq. (3.19) indicates, could
drastically decrease the speed of the entire circuit for large windows. Section 3.4
suggests that if a more optimized architecture exists, it can be found by rescheduling
the blue highlighted region of 𝑅′right to minimize𝐶new

mux in Eq. (3.13). Based on that, we
propose an alternative schedule in Figure 3.15. Here, the blue highlighted region is
restructured in a way that the leftmost register in 𝑅′right can always output the proper
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input for 𝑅fetch. In this way, the selection before 𝑅fetch can always be implemented
with only a MUX[2] at the cost of additional MUX[2]s utilized between the registers
in 𝑅′right. An example architecture for this type is given in Figure 3.14c. The critical
path and the selection cost in terms of MUXs are equal for all border handling modes
and are given in Eqs. (3.21) and (3.22). Note that 𝑅′right, thus the selection in between
can be switched off in the interval 𝑥 = [0,𝑊 − 𝑟𝑤 ).

𝑇
Type-2
CriticalPath = 𝑇 (MUX[2]) (3.21)

𝐶
Type-2
mux = ((3 · 𝑟𝑤 + 1)MUX[2]) · ℎ · 𝑘in (3.22)

3.5.3 Loop Coarsening

Our analysis on border handling remains valid for both loop coarsening architectures
called F&C and C&P are presented in the following. Thereby, separated border
handling types can be used as an efficient top-level architecture. However, F&C and
C&P require different column selection patterns.

Fetch and Calc

A local operator can be considered as an F&C architecture with 𝑣 = 1. Correspond-
ingly, column selection architectures of Type-0, Type-1, and Type-2, can be used for
F&C with slight modifications. Section 3.4 explains that the time interval between
a local operator entering and leaving the border region is 𝑟𝑤 cycles in raster order
processing. As the local operator moves faster in the horizontal direction by the
increase in 𝑣 , this interval shrinks to 𝑟𝑤𝑣 as in Eq. (3.23) for the left and right borders.

𝑟𝑤𝑣 = ⌈𝑟𝑤/𝑣⌉ (3.23)

Consequently, column selection of a loop coarsening architecture with the parameters
of𝑤 , 𝑣 , consists of min(𝑟𝑤 , 𝑣) parallel column selection architectures, whose 𝑟𝑤 = 𝑟𝑤𝑣 .
Examples of two corner cases, which are 𝑟𝑤 > 𝑣 and 𝑟𝑤 < 𝑣 , for Type-1 border
handling in loop coarsening are shown in Figures 3.16 and 3.17. As a result, the
increase in 𝑣 reduces 𝐶mux of border handling, whereas 𝐶FF(𝑏) remains the same
as Eqs. (3.24) and (3.25) indicate.

𝐶F&C
mux (𝑏) = min(𝑟𝑤, 𝑣) ·𝐶Type

mux (𝑏, 𝑟𝑤𝑣) (3.24)

𝐶F&C
FF (𝑏) = 𝐶

Type
FF (𝑏, 𝑟𝑤) (3.25)
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input

Figure 3.16: F&C Type-1 mirror border handling for 𝑤 = 9 and 𝑣 = 2, which
basically is min(𝑟𝑤 , 𝑣) = 2 parallel Type-1 column selection for 𝑤 = 5.
(Figure reprinted from [ÖRH+17b], © 2017 IEEE)
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(a) F&C Type-1, which basically is min(𝑟𝑤, 𝑣) = 2 par-
allel Type-1 column selection for 𝑤 = 3
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Figure 3.17: Mirror border handling for 𝑤 = 5, 𝑣 = 8. (Figure reprinted from
[ÖRH+17b], © 2017 IEEE)

Calc and Pack

The regions 𝑅′right and 𝑅′left in Figure 3.18 illustrate the difference to F&C. As it can
be seen, the first pixel of an image row is not processed in the first pixel of 𝑅mid.
Therefore, 𝑅left cannot be initialized at 𝑥 = 0 and additional registers 𝑅′left should be
used for border handling instead. An example architecture is given in Figure 3.17.
However, since it consists of an additional register for each register at 𝑅left and 𝑅right
any selection in border handling can be implemented via a MUX[2]. Hence, 𝐶mux
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𝑅left 𝑅right𝑅mid

𝑅′right 𝑅′left 𝑅fetch

𝑥 =𝑊 − 4: 16 17 18 19 20 21 18 19 20 21 22 23

𝑥 = 0: 20 21 22 23 r0 r1 l0 l1 0 1 2 3

𝑥 = 4: 0 1 2 3 4 5 2 3 4 5 6 7

Figure 3.18: Temporal data flow for 𝑤 = 5 with coarsening 𝑣 = 4. (Figure reprinted
from [ÖRH+17b], © 2017 IEEE)

and 𝐶FF of the border handling can be defined by Eqs. (3.26) and (3.27).

𝐶C&P
FF (𝑏) = 𝑘in · ℎ · (2 · 𝑟𝑤) (3.26)

𝐶C&P
mux (𝑏) = min(𝑟𝑤, 𝑣) ·𝐶Type-0

mux (𝑏, 𝑟𝑤𝑣) (3.27)

3.6 Architecture Selection

In the following, we analyze resource usage of the hardware architectures introduced
in this chapter. Our goal is to provide an algorithm (shown in Algorithm 2) that
selects a coarsening architecture and border handling type that requires fewer FFs,
MUXs, and has lower a critical path delay (denoted by 𝑇𝐶CriticalPath) for the given
input parameters window width (𝑤 ), window height (ℎ), border handling mode
(borderMode), loop coarsening factor (𝑣), input and output data bit width (𝑘in, and
𝑘out, respectively) than any other considered architecture. The notations of these
parameters are introduced in Table 3.1 for clarity. For this purpose, this section
analyzes the analytical models of the considered architectures.

3.6.1 Border Handling Type Selection

Not implementing a border handling mode circuit (denoted by none) for the loop
coarsening architectures C&P and F&C does not introduce any FF cost and MUX
cost, as mathematically expressed below:

bmode = none => 𝐶F&C
FF (𝑏) = 𝐶C&P

FF (𝑏) = 0
bmode = none => 𝐶F&C

mux (𝑏) = 𝐶C&P
mux (𝑏) = 0

bmode = none => 𝑇𝐶F&C
CriticalPath(𝑏) = 𝑇𝐶C&P

CriticalPath(𝑏) = 0
(3.28)
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Combining Eqs. (3.14), (3.19), (3.22), (3.25) and (3.27) reveals that the MUX costs
𝐶

btype
mux (𝑏) of all the all border handling types except Type-2 converge to the same

amount where 𝑣 ≥ 𝑟𝑤 , as Eq. (3.29) indicates.

𝑟𝑤𝑣 > 1 => 𝐶
Type-0
mux ≥ 𝐶

Type-1
mux ∧𝐶Type-0

mux ≥ 𝐶
Type-2
mux

𝑟𝑤𝑣 = 1 => 𝐶
Type-2
mux (𝑏) > 𝐶

Type-0
mux (𝑏) = 𝐶

Type-1
mux (𝑏)

(3.29)

Merging Eq. (3.27) with Eq. (3.21) shows that the Type-2’s critical path delay is always
less than or equal to Type-1 and Type-0, as shown below:

bmode ≠ none => 𝑇𝐶
Type-0
CriticalPath(𝑏, 𝑟𝑤) ≥ 𝑇𝐶

Type-1
CriticalPath(𝑏, 𝑟𝑤) ≥ 𝑇𝐶

Type-2
CriticalPath(𝑏, 𝑟𝑤)

𝑇𝐶
Type-2
CriticalPath(𝑏, 𝑟𝑤) = MUX[2]

(3.30)

According to Eq. (3.30), the Type-2 border handling circuit requires only one two-
input MUX in its critical path, which is less than or equal to the MUX cost in border
handling implementation of Type-0 and Type-1. Therefore, when synthesized Type-2
hardware circuit is expected to achieve highest clock frequency compared to other
cosidered border handling implementations.

The difference in FF cost 𝐶FF(𝑏) between implementing border handling types for
loop coarsening architectures C&P and F&C is given in Eq. (3.31), which is derived
by merging Eqs. (3.12), (3.16) and (3.26).

𝐶C&P
FF (𝑏) −𝐶F&C

FF (𝑏) = 𝑘in · ℎ ·


0, btype = Type-0

∨ bmode = none
𝑟𝑤, btype = Type-1 ∨ Type-2

∧ bmode ≠ none

(3.31)

Considering Eq. (3.31) and Eq. (3.30) derives the conclusion that Type-1 border
handling mode uses fewer resources (i.e., FFs and MUXs) and have smaller critical
path delays than Type-0 border handling mode for both F&C and C&P loop coarsening
architectures.

Combining Eqs. (3.19), (3.22) and (3.25) derives the equation below:

𝐶
Type-2
mux (𝑏) ≥ 𝐶

Type-1
mux (𝑏), clamp, constant (3.32a)

𝐶
Type-2
mux (𝑏) −𝐶Type-1

mux (𝑏) = 𝑟𝑤 ·MUX[2] −MUX[𝑟𝑣𝑤 + 1], mirror,mirror-101 (3.32b)

This analysis shows that implementing border handling modes clamp and constant
by using Type-1 is more efficient than Type-2 for both F&C and C&P loop coarsening
architectures in terms of resources (i.e., fewer FFs and MUXs) and critical path delay.
For the border handling modes mirror and mirror-101, Type-2 uses less MUXs (and
dominates Type-1) only when Eq. (3.32b)≤ 0, which depends on the size of MUX
gates selected by the technology mapping of the hardware synthesis tool.
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Finally, combining Eqs. (3.29), (3.30) and (3.32b) shows that implementing border
handling types for F&C requires fewer resources and smaller critical path than C&P,
as summarized in Eq. (3.33).

𝐶C&P(𝑏) ≥ 𝐶F&C(𝑏), 𝑇𝐶C&P
CriticalPath(𝑏) ≥ 𝑇𝐶F&C

CriticalPath(𝑏) (3.33)

3.6.2 Loop Coarsening Architecture Selection

The cost of implementing the loop coarsening architectures introduced in this chap-
ter only differs in terms of FFs, since the modifications required for extending line
buffers and replicating the application datapath are same for both F&C and C&P.
Unlike border handling implementations, both F&C and C&P loop coarsening archi-
tectures do not require using MUXs for data selection. Therefore, the loop coarsening
architecture C&P uses less resources than F&C when its FF cost 𝐶FF is smaller as
denoted in the following:

𝐶C&P
FF < 𝐶F&C

FF => 𝐶C&P < 𝐶F&C (3.34)

Substituting Eqs. (3.3) and (3.7) into Eq. (3.34) gives the following condition for the
loop coarsening architecture F&C using fewer resources than C&P:

𝐶C&P
FF < 𝐶F&C

FF

0 < 𝐶F&C
FF −𝐶C&P

FF

0 < 𝑘in · ℎ · (𝑟𝑤 + 𝑣 · 𝑟𝑤𝑣 + 𝑣) +𝐶F&C
FF (𝑏)−

(𝑘in · ℎ · (2 · 𝑟𝑤 + 𝑣) + 𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣)) +𝐶C&P(𝑏))
0 < 𝑘in · ℎ · (𝑣 · 𝑟𝑤𝑣 − 𝑟𝑤) − 𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣)) +𝐶F&C(𝑏) −𝐶C&P(𝑏)

(3.35)

As can be seen, the loop coarsening architecture C&P using fewer resources than
F&C (where Eq. (3.35) is true) depends on many variables, including the input/output
bit widths 𝑘in/𝑘out, the coarsening factor 𝑣 , local operator window height ℎ and width,
as well as to the cost of implementing image border handling.

The following expands the Eq. (3.35) for a given border handling mode (i.e., none,
mirror, mirror-101, clamp, and constant).

Border Handling Mode is Undefined (None)

Substituting Eq. (3.31) into Eq. (3.35) for the none border handling mode (border
handling is not needed) gives the equation below:

𝐶C&P
FF ≤ 𝐶F&C

FF where 𝑘out ≤ 𝑘in · ℎ ∧ btype = Type-0 (3.36)

Eq. (3.36) indicates that the loop coarsening architecture C&P uses fewer FF than
F&C (thus requires fewer are resources according to Eq. (3.34)) when the output bit
width is smaller than the multiplication of local window height ℎ and input bit width
𝑘in.
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Mirror-101, Mirror, Clamp, Constant

In the following, we analyze Eq. (3.35) to find the region that C&P requires fewer FFs
than F&C for the border handling types Type-1 and Type-2 (for one of the border
handling modes clamp, constant, mirror, and mirror-101). For this purpose, Eq. (3.35)
is simplified in the following for the cases of the coarsening factor 𝑣 being larger
than the horizontal radius of the local operator 𝑟𝑤 or not:

𝑣 > 𝑟𝑤 : Combining Eqs. (3.29), (3.31) and (3.35) for 𝑣 > 𝑟𝑤 gives the following
equation:

𝑣 > 𝑟𝑤 ∧ btype ∈ {Type-1,Type-2} => 𝐶C&P
FF < 𝐶F&C

FF where
0 < 𝑘in · ℎ · (𝑣 − 𝑟𝑤) − 𝑘out · (𝑣 − 𝑟𝑤) − 𝑘in · ℎ · 𝑟𝑤

𝑟𝑤 · (2 · 𝑘in · ℎ − 𝑘out) < 𝑣 · (𝑘in · ℎ − 𝑘out)
(3.37)

The loop coarsening architecture C&P uses fewer FFs than F&C (thus fewer resources
according to Eq. (3.34)) when Eq. (3.37) satisfies.

𝑣 ≤ 𝑟𝑤 Merging Eqs. (3.31), (3.33) and (3.35) for 𝑣 ≤ 𝑟𝑤 gives the following equa-
tions:

𝑣 ≤ 𝑟𝑤 ∧ btype ∈ {Type-1,Type-2} => 𝐶F&C
FF < 𝐶C&P

FF where
0 < 𝑘in · ℎ · (𝑣 · 𝑟𝑤𝑣 − 𝑟𝑤) − 𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣)) − 𝑘in · ℎ · 𝑟𝑤

0 < 𝑘in · ℎ · (𝑣 · 𝑟𝑤𝑣 − 2 · 𝑟𝑤) − 𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣))
𝑘out · (𝑣 − (𝑟𝑤 mod 𝑣)) < 𝑘in · ℎ · (𝑣 · 𝑟𝑤𝑣 − 2 · 𝑟𝑤)

(3.38)

The left-hand side of Eq. (3.38) is always positive while the right-hand side is always
negative for 𝑣 ≤ 𝑟𝑤 . Therefore, F&C requires fewer resources than C&P when 𝑣 ≤ 𝑟𝑤 .

3.6.3 Architecture Selection Algorithm

Algorithm 2 calculates the architecture that requires fewer resources and shorter
critical path according to analysis given in Section 3.6 as well as the column selection
architecture discussed in Section 3.4.

3.7 Evaluation and Results

In this section, we evaluate the FPGA implementation results of the considered
loop coarsening and border handling architectures. We individually evaluate the
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Algorithm 2: Architecture selection algorithm
input : 𝑤 , ℎ, borderMode, 𝑣 , 𝑘out, 𝑘in, designGoal
output : BorderHandlingPattern ∈ {Type-1,Type-2}

CoarseningArch ∈ {F&C,C&P}
1 func selectArchitecture(BorderHandlingPattern, CoarseningArch
2 𝑤 , ℎ, borderMode, 𝑣 , 𝑘out, 𝑘in, designGoal)
3 𝑟𝑤 = ⌊𝑤/2⌋
4 if borderMode = UNDEFINED then
5 if 𝑘out < 𝑘in · ℎ then
6 CoarseningArch← Calc and Pack (C&P)
7 else
8 CoarseningArch← Fetch and Calc (F&C)
9 end

10 BorderHandlingPattern← none
11 else
12 if 𝑟𝑤 · (2 · 𝑘in · ℎ − 𝑘out) < 𝑣 · (𝑘in · ℎ − 𝑘out) then
13 CoarseningArch← Calc and Pack (C&P)
14 else
15 CoarseningArch← Fetch and Calc (F&C)
16 end
17 if borderMode = (CLAMP ∨ CONSTANT) then
18 BorderHandlingPattern← Type-1
19 else

// borderMode = (MIRROR ∨ MIRROR-101)

20 if (designGoal = speed) ∨ (Eq. (3.32b) = true) then
21 BorderHandlingPattern← Type-2
22 else
23 BorderHandlingPattern← Type-1
24 end
25 end
26 end
27 end

two loop coarsening and border handling architectures in Sections 3.7.1 and 3.7.2,
respectively. The additional pipelining overhead that a higher target logic speed
might introduce to these architectures is evaluated in Section 3.7.3. We use Xilinx
Vivado HLS to evaluate the synthesis results of our proposed implementations when
an HLS tool is used. In order to examine the analytical models of the proposed
architectures, we investigate the synthesis of a single kernel algorithm, the mean
filter, and subtract the cost of the data path from the total cost using estimation
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results. Confirming analytical models in this way facilitates the confidence that
we avoid reporting any overhead caused by the HLS tool’s heuristics. Finally, we
compare the FPGA implementation results with the estimation results to examine
their validity in Section 3.7.4.

3.7.1 Coarsening Types

In this section, we compare the coarsening architectures proposed in Section 3.3. As
already discussed, F&C is an extension of Schmid’s loop coarsening technique that
avoids redundant registers. Therefore, we compared F&C with C&P in Figures 3.19
and 3.20. Moreover, some of these results are given in Table 3.2. Algorithm 2 suggests
using C&P in case of none border handling mode for any 𝑣 and 𝑟𝑥 . Moreover, it can
be derived from Eq. (3.36) that C&P should use less registers than F&C in this case
according to ((𝑣 − (𝑟𝑤 mod 𝑣)) mod 𝑣) · (𝑘in · ℎ − 𝑘out). F&C uses 960 more registers
(48 %) than C&P for 𝑤 = 5 and 𝑣 = 32, as given in Table 3.2. The improvement
reaches up to 2160 registers (50 %) for 𝑤 = 11 and 𝑣 = 32, as shown in Figure 3.19.
This validates our coarsening equations, and reveals that thousands of registers can
be saved with an appropriate architecture even for an application consisting of a
simple single kernel.
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Figure 3.19: HLS estimation results of the proposed coarsening architectures for
different kernel sizes and 5.0 ns target clock period (no border handling).
(Figure reprinted from [ÖRH+17b], © 2017 IEEE)
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Figure 3.20: HLS estimation results of the proposed coarsening architectures for
different kernel sizes and 5.0 ns target clock period (no border handling).
(Figure reprinted from [ÖRH+17b], © 2017 IEEE)

3.7.2 Border Handling Architectures

Figures 3.21 and 3.22 show that separated border handling significantly improves
the naive approach. This indicates that synthesis tools are not able to separate
column selection and row selection automatically (see Section 3.4 for the analysis
of redundancy). As Eq. (3.29) indicates, all the discussed separated border handling
architectures except Type-2 converge to the same design point for 𝑣 ≥ 𝑟𝑤 as shown
in Figure 3.22. On the other hand, Figure 3.22 clearly shows that Type-1 uses con-
siderably less logic than Type-0 for 𝑣 < 𝑟𝑤 . Investigating the generated HDL codes
reveals that Vivado HLS optimizes the Type-0 column selection by eliminating the
blue-colored registers in Figure 3.14a. This can be achieved with a simple analysis
that detects the registers set via the same wire. Considering Eqs. (3.16) and (3.17)
with this optimization Type-1 uses ℎ · 𝑘𝑖𝑛 (𝑟𝑤 − 1) fewer registers than Type-0 for
the sliding window as expected. Speed optimization introduced via Type-2 highly
depends on technological mapping, since MUX[2] is mapped via LUTs in FPGA.
Table 3.2 shows that Eq. (3.32b) does not satisfy in our evaluation environment,
therefore Type-1 uses fewer LUTs than Type-2. Yet Type-2 uses fewer registers,
which makes it a different design point.
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Figure 3.21: HLS estimation results of the proposed mirror border handling archi-
tectures for a 11×11 kernel with F&C coarsening. (Figure reprinted
from [ÖRH+17b], © 2017 IEEE)
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Table 3.2: HLS estimation results for a local operator and implementation results
for a Mean Filter. 𝑇clk_tar (input clock period constraint given to HLS tool)
denotes the target critical path delay. Defining a lower 𝑇clk_tar requires
the HLS tool to increase the level of structural pipelining to achieve a
higher clock frequency.

Parameters Estimation (𝑇clk_tar = 20 ns) Estimation (𝑇clk_tar = 3.1 ns) Implementation (𝑇clk_tar = 3.1 ns)
𝑣 𝑤 /ℎ Coars. BRAM FF LUT 𝑇clk_es BRAM FF LUT 𝑇clk_es SLICE BRAM FF LUT DSP 𝑇clk_syn 𝑇clk_imp

1 5 C&P 4 304 93 13.50 4 378 93 3.10 152 4 600 270 29 2.48 2.55
1 5 F&C 4 304 93 13.50 4 378 93 3.10 139 4 600 269 29 2.48 2.61
2 5 C&P 4 339 86 14.43 4 446 88 3.09 215 4 873 448 14 2.52 2.63
2 5 F&C 4 339 86 14.43 4 446 88 3.09 222 4 873 449 14 2.52 2.46
8 5 C&P 8 663 82 14.43 8 954 84 3.06 675 8 2589 1565 6 2.39 2.56
8 5 F&C 8 855 82 14.43 8 1146 84 3.06 603 8 2781 1566 6 2.39 2.74
32 5 C&P 32 1995 75 14.43 32 3045 77 3.03 1951 32 9256 5367 6 2.38 2.83
32 5 F&C 32 2955 75 14.43 32 4005 77 3.03 2023 32 10216 5367 6 2.38 3.09

(a) Coarsening Architectures

Parameters Estimation (𝑇clk_tar = 20 ns) Estimation (𝑇clk_tar = 3.1 ns) Implementation (𝑇clk_tar = 3.1 ns)
𝑣 𝑤 /ℎ BH Patt. BRAM FF LUT 𝑇clk_es BRAM FF LUT 𝑇clk_es SLICE BRAM FF LUT 𝑇clk_syn 𝑇clk_imp

1 5 Naïve 4 471 575 13.5 4 643 576 3.10 213 4 879 533 2.63 2.67
1 5 Type-0 4 438 381 13.5 4 522 385 3.10 192 4 772 422 2.53 2.65
1 5 Type-1 4 398 341 13.5 4 482 345 3.10 176 4 732 419 2.52 2.58
1 5 Type-1 4 403 459 13.5 4 487 468 3.10 179 4 742 475 2.52 2.53
2 5 Naïve 4 495 538 14.4 4 664 542 3.09 288 4 1182 741 2.46 2.65
2 5 Type-0 4 432 344 14.4 4 565 349 3.09 268 4 1053 625 2.52 2.65
2 5 Type-1 4 432 344 14.4 4 565 349 3.09 244 4 1053 626 2.52 2.60
2 5 Type-1 4 435 501 14.4 4 569 511 3.09 262 4 1061 700 2.53 2.80
1 7 Naïve 6 855 1443 15.0 6 1434 1446 3.10 482 6 1976 1174 2.55 2.74
1 7 Type-0 6 806 867 15.0 6 1332 871 3.10 415 6 1843 878 2.56 2.85
1 7 Type-1 6 693 642 15.0 6 1107 646 3.10 381 6 1620 741 2.56 2.83
1 7 Type-1 6 698 808 15.0 6 885 817 3.10 316 6 1409 851 2.52 2.83
2 7 Naïve 6 957 1308 15.9 6 1589 1339 3.09 653 6 2715 1595 2.53 2.70
2 7 Type-0 6 862 730 15.9 6 1496 735 3.09 595 6 2570 1219 2.52 2.95
2 7 Type-1 6 806 674 15.9 6 1384 679 3.09 554 6 2459 1189 2.52 2.76
2 11 Type-1 6 923 1287 17.2 6 1107 1298 16.1 514 6 2194 1405 2.53 2.94
1 11 Naïve 10 2033 5390 16.6 10 4324 5393 3.10 1352 10 5601 3852 2.55 2.87
1 11 Type-0 10 1952 2997 16.6 10 3549 3018 3.10 1028 10 4781 2627 2.55 2.95
1 11 Type-1 10 1597 1583 16.6 10 1892 1594 3.45 711 10 3104 1883 2.55 2.67
1 11 Type-1 10 1601 1845 16.6 10 1891 1862 3.10 685 10 3114 2062 2.52 2.90
2 11 Naïve 10 2184 4562 16.7 10 4597 4566 3.09 1607 10 6839 4366 2.56 2.91
2 11 Type-0 10 2025 2160 16.7 10 3372 2228 3.09 1286 10 5663 3183 2.53 2.82
2 11 Type-1 10 1760 1719 16.7 10 2843 1787 3.09 1204 10 5136 2956 2.56 2.95
2 11 Type-1 10 1989 3564 25.3 10 2230 3639 25.3 1221 10 4537 3724 2.53 2.85

(b) Border Handling Architectures

3.7.3 Effects of Target Speed Constraint

Vivado HLS generates different HDL codes for different clock speed targets. We
evaluated the pipelining overheads of the considered architectures using the target
speeds of 50 MHz and 300 MHz for a ZYNQ-zc706 FPGA. Estimation results revealed
that the number of registers and MUXs match our equations for the low-speed target.
This can be seen by Comparing resource utilization of different coarsening factors
in Table 3.2 Likewise, comparing the estimation results of architectures that have
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the same loop coarsening parameters but different target speeds shows that the
improvement gets more significant for higher speed constraints.

3.7.4 Implementation Results

Reporting implementation results is a good practice to eliminate estimation errors. On
the other hand, using estimation reports make it possible to subtract the calculation
overhead of a local operator and distinguish the selection cost of border handling
among other MUXs. We observed that the estimation results, from Vivado HLS
v2016.3, are reliable enough for our implementations other than Type-2. As a measure
of this reliability, Table 3.2 consists of implementation results for the provided
estimation results. It can be seen that the estimation differences between coarsening
and border handling architectures reflect the implementation results with only very
minor deviations. On the other hand, we investigated the results of Type-2 only
through its implementation results in Section 3.7.2.

3.8 Conclusion

Being inspired by Schmid’s [SRH+15] architecture for loop coarsening, we proposed
two new loop coarsening architectures. While the first one always uses fewer
resources than [SRH+15], the architecture using fewer resources depends on the
local operator’s parameters (i.e., stencil width 𝑤 , stencil height ℎ, coarsening factor
𝑣 , border handling mode (e.g., mirror, clamp), input and bit-widths 𝑘in and 𝑘out).
Moreover, as a novel contribution, we integrated image border handling problem
into loop coarsening hardware architecture design.

We conducted a systematic analysis for the minimal resource utilization on image
border handling and proposed novel architectures based on that analysis. Previous
works on image border handling [Bai11b; RN16] uses more resources than our Type-1,
but in none of them switching off additional registers is considered, although utilizing
an additional MUX for it. Moreover, we proposed faster architectures (shorter critical
path) for border handling modes mirror and mirror-101, and discussed how other
Pareto-optimal architectures can be designed based on the analysis. Aside from that,
their architectures do not consider loop coarsening at all.

Finally, we analyzed the resource usage (i.e., FF, MUX) of every architecture
discussed in this chapter and provided an algorithm selecting the best loop coarsening
and border handling architectures for given parameters of a local operator. As a side
contribution, we investigated Vivado HLS implementations of our architectures as
well as the naïve approach. Thus, we show that describing the structure (underlying
architecture) of a hardware implementation can significantly improve the quality of
hardware (in terms of resource usage, latency, and speed) synthesized by HLS.
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4
FPGA-Based Accelerator Design

from a Domain-Specific Language

This chapter shows that raising the abstraction level in HLS by clearly separating the
concerns of algorithm description (what?) from its implementation (how?) solves pro-
ductivity, performance, and portability issues of current HLS. In particular, we present
a source-to-source compiler for an image processing DSL [ÖRH+16; RÖM+17b] and
an image processing library [ÖRH+17a] that relies on C/C++ metaprogramming tech-
niques to generate highly optimized, target-specific FPGA implementations from
high-level, functional abstractions used for the description of an algorithm.

Our approach leverages the benefits of general-purpose HLS tools. That is, we
generate code as input to existing commercial HLS tools to utilize their highly-studied
and optimized scheduling, allocation, and binding techniques. These tools and
techniques produce satisfactory hardware synthesis results only when programmers
specify hardware-favorable implementations (how the circuit works) using hardware-
centric pragmas. Contrarily, our approach lets users describe their algorithm by
language constructs or library functions without considering its implementation for
the specific domain of image processing algorithms and applications. As a result, it
provides performance portability across different HLS tools and computing platforms
such as GPUs and CPUs.

4.1 Introduction

Many image processing applications have stringent performance, energy efficiency,
and power requirements. FPGAs have a great potential for improving throughput per
watt in many applications. However, unlike traditional software programming, one
needs to design hardware for FPGA-based acceleration. This is a time-consuming
task and requires hardware expertise. HLS has received much attention over 30 years
and has become much more sophisticated in the last decade. Modern HLS tools allow
users to use C-based languages, such as the Open Computing Language (OpenCL) and
C++, but they expect them to describe the behavior of application-specific hardware.
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Furthermore, hardware designers still face challenges when handling data exchange
and device communication when using the FPGA as a co-processor or dedicated
accelerator in a heterogeneous system.

OpenCL provides a standard API to support communication between a host and a
device. Hence, it allows controlling the hardware accelerator generated by HLS in a
heterogeneous system (e.g., consisting of a CPU and a GPU), similar to many-core
programmable devices. The HLS tool automatically synthesizes control hardware
for system interfaces (such as PCIe) and deploys the necessary drivers. This way, a
complete system is automatically generated from a higher-level hardware description.
However, OpenCL is considered to be a platform-specific language since its program-
ming paradigm indicates a specific memory hierarchy (i.e., consisting of local and
global memory) and the execution of a multi or many-core processor. It follows a
data-parallel programming paradigm, meaning that source codes, so-called kernels,
usually only describe computations processed by a single thread. All computations
are data-independent, and the creation and scheduling of threads are initiated and
managed by the OpenCL runtime. The number of threads spawned depends on a
range (1D, 2D, or 3D) specified by the developer. Kernels meant to perform across
a specified range are called NDRange kernels. In OpenCL, NDRange kernels are
designed to exploit parallel compute resources of programmable processor. They are
executed exactly one time for each point in the NDRange index space. This unit of
work for each point in the NDRange is called a work-item. Unlike for loops in C,
where loop iterations are executed sequentially and in-order, an OpenCL runtime
and device is free to execute work-items in parallel and in any order. This NDRange
paradigm differs from hardware design techniques that leverage the capabilities of
FPGAs, where the memory architecture and data path can be tailored to the ap-
plication by reconfiguration. Therefore, users of the HLS tools need to specify a
single-work item kernel and describe a hardware implementation similar to writing
a sequential code in C++ to achieve high-quality synthesis results.

Despite pursuing new programming methodologies for many-core, multi-threading,
or vector architectures, the FPGA community mostly tries to advance the design
techniques from existing programming languages that are sequential or developed
for other computing platforms. To handle the complexity of future systems and
to increase development productivity, even without hardware design expertise, we
believe that the next step for HLS requires an increased level of abstraction on the
language side combined with modern metaprogramming approaches. One solution
to solve this challenge is domain-specific languages and libraries. DSLs allow raising
the level of abstraction and separating the algorithmic description from hardware-
specific transformations such as parallelization, vectorization, or memory-related
optimizations. This facilitates fast prototyping while achieving high performance
on different hardware platforms from the same high-level description. Furthermore,
it relieves the programmer from hardware-specific optimizations, which requires
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architecture expertise and is often error-prone, non-portable, and time-consuming.
As a solution, in this chapter, we leverage the algorithm description to an even

higher language level, such as a Domain-Specific Language (DSL) or an image
processing library, by using metaprogramming techniques. The main contributions
of this chapter are summarized as follows1:

• We present a novel OpenCL (source-to-source compiler) backend [ÖRH+16]
that generates input code for the Intel HLS tool (OpenCL SDK for FPGAs) from
an image processing DSL (namely Hipacc [MRH+16]), initially developed for
GPUs. Our backend applies various transformations using domain knowledge:
It leverages compiler transformations introduced in previous work [RSH+14]
(Hipacc’s HLS backend for Xilinx Vivado HLS), such as creating a streaming
pipeline, but generates OpenCL code optimized for Intel OpenCL SDK for FP-
GAs [ÖRH+16; RÖM+17b]. Furthermore, it uses our novel loop coarsening and
border handling techniques [ÖRH+17b] introduced in Chapter 3 to generate
circuits that deliver high performance. We demonstrate that implementations
produced by our compiler backend are on par with the handwritten applica-
tions provided by Intel (when our implementation is not parallelized by loop
coarsening) and significantly better when compared with the parallelization
intrinsics offered by the Intel HLS compiler.

• We alleviate the tasks of Hipacc’s HLS backends [RSH+14; ÖRH+16] by inte-
grating metaprogramming libraries as part of its code generation flow. More
specifically, we utilize metaprogramming concepts of C++ to build a modular
and highly parameterizable function library [ÖRH+17a] for describing image
processing applications. Our proposed library increases the productivity of
HLS users by providing high-level abstractions (e.g., point, local, and global
operators) and key hardware design elements (e.g., line buffers, sliding window,
streaming elements) to describe their hardware in a modular way [ÖRH+17a].
It is highly optimized with hardware design techniques such as bit-level opti-
mizations, deep pipelining, and our novel parallelization techniques explained
in Chapter 3.

• Since Hipacc is able to generate high-performance code for CPUs and GPUs as
well, we show that our approach allows using the same application description
to target drastically different computing platforms.

1The contents of this chapter are based on and partly published in [ÖRH+16], which has appeared
in the Proceedings of the 26th International Conference on Field-Programmable Logic and Ap-
plications (FPL), [ÖRH+17a], which has appeared in the Proceedings of the Fourth International
Workshop on FPGAs for Software Programmers (FSP), and [RÖM+17b] which has appeared in the
Proceedings of the International Conference on Computer Aided Design (ICCAD).
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Figure 4.1: Overview of the Hipacc framework and its target architectures. The
hardware targets that this thesis contributes (in [ÖRH+16; ÖRH+17a],
and partially in [RÖM+17b; RÖH+18]) are highlighted in orange. (Figure
reprinted from [RÖM+17b], © 2017 IEEE)

The remainder of this chapter is structured as follows: Section 4.2 gives a brief
overview of the Hipacc DSL and Section 4.3 presents our code generation backend.
Then, Section 4.4 discusses how the tasks of Hipacc’s HLS compilers are alleviated
by using such a library and Section 4.5 show the image processing library developed
by using C++ metaprogramming. Finally, Section 4.6 evaluates the performance of
our proposed compiler backend and image processing library.

4.2 Background: The Hipacc Framework

In this work, we use the Heterogeneous Image Processing Acceleration (Hipacc)
framework to decouple the description of image processing algorithms from their
low-level implementation details. Hipacc [MRH+16; RÖM+17b] comprises an open-
source image processing DSL embedded in C++ and a source-to-source compiler.
It was initially designed to target GPUs from Nvidia and AMD solely [MHT+12;
MDH+19] and has undergone numerous extensions over the years. Hipacc’s image
processing DSL is shallowly embedded into C++, where the language components
of the DSL are built using C++ classes. Any standard C++ compiler can be used to
compile a Hipacc application, e.g., for quick prototyping purposes. Hipacc’s source-
to-source compiler, on the other hand, will produce highly optimized target code for
the chosen accelerator platform (e.g., a CPU or a GPU) if it is employed.

Figure 4.1 shows an overview of the framework and its target architectures. Hipacc
can generate code for the Compute Unified Device Architecture (CUDA), OpenCL for
GPUs, Renderscript, and a specific kind of C++ suitable for Xilinx’s Vivado HLS.
In this thesis, we add a new backend emitting code for Intel’s FPGA SDK for
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OpenCL [ÖRH+16], and redesign Hipacc’s Xilinx Vivado HLS backend to signif-
icantly improve performance [ÖRH+17a].

4.2.1 Overview of Hipacc DSL

Figure 4.2 illustrates a description of a Gaussian filter in Hipacc (its code is shown
in Listing 4.3 after the explanation of the DSL). Language components such as Image
and Kernel describe an application in an abstract way without exposing data layout
and low-level platform-specific declarations to users. That is, a Hipacc application
describes image processing applications as a directed acyclic graph (DAG) of point,
local, and global operators without writing C++ loops and arrays. This allows for
capturing the inherent parallelism at a higher level, thus generating highly-optimized
target-specific code.

In the following, we briefly summarize the primary language components of
Hipacc, proposed by Membarth et al. [Mem13; MRH+16]. We refer to [Mem13;
MRH+16] for a more detailed explanation.

4.2.2 Data Storage

Hipacc uses Image and Mask structures to store pixel and filter coefficients, respec-
tively.
Definition 4.1 (Image)

In Hipacc, the data storage for a digital image’s pixels is referred to as an Image.
It represents a two-dimensional data structure, where any standard data type
(such as float or unsigned char) can be used as a pixel type. Constructors of
an Image are listed below:

Image <pixel_t >(const int width , const int height)

Image <pixel_t >(const int width , const int height , pixel_t* pixels)

The pixel data type is represented by pixel_t. An Image can be created using a
contiguous memory block (e.g., a C++ array) or as empty. A memory allocation
and zero initialization will implicitly be done for an empty image when needed.

Definition 4.2 (Mask)

A Mask holds constants on a two-dimensional rectangular area. It can be defined
by using one of the constructors shown below:

Mask <mask_t >(const int width , const int height)

Mask <mask_t >( mask_t coefficients[height ][width])
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Figure 4.2: Illustration of an example Hipacc application (its code is explained in
Section 4.2.6), where an application is described as a dependency graph of
domain-specific abstractions such as Image and Mask. A local operator
is defined as a Kernel object. A Kernel can read and write images only by
using an Accessor and an Iteration Space, respectively. Users can select a
border handling mode through an Accessor. A Mask is used for storing
filter coefficients and defining a stencil pattern.
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Table 4.1: Supported border handling modes in Hipacc (Boundary type).
Enumeration Type Border handling mode
UNDEFINED No border handling (default)
CONSTANT Constant value
CLAMP Clamping
MIRROR Mirroring at image border
MIRROR-101 Mirroring at last valid pixel
REPEAT Repeating

The dimensions of a mask must be constant, which could be deduced from a two-
dimensional array when given as an input parameter. An example application
would be a filter using a Mask for the coefficients.

4.2.3 Read/Write Operations on Images

Hipacc captures memory access patterns by allowing users to access images and
masks only using special data structures, namely Accessor and Iteration Space.
Similarly, the DSL offers BoundaryCondition as a language component to prevent
users from introducing conditional descriptions for handling out-of-bound access.

Definition 4.3 (Boundary Condition)

As explained in Chapter 2, image processing algorithms virtually extend an
input image to avoid out-of-bound accesses, often using a well-known pat-
tern (so-called boundary mode). Hipacc offers a language component called
BoundaryCondition. It can be created by one of the following constructors:

BoundaryCondition <pixel_t >(Image <pixel_t > img , const int size ,

const Boundary bmode = UNDEFINED ,
const pixel_t val = 0)

BoundaryCondition <pixel_t >(Image <pixel_t > img ,

const int width , const int height ,

const Boundary bmode = UNDEFINED ,
const pixel_t val = 0)

BoundaryCondition <pixel_t >(Image <pixel_t > img , MaskBase stencil ,

const Boundary bmode = UNDEFINED ,
const pixel_t val = 0)

The supported boundary modes are listed in Table 4.1. A constant value of a
pixel type (denoted as pixel_t above) could be given as an additional parameter
when CONSTANT mode is selected (zero value is set otherwise). The default mode
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is UNDEFINED, allowing out-of-bound access. This might be desirable when an
application is run on a smaller portion of an algorithm (i.e., on a region of
interest (ROI)).

An image and dimensions of a local window (one-dimensional or two-dimen-
sional) must be given as input to create a BoundaryCondition. Alternatively, the
last constructor takes an image and a MaskBase object (i.e., a Mask or a Domain),
which allows deducing the dimensions of the local window.

Definition 4.4 (Accessor)

Hipacc’s image processing operators can only read an image using an Accessor.
Its constructors are listed below:

Accessor <pixel_t >(Image <pixel_t > img)

Accessor <pixel_t >(Image <pixel_t > img ,

const int width , const int height ,

const int offset_x , const int offset_y)

Accessor <pixel_t >( BoundaryCondition <pixel_t > bmode)

Accessor <pixel_t >( BoundaryCondition <pixel_t > bmode ,

const int width , const int height ,

const int offset_x , const int offset_y)

An Accessor allows describing an ROI over the input image, thus running an
application only on a smaller rectangular portion of the input image. It can
be created solely by using an Image or a BoundaryCondition when the whole
image is used as input.

Definition 4.5 (Iteration Space)

An IterationSpace allows writing to an image. Its constructors are listed
below:

IterationSpace <pixel_t >(Image <pixel_t > img)

IterationSpace <pixel_t >(Image <pixel_t > img ,

const int width , const int height ,

const int offset_x , const int offset_y)

Similar to an Accessor, an IterationSpace allows for selecting an ROI on
the output image.

4.2.4 Stencil Patterns

As introduced in Chapter 2, local operators produce an output pixel using neighboring
pixels on a local window. A programmer can describe the shape of the neighborhood
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(i.e., stencil pattern) by using a Domain or a Mask.

Definition 4.6 (Domain)

A Domain describes a stencil pattern on a two-dimensional rectangular area. Its
constructors are listed below:

Domain(unsigned char stencil[height ][width])

Domain(Mask <mask_t > mask)

Domain(const int width , const int height)

A domain can be created using a two-dimensional array or a Mask. The stencil
pattern is defined by the nonzero elements. Alternatively, a full selection of a
rectangular stencil can be created using the latest constructor above (i.e., every
coordinate has a nonzero value). Later, the configuration can be changed by
using the index operator shown below:

Dom(1, 2) = 0;

Similar to a Domain, nonzero values of a Mask define the stencil pattern when used
in a Hipacc operator.

4.2.5 Describing Computational Patterns

Hipacc allows for describing a point, local, or global operator’s computations using
user-defined C++ classes derived from a Kernel.

Definition 4.7 (Kernel (Class))

In Hipacc, programmers describe computations on images using high-level
abstractions. For this purpose, a Kernel class must be inherited as shown below:

class UserDefinedComputation : public Kernel <uchar > {

// ...

public:
UserDefinedComputation(

Accessor <uchar > &input , // input image

IterationSpace <uchar > &out , // output image

// ... // Domain , Mask

) : {/* ... */}

// override the virtual kernel function (of the Kernel class)

void kernel_method () {

// describe computation using Hipacc ’s abstractions

}

// optional: additional functions for global operators

};
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Table 4.2: Hipacc’s Kernel methods used for describing computations on images.
Kernel Method Operator Type using the Kernel method
kernel() point, local, global
reduce() global reduction

Inputs and outputs of computations are defined by setting the constructor of the
Kernel class. Users describe a class (e.g., UserDefinedComputation above) by
overriding the implementation of a special member function of Kernel (denoted
by kernel_method). These functions are listed in Table 4.2.

4.2.6 Point and Local Operators

Point and Local operators are described solely using the kernel method.

Definition 4.8 (kernel)

Hipacc carries out the computations described in kernel() method for every
pixel in the output image (which is written by an IterationSpace). Its declara-
tion is shown below:

void Kernel <pixel_t >:: kernel ()

The result of a computation described in kernel is then written to an IterationSpace

by using output() function as shown in Listing 4.1.

Listing 4.1 shows the description of a point operator Kernel in Hipacc. The
computation is described solely for one input pixel in an abstract way.

Definition 4.9 (Description of a local operator: convolve, reduce, iterate)

The computation of a local operator can be described by using the language
constructs convolve, reduce, or iterate within the kernel method. These
functions take as input a Mask or a Domain and return an output pixel as shown
below:

T convolve(Mask <mask_t >, Reduce , const std::function <pixel_t () >)

T reduce(Domain , Reduce , const std::function <pixel_t () >)

void iterate (Domain , const std::function <void() >)

The convolve and reduce methods take an aggregation mode of a Reduce type as
an input parameter. Supported modes are listed in Table 4.3. The last parameter
(std::function) allows users to pass their stencil computation, e.g., using a
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Listing 4.1: Hipacc Description of a color conversion as a point operator.
1 class MyPointOperator: public Kernel <uchar4 > {

2 private :

3 Accessor <uchar4 > &img; // a colored input image with uchar4 type

4

5 public:
6 // ...

7

8 // Hipacc applies this operation for every output pixel

9 void kernel () {

10 uchar4 pixel = img();

11 output () = 0.3f * pixel.x + 0.59f * pixel.y + 0.11f * pixel.z;

12 }

13 };

Table 4.3: Supported aggregation modes for the Reduce type.
Enumeration (of Reduce Type) Aggregation Mode

SUM Sum of all values (default)
MIN Minimum of all values
MAX Maximum of all values
PROD Product of all values

MEDIAN Median of sorted values

lambda function. See Example 4.1 for an example application using convolve

function. As Domain does not hold coefficients on a stencil pattern, reduce can
be used where a Mask is not needed. For instance, a box filter that averages
neighboring pixels on a given stencil pattern could easily be described by using
reduce (see Hipacc repository [Hip22] for more sample codes).

The iterate allows for describing more complex operations on a local win-
dow, where the aggregation needs to be described explicitly. For an example,
see the Kernel description of a Bilateral filter shown in Example 4.2.

Example 4.1: Convolution

Listing 4.2 shows an example Hipacc Kernel using the convolve function
to describe a local operator. The stencil pattern of convolve’s computation
is defined by mask. The computation for every pixel on the stencil pattern is
described in a lambda function (in Line 11). Finally, the aggregation mode Reduce
::SUM indicates the final operation on all the computed values. The results are
summed here to produce one output pixel from the local input window.
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Listing 4.2: Description of a local operator in Hipacc. This example defines a linear
filter by using the convolve abstraction.

1 class LinearFilter: public Kernel <uchar > {

2 // ...

3 public:
4 LinearFilter(Accessor <uchar > &input , // input image

5 IterationSpace <uchar > &out , // output image

6 Mask <float > &mask) // mask

7 : {/* ... */}

8

9 void kernel () { // convolve -> local operator

10 output () = convolve(mask , Reduce ::SUM , [&] () -> uchar {

11 return mask() * input(mask);

12 });

13 }

14 };

Listing 4.3: Application graph of a Gaussian filter described in Hipacc. It instantiates a
local operator called LinearFilter. See Figure 4.2 for the illustration of the
application graph described by this code.

1 // input and output images

2 size_t width , height;

3 uchar *image = read_image (&width , &height , "input.pgm");

4 Image <uchar > in(width , height , image);

5 Image <uchar > out(width , height);

6

7 // filter mask for Gaussian blur filter

8 const float filter_mask [3][3] = {

9 { 0.057118f, 0.124758f, 0.057118f },

10 { 0.124758f, 0.272496f, 0.124758f },

11 { 0.057118f, 0.124758f, 0.057118f }

12 };

13 Mask <float > mask(filter_mask);

14

15 // reading from in with clamping as boundary condition

16 BoundaryCondition <uchar > cond(in, mask , Boundary ::CLAMP);
17 Accessor <uchar > acc(cond);

18

19 // output image (region of interest is the whole image)

20 IterationSpace <uchar > iter(out);

21

22 // instantiate and launch the Gaussian blur filter

23 LinearFilter Gaussian(iter , acc , mask);

24 Gaussian.execute ();

Listing 4.3 presents a Hipacc application that uses the LinearFilter Kernel (de-
scribed in Listing 4.2). This code describes the Hipacc application graph illustrated
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in Figure 4.2. Hipacc DSL can be used in conjunction with standard C++, such as
using OpenCV for I/O and Hipacc for computation. For instance, the user func-
tion read_image in Line 3 reads the content of a Portable Graymap File Format
(PGM) image to a uchar memory area before creating a Hipacc Image in Line 4.
An output Image, Accessor, IterationSpace, and BoundaryCondition are defined
between Line 5 and Line 20, before creating a LinearFilter object (which is defined
in Listing 4.2) in Line 23. Finally, the Gaussian filter is computed using the execute

function in Line 24. It can be seen that Hipacc’s execution is not eager, meaning
that the computational function is executed after its definition. A video processing
function can easily be implemented using the execute function (Line 24) in a loop.
The Hipacc compiler generates the corresponding code when this loop is compiled
for a target computing platform.

Example 4.2: Bilateral Filter Kernel (use of iterate)

Iterate allows describing complex local operators without using an aggre-
gation mode. For instance, in the description of the Bilateral filter below, pixels
on the input stencil pattern (defined by dom) are used to calculate two variables
named p and d. Later, these parameters are used to produce an output pixel.

void kernel () {

float d = 0.0f, p = 0.0f;

iterate(dom , [&] () -> void {

float diff = in(dom) - in();

float s = expf(-c_r * diff * diff);

d += s * mask(dom);

p += s * in(dom);

});

output () = (uchar)(p / d + 0.5f);

}

Note that iterate describes a sequential execution on a local window, but
Hipacc’s source-to-source compiler can generate a parallel code from this de-
scription. Furthermore, early exits from the sequential execution of iterate
are supported by Hipacc with a language construct called break_iterate().

4.2.7 Global Reduction

Hipacc supports the description of global reductions by the Kernel method named
reduce as explained below.
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Definition 4.10 (Description of global reductions: reduce)

Hipacc supports the following reduce method for the reduction operations
described on an image:

pixel_t Kernel <pixel_t >:: reduce(pixel_t left , pixel_t right)

The reduction pattern is described in an abstract way solely by using two pixels
representing the operation’s left and right sides. For instance, an application
calculating the maximum of an input image can be described as follows:

uchar reduce(uchar left , uchar right) const {

return max(left , right);

}

Then, Hipacc will apply this operation to produce one result from the whole
input image (or generate target code when its compiler is used).

4.3 Generating Hardware Accelerators From Hipacc

Previous works include the following: First, Membarth et al. [Mem13; MRH+16]
introduced the Hipacc DSL and initial compiler workflow to generate C++, CUDA,
and OpenCL code for CPUs and GPUs. A simple overview of this compiler workflow
is given in Section 4.3.1. Then, Reiche et al. [RSH+14] extended the initial compiler
flow with a new backend that generates C++ code for Vivado HLS. These extensions
include several hardware-centric transformations and streaming pipeline generation
(see Section 4.3.2). As part of this thesis, we present a new Hipacc backend that
generates highly-optimized code as input to Intel FPGA SDK for OpenCL (see also
[ÖRH+16]).

The OpenCL code generated for FPGA targets must be significantly different from
those generated for CPU and GPU targets to achieve good synthesis results. Unlike
the previous Hipacc backend for Vivado HLS [RSH+14], our backend [ÖRH+16] gener-
ates an OpenCL host code optimized for Intel FPGA SDK (which requires improving
streaming pipeline generation as explained in Section 4.3.2) and introduces further
hardware-centric optimizations for accelerating Hipacc Kernels (see Section 4.3.4).
These include the novel loop coarsening and image border handling techniques
presented in Chapter 3, which are also introduced to the Vivado HLS backend by
integrating our metaprogramming library [ÖRH+17a] presented in Section 4.4.

To apply our improvements, we refined the Hipacc’s existing compiler workflow as
shown in Figure 4.3, where compiler steps highlighted by green are either introduced
or modified as part of this thesis’ contributions.
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Figure 4.3: Hipacc’s source-to-source compilation workflow for generating input
code to HLS. Hipacc generates target code using its own backends, where
several analyses and transformations are applied on the Clang AST cre-
ated in the frontend. The initial compiler workflow [Mem13] (developed
for CPUs and GPUs) is extended in [RSH+14] with a Vivado HLS target,
where the Data Dependency Analysis and Dependency Graph Restruc-
turing steps are introduced for generating a streaming pipeline. We
refined this compiler flow in [ÖRH+16] (i.e., compiler steps highlighted
by green) to generate OpenCL code for Intel FPGA SDK and to integrate
our optimization techniques introduced in Chapter 3 for Hipacc’s Vivado
HLS backend.
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4.3.1 Background: Overview of the Compiler Work Flow

Hipacc’s compiler leverages Clang/LLVM compiler infrastructure for typical steps
of a compiler front-end (i.e., lexing and parsing, semantic analysis, and intermediate
representation (IR) creation). It performs source-to-source transformation through
the AST created by Clang, as shown in Figure 4.3. First, in the Match step, all AST
nodes are traversed to detect declarations, definitions, statements, and expressions
using the language components of Hipacc. The Rewrite modifies the textual represen-
tation of the AST derived from the input application code to generate a so-called host
code, i.e., the part of the application except the code generated for Hipacc Kernel

definitions. These modifications include removing Hipacc’s Kernel definitions and
replacing the statements that define the DSL objects and expressions using these ob-
jects. For GPU targets, the code generated by Rewrite would be the C++ host program
controlling CUDA kernels or OpenCL Kernels.

The Analysis step analyzes and categorizes the Hipacc Kernels and image pro-
cessing operators to capture the information required for optimizations and code
generation. This information includes operator types, memory access patterns, filter
types, data dependence, and the number of instructions. Then, Transform applies
optimizations and modifications for the target device on an internal clone of the AST.
Finally, Pretty Printer generates code for the target platform from the AST produced
by Transform. The generated code contains the implementation of Hipacc Kernels
for the target device, which can be in C++, OpenCL, CUDA, or Renderscript.

4.3.2 Generating a Streaming Pipeline

Hipacc’s CPU and GPU code generation backends (proposed in [Mem13]), use a
buffer-wise execution mechanism to generate code for GPUs and CPUs. The buffers
used by kernels to exchange data have the size of an entire image. Each subsequent
kernel begins only after all earlier kernels have completed their execution. This is a
viable strategy for GPUs since buffers act as synchronization points, eliminating the
need for slow alternatives. In contrast, FPGAs allow stream processing where only a
small amount of data has to be stored for exchange between dependent kernels.

Previous Work: The initial buffer-wise execution model of Hipacc is modified
in [RSH+14] to support stream processing when Xilinx Vivado HLS is selected as a
target. Figure 4.4 shows the difference between the implemented execution models
for a Harris corner detection algorithm. Thereby, streaming objects replace the
buffers to construct a streaming pipeline where FIFO semantics are implemented for
data exchange between kernels. Additional glue logic (so-called split stream objects)
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(a) Hipacc’s sequential execution for the Harris corner detector [Mem13] The code generated for CPUs
and GPUs utilizes image size buffers for synchronization and data exchange (triangle: buffers). (Figure
reprinted from [RSH+14], © 2014 IEEE)
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(b) The execution model of the streaming pipeline generated for Vivado HLS [RSH+14]. It consists of streaming
objects to split data of a single streaming object when needed for multiple kernels (diamond shape: split
stream objects). (Figure reprinted from [RSH+14], © 2014 IEEE)
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(c) The execution model of the streaming pipeline generated for Intel FPGA SDK for OpenCL. In
our work [ÖRH+16], we eliminate the cost of creating split stream kernels by generating kernels
that can write to multiple streams.

Figure 4.4: The execution model of a Harris Corner Detection algorithm for different
targets (circle: point operators, rectangular: local operators).
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is added to multiply the input stream when multiple kernels read from the same
buffer (the case of one producer and multiple consumers), as shown in Figure 4.4b.

For this purpose, Reiche et al. [RSH+14] proposed theData DependencyAnalysis and
the Dependency Graph Restructuring steps shown in Figure 4.3, where the compiler
backend for Vivado HLS creates a streaming pipeline as follows:

(i) First, in Data Dependency Analysis, kernel executions, buffer allocations, and
memory transfers are traced to identify data dependencies between Kernels.
The dependency information is fed into an internal representation (depicted
as Internal IR), which is a condensed AST-like structure based on a bipartite
graph with two vertex types: space denoting buffers and process denoting
kernel executions. Writes to buffers are transferred to the internal IR in a single
static assignment (SSA) manner by iterating over the kernel executions in the
sequential sequence in which they are provided. With this, the spaces between
process nodes are marked as streams.

(ii) Second, inDependency Graph Restructuring, additional AST nodes are created to
define streaming objects. The buffers requiring split stream logic (i.e., multiple
kernels reading from the same stream) are identified and split stream objects
are added. Then, the unused nodes (i.e., the ones that do not contribute to
output) are pruned by traversing the rebuilt graph backward in depth-first
order, starting from the output spaces.

(iii) Finally, as part of Common AST Transformations, the Clang AST frontend is
transformed to insert copy process nodes, according to the internal IR. In this
way, the AST description of the buffer-wise execution is modified to a streaming
pipeline execution.

Our Contributions: The previous work [RSH+14], explained above, adds glue
logic (so-called split stream objects) to multiply the input stream when multiple
kernels read from the same buffer (the case of one producer and multiple consumers),
as shown in Figure 4.4b. That is, 𝑛 + 1 streams are instantiated for the buffers read
by 𝑛 kernels. This is a practical approach since the overhead on Vivado HLS is not
significant. However, using an additional stream severely affects the resource usage
when Intel FPGA SDK for OpenCL is used as the target HLS tool2. What is more,
utilizing glue logic between OpenCL kernels for multiplying an input stream (to
implement the split as mentioned above stream mechanism) requires implementing
another OpenCL kernel, introducing a severe overhead (mostly for interface synthe-
sis) as presented in [ÖRH+16]. Instead, we modify the kernels when one of its output
buffers is read from subsequent multiple kernels as shown in Figure 4.4c. As a result,

2Stream objects are implemented by using so-called channel objects in Intel FPGA SDK for OpenCL
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reads with n kernels produce n many streams without inserting split stream kernels,
thus generating an optimized streaming pipeline for Intel FPGA SDK for OpenCL.

Correspondingly, the following modifications are applied in our compiler work-
flow:

(I) The Hipacc DSL does not support writing to multiple Image objects from the
same Kernel (i.e., the Hipacc compiler allows using only one IterationSapce

in one Kernel description). To facilitate writing the same data to multiple
streams in our Intel FPGA SDK for OpenCL backend, we altered the (initially
proposed [RSH+14]) internal IR of the streaming pipeline to support merging
split stream objects with process nodes [ÖRH+16].

(II) In our implementation [ÖRH+16], the Data Dependency Analysis locates the
nodes requiring split stream logic, and the Dependency Graph Restructuring
merges them with the previous kernel nodes. Subsequently, in our internal IR,
the process nodes before these buffers are modified to have additional stream
parameters to output multiple streams using the same data.

(III) Finally, the Common AST Transformations step is redesigned to use our internal
IR to translate process nodes to OpenCL kernels that can produce multiple
output streams (i.e., for image and data parameters).

4.3.3 Generating Host Code

OpenCL standard provides an open, royalty-free API to control heterogeneous sys-
tems using a host-device paradigm. Intel FPGA SDK synthesizes FPGA circuits as
well as system-level interfaces from OpenCL kernels to manage and execute these
accelerators from a CPU. Thereby, OpenCL host code (a C++ code using OpenCL API)
deals with runtime tasks such as programming FPGAs with the bitstream generated
by Intel FPGA SDK (called offline compilation in OpenCL standard), initialization of
the device (FPGA), memory management, synchronization, and context management.

Hipacc supports generating OpenCL code for GPUs and CPUs [Mem13]. Still a
new host code generation module had to be developed to target Intel FPGA SDK for
OpenCL, as summarized in the following:

• First, to generate a host code according to the streaming pipeline execution
model, we redesigned the compiler flow in [RSH+14] to use internal IR created
by Dependency Graph Restructuring (shown in Figure 4.3) as part of host code
generation in the rewrite step. With this, the kernel parameters marked as a
stream type are generated as channels for the Intel tool. Corresponding copy
operations (i.e., data transfers between the host CPU and FPGA) and parameter
settings are described in the OpenCL host code. Finally, OpenCL kernels

113



4 FPGA-Based Accelerator Design from a Domain-Specific Language

are enqueued to corresponding command queues according to the streaming
execution model, as recommended in the Intel FPGA SDK user guide [Int17].

• Second, we modified Hipacc’s OpenCL runtime library since Intel FPGA SDK
for OpenCL

(i) extends the OpenCL API with tool-specific functions and structs, such as
channels (stream objects)

(ii) does not support compilation of the kernel code from the source code

(iii) forces users to add an extra OpenCL command queue to an OpenCL
context for every kernel that is supposed to run on the FPGA logic (which
is unusual for the OpenCL execution model where a single queue is used
to add tasks of a programming context).

Note that Hipacc’s Vivado HLS backend [RSH+14] generates a test code where the
whole FPGA implementation is described as one C++ function. Hence, its test code
generation in the rewrite module removes all the Hipacc-related descriptions except
the input/output parameter copies, thus not dealing with the host code generation
challenges of our OpenCL backend mentioned above.

4.3.4 Generating Kernel Codes (Hardware Accelerators)

As shown in Figure 4.3, our backend generates an OpenCL kernel for each Hipacc
Kernel by using Pretty Printer after transforming the Clang AST produced by the
frontend with several hardware-centric optimizations. First, the portions of the AST
describing Hipacc Kernels are extracted in the Common AST Transformations, and
the following optimizations are applied:

(I) The extracted AST is extended with new nodes to describe an OpenCL kernel,
e.g., nodes for setting (OpenCL thread) index calculations for buffer access and
ROI index shifts. Memory access operations are replaced by numeric literals
to apply constant propagation, which reduces area usage.

(II) Capturing the memory access patterns and computational information from the
high-level abstractions from Hipacc’s language components allows generating
application-specific code. An application-specific memory architecture is
described depending on the Kernel type. For instance, a description of line
buffers and sliding windows are added for local operators. These are described
by using local memory and registers, which are synthesized to on-chip memory
blocks and registers by Intel FPGA SDK for OpenCL. Correspondingly, loops,
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including arithmetic operations, are unrolled when needed (e.g., arithmetic
operations reading from a sliding window are unrolled to achieve an II of 1).

(III) Depending on the compiler arguments, the throughput of a Kernel is increased
by using our loop coarsening and image border handling techniques (see
Chapter 3). This requires reading multiple pixels from input buffers, replicating
arithmetic operations to produce multiple outputs in every clock cycle, and
modifying on-chip memory architecture to hold more data efficiently.

(IV) Finally, in Intel-specific AST Transformations, primitive data types (such as
integer, short) are changed to arbitrary bit width representations according to
Intel syntax. That is, a masking operation must be added when data is read
and written. FPGA resources can be saved if smaller bit width is sufficient. For
instance, if one knows that a 2-bit variable is sufficient, an 8-bit variable (char)
𝑦 has to be declared, which can be decreased to 2 bits as follows:

y & 0x3

Similarly, arithmetic operations are described as follows:

y = (RHS) & 0x3

These bit width optimizations reduce the readability of the generated code
but provide correct results and can significantly reduce hardware cost. Corre-
spondingly, we extended the Hipacc DSL in [ÖRH+16] to support definition of
arbitrary bit width variables as shown in Listing 4.4.

Listing 4.4: An example for using our bit width annotation extension in Hipacc DSL

1 void kernel () {

2 #pragma hipacc bw(sum , 12)

3 uint sum = 0;

4

5 #pragma hipacc bw(x, 3)

6 int x = 0;

7

8 /* hipacc kernel code */

9 output () = sum << 4;

10 }

4.4 Metaprogramming in C-based HLS: Alleviating
the Tasks of a Source-to-Source Compiler

Metaprogramming is known as writing programs that treat other programs as their
data, thus having the ability to read, analyze, transform, and generate other programs
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(or itself). Examples include writing compilers, interpreters, assemblers, and program
analyzers. C++ and OpenCL provide the kind of metaprogramming concerned with
creating code that can be used as a portion of a program. They can be viewed as
simple compilers. In this section, we advocate using these metaprogramming features
to alleviate the tasks of the HLS compiler backends in Hipacc.

As explained in Section 4.3, generating code for target HLS tools from a Hipacc
application requires several transformations at AST level. Modifying AST is a com-
plex task and hinders extensibility, where adding further optimizations requires
modifying the compiler backend. This complexity can be significantly eased by using
a template library that contains generic implementations of Hipacc’s computational
abstractions for the target HLS tools. Using such a template library as part of Hipacc’s
HLS backends as shown in Figure 4.5 has the following benefits: Our approach

(i) reduces the required AST transformations to a smaller set of optimizations

(ii) allows extending the implementation techniques of the library without modi-
fying the Hipacc compiler (or only with minor changes)

(iii) provides a standalone meta library for HLS users to describe their application
in a generic way even without using Hipacc (which could especially be useful
to describe applications that Hipacc does not support).

4.4.1 Metaprogramming Techniques in OpenCL and C++

We developed two distinct template libraries as shown in Figure 4.5, where the
libraries consist of the same hardware abstractions but are built with different
metaprogramming techniques. OpenCL (based on C99) only supports C preprocessor
macro system, whereas C++ offers more sophisticated tools as part of its template
metaprogramming language. Therefore, we only present our C++ template library in
Section 4.5 after summarizing both metaprogramming techniques in this section.

Code Generation with C Preprocessor Macros

C macros can only perform text replacement and macro expansions, translating
an input sequence to an output sequence according to a user-defined rule. The
preprocessor commands start with a # symbol, as in #define, #if, and #include.
For instance, the following defines a macro that swaps two objects like a function:

#define SWAP(x, y) { \

auto tmp = y; \

y = x; \

x = tmp; }

However, C macros are are handled by a lexical preprocessor before being parsed by
the actual compiler. They do not act like functions. In particular, they do not create
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Figure 4.5: A simplified representation of the Hipacc compiler flow that uses tem-
plate libraries for code generation (compiler steps and template libraries
highlighted by green are introduced as part of this thesis and [ÖRH+17a]).
Using a template library significantly alleviates the tasks of our source-
to-source compiler backend while increasing its extensibility. That is,
C++ and OpenCL code generated by Hipacc as input to HLS tools include
metafunctions (high-level abstractions) from the template libraries. This
reduces the AST transformations required by Transform step. Further-
more, these template libraries contain hardware abstractions for HLS
users to describe their custom hardware implementations in a generic
way, even when Hipacc is not used.

a separate scope or consider arguments as independent entities. Hence, when not
carefully written, the macros can produce unexpected results.
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Code Generation with C++ Template Metaprogramming

C++ metalanguage is different from its core language. A compile-time subset of the
C++ core language is available for writing metaprograms. Nevertheless, templates
are Turing-complete [ST06] together with other C++ features–that is, in principle,
capable of computing anything computable. C++ template metaprogramming allows
for generalizing concrete implementations by abstracting data types, compile-time
constants, and complete functions without additional runtime overheads. Thereby,
programmers can design high-level abstractions that take as input a functional
description and generate transformed residual code without introducing any run-
time overhead. This allows the decoupling of the algorithm description from its
implementation.

A C++ compiler treats an identifier following the template keyword as a parame-
terized entity. An entity can be a function or a class (type). Template parameters can
be types, non-types (also called value parameters), or template parameters. We give
a brief overview of template metaprogramming in the following and refer to [Ale01]
for a more comprehensive overview of the metaprogramming techniques used in
this chapter (e.g., compile-time computations, type traits, policy-based design).

Definition 4.11 (Function templates)

The definition of a function template looks like a normal function, except that
it is expressed with a generic type. An example C++ function template is shown
below:

template <typename T>

T max(T x, T y)

{

return (x > y) ? x : y;

}

The template function max can be called with different types such as int, float,
or a user-defined type. A distinct definition of a function is generated for each
type that this function is called before the compilation of the application.

Definition 4.12 (Class templates)

Similar to function templates, classes can also be defined by parametric types.
This allows the definition of abstract types as shown below:

template <typename T, size_t W, size_t H>

class Image {

public:
T data[W][H];

}

The template class Image is a container parametrized on the element type T

and dimensions W, H. Like function templates, the compiler generates code for
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defining a unique class definition for every type the user calls the Image class.

Definition 4.13 (Template Instantiation)

The process of generating types and functions from template definitions is
referred to as template instantiation. The compiler generates a new function
or a type for the first call to a template entity. The resulting entity is called
a specialization. The same specialization is called every time a template en-
tity is called with the same type. For instance, the compiler generates three
instantiations of the max template function for the code below:

max <int >(x, y);

max <int >(3, 4);

max <float >(a, b);

%max <Image <uchar , 1024, 1024>>(a, b);

Note that only one copy of the instantiation will end up in an executable file,
regardless of multiple identical instantiations happening in different modules.
Similarly, no code (specialization) will be generated in case of a no-call to a
template entity.

Template instantiation is performed at compile time but before compiling the
whole program. Specialization of a template entity is in a type-safe state only
after its successful instantiation. Current C++ compilers type-check the code of a
template entity in two phases [CE14]: First, expressions not depending on template
parameters are type-checked when the template definition is parsed. Then, the
template parameters are replaced with concrete arguments during the instantiation,
and full type-checking is performed. This two-phase checking has the following
disadvantages:

i) well-typedness of a generated program cannot be guaranteed by running the
metaprogram,

ii) errors are hard to understand since most of them are captured during instanti-
ation, not where they occur,

iii) type correctness for modules involving templates cannot be guaranteed from
a library.

4.4.2 C++ Metaprogramming for Building High-Level
Abstractions

In computer science and mathematics, a higher-order function is a function that
i) takes one or more functions as arguments (i.e., procedural parameters), and ii) re-
turns a function as its result. All other functions are categorized as first-order
functions.
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Functions and Callables

A function is a named group of statements that can be invoked from other parts
of the program or from the function itself in the case of recursive functions. As
explained in the following, C++ provides several ways to define a function.

Definition 4.14 (C-like functions)

The usual C++ functions are defined and called as follows:
int max(int x, int y)

{

return (x > y) ? x : y;

}

auto z = max(4, 7);

Definition 4.15 (Function Objects:)

C++ offers a technique to construct new types that act like functions. Unlike
other operators, a call operator () can take an arbitrary number of arguments of
any type, allowing programmers to create a function object with any signature
they want. This allows for a better way of passing callables to functions than
passing C-like functions, where types are implicitly transformed to function
pointers when passed as function parameters:

Defining a max function using a function object is shown below:
class Max {

public:
int operator ()(int x, int y) const
{

return (x > y) ? x : y;

}

}

auto z = Max(4, 7);

An instance of such a class is a callable.

Definition 4.16 (Lambda Functions)

Lambda functions in C++ allow to define an anonymous function object (i.e.,
called a closure) right at the location where it’s invoked or passed as an argument
to a function. A lambda expression is a syntactic sugar for function object
description and is often used to encapsulate a few lines of code that are passed
to algorithms or asynchronous functions.

The semantics of lambda expressions were first introduced in C++ 11 (the first
version of the standard called Modern C++). The syntax of a lambda expression
in C++ consists of several parts: a capture clause (i.e., []), which specifies which
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variables are captured and whether the capture is by value or by reference; an
optional parameter list (i.e., ()); an optional mutable specification; an optional
exception-specification; an optional trailing-return-type; and a lambda body
(i.e., {}).

Using lambda functions increase readability of the code by decreasing required
boiler code for function object description. This makes them perfect candidates
to be used in generic programming. An example definition of a C++ lambda
function is shown below.

auto max = []( int x, int y) { (x > y) ? x : y; };

The compiler will treat the type max as a function object whose call operator ()
has two integer parameters for x and y. Writing a lambda function requires less
boilerplate code compared to function objects.

Creating Higher Order Functions

Higher-order functions allow for raising the expressiveness of the language and make
the programs shorter. In this work, we use them to hide low-level implementation
details by building high-level abstractions.

In C++, a function can be given as input to another function using

i) a function pointer,

ii) std::function wrapper, or

iii) template type deduction.

Using a function pointer leads to polymorphic code, and having a std::function

type as a function parameter can cause hidden copies. Unlike these techniques, the
template type deduction mechanism allows high-level abstractions to be created
without additional runtime overhead. An example is shown in Example 4.3.

Example 4.3: Passing function objects using template deduction

An example of creating a higher-order function is shown below:
template <typename FN, typename T1, typename T2>

auto high_level_abs(const FN& op, T1 x, T2 y) -> decltype(op(x, y))

{

return op(x, y);

}

The meta function high_level_abs accepts any callable (op) as a parameter. The
return type is deduced according to the return value of the op callable. Compilers
create one instance of the passed object and fully inline the corresponding
expressions. In this way, C++ metaprogramming provides a functional way of
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describing a program and generating code from another program taken as input.

4.5 A Comprehensive Metaprogramming Library
for Highly Efficient C++-based High-Level
Synthesis of Image Processing Applications

In this section, we present a metaprogramming library [ÖRH+17a] that consists of
high-level abstractions for image processing operators as well as hardware design
elements crucial for image processing algorithm implementations, i.e., line buffers,
and sliding windows. In this way, a high level of productivity and modularity is
provided for application developers and circuit designers. Application developers
can describe an algorithm by using image processing operators. During hardware
synthesis, these operators are refined by specific hardware implementations. Fur-
thermore, we use this library to alleviate the tasks of Hipacc’s Vivado HLS backend
as discussed in Section 4.4.

Our library allows programmers to express image processing applications as
DFGs. During hardware synthesis, these operators are refined by specific hard-
ware implementations. This allows the compiler to perform temporal and spatial
parallelization transformations for the implementations of a described algorithm
according to user-defined parameters. For example, the user can set the initiation
interval for pipelining and the number of processed input pixels in each iteration to
exploit data-level parallelism.

Our library contains multiple template architectures for different specifications of
the same algorithmic instances. More specifically, it consists of multiple descriptions
of image border handling implementations and varying coarse-level parallelization
strategies considered for different input parameters of a local operator specification
(see Chapter 3 for more details). Selecting the most suitable implementation is
hidden from users by implementing a compile-time selection procedure based on
the trade-offs analysis introduced in Section 3.6.

4.5.1 Motivational Example

This section presents a collection of higher-order functions in the form of a C++
template library that describe hardware implementations of image processing appli-
cations without exposing low-level implementation details to the users. This allows
library users to define what the program should do on a higher level. To put it in
another way, assume that the generic functions 𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 and 𝑓 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 describe
the behavior of an algorithm (what?) and its hardware implementation (how?),
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respectively. Input parameters of these functions can be static (known at compile
time, e.g., coefficients of a constant filter) or dynamic (known at runtime, e.g., input
data). Then, 𝑓 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , which takes 𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 as input, should be specialized for
the static inputs as well as for 𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 .

𝑓
𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑠𝑡𝑎𝑡𝑖𝑐 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (4.1)

Users are only required to define 𝑓 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 and input parameters since our library
provides 𝑓 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 . In this way, our library allows users with no hardware design
experience to achieve high-quality synthesis results through a subsequent high-level
synthesis applied on the source code generated by using our library.

Example 4.4: Non-generic description of a local operator in C++

A mathematical description of convolution for a 𝑤-by-ℎ mask is shown as
follows:

𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 (𝑥,𝑦) =
𝑗=⌊ℎ/2⌋∑︁
𝑗=−⌊ℎ/2⌋

𝑖=⌊𝑤/2⌋∑︁
𝑖=−⌊𝑤/2⌋

𝑚𝑎𝑠𝑘 (𝑖, 𝑗) · 𝑖𝑚𝑔(𝑥 + 𝑖, 𝑦 + 𝑗) (4.2)

Non-generic sequential example: A non-generic sequential C++ description
of a convolution function is given as follows, where image border handling is
ignored for simplicity:

void convolution(const uchar& img [2048][1024] ,

const uchar& output_image [2048][1024]) {

const char mask [3][3] = {

{-1, 0 1}, {-2, 0 2}, {-1, 0 1}

};

for(size_t y = 1; y < 1023; y++)

for(size_t x = 1; x < 2047; x++){

short sum = 0;

for(int j = 0; j < 3; j++)

for(int i = 0; i < 3; i++)

sum += img[y - 1 + j][x - 1 + i] * mask[j][i];

uchar output_pixel = static_cast <uchar >(sum);
output_image[y - 1 + j][x - 1 + i] = output_pixel;

}

}

The above code describes a 3-by-3 convolution to be performed on an unsigned
8-bit 2048-by-1024 image. Writing image or mask size as function parameters
creates a more generic function but at the cost of increased resource usage and
execution time. The slow-down is caused by the complex control structure
utilized for handling the runtime parameters image and mask size.
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Generic optimized example: The convolution in Eq. (4.2) can be expressed
as the iteration of a local operator computing an output pixel for every input
pixel in a local window of neighboring pixels by using a computation function
𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒 (as shown in Figure 4.6):

𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 = 𝑙𝑜𝑐𝑎𝑙𝑂𝑝 (𝑖𝑚𝑔, 𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒) (4.3)

where the computation function 𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒 can mathematically be expressed
as follows in the case of a constant mask with the dimensions of width 𝑤 and
height ℎ.

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑖𝑥𝑒𝑙 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒𝑤𝑖𝑛,𝑤,ℎ (𝑖𝑚𝑔, 𝑥, 𝑦) (4.4)

Correspondingly, by using C++ template metaprogramming, we can express the
function 𝐶𝑜𝑛𝑣𝑜𝑙𝑣𝑒 in Eq. (4.4) as a lambda function (or as a function object);

short Convolve = []( unsigned char win [3][3]) {

const char filter [3][3] = {

{-1, 0 1}, {-2, 0 2}, {-1, 0 1}

};

short sum = 0;

for(int j = 0; j < 3; j++)

for(int i = 0; i < 3; i++)

sum += win[j][i] * filter[j][i];

output_pixel = static_cast <uchar >(sum);
return output_pixel;

};

and the higher order function of a 𝑙𝑜𝑐𝑎𝑙𝑂𝑝 class as follows:
Image <unsigned char , 1024, 2048> img{ data };

Image <char , 1024, 2048> output_image;

localOp <ImageWidth , ImageHeight , KernelWidth , KernelHeight > local;

local(output_image , img , Convolve);

Here, the C++ template object localOp takes as input function object Convolve
and generates highly optimized code as input for a high-level synthesis tool,
i.e., Vivado HLS. The generated C++ code will lead to the instantiation of opti-
mized line buffers and a sliding window hardware unit to deliver a pipelined
implementation. The dimensions of the required on-chip memory elements to
be allocated thereby depend on the input pixel bit width, input image width,
and window size of the 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒 function. The output image size depends on
the output data type of the 𝑓 function.

The static parameters, such as image width, and height, are defined as tem-
plate parameters. Therefore, the local function can be called with any image
and mask size. The users of the template library are not required to understand
the implementation of localOp. They are only required to describe the callable
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function Convolve. Similarly, the Vivado HLS backend of Hipacc is required to
generate solely the Convolve function, Image, and localOp descriptions shown
above. This way, the tasks of several AST transformations are alleviated by
using C++ metaprogramming.

input image output image

Figure 4.6: Output of a local operator depends on neighboring pixels within a local
window at the input image.

4.5.2 Overview of the Library

This section presents the specifications in our proposed library for describing image
processing applications.

Data Types

First, we present common functions, types, and traits used to describe hardware in
C++ that support the efficient synthesis of point, local, and global operators using
Vivado HLS.

Arbitrary Bit Widths Vivado HLS [Xil17c] provides special data types to describe
customized bit width operations. It allows representing integer types by ap_int
and ap_uint; and the fixed-point data types by ap_fixed. The library [ÖRH+17a],
proposed in this thesis, can operate on both built-in types (such as char, integer)
as well as the data types mentioned above provided for bit-accurate operations. We
often need to get the bit width of a given variable at compile time, regardless of its
type. Therefore, we offer a get_bitwidthw metafunction in our library:
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Definition 4.17 (Getting bit width of a type)

The bit width of a variable can be calculated using the following type trait at
compile time:

// definition

template <typename T>
struct Bitwidth;

// helper type

template <typename pixel_t , unsigned p_factor >

using get_bidwidth = typename Bitwidth <T>:: bitwidth

In C++ template metaprogramming, creating type traits allows for inspecting
and transforming the properties of a type at compile time. The Bitwidth is a
meta-type that holds the bit width of the template type T. Using the template
specialization technique, implementation of the Bitwidth type changes accord-
ing to T being a C++ built-in type or one of the types provided by Vivado HLS
for representing arbitrary bit width variables. The bit width of a given variable
can be obtained by using our helper type get_bitwidth as shown below:

// usage

constexpr int bw1 = get_bitwidth(int);
constexpr int bw2 = get_bitwidth(ap_int <8>);

ap_uint <16> c;

ap_uint <get_bitwidth(decltype(c)) * 2> new_c;

The return value of get_bitwidth can be used as a parameter since it is calcu-
lated at compile time.

Our library operates on arbitrary bit width values. Hence, the implementation of
image processing operators holds all data in ap_uint type but casts them back to
their original type just before arithmetic operations. In this way, we use bit-precise
data types for the intermediate calculations and memory operations.

Parallelization Support Loop coarsening increases the data bandwidth of an im-
plementation’s input, output, and interconnecting streams, as explained in Chapter 3.
In our library, we support parallelizing the implementation of a described application
for a given compile-time parameter denoted as parallelization factor (p_factor) in
the rest of this section. For this purpose, users and library functions must be able to
pack multiple data units into a vectorized type, a so-called data beat. For instance,
reading four pixels of unsigned char, which is a 1-byte data, requires packing them
into a data beat of size 4 bytes. This packing is similar to creating a vectorized data
type by using ap_uint.

Definition 4.18 (Creating Customized Bit Width Vectorized Data Types)

We introduced a metafunction to create a data beat type for a given paralleliza-

126



4.5 A Comprehensive Metaprogramming Library for Highly Efficient C++-based
High-Level Synthesis of Image Processing Applications

tion factor (p_factor) and a given data type, as follows:
// definition

template <typename pixel_t , unsigned p_factor >

struct vect_type;

// helper type

template <typename pixel_t , unsigned p_factor >

using vectorize_t = typename vect_type <pixel_t , p_factor >:: type

Then the return type of vectorize_t can be used for defining types as shown
below:

// usage

vectorize_t <int , 4> my_vectorized_int = 0; // type: ap_uint <128>

vectorize_t <uchar , 16> my_databeat = 0; // type: ap_uint <128>

In our library, inputs and outputs of the functions are defined with parallelizable
data types, whose parallelization factor depends on a global variable that can be
set by Hipacc (or an HLS user). This enables an automatic parallelization of the
implementation.

Packing and Unpacking Data A data element or consecutive elements can be
read or written partially from a data beat as shown below:

Definition 4.19 (extract)

Programmers can use extract to return a data token from a data beat (vectorized
data) as follows:

// definitions

template <typename Data_t , typename Databeat_t >

Data_t extract(const unsigned index , const Databeat_t& databeat);

template <typename Data_t , typename Databeat_t >

void extract(Data_t& data , const unsigned index , const Databeat_t&

databeat);

Then the return type of vectorize_t can be used for defining types as shown
below:

// usage

vectorize_t <uchar , 4> databeat = /*..*/;

uchar pixel;

// way1

pixel = extract <uchar >(2, databeat);

// way2

Data_t extract(pixel , 2, databeat);
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Definition 4.20 (assign)

The assign function allows writing a data token to a databeat for a given index
as follows:

// definition

template <typename Data_t , typename Databeat_t >

void assign(const Data_t& data , const unsigned index , Databeat_t&

databeat);

For instance, if a Databeat_t contains four uchar values, writing to index two
as in the following modifies the second least significant byte:

// usage

vectorize_t <uchar , 4> databeat = /*..*/;

uchar pixel = 128;

assign <uchar >(2, pixel , databeat);

Stream-Based Image Processing

Stream processing is a beneficial paradigm to express an algorithm as a DFG without
explicitly managing allocation, synchronization, or communication. Xilinx Vivado
HLS provides the data type hls::stream<pixel_t> to support the description of
this paradigm. Thereby, the modules can be connected via streams according to a
producer-consumer relation in which stream data is passed through introduced FIFO
buffers. However, care should be taken when a stream’s output is read from multiple
nodes. To solve this issue, we provide the following split_stream function.

Definition 4.21 (Interconnecting streams)

In the library, an input stream could be replicated to multiple output streams by
using one of the overloads of split_stream function as follows:

hls::stream <pixel_t > repl1 , repl2 , in;

split_stream(in_s , out0_s , out1_s);

split_stream(in_s , out0_s , out1_s , out2_s);

split_stream(in_s , out0_s , out1_s , out2_s , out2_s);

In the implementation, the split_stream function reads from the input stream
and writes to output streams. Inserting a split_stream function costs only the
registers holding the additional streams and a small control logic for synchro-
nization.

Image processing abstractions in our library use hls::streams as input and output
parameters to leverage the benefits of stream processing and overlap the executions
between functions.
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Specification of Image Processing Operators

By using our library, programmers define an algorithm for point, local, and global
operators by writing a lambda function or a function object to describe the behavior
of an operator and then call the operator function with the user-defined callable, as
briefly shown below:

Definition 4.22 (Point operators)

A point operator calculates an output from each input pixel. The output data
type can be different from the input type. This behavior can be described as
follows:

// way1: point operator behavior of the datapath

class PointKernel {

public :

T operator ()(const pixel_t& pix) const {

return static_cast <T>(pix * pix);

}

}

Using a lambda function as part of our metaprogramming approach makes this
specification more compact:

// way2: point operator behavior of the datapath

auto point_kernel = []( const pixel_t& pix) -> T {

return static_cast <T>(pix * pix);

}

Then, this description can be passed to the PointOp class template as follows:
PointOp(hls::stream <out_t >, hls::stream <in_t >, typename KernelType);

PointOp <p_factor >(hls::stream <out_t >, hls::stream <in_t >,
typename KernelType);

A PointOp reads input data from and writes output data to a stream. It al-
lows parallelizing the implementation for a given template parameter (de-
noted by p_factor above. When p_factor is not explicitly specified, a value of
p_factor = 1 is assigned as the default. An example use is shown below:

hls::stream <vectorize_t <pixel_t , p_factor >> stream_in , stream_out;

PointOp <p_factor >(stream_out , stream_in ,

[]( const pixel_t& pix) -> pixel_t {

return pix * pix;

});
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Definition 4.23 (Local operators)

A local operator calculates a result from a two-dimensional region, the so-called
window, as follows:

auto local_kernel = []( const pixel_t (&win)[width][ height ]) -> T {

unsigned sum = 0;

for(uint j = 0; j < height; ++j){

#pragma HLS unroll

for(uint i = 0; i < width; ++i){

#pragma HLS unroll

sum += win[j][i];

return (T)(sum / (width * height));

}

A local operator can be described in two steps. First, a C++ object should be
created by using one of the following functions:

// instantiation

// simple

auto local_op = make_local <ImageWidth , ImageHeight , KernelWidth ,

KernelHeight , pixel_t >();

// with p_factor and BoundaryCondition

auto local_op = make_local <ImageWidth , ImageHeight , KernelWidth ,

KernelHeight , pixel_t , p_factor , BoundaryCondition >();

// with a local operator kernel

auto local_op = make_local <ImageWidth , ImageHeight >( local_kernel);

auto local_op = make_local <ImageWidth , ImageHeight ,

p_factor >( local_kernel);

As can be seen, giving the kernel description (e.g., local_kernel above) as an
input parameter decreases the required number of template parameters. Bound-
aryCondition can be set to one of the following types (same as the boundary
modes supported in Hipacc, see Table 4.1): UNDEFINED, CONSTANT, CLAMP, MIRROR,
MIRROR-101, REPEAT. The created local operator object, then, can be called with
an input and output stream as follows:

local_op(stream_out <out_t >, stream_in <in_t >, local_kernel);

It can be seen that the description of a local operator kernel above uses Vivado
HLS pragmas, e.g., unroll. In this case, our library eliminates the required hardware
design knowledge significantly. Hipacc applies the required optimizations, including
constant propagation and loop unrolling, for the description of a local operator kernel
(e.g., local_kernel above) and creates the corresponding local operator object by
calling (e.g., make_local) function. This eases the number of AST transformations
required from the HLS backends of Hipacc.
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Definition 4.24 (Global Reduction)

A reduction kernel is described by two parameters that represent the left and
right side, as shown below:

auto max_kernel = []( pixel_t left , pixel_t right) -> pixel_t {

return (left < right) ? right : left;

}

Then programmers can describe the iteration over the image as follows:
reduce <p_factor , width , height >(hls:stream stream_out <out_t >,

hls:: stream stream_out <in_t >, typename ReduceKernel)

reduce <p_factor , width , height >(hls:stream stream_out <out_t >,
hls:: stream stream_in <pixel_t >, typename ReduceKernel ,

in_t pixel_t)

User-defined Operators Other operators can be described using global or static
variables in a combination of the abstractions provided by the library. Thereby, the
parallelization of a user-defined implementation is supported as illustrated below:

for(size_t i = 0; i < image_size / p_factor; ++i)

{

// ...

dataBeatIn << inStream;

// code below this loop works in parallel

for(v = 0; v < p_factor; v++)

{

#pragma HLS unroll

extract <pixel_t >(pixel , data_beat_in , v);

// ... do something with pixel

out_t result = /* .. */;

assign(databeat , result , v);

}

outStream << dataBeatOut;

// ...

}

Memory Instances for User-Defined Operators

In order to support the development of user-defined operators, abstractions are
provided for describing common memory instances used in image processing, two
of which are line buffers and a sliding window.
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Definition 4.25 (Line Buffers)

A line buffer of size kernel-height rows, image-width columns, and data type
pixel_t can be specified as follows:

LineBuffer <image_width , kernel_height , pixel_t > line_buffer;

The shift and read operations are defined on a line buffer. The line buffer’s shift
operation stores a pixel (or a data beat) to its FIFO buffer and returns a column
of pixels as follows:

// update line buffer with a new pixel and return a column of

pixels

linebuf.shift(col_of_pixels , new_pixel); // way1

auto col_of_pixels = linebuf.shift(new_pixel); // way2

The pixels stored at a line buffer can be read without shifting its content as
follows:

// reads the column of pixels at the position col

line_buf.read(col);

// reads the pixel stored at the position row and col

line_buf.read(row , col);

Definition 4.26 (Sliding Window)

A sliding window can be specified as follows:
SlidingWindow <width , height , pixel_t > swin;

SlidingWindow <width , height , pixel_t , p_factor > swin_vect;

It takes as template parameters window width, height, and optionally a par-
allelization factor (p_factor). The pixels in a sliding window are horizontally
shifted by p_factor steps every time the shift function is called. The shift

function takes as input an array of databeats (which is pixel_t in the case of
p_factor = 1) to update the content of the sliding window.

// update the sliding window with a column of pixels

swin.shift(col_of_databeats);

// return the pixel/databeat at the position row and col

auto pixel = swin.read(row , col);

auto databeat = swin.read_vect(row , col);

// return the column of pixels/databeats at the position col

auto col_of_pixels = swin.get_col(col);

auto col_of_pixels = swin.get_col_vect(col);

// return the row of pixels/databeats at the position row

auto row_of_pixels = swin.get_row(row);

auto row_of_pixels = swin.get_row_vect(row);
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// get an array pointer to a window of pixels

auto ptr_to_window = swin.get_window(offset_x , offset_y ,

width , height);

Either individual pixels or databeats (pack of pixels) stored in a (2D) sliding
window can be read (row-wise or column-wise) for a given position row and col.
Additionally, we provide get_window function to return a pointer to a window of
pixels for given specific offset x and offset y. This function is beneficial to extract
multiple windows from a larger sliding window, as used in loop coarsening.

4.5.3 An Example Application: Harris Corner Detection

As an example, in Listing 4.5, we show the description of a Harris corner detector
application by using our library. Its dataflow is shown in Figure 4.7. The algorithm
works as follows:

1. Sobel local operators calculate horizontal and vertical derivatives of an input
image.

2. Multiplication and squares of the derivatives are calculated through point
operators and then smoothed by a Gaussian kernel.

3. Finally, the ranking of every pixel, the determinant of the derivatives, is cal-
culated. Then the image’s corners are selected through binary thresholding
within the last point operator.

Listing 4.5 describes the behaviour of this application as follows: The operators
and streams instantiated in Line 19-Line 39 resembles very much the structure of a
system-level hardware implementation of a pipelined streaming application. Hipacc
generates the above code (and the kernel functions) for the described Harris Cor-
ner Detection algorithm automatically (see VHLS-code.cpp in Figure 4.5). Hipacc’s

dx

dy

sxy

sy

gxy

gy

hcinput output

sx gx

Figure 4.7: DFG for stream-based implementation of Harris corner detection (line:
stream, diamond: split stream, square: local, circle: point). (Figure
reprinted from [ÖRH+17a], © 2017 IEEE)
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Listing 4.5: Harris corner code that generated by Hipacc. It uses uses our proposed
library. The kernel descriptions are not shown for simplicity.

1 #define W 1024 // Image Width

2 #define H 1024 // Image Height

3 #define p_factor 1 // Parallelization factor

4

5 // Parallelized data type

6 using DataT = uchar;
7 using VecDataT = vectorize_t(DataT , pFactor);

8

9 // Local operator definitions

10 localOp <W, H, 3, 3, pFactor , DataT , MIRROR > sobelX , sobelY;

11 localOp <W, H, 5, 5, pFactor , DataT , MIRROR > gaussX , gaussY , gaussXY;

12

13 // Hardware top function

14 void harris_corner(hls::stream <VecDataT > &out_s ,

15 hls::stream <VecDataT > &in_s) {

16 #pragma HLS dataflow

17

18 // Stream definitions

19 hls::stream <VecDataT > in_sx , in_sy , Dx_s , Dx_s1 , Dx_s2 , Dy_s ,

20 Dy_s1 , Dy_s2 , Dxy_s , Mx_s , My_s , Mxy_s , Gx_s , Gy_s , Gxy_s;

21

22 // calls for point and local operators

23 split_stream(in_sx , in_sy , in_s);

24

25 sobelX(Dx_s , in_sx);

26 sobelY(Dy_s , in_sy);

27

28 split_stream(Dx_s2 , Dx_s1 , Dx_s);

29 split_stream(Dy_s2 , Dy_s1 , Dy_s);

30

31 PointOp <pFactor >(Mx_s , Dx_s1 , square_kernel);

32 PointOp <pFactor >(My_s , Dy_s1 , square_kernel);

33 PointOp <pFactor >(Mxy_s , Dy_s2 , Dx_s2 , mult_kernel);

34

35 gaussX(Gx_s , Mx_s , gauss_kernel);

36 gaussY(Gy_s , My_s , gauss_kernel);

37 gaussXY(Gxy_s , Mxy_s , gauss_kernel);

38

39 PointOp <pFactor >(out_s , Gxy_s , Gy_s , Gx_s , threshold_kernel);

40 }

description does not require any tool-specific pragmas or metaprogramming tech-
niques. It applies additional optimizations such as constant propagation and loop
unrolling for generating the kernel code. In addition, a developer can extend the
library without any need to change the Hipacc compiler. For instance, modifying
the implementation of a local operator requires changing the implementation of the
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localOp class, which is significantly easier than modifying Clang AST from Hipacc’s
HLS backend.

4.5.4 A Deeper Look into the Library

Achieving the best results for different parameter specifications of an algorithm (e.g.,
a convolution for different filter coefficients and window sizes) is not an easy task
since the best implementation in hardware depends on the design objectives and the
resource constraints. Hardware design, thus HLS, is susceptible to acquiring multiple
Pareto-optimal design points for the same algorithm, which minimizes different
resource types but facilitates the same performance. For instance, a Pareto-optimal
architecture might require less BRAM, while another uses fewer LUTs. In this case, an
efficient algorithm implementation requires the less budget-critical type of hardware
resources and thus maximizes the desired design objective, i.e., throughput or cost.
Moreover, a Pareto-optimal implementation of an algorithmic instance typically
depends on the values of the input parameters of the algorithm. For example, an
optimal implementation of an image border handling specialized for a small kernel
might provide a poor throughput or cost for a large kernel.

We address the latter challenge by including more than one template design for
each image processing operator in our proposed library. This means that a user of
our library or a design space exploration tool can select trade-off solutions from a set
of design points as part of the decision making. Unlike previous approaches, which
instantiate the same implementation for a whole range of input parameter values,
our approach sustains high-quality synthesis results for different specifications.
Furthermore, even selecting the most suitable implementation from a set of design
points is hidden from users when the design trade-offs are analyzed for the possible
input parameters. This mechanism is possible for the coarse-level parallelization
strategies as shown in Section 3.6.

In our library, different optimization strategies of a local operator are implicitly uti-
lized from a high-level generic description, as discussed in Section 4.5.4. Furthermore,
we apply several bit-level optimizations summarized in Section 4.5.4.

Policy-Based Design

Users of modern HLS tools can leverage the benefits of object-oriented program-
ming by using C++ classes. Polymorphism allows providing a single interface from
different types (which could be a C++ class). However, dynamic polymorphism is not
supported by most of the HLS tools (e.g., not supported in Vivado HLS), where the
type of a variable is defined only at runtime.
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Our proposed library has a policy-based structure to offer multiple implemen-
tations of a class (high-level abstraction such as a local operator) when there is a
trade-off. The term policy-based design is a C++ idiom for customizing the behavior
of a template class at compile time for various optimization strategies, so-called
policies [Ale01]. As an example, the unified modeling language (UML) diagram of
the implementation of a local operator in the proposed library is shown in Figure 4.8.
A local operator is instantiated through three composite object classes. First, the
registers and the shifting mechanism of the sliding window are set according to the
selected loop coarsening policy. Then selections, and thus, final data assignments are
determined through a border handling class, which contains a loop coarsening policy
class through composition. Finally, the control path policy sets the corresponding
local operator schedule for the selected border handling policy.

One can explicitly create a local operator object according to a supported loop
coarsening and border handling policy, for instance, using the functions below:

// W: image width , H: image height , PF: parallelization factor

auto local_op = make_local <W, H, PF, CoarseningPolicy >( local_kernel);

auto local_op = make_local <W, H, PF, BoundaryMode , BorderPolicy >(
local_kernel);

auto local_op = make_local <W, H, PF, BoundaryMode , CoarseningPolicy >(
local_kernel);

The supported policies for CoarseningPolicy and BorderPolicy are listed in Ta-
bles 4.4 and 4.5. Their implementation techniques are explained in Chapter 3.
FetchAndCalc requires implementing a larger sliding window than the one CalcAndPack
requires, as shown in Figure 4.9. Both FetchAndCalc and CalcAndPack provide the

same latency and throughput. In CalcAndPack schedule, every output data beat is cal-
culated in two consecutive cycles, but the execution starts earlier than FetchAndCalc.
Correspondingly, the implementation of border handling circuits must be tailored
to the selected loop coarsening policy. Therefore, despite doing the same task and
providing the same interface, the implementation of a local operator is changed
drastically according to the selected policies. According to the policies defined by
the user, C++ metaprogramming allows generating the corresponding code at com-
pile time . By integrating our library into Hipacc’s source-to-source compiler, we
alleviated the task of generating different policies to C++ compiler.

Automatic architecture selection

Explicitly selecting an implementation policy requires the users of our proposed
library to understand implementation techniques and offered trade-offs, e.g., under-
standing loop coarsening and border handling techniques. We solved this problem by
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Border Handling Policy Loop Coarsening Policy

Type-0

Type-1

Type-2

Local Operator Line Buffer Sliding Window

composition

Best Architecture Selection

getControlPolicy() 
getBorderPolicy() 
getCoarseningPolicy()

inheritance

Fetch And Calc

Calc And Pack

Control Policy

Type-0

Type-1

Type-2

Figure 4.8: Policy-based structure of the proposed library. The object relationship
diagram of a local operator has three border handling policies and two
loop coarsening policies. The policies are defined as template classes for
parametrization, and dynamic linking is avoided. Furthermore, it consists
of an architecture selection algorithm that implements the analytical
model shown in Section 3.6 to pick the standard best coarsening policy at
compile time according to input template parameters. (Figure reprinted
from [ÖRH+17a], © 2017 IEEE)

Table 4.4: Supported loop coarsening policies (CoarseningPolicy).
CoarseningPolicy Loop Coarsening Type
FetchAndCalc Fetch and Calculate
CalcAndPack Calculate and Pack

implementing a policy selection algorithm and/or providing design objective settings
for the user.

In Chapter 3, we analyzed the resource usage of loop coarsening and border han-

137



4 FPGA-Based Accelerator Design from a Domain-Specific Language

Table 4.5: Supported image border handling policies (CoarseningPolicy).
BorderPolicy Border Handling Type
Type-0 base method
Type-1 minimizes the area (default)
Type-2 optimizes achievable clock speed

shift input

f f f f

shift shift input

f f f f

(a) Fetch And Calc

shift input

f f f f

shift shift input

f f f f

(b) Calc And Pack

Figure 4.9: Considered loop coarsening architectures for a 3-by-3 kernel where the
parallelization factor is 4.

dling techniques as supported in our proposed library. As discussed in Section 3.6.3,
either one of the loop coarsening policy uses less resources depending oon instantia-
tion parameters such as the local operator window dimensions, bit widths of input
and output data types, and parallelization factor. We implemented this as a meta
function that is evaluated at compile time. Thereby, by checking the corresponding
template parameters of the specification of a local operator, a meta function selects
one of the coarsening policies. Then, the local operator class is created by using the
selected policy. All this happens implicitly when the user creates a local operator as
simple as shown below:

// W: image width , H: image height , PF: parallelization factor

auto local_op = make_local <W, H, PF >( local_kernel);

However, the border handling policies offer different trade-offs. Type-0 uses more
resources than Type-1 and Type-2 but does not change the structure of the sliding
window. Therefore, Type-0 is needed if our local operator implementation is extended
to take multiple image border handling algorithms, such as mirror, and clamp, as
a runtime parameter. Type-2 minimizes the critical path, thus increasing the clock
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Table 4.6: Supported design objectives (DesignObjective).
DesignObjective objective of architecture selection
LessLUT minimizes LUT usage (default)
FasterClock optimizes clock speed

speed, whereas Type-1 requires less LUT and mostly fewer area resources. The users
of our proposed library do not need to remember all these low-level implementation
details. Instead, they can select a design goal listed in Table 4.6, as shown below:

auto local_op = make_local <W, H, PF, DesignObjective >( local_kernel);

Bit-Level Optimizations

Modern HLS tools benefit from bit-level optimizations [ÖRH+16; ÖRH+17a; Xil17c;
Int17]. We have tuned specification of the library implementations with various low-
level optimizations known for designing hardware at RTL. Some of these bit-level
optimizations are explained below:

(i) Bit-level precision for the variables: In the library, we specified all the variables
with bit-level precision using the data structures provided by Xilinx Vivado
HLS.

(ii) Compile-time flags to exploit bit-specific properties of input specification: Often,
the hardware implementation of arithmetic operators, comparisons, and logical
blocks can be optimized for specific characteristics of the input parameters. We
exploit this in our library by creating compile-time flags whose values depend
on the template parameters. For instance, resource requirements to count the
coordinates of an image can be reduced when the image width is a power of two,
as shown in Listing 4.63. The Boolean value of is_image_width_power_of_two
(image_with) in Line 11 depends on image_width. The if block (Line 13 to
Line 16) is optimized for the case of image width being a power of two and
only requires wire assignments. The else block (Line 20 to Line 27), however,
requires adders and multiplexers to implement counters for tracking the image
coordinates of the input pixel. The final program includes only the if block
or the else block depending on the template parameter image_width since C++

3Note that writing a top-level loop for the whole iteration (instead of nested loops) is recommended
by the optimization guides [Xil17c]. The clock_tick tracks the iteration of the whole image,
whereas col_im and row_im track the horizontal and vertical indices of the pixel read from the
input image. C++ compilers generate code specialized to template parameters before compiling
the program. Hence, depending on the template parameters, either the if block (Line 13 to Line 16)
or the else block (Line 20 to Line 27) will be compiled in the final program.
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compilers generate code specialized to template parameters before compiling
the program.

Listing 4.6: Example for reducing the resource usage (by is_image_width_power_of_two
(image_with), where the image_width is a template parameter).

1 template <image_width , image_height , /* .. */>

2 function(/* .. */)

3 {

4 // ..

5

6 for(BW(Latency) clock_tick = 0; clock_tick < Latency; ++i)

7 {

8 // ...

9

10 // compile -time selection based on template parameters

11 if(is_image_width_power_of_two(image_with) == true)
12 {

13 // this block uses less resource than the else block

14 col_im = clock_tick[BW(col) - 1 : 0];

15 row_im = clock_tick[BW(row) + BW(col) - 1 : BW(col)];

16 new_col= (col_im == image_width - 1);

17 }

18 else
19 {

20 // this block uses more resource than the if block

21 new_col = false;
22 col_im ++;

23 if(col_im == image_width)

24 {

25 col_im = 0;

26 row_im ++;

27 is_col_read = true;

28 }

29 }

30 }

31 // ..

32 }

(iii) Exploiting similarities in expressions: We optimize resource usage by exploiting
sub-common expressions and concisely using their outputs to express other
parts of the hardware. For instance, in Listing 4.7, we assign the results of
comparison circuits to 1-bit temporary variables, which are later used for the
program’s parts that require the same comparisons.

(iv) Exploiting temporal locality: We exploit the locality of a given algorithm by
designing a particular memory architecture (e.g., line buffers) and using hard-
ware design techniques such as deep pipelining. In this context, we even
pipeline the control signals when possible. For instance, border handling of
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Listing 4.7: Optimization of the sub-common expressions by assigning the interme-
diate results to temporary variables and using them later as part of other
expressions.

1 // ..

2

3 if(is_initial_latency_passed ) {/* .. */}

4

5 // ..

6

7 if (is_initial_latency_passed && other_logical_expression) {/* .. */}

8

9 // ..

10

11 is_initial_latency_passed = (clock_tick > initial_latency);

a local operator of a 𝑤 width requires 𝑤 − 1 number of comparisons (e.g., a
5-by-1 window iterating over an image whose width is 1024 will be out of the
boundary when the horizontal coordinate is 0, 1, 1022, and 1023). However,
our implementation requires only one comparison in the horizontal access
for checking if a local operator enters the border handling area. Then it uses
pipelined registers to handle the control signals accordingly. For instance, for
an image width 1024, instead of checking at the horizontal coordinates 0, 1,
1022, and 1023, our implementation checks if the column counter is at 1022 for
a raster order scan, then uses shift registers to produce corresponding flags for
other column coordinates). A representative code is shown in Listing 4.8.

The hardware-centric optimizations discussed in this section significantly increase
the performance but complicate the code. However, since we hide the implementation
of the library through high-level abstractions, the tedious description of the hardware
is not exposed to library users.

Listing 4.8: Exploiting the temporal locality of the control flow by using shift registers
1

2 // shift registers to exploit the temporal locality of the control flow

3 for(int i = width - 1; i > 0; i--){

4 border_flags[i] = border_flags[i - 1];

5 }

6

7 // does the window enter the out -of-image border

8 border_flags [0] = is_col_read;
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4.6 Evaluation and Results

This section presents evaluations of i) our Hipacc backend targeting Intel FPGA SDK
for OpenCL and ii) the proposed library for Xilinx Vivado HLS.

4.6.1 Algorithms

In the following, the algorithms that were chosen for evaluation throughout this
section are briefly introduced.

GB The Gaussian blur first applies a 3 × 3 convolution with a specific mask of
unsigned integers that total 16, followed by a normalization (division) by 16.

LP The Laplacian filter detects vertical, horizontal, and diagonal edges using signed
integer arithmetic with a 5 × 5 local operator.

SB The Sobel filter first computes vertical and horizontal derivatives with 3 × 3
masks then calculate the Euclidean distance and clamps with a given threshold in
the third kernel to detect edges.

LSB An edge detection that first transforms an RGB input to LUMA, then applies
horizontal and vertical Sobel filters and finally clamps the sum of the absolutes of
derivatives according to a threshold.

BL The bilateral filter [TM98] is a 3 × 3 local operator used for reducing noise while
preserving edges. It consists of an exponential function and employs floating-point
arithmetic.

HC The Harris corner consists of 9 kernels. First, the horizontal and vertical derivate
of the input image are computed, then, the derivatives are squared and multiplied
with each other within 3 point operators. The resulting images are blurred by 3
Gaussian kernels. Finally, after calculating the determinant, a point operator detects
corners by clamping with a threshold.

OF The optical flow issues a Gaussian blur and computes a bit vector signature
for every pixel of two input images using the census transform [Ste04]. Those
signatures are then compared within a 15 × 15 window to find corresponding points
and therefore detect the optical flow. Overall, five kernel executions are involved.

LK Lucas Kanade [Bou01] is a dense optical flow that utilizes nine kernels with
floating point arithmetic. The first difference between two input images and their
derivatives are computed. Then their multiplications with each other are accumulated
in a 7×7 window to find motion vectors. Finally, corresponding Munsell color indexes,
including square and arctangent, are calculated.
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Table 4.7: Synthesis results for different loop coarsening factors 𝑣 of a 3× 3 bilateral
filter with clamping applied on an image of size 1024 × 1024 for an Intel
Stratix V DE-5.

𝑣 II ALUTs Registers Logic (%) M20K DSP Freq [MHz]
1 1 54490 82780 22.77 373 23 305.53
2 1 60283 89573 24.45 371 37 304.50
4 1 71772 103836 27.91 371 65 304.50
8 1 92927 118080 34.28 375 121 256.73
16 1 140368 189010 48.93 381 233 255.75

4.6.2 Hipacc Compiler Backend Targeting Intel FPGAs

This section evaluates the source-to-source compiler backend generating OpenCL
code for Intel FPGA SDK for OpenCL from Hipacc DSL as introduced in Section 4.3.
We evaluate implementation results for varying image processing applications and
compare handwritten implementations given in [Int23]. Furthermore, we compare
the performance of our FPGA implementations with a server-grade discrete GPU and
a multiprocessor system-on-a-chip (MPSoC) hosting an embedded GPU. We used
the same Hipacc application to generate target-specific code for these GPUs and
our target FPGA. This shows one of the benefits of our DSL-based approach, where
portability of performance is achieved from a high-level declarative description.

Loop Coarsening Optimizations

Figure 4.10 and Table 4.7 show the resource usage and clock speed of a bilateral filter
for different parallelization factors. It can be observed that a speedup of roughly 13.4
is achieved compared to non-parallelized implementation (where 𝑣 = 1) at the cost
of an increase of only 2.1× in logic utilization and 10.1× in DSP blocks thanks to our
loop coarsening optimization applied from our Hipacc backend. In our implemen-
tation, parallelization by a factor of 𝑣 = 16 increases the size of the sliding window
from 𝑛 ×𝑚 to (𝑛 + 𝑣 − 1) ·𝑚, and increases the size of line buffers to read and write
𝑣 number of pixels, and replicates the arithmetic units, thus increases resource usage.
Despite processing 16 pixels in every clock cycle, the maximum achievable clock
frequency degrades for the larger design to 255.57 MHz; therefore, the paralleliza-
tion optimizations provide the 13.4× speedup. Furthermore, we observed that HLS
compilers eliminate redundant computations within multiple merged local windows
and optimize the logic better when only the arithmetic operations in the innermost
kernel are replicated. As a result, we increase the throughput by approximately a
factor of 𝑣 at the cost of a sublinear increase in logic.

An alternative parallelization approach is to use the parallelization intrinsics
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Figure 4.10: Hardware utilization for the loop coarsening of a 3 × 3 bilateral filter
with clamping on an image of size 1024 × 1024 for an Intel Stratix V
DE-5. (Figure reprinted from [ÖRH+16], © 2016 IEEE)

offered by Intel, namely num_compute_units(n) and num_simd_work_items(n). The
num_compute_units(n) intrinsic replicates the whole acceleration unit as shown in
Figure 4.11. These parallelization strategies follow OpenCL’s many-core computing
paradigm. However, this means caching mechanisms such as line buffering need
to be modified to share data across the computing units, which is not supported
by Intel FPGA SDK for OpenCL. The num_simd_work_items(n) intrinsic tries the
replicate only the arithmetic units similar to designing vectorization units in a
processing unit, as shown in Figure 4.12. Ideally, this optimization would generate
a circuit similar to our loop coarsening technique. However, modern HLS tools
fail to achieve this efficiency for a given OpenCL code written for its many-core
paradigm. This is not surprising since generating vectorization instructions for
a fixed programmable device (such as a CPU) from a program (e.g., written in C++

without using vectorization instructions) is a challenging task where researchers have
not yet provided a satisfying solution despite decades of work [CCF+10; RKH+17].

Intel FPGA SDK for OpenCL supports using the parallelization intrinsics to
NDRange kernel written according to OpenCL paradigm (not to a single item kernel
describing an application-specific memory architecture such as line-buffering). Fig-
ure 4.13 shows the implementation results for a Gaussian filter. It can be seen that
the line-buffered solution generated by Hipacc uses significantly fewer resources
while providing up to 5× higher throughput than the implementations that can be
achieved by using Intel’s parallelization intrinsics. Hipacc’s implementation can
be accelerated even more by using loop coarsening. As a result, we conclude that
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Figure 4.11: Automatic replication of the entire accelerator by specifying
num_compute_units(n). (Figure reprinted from [ÖRH+16], © 2016
IEEE)
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Figure 4.12: Automatic replication of the innermost kernel computation by speci-
fying num_simd_work_items(n). (Figure reprinted from [ÖRH+16], ©
2016 IEEE)

our DSL-based approach using source-to-source compilation performs significantly
better than compiler-based acceleration methods applied to a regular OpenCL code
(e.g., written for a GPU).

Comparison with Handwritten Applications provided by Intel

Figure 4.14 and Table 4.8 present the implementation results on an Intel Stratix V
FPGA for a number of image processing design examples provided by Intel [Int23]
and the equivalent Hipacc implementations. The design examples from Intel consist
of single work-item line buffered kernels similar to the OpenCL codes generated
by Hipacc for the Intel FPGA SDK. All arithmetic operations in Hipacc’s operators
are written the same way as specified in design examples for comparison. Hipacc’s
implementations are assembled from two kernels (LSB) and four kernels (LK), coupled
by channels, whereas Altera’s are from a single kernel only.

Hipacc’s LSB uses significantly fewer DSP blocks and slightly fewer logic in
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Figure 4.14: Solutions generated using our Hipacc DSL vs. handwritten exam-
ples [Int23] for a 1024 × 1024 image size and an Intel Stratix V FPGA
target. (Figure reprinted from [ÖRH+16], © 2016 IEEE)
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Table 4.8: Comparison of handwritten examples [Int23] and Hipacc (image size is
1024 × 1024) [ÖRH+16].

Filter Source II ALUTs Registers Logic (%) M20K DSP Freq [MHz]

LSB Intel 1 43844 67418 19.59 347 18 305.42
Hipacc 1 45069 68624 19.95 346 3 304.50

LK Intel 1 53768 84746 22.59 462 47 212.03
Hipacc 1 63595 92810 24.87 562 37 289.85

exchange for more on-chip memory, M10K. The difference in clock frequency is
negligible. Hipacc’s LK consumes 1.4× M20K blocks of Inte’s design uses. However,
the achieved clock frequency using Hipacc is significantly higher. We argue that
the difference in logic utilization is acceptable when the number of used DSPs
is considered. The reason for obtaining considerably different results from LK in
comparison to those from LSB, are algorithm-specific manual optimizations applied in
the handwritten design examples by Intel, where the average filters are implemented
using shift registers. This is an optimization we can add to our Hipacc backend in
the future.

In summary, our DSL-based Hipacc source-to-source compilation approach achieves
the quality of results close to hand-optimized implementations provided by Intel.

Furthermore, users of Hipacc can easily modify their implementation for different
boundary conditions, which is often a requirement for LK, or efficiently increase the
throughput (via loop coarsening) without changing the application code. In contrast,
these require drastic changes in the hand-written implementations [Int23].

Comparison with GPUs

We can generate GPU implementations from exactly the same DSL source code since
all OpenCL codes used for evaluation are generated by Hipacc’s domain-specific
compiler. We generate CUDA implementations due to the lack of OpenCL support
in recent versions of NVIDIA’s programming environment. In the generated CUDA
codes, all GPU implementations are carefully tuned by considering the use of shared
memory and texture memory as well as by applying optimizations, such as thread-
coarsening, to ensure a fair comparison.

Figure 4.15 shows the throughput comparison of Tegra K1 and Tesla K20. The exact
numbers for the presented Stratix V FPGA implementations are given in Table 4.9.
Algorithms are listed in order of complexity, mainly in terms of required bandwidth.
In particular, the performance of GPU architectures suffers from increasing memory
access. Therefore, the GPU throughput for the Gaussian blur, with a small 3× 3 local
window is rather high compared to the optical flow, for which a 15× 15 local window
needs to be processed.
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Figure 4.15: Comparison of throughput for the NVIDIA Tegra K1 GPU, NVIDIA
Tesla K20 GPU, and Altera Stratix V FPGA. (Figure reprinted from
[ÖRH+16], © 2016 IEEE)

Table 4.9: Synthesis results of multiple image processing algorithms with different
loop coarsening factors 𝑣 [ÖRH+16].

Filter 𝑣 #Kernels II ALUTs Registers Logic (%) M20K DSP Freq [MHz]
GB 32 1 1 47045 73584 20.64 363 0 303.58
LP 16 1 1 107310 142069 39.69 419 64 270.62
SB 16 3 1 58308 96673 24.59 497 96 247.34
BL 16 1 1 140368 189010 48.93 381 233 255.75
HC 4 9 1 135808 192397 45.86 493 36 303.39
OF 1 5 2 81551 128816 32.61 646 18 286.36

The throughput of image processing implementations on Stratix V FPGA does
not diminish as much for larger local window sizes as the GPU implementations.
Increasing the line buffer sizes lead to almost double the M20K usage when comparing
the Gaussian blur with the optical flow. However, FPGA implementations suffer
from resource limitation for the implementations where the loop coarsening factor
𝑣 couldn’t be increased to more than 4 without increasing II of 1. Unfortunately,
even without loop coarsening, synthesis could not maintain an II of one 1 for the
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optical flow. Nevertheless, for the Gaussian blur, bilateral filter, and Harris corner,
the Stratix V could even outperform the server-grade Tesla K20 GPU.

Our approach eliminates the need for platform expertise and allows targeting
different computing platforms (in this case, GPUs and an FPGA) without changing
the application code. Using Hipacc’s source-to-source compiler, we can generate
highly optimized target-specific code without tuning the code at low-level using
different programming languages. This allows analyzing a program for different
computing platforms and further opportunities for advanced design space exploration
techniques for heterogeneous systems.

4.6.3 The Metaprogramming Library Targeting Xilinx Vivado
HLS

This section evaluates our proposed library by investigating implementation results
for varying image processing algorithms. We targeted a Zynq xc7z100ffg900-2 FPGA,
in which a rate of 1,024 bits per cycle can be reached for streaming the data from the
main memory to the reconfigurable logic. We provide implementation results for the
Vivado HLS IP blocks obtained through Vivado HLS 2018.2 using the export feature.

One of the main advantages of using Vivado HLS is the ability of setting different
speed targets without changing the code. The logic is highly pipelined in the case
of ambitious speed targets, causing the utilization of additional registers between
LUT. Therefore, different target speed constraints should be considered when the
implementation results of an HLS code are evaluated. Moreover, we observed that
the drastically high resource utilization for the same speed or relatively less logic
speed despite the same area could be acquired when too ambitious or too relaxed
target speed constraints are set. In this section, we evaluate our algorithms with
two different target speed constraints, which are 50 MHz and 200 MHz. As expected,
the higher speed constraint slightly increases the number of registers and, thus, the
initial latency for all the architectures. Moreover, architectural differences’ effects
on implementation results are amplified with faster logic frequencies.

Quality of Synthesis Results

In Chapter 3, we thoroughly investigated the implementation of the proposed loop
coarsening and border handling techniques by using the Vivado HLS tool. In the
following, we show that the HLS results of our C++ code use the expected number of
resources, where we mathematically counted the required number of LUT, FF, and
BRAM resources. All the presented results in Chapter 3 have been acquired using
our metaprogramming library. Thus, we already showed that the proposed library
provides good results for stencil-based applications. In this section, we provide
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synthesis results for a Gaussian filter for different parallelization factors, border
handling modes, and clock speed targets.

Table 4.10 compares different border modes regarding resources used to implement
a 5-by-5 integer Gaussian filter. The border handling mode UNDEFINED does not
introduce additional cost (i.e., reads a garbage value from line buffers). The constant
border handling mode is the cheapest in terms of resources. A higher parallelization
factor simplifies the data selection in border handling, as also discussed in Chapter 3.
Thus, the implementation overhead of all the considered border handling modes

Table 4.10: 5-by-5 Gaussian filter with different border handling modes for a
1024×1024 grayscale image [ÖRH+17a]. The results are obtained for 50
MHz and 200 MHz speed constraints. 𝑣 denotes the coarsening factor
(see Chapter 3).

𝑣 Brdr Mode SLICE LUT FF BRAM SRL CPimp Latency
1 UNDEFINED 94 248 249 4 0 4.0 1050630
1 CONST 119 301 360 4 0 4.4 1050630
1 CLAMP 121 335 361 4 0 3.6 1050630
1 MIRROR 128 356 361 4 0 3.8 1050630
1 MIRROR101 131 374 361 4 0 3.8 1050630
32 UNDEFINED 2238 6099 2683 32 0 6.2 32838
32 CONST 2431 6246 3035 32 0 7.3 32838
32 CLAMP 2406 6935 3042 32 0 8.3 32838
32 MIRROR 2240 6927 3042 32 0 7.1 32838
32 MIRROR101 2291 6928 3042 32 0 7.4 32838

(a) Target speed is 50 MHz.

𝑣 Brdr Mode SLICE LUT FF BRAM SRL CPimp Latency
1 UNDEFINED 157 316 625 4 9 2.3 1050637
1 CONST 198 374 881 4 10 2.1 1050639
1 CLAMP 222 453 922 4 9 2.3 1050639
1 MIRROR 226 511 922 4 10 2.3 1050639
1 MIRROR101 215 508 882 4 9 2.3 1050639
32 UNDEFINED 3211 8032 13380 32 202 2.8 32845
32 CONST 3465 8094 15607 32 198 3.0 32846
32 CLAMP 3591 8890 16188 32 200 2.8 32846
32 MIRROR 3576 8939 16272 32 200 3.4 32846
32 MIRROR101 3648 8928 16280 32 195 3.3 32846

(b) Target speed is 200 MHz.
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converges for large parallelization factors.
Table 4.11 shows the implementation results of the same Gaussian filter for different

parallelization factors. It is shown that the increase in throughput is linear to the
parallelization factor, while the increase in resource usage is sublinear.

Table 4.11: 5-by-5 Gaussian filter with different coarsening factors (𝑣) for 1024×1024
grayscale images [ÖRH+17a].

𝑣 Brdr Mode SLICE LUT FF BRAM SRL CPimp Latency
1 UNDEF 105 247 249 4 0 3.4 1050631
2 UNDEF 156 438 295 4 0 3.3 525319
4 UNDEF 265 818 388 4 0 8.6 262663
8 UNDEF 477 1576 577 8 0 9.5 131335
16 UNDEF 981 3106 958 16 0 9.2 65671
32 UNDEF 1919 6160 1723 32 0 9.3 32839

(a) Target speed is 50 MHz.

𝑣 Brdr Mode SLICE LUT FF BRAM SRL CPimp Latency
1 UNDEF 161 316 625 4 10 2.2 1050637
2 UNDEF 257 562 1029 4 16 2.4 525325
4 UNDEF 439 1058 1823 4 28 2.4 262669
8 UNDEF 818 2055 3381 8 52 2.5 131341
16 UNDEF 1563 4125 6506 16 101 2.8 65677
32 UNDEF 3092 8034 12416 32 204 3.1 32845

(b) Target speed is 200 MHz.

Comparison with Previous Work

In Table 4.12, we compare our library-based approach with previous work [RSH+14;
RÖH+18] for varying image processing algorithms. The previous work [RSH+14]
already generates correct and efficient circuits, e.g., eliminating unnecessary memory
transfers via the support of line buffering, and achieves higher quality of results
compared to Xilinx’s OpenCV library [Xil23] in terms of throughput and resource
usage. Both the C++ codes generated from our backend and the previous work
instantiate the same streaming pipeline and data path functions. Table 4.12 shows
that our library significantly improves the results for all the considered applications.
This is partially due to the superiority of our loop coarsening techniques. More
interestingly, the improvement in resource usage becomes more significant for the
more complicated data path functions. For instance, the bilateral filter can only be
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parallelized by the factor of 2 using Hipacc, whereas the factor of 8 was possible
with our proposed library. In addition, the latency results of our proposed library
fit the latency equations we showed in Chapter 3 and are smaller than the previous
work on Hipacc.

4.7 Related Work

Exploiting parallelism or memory layout of an algorithm for a specific device from
a general-purpose program like C++, Java, or Python is too difficult [HP19; CCF+10;
LTE+20; RBA+13; SMB+16; BRR+19]. The EDA community has been looking at
new approaches to alleviate the burden of compilers such as providing program-
ming languages, language extensions, language constructs to provide higher level
abstractions that can be mapped to different computing platforms [CCF+10]. As a
result, drastically different programming paradigms and languages have emerged.
For instance, CUDA or OpenCL for programming GPU accelerators, TensorFlow for
programming deep neural networks (DNNs), C++ combined with OpenMP for paral-
lel programming of multicore processors, vector data types, libraries, or intrinsics to
utilize the SIMD units of CPU.

Early work that proposed the compilation of a data-parallel programming model
to hardware implementations was presented with FCUDA by Papakonstantinou et al.
[PGS+09]. Here, CUDA, heavily driven by the GPU industry and the main inspiration
for the OpenCL standard, was adapted to serve as a source language. Employing
a source-to-source compiler, CUDA thread blocks are transformed into parallel C
code for AutoPilot [ZFJ+08], which is the predecessor of Xilinx’ Vivado HLS. The
Throughput Oriented Performance Porting (TOPP) framework [PCH+13] optimizes
memory access by decreasing the lifetime of variables and removing synchronization
points using FCUDA annotations. Shagrithaya, Kępa, and Athanas [SKA13] and Kępa,
Soni, and Athanas [KSA15] use Xilinx Vivado HLS for kernel code generation and
focus on designing application-specific kernel interfaces for fine-grained parallelism.
On the other hand, Intel FPGA SDK for OpenCL targets royalty-free OpenCL to
extract the thread-level parallelism that the developer specifies. Its compiler uses the
LLVM infrastructure to transform kernels into dedicated hardware pipeline circuits
that can be replicated many times [CAD+]. Intel FPGA SDK for OpenCL implements
a complete heterogeneous system by facilitating all required memory and host
interfaces for the targeted device via QSYS and Quartus integration tools. Silicon-
OpenCL (SOpenCL) [OBD+11] is another LLVM-based compiler that automatically
adjusts the parallelism level of a kernel for a specified FPGA using hardware templates.
Gurumani et al. [GCL+13] use application-specific knowledge as well as analytical
models for design space exploration, which is too complex in the case of multiple
communicating kernels.

Despite the significant improvements in HLS methodologies and tools, hardware
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design expertise is still a game changer in terms of good results. Similar to Intel FPGA
SDK for OpenCL, users of a Xilinx Vivado HLS must write very specific code to obtain
efficient hardware implementations through synthesis. For instance, the wait at the
initial latency and stalling of the input should be manually described for a convolution.
Therefore, Xilinx optimization guide [Xil17c] recommends and shows example codes
tuned to resemble already to the structure of a circuit, unfortunately. Another solution
could be using the OpenCV library of Vivado HLS [Xil23], which restricts a developer
to use a pre-defined set of computer vision algorithms. However, the border handling
implementation in [Xil23] applies padding, thus increases latency. A similar approach
to our metaprogramming library, which provides template functions for point and
local operators, is proposed in [SAH+14]. Neither the discussed solutions provided
by Vivado nor the work in [SAH+14] facilitates any parallelization. Moreover, our
implementations use fewer resources and achieve lower latencies than both, even
without parallelization.

One promising direction to eliminate the required platform expertise for achieving
good quality implementations without having to deal with low-level implementation
details is developing DSLs that lift the description of a design to a higher level
for a restricted domain of applications, to capture the parallelism and typically to
map an application to different target platforms. For instance, TensorFlow supports
both TPUs and GPUs. Hipacc [MRH+16; RÖM+17b] and Halide [RBA+13] are image
processing DSLs that generate optimized code for CPUs and GPUs. These languages
provide readability, portability, and modularity, hiding target- and device-specific
optimizations.

PARO [HRD+08; Han09] and the FPGA version of Spiral [MFH+12] are prominent
approaches of generating hardware accelerators from a DSL. PARO [HRD+08; Han09]
is an HLS tool for generating highly parallel hardware accelerators from a high-level
functional language for a broad variety of multi-dimensional dataflow dominant
applications that can be described by nested for loop programs. PARO can be seen as
the first DSL approach to synthesize processor array accelerators after initial attempts
using polyhedral loop models such as [Tei93]. Spiral [MFH+12] generates HDL for a
variety of digital signal processing applications. In the domain of image processing,
previous work includes Darkroom [HBD+14], Rigel [HDD+16], and RIPL [SMB+16].
These approaches are able to generate HDL for an image processing DSL without
using any HLS tool, but lacking the state-of-the-art scheduling, allocation, and
binding methods of modern HLS tools. The Vivado HLS backend developed for
Hipacc by Reiche et al. [RSH+14] is a prominent example of using a modern HLS tool
for generating hardware accelerators from an image processing DSL. As part of this
thesis, we improved its performance by extending [RSH+14] with the loop coarsening
and image processing applications proposed in [ÖRH+17b] (see Chapter 3). Among
other contributions, our work [ÖRH+16] is unique for being the first DSL approach
that implements a complete heterogeneous system based on OpenCL (i.e., to the best
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4.8 Conclusion

of our knowledge, our work [ÖRH+16] is the first DSL backend that targets Intel
FPGA SDK for OpenCL.). Pu et al. [PBY+17] and Chugh et al. [CVP+16] followed our
approach for the Halide [RBA+13], and the PolyMage [MVB15] DSLs, respectively.
However, they only support generating hardware accelerators using Vivado HLS
(i.e., cannot target Intel FPGAs and do not generate OpenCL host code). The Halide
backend [PBY+17] generates software code to control the hardware accelerators but
only for a specific device whereas generating OpenCL code as in our work allows
creating a complete heterogeneous system, which is not specific to a device (i.e., our
work leverages the industrial OpenCL standard API for host-device communication).
Furthermore, to the best of our knowledge, already mentioned existing approaches

(DSLs, application libraries tuned for HLS) do not provide different implementations
depending on parameter of a library function offered for an algorithm specification. In
this sense, our approach is more comprehensive, where we choose a implementation
optimized for the given set of template parameters (that are different specifications
of an algorithm).

4.8 Conclusion

In this chapter, we presented a source-to-source compiler approach for 2D image
processing algorithms based on a DSL, more specifically to target Intel FPGA SDK
for OpenCL using Hipacc DSL. Moreover, we introduced an image processing li-
brary tuned for Xilinx Vivado HLS, which is used to alleviate the tasks of Hipacc’s
Vivado HLS backend. The developed library can be utilized and extended by HLS
users without modifying the Hipacc compiler. It provides high-level abstractions
for image processing operators (i.e., point, local, and global operators), common
memory instances such as sliding window and line buffers, and data structures for
streaming. The library is implemented with application-specific deeply pipelined
hardware descriptions optimized at bit-level. Furthermore, it supports parallelization
of applications by the loop coarsening techniques introduced in Chapter 3.

Our approach leverages algorithm descriptions to a higher level to generate highly
optimized target-specific code for Intel FPGA SDK for OpenCL and Xilinx Vivado
HLS. We were able to show that our generic approach can lead to results close to
those of hand-optimized applications provided by Intel. Despite comparable results,
the generative approach remains superior as core fragments of the implementation
(such as boundary conditions or the loop coarsening factor) can be changed without
severe modifications. Furthermore, a server-grade GPU is outperformed in terms of
throughput for various image filter algorithms. In conclusion, our proposed code
generation from a DSL raises the abstraction level in the C-based HLS tools and, thus,
eases the burden on the developer of writing target-specific code.
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HipaccVX: Wedding of OpenVX and

DSL-based Code Generation

Our DSL-based and library-based approaches presented in Chapter 4 have several
advantages over typical high-level libraries such as OpenCV. These include (i) al-
lowing users to describe their algorithms by using an orthogonal set of abstractions
instead of restricting them to a predefined set of image processing functions. (ii) in-
troducing inter-kernel optimizations as part of code generation transformations,
such as eliminating unnecessary memory copies between image processing functions.
(iii) eliminating repetitive work by reducing code replication and increasing modu-
larity. Furthermore, our approach allows generating highly-optimized target-specific
code for different computing platforms (e.g., CPUs, GPUs) from the same application
description (written in Hipacc). However, our DSL-based approach requires more
effort than users writing their application using the OpenCV library interface since
the application developer has to learn a non-standard language (e.g., the Hipacc DSL)
and understand the abstractions of this DSL (e.g., how to describe image processing
using image processing operators).

OpenVX [The14] makes an important contribution to enable system-level opti-
mization possibilities that are not available in traditional libraries such as OpenCV
and allows performance portability across different computing platforms (e.g., CPU,
GPUs). It is the first industrial standard for a graph-based specification of computer
vision algorithms. However, OpenVX’ algorithm space is constrained to a small set of
vision functions. This limitation hinders describing custom kernels for accelerating
computations that are not included in the standard. Table 5.1 provides a comparison
between OpenVX and Hipacc, which is selected as an example DSL.

In this chapter, we leverage the best of both worlds by coupling the Hipacc DSL to
OpenVX and providing language constructs to the programmer for the definition
of so-called »user-defined nodes« [ÖOQ+21]. In this way, we support the accelera-
tion of OpenVX’ user-defined kernels for various computing platforms and enable
optimizations that cannot be detected with standard OpenVX application descrip-
tions. Our approach leverages the OpenVX’ industrial standard for the graph-based
description of image processing algorithms, allows users to use OpenVX’ computer
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Table 5.1: Available features in OpenVX (VX), DSL compiler Hipacc (H), and our
joint approach HipaccVX (HVX).

Features VX H HVX
Industrial standard (open, royalty-free) ✓ ✗ ✓

Community driven open-source implementations ✗ ✓ ✓

Well-known CV functions (e.g., optical flow) ✓ ✗ ✓

High-level abstractions that adhere to distinct memory access patterns (e.g., local) ✗ ✓ ✓

Custom node execution on accelerator devices (i.e., OpenCL) ✓ ✗ ✓

Acceleration of the custom nodes that are based on high-level abstractions ✗ ✓ ✓

vision functions without learning a non-standard language, and provides the benefits
of DSL-based code generation.

5.1 Introduction

The emergence of cheap, low-power cameras and embedded platforms have boosted
the use of intelligent systems with CV capabilities in a broad spectrum of markets,
ranging from consumer electronics, such as mobile, to real-time automotive applica-
tions and industrial automation, e.g., semiconductors, pharmaceuticals, packaging.
The global machine vision market size was valued at $16.0 billion already in 2018,
and yet, it is expected to reach a value of $24.8 billion by 2023 [BCC18]. A CV appli-
cation might be implemented on a great variety of hardware architectures ranging
from GPUs to FPGAs depending on the domain and the associated constraints (e.g.,
performance, power, energy, and cost). For sophisticated real-life applications, the
best trade-off is often achieved by heterogeneous systems incorporating different
computing components that are specialized for particular tasks.

In 2014, the Khronos Group released OpenVX as a C-based API to facilitate cross-
platform portability not only of the code but also of the performance for CV applica-
tions [The14]. This is momentous since OpenVX is the first (royalty-free) standard
for a graph-based specification of CV algorithms, enabling system-level optimiza-
tions such as eliminating unnecessary memory copies. Yet, OpenVX’ algorithm
space is constrained to a relatively small set of vision functions. Users are allowed to
instantiate additional code in the form of custom nodes, but these cannot be analyzed
at the system level by the graph-based optimizations applied from an OpenVX back
end. Furthermore, writing a custom node requires users to optimize their code for a
specific platform. Standard programming languages such as OpenCL should not be
used for writing custom nodes since they do not offer performance portability across
different computing platforms [SFL+15; DWL+12]. Table 5.1 summarizes deficiencies
in OpenVX standard.

A solution to the problems mentioned above is offered by the community working
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Figure 5.1: HipaccVX overview. (Figure reprinted from [ÖOQ+21], © CC BY)

on DSLs for image processing. These DSLs are able to generate code from a set of
algorithmic abstractions that lead to high-performance execution for diverse types
of computing platforms [RBA+13; MRH+16; MVB15]. However, existing DSLs lack
formal verification, hence they do not ensure the safe execution of a user application
whereas OpenVX is an industrial standard.

In this thesis, we couple the advantages of DSL-based code generation with
OpenVX (summarized in Table 5.1). We present a set of abstractions that are used as
basic building blocks for expressing OpenVX’ standard CV functions. These building
blocks are suitable for generating optimized, device-specific code from the same
functional description. As a result, we achieve performance portability not only for
OpenVX’ CV functions but also for user-defined kernels1 that are expressed with
these computational abstractions.

In summary, the contributions of this chapter are as follows2:

• We systematically categorize and specify OpenVX’ CV functions by high-level
abstractions that adhere to distinct memory access patterns (see Section 5.4.1).

• We propose a framework called HipaccVX, which is an OpenVX implementation
that achieves high performance for a wide variety of target platforms, namely,
GPUs, CPUs, and FPGAs (see Section 5.5). It uses hipacc’s backend for code
generation, as shown in Figure 5.1.

• HipaccVX supports the definition of custom nodes (i.e., user-defined kernels) based
on the proposed abstractions (see Section 5.5.2).

• To the best of our knowledge, our approach is the first one that allows for graph-
based optimizations that incorporate not only standard OpenVX CV nodes but also

1A kernel in OpenVX is the abstract representation of a computer vision function [The19].
2The contents of this chapter are based on and partly published in [ÖOQ+21], which has appeared

in Journal of Real-Time Image Processing.
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OpenVX Code (Application Graph)

virt1 img1SobelGaussian

virt2

virt3

Magnitude Thresholdvirt4img0 virt0Channel 
Extract

Figure 5.2: The graph representation for the OpenVX code shown in List-
ing 5.1. The output image (img1) contains solely the horizontal
edges extracted from the input image (img0). The virt2 image is
defined only because OpenVX’ Sobel function returns both hori-
zontal and vertical edges. This redundant computation is elimi-
nated during the optimization passes of our HipaccVX compiler
framework (see Section 5.5.3). (Figure reprinted from [ÖOQ+21],
© CC BY)

user-defined custom nodes (see Section 5.5.3), i.e., optimizations across standard
and custom nodes.

5.2 OpenVX programming model

OpenVX is an open, royalty-free C-based standard for the cross-platform accel-
eration of computer vision applications. The specification does not mandate any
optimizations or requirements on device execution; instead, it concentrates on soft-
ware abstractions that are freed from low-level platform-specific declarations. The
OpenVX API is opaque; that is, the memory hierarchy and device synchronization
are hidden from the user. Typically, platform experts of the individual hardware
vendors provide optimized implementations of the OpenVX API [The18a].

Listing 5.1 shows an example OpenVX code for a simple edge detection algorithm,
for which the application graph is shown in Figure 5.2. An application is described
as a DAG, where nodes represent CV functions (see Lines 14 to 18) and data objects,
i.e., images, scalars (see Lines 4 to 12), while edges show the dependencies between
nodes. All OpenVX objects (i.e., graph, node, image) exist within a context (Line 1). A
context keeps track of the allocated memory resources and promotes implicit freeing
mechanisms at release calls (Line 24). A graph (Line 2) solely operates on the data
objects attached to the same context.

The data objects used only for the intermediate steps of a calculation should be
specified as virtual by the users. These are considered as graph edges between CV
function nodes and are inaccessible for the rest of the application. For instance, virtual
images defined in Lines 9 to 12 are declared with null image sizes and undefined data
types. They cannot be accessed via read/write operations. This paves the way for
system-level optimizations applied in a platform-specific back end, i.e., host-device
data transfers or memory allocations [RVD+14].
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5.2 OpenVX programming model

Listing 5.1: OpenVX code for an edge detection algorithm. The application graph
derived for this OpenVX program is shown in Figure 5.2.

1 vx_context context = vxCreateContext ();
2 vx_graph graph = vxCreateGraph(context);
3

4 vx_image img[] = {

5 vxCreateImage(context , width , height , VX_DF_IMAGE_UYVY),
6 vxCreateImage(context , width , height , VX_DF_IMAGE_U8)};
7

8 vx_image virt[] = {

9 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),
10 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),
11 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT),
12 vxCreateVirtualImage(graph , 0, 0, VX_DF_IMAGE_VIRT)};
13

14 vxChannelExtractNode(graph , img[0], VX_CHANNEL_Y , virt [0]);

15 vxGaussian3x3Node(graph , virt[0], virt [1]);

16 vxSobel3x3Node(graph , virt[1], virt[2], virt [3]);

17 vxMagnitudeNode(graph , virt[3], virt[3], virt [4]);

18 vxThresholdNode(graph , virt[4], thresh , img [1]);

19

20 status = vxVerifyGraph(graph);
21 if (status == VX_SUCCESS)
22 status = vxProcessGraph(graph);
23

24 vxReleaseContext (& context);

An OpenVX graph must be verified (Line 20) before it is executed (Line 22). There-
fore, the execution is not eager. The verification ensures the safe execution of a
graph description and resolves the implementation types of virtual data objects. The
OpenVX standard mandates that a verification procedure must, at the minimum,
(i) validate the node parameters (i.e., presence, directions, data types, range checks),
and (ii) assure the graph connectivity (detection of cycles), [The18b].

An OpenVX backend performs optimizations during the verification phase. Its
graph-based description allows for addressing system-level issues such as accelera-
tor communications, memory allocations, and data transfers. Correspondingly, an
application graph might be restructured before the execution [RVD+14]. Therefore,
verification could be slow, but it is considered to be an initialization procedure. Ide-
ally, a verified OpenVX graph is executed repeatedly for different input parameters
(i.e., a new frame in video processing).
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Figure 5.3: HipaccVX enables performance portability for user-defined code by
representing OpenVX’ CV functions and custom nodes by a small set of
computational abstractions. (Figure reprinted from [ÖOQ+21], © CC BY)

5.3 Deficiencies of OpenVX

In OpenVX, the smallest component to express a computation is a graph node (e.g.,
vxGaussian3x3Node) from its base CV functions. However, these CV functions are
restricted to a small set since OpenVX has a tight focus on cross-platform accelera-
tion [The19]. Custom nodes can be added to extend this functionality3, but they leave
the following issues unresolved: (i) Users will be responsible for the performance
of a custom node, who supposedly should not consider performance optimizations.
(ii) Performance of a custom node will be tuned for a specific platform (iii) The graph
optimization routines will not be able to analyze custom nodes.

For instance, consider Figure 5.3 that depicts an OpenVX application graph with
three CV function nodes (red) and a user-defined kernel node (blue). A GPU back
end would offer optimized implementations of the vxNodes (e.g., Gauss), but the
user code (custom node) is a black box for the graph optimizations.

Programming models such as OpenCL can be used to implement custom nodes.
This enables functional portability across a great variety of computing platforms.
However, the user should have expertise in the target architecture to optimize an
implementation for high performance. Furthermore, OpenCL cannot assure the
portability of the performance since the code needs to be tuned according to the
target device, i.e., usage of device-specific synchronization primitives, exploitation
of texture memory if available, usage of vector operations, or different numbers of
hardware threads [SFL+15; DWL+12]. In fact, an OpenCL code optimized for an
ISA has to be ultimately rewritten for an FPGA implementation in order to deliver

3The support for the execution of a user code (custom node) as part of an application graph on
an accelerator device was introduced in August 2019 with the release of OpenVX v1.3 [The19].
Previous versions [The18b] constraint the usage of the user-defined kernels to the host platform
and required them to be implemented as C++ kernels.
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high-performance [ÖRH+16].

5.4 Our Approach: DSL-based Code Generation for
OpenVX

As a solution to the challenges posed in Section 5.3, we propose introducing an
orthogonal set of so-called computational abstractions that enables high-performance
implementations for a variety of computing platforms (such as CPUs, GPUs, FPGAs),
similar to Hipacc (see Chapter 4). We suggest using these abstractions to implement
OpenVX’ CV functions and, at the same time, to serve users for the description of
custom nodes. First, we explain these computational abstractions in Section 5.4.1,
and then, summarize the further advantages of our approach in Section 5.4.2.

5.4.1 Computational Abstractions

We have analyzed OpenVX’ CV functions and categorized them into the computa-
tional abstractions summarized in Table 5.2. The categorization is mainly based on
three groups of operators:

(i) point operators that compute an output from one input pixel,

(ii) local operators depend on neighbor pixels over a certain region, and

(iii) global operators where the output might depend on the whole input image
(presented in Figure 5.4).

We have identified the following patterns for the global operators:

(a) reduction: traverses an input image to compute one output (e.g., max, mean),

(b) histogram: categorizes (maps) input pixels to bins according to a binning
(reduce) function,

(c) scaling: downsizes or expands input images by interpolation,

(d) scan: each output pixel depends on the previous output pixel.

(e) Warp, transpose, and matrix multiplication are denoted as global operator
blocks.
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Figure 5.4: The considered computational abstractions (listed in Table 5.2) are based
on three groups of operators. (Figure reprinted from [ÖOQ+21], © CC BY)

5.4.2 Advantages of using Computational Abstractions

Using the proposed set of abstractions reduces code duplication compared to typical
approaches, where the libraries are implemented using hand-written CV functions.
For instance, 36 out of OpenVX’ CV functions can be implemented solely with the
description of point and local operators as shown in Table 5.2; that is, a few highly
optimized building blocks for a target platform (e.g., GPU) can be reused.

Implementing both the OpenVX CV functions and the custom nodes using the
same language constructs allows constructing a graph using same computational
patterns. Figure 5.3 illustrates this benefit. Remember that red and blue nodes in
Figure 5.3 represent OpenVX’ CV functions and custom nodes, respectively. The
geometric shapes represent the computational abstractions explained in Section 5.4.1.
It can be seen that the implementation of an application solely contains the same
type of building blocks, where user code is not left as a "black box".

Our approach sacrifices flexibility by restricting users to a given set of DSL ab-
stractions for defining custom nodes. In return, it is able to accelerate user code for
different computing platforms. Hereby, users do not need to understand potential
optimizations for a target platform to achieve high performance.

Memory access patterns of our abstractions entail system-level optimization
strategies motivated by the OpenVX standard, such as image tiling [THM+18] and
hardware-software partitioning [THB+18]. Furthermore, by introducing the node-
internal computational abstractions, our approach enables additional optimizations
that manipulate the computation (see Sections 5.5.2 and 5.5.3). This is illustrated
in Figure 6.1. Assume that all the CV functions of the OpenVX code in Listing 5.1
are implemented by using the point and local operators. Then, its application graph
(Figure 5.2) is transformed into the implementation graph shown in Figure 6.1. This
allows for analyzing the described application at a finer level. For instance, the
vertical derivative function in vxSobel3x3 does not contribute to the resulting im-
age; hence the redundant computation is eliminated. This would not be possible
in a setting the whole computation is offloaded to a device from a typical library
implementation. Thanks to code generation abilities, the locality is increased by
fusing the CV nodes.
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Figure 5.5: Given an application graph consisting of five consecutive CV functions.
A typical OpenVX implementation will have a specific implementation
for each CV function despite these algorithms having similar patterns.
In our approach, we describe every CV function using high-level abstrac-
tions called point and local. Therefore, the implementation graph only
contains two types of operators. This allows generating target-specific
code using a DSL for various devices, including CPUs, GPUs, and FPGAs.
Furthermore, our approach enables additional optimizations such as
dead computation elimination and node aggregation (see Sections 5.5.2
and 5.5.3). (Figure reprinted from [ÖOQ+21], © CC BY)

5.5 Implementation: The HipaccVX Framework

In this thesis, we developed a framework called HipaccVX, a DSL-based implemen-
tation of OpenVX [ÖOQ+21]. We extended OpenVX specification by Hipacc code
interoperability (see Section 5.5.2) such that programmers are allowed to register
Hipacc kernels as custom nodes to OpenVX programs. The HipaccVX framework
consists of an OpenVX graph implementation and optimization routines that verify
and optimize input OpenVX applications (see Section 5.5.3). Ultimately, it generates
a device-specific code for the target platform using hipacc’s code generation. The
tool flow is presented in Figure 5.1.

5.5.1 Image Processing DSLs

Recently proposed DSL compilers for image processing, such as Halide [RBA+13],
Hipacc [MRH+16], and PolyMage [MVB15], enable the portability of high-performance
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across varying computing platforms. All of them take as input a high-level, functional
description of the algorithm and generate platform-specific code tuned for the target
device. In this work, we use Hipacc to present our approach. An overview of Hipacc
DSL is given below (see Section 4.2 for more details).

Hipacc provides language constructs that are embedded into C++ for the description
of computations on image objects. Applications are defined in a single program,
multiple data (SPMD) context, similar to kernels in CUDA and OpenCL. For instance,
Listing 5.2 shows the description of a discrete Gaussian blur filter application. First,
a Mask is defined in Line 7 from a constant array. Then, input and output Images are
defined as C++ objects in Lines 12 and 13, respectively. Clamping is selected as the
image boundary handling mode for the input image in Line 16. The whole input
and output images are defined as ROI by the Accessor and IterationSpace objects
that are specified in Lines 17 and 20, respectively. Finally, the Gaussian kernel is
instantiated in Line 23 and executed in Line 24.

Listing 5.3 describes the actual operator kernel for the Gaussian shown in List-
ing 5.2. The LinearFilter is a user-defined class that is derived from Hipacc’s Kernel
class, where the virtual kernel method is overridden (according to C++ polymor-
phism rules). There, a user describes a convolution as a lambda function using the
convolve() construct, which computes an output pixel (output()) from an input
window (input(mask)). Hipacc’s compiler utilizes Clang’s AST to specialize the
lambda function according to the selected platform and generates device-specific
code that provides high-performance implementations when compiled with the
target architecture compiler. We refer to Section 4.2 and [MRH+16] for more detailed
explanations and other programming language constructs of Hipacc.

5.5.2 DSL Back End and User-Defined Kernels

OpenVX mandates the verification of parameters and the relationship between
input and output and parameters as presented in Listing 5.4. There, first, a user
kernel and all of its parameters should be defined (lines 6 to 22). Then, a custom
node should be created by vxCreateGenericNode (Line 27) after the user kernel is
finalized by a vxFinalizeKernel call (Line 24). The kernel parameter types are
defined, and the node parameters are set by vxAddParameterToKernel (lines 16 to 22)
and vxSetParameterByIndex (lines 28 to 30), respectively.

We extended OpenVX by a vxHipaccKernel function (Line 6) to instantiate a
Hipacc kernel as an OpenVX kernel. The Hipacc kernels should be written in a
separate file and added as a generic node according to the OpenVX standard [The19].
Programmers do not have to describe the dependency between Hipacc kernels as in
Listing 5.2. Instead, they write a regular OpenVX program to describe an application
graph. This sustains the custom node definition procedure of OpenVX. Ultimately,
during the vxVerifyGraph call, the HipaccVX framework checks the correctness
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Listing 5.2: Hipacc application code for a Gaussian filter. The instantiated LinearFilter
Kernel is given in Listing 5.3.

1 // filter mask for Gaussian blur filter

2 const float filter_mask [3][3] = {

3 { 0.057118f, 0.124758f, 0.057118f },

4 { 0.124758f, 0.272496f, 0.124758f },

5 { 0.057118f, 0.124758f, 0.057118f }

6 };

7 Mask <float > mask(filter_mask);

8

9 // input and output images

10 size_t width , height;

11 uchar *image = read_image (&width , &height , "input.pgm");

12 Image <uchar > in(width , height , image);

13 Image <uchar > out(width , height);

14

15 // reading from in with clamping as boundary condition

16 BoundaryCondition <uchar > cond(in, mask , Boundary ::CLAMP);
17 Accessor <uchar > acc(cond);

18

19 // output image (region of interest is the whole image)

20 IterationSpace <uchar > iter(out);

21

22 // instantiate and launch the Gaussian blur filter

23 LinearFilter Gaussian(iter , acc , mask , 3);

24 Gaussian.execute ();

Listing 5.3: Hipacc kernel code for an FIR filter.
1 class LinearFilter: public Kernel <uchar > {

2 // ...

3 public:
4 LinearFilter(Accessor <uchar > &input , // input image

5 IterationSpace <uchar > &out , // output image

6 Mask <float > &mask) // mask

7 : {/* ... */}

8

9 void kernel () { // convolve -> local operator

10 output () = convolve(mask , Reduce ::SUM , [&] () -> uchar {

11 return mask() * input(mask);

12 });

13 }

14 };

of the application graph (i.e., verifies that the graph does not have a cycle, node
parameters have the correct type, and none of the parameters have NULL value),
optimizes the given OpenVX application, generates the corresponding Hipacc code,
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Listing 5.4: DSL code interoperability extension (only Line 6).
1 vx_node vxGaussian3x3Node(vx_graph graph ,

2 vx_image arr ,

3 vx_image out) {

4

5 // Extension: An OpenVX kernel from a Hipacc kernel

6 vx_kernel cstmk = vxHipaccKernel("gaussian3x3.cpp");
7

8 /*** The code below is the standard OpenVX API ***/

9 // Create vx_matrix for mask

10 const float coeffs [3][3] = /* ... */;

11 vx_matrix mask = vxCreateMatrix(context , VX_TYPE_FLOAT32 , 3, 3);

12 vxCopyMatrix(mask , (void*)coeffs , VX_WRITE_ONLY , VX_MEMORY_TYPE_HOST);

13

14 // Set input/output parameters for a kernel

15 vxAddParameterToKernel(cstmk , 0, VX_OUTPUT , VX_TYPE_IMAGE ,

16 VX_PARAMETER_STATE_REQUIRED);

17

18 vxAddParameterToKernel(cstmk , 1, VX_INPUT , VX_TYPE_IMAGE ,

19 VX_PARAMETER_STATE_REQUIRED);

20

21 vxAddParameterToKernel(cstmk , 2, VX_INPUT , VX_TYPE_MATRIX ,

22 VX_PARAMETER_STATE_REQUIRED);

23

24 vxFinalizeKernel(cstmk);
25

26 // Create generic node

27 vx_node node = vxCreateGenericNode(graph , cstm_k);

28 vxSetParameterByIndex(node , 0, (vx_reference) out);

29 vxSetParameterByIndex(node , 1, (vx_reference) arr);

30 vxSetParameterByIndex(node , 2, (vx_reference) mask);

31

32 return node;

33 }

and employs Hipacc framework for device-specific code generation.
OpenVX’ CV functions are implemented as a library by using our extension

for Hipacc code instantiation. For instance, the HipaccVX implementation of the
vxGaussian3x3Node API is shown in Listing 5.4. Users can simply use these CV
functions as in Listing 5.1. A minority of OpenVX functions are implemented as
OpenCV kernels since they cannot be fully described in Hipacc. These are listed in
Table 5.2 with a Software label instead of a Hipacc abstraction type. As future work,
we can extend Hipacc to support these functions.
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Optimizations Based on Code Generation

By implementing a Hipacc back end for OpenVX, many device-specific optimization
techniques are inherited from Hipacc. Hipacc internally applies several optimizations
for the code generation from its DSL abstractions. These include memory padding,
constant propagation, utilization of textures, loop unrolling, kernel fusion, thread-
coarsening, implicit use of unified CPU/GPU memory, and the integration with
CUDA Graph [MRH+16; RKH+17; QRH+19; QÖT+20a]. At the same time, Hipacc
targets Intel and Xilinx FPGAs using their HLS tools. There, an input application
is implemented through application circuits derived from the DSL abstractions and
optimized by hardware techniques such as pipelining and loop coarsening [RÖM+17b;
ÖRH+16; ÖRH+17b].

5.5.3 OpenVX Graph and System-Level Optimizations

As mentioned before, an OpenVX application is represented by a DAG𝐺𝑎𝑝𝑝 = (𝑉 , 𝐸),
where 𝑉 is a set of vertices, and 𝐸 is a set of edges 𝐸 ⊆ 𝑉 × 𝑉 denoting data
dependencies between nodes. The set of vertices 𝑉 can further be divided into two
disjoint sets 𝐷 and 𝑁 (𝑉 = 𝐷∪𝑁 , 𝐷∩𝑁 = ∅) denoting data objects and CV functions,
respectively.

Both data (i.e., Image, Scalar, Array) and node (i.e., CV functions) objects are
implemented as C++ classes that inherit the OpenVX Object class. Vertices 𝑣 ∈ 𝑉
of our OpenVX graph implementation consist of OpenVX Object pointers. The
verification phase first checks if an application graph 𝐺𝑎𝑝𝑝 (derived from the user
code, see, e.g., Listing 5.1) does not contain any cycles. Then, it verifies that the
description is a bipartite graph, i.e., ∀(𝑣,𝑤) ∈ 𝐸 : 𝑣 ∈ 𝐷 ∧𝑤 ∈ 𝑁 ∨ 𝑣 ∈ 𝑁 ∧𝑤 ∈ 𝐷 .
Finally, the verification phase applies the following optimizations:

Reduction of Data Transfers

Data nodes of an application graph that are not virtual must be accessible to the host.
In contrast, the intermediate (virtual) points of a computation should be stored in the
device memory. We distinguish these two data node types by the set of non-virtual
data nodes 𝐷𝑛𝑣 and the set of virtual data nodes 𝐷𝑣 , where 𝐷 = 𝐷𝑛𝑣∪𝐷𝑣 , 𝐷𝑛𝑣∩𝐷𝑣 = ∅.
HipaccVX keeps this information in its graph implementation and determines the
subgraphs between non-virtual data nodes, which can be kept in the device memory.
In this way, data transfers between the host and device are avoided.

Elimination of Dead Computations

An application graph may consist of nodes that do not affect the results. Inefficient
user code or other compiler transformations might cause such dead code. A less
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Algorithm 3: Graph Analysis for Dead Computation Elimination
input :𝐺𝑎𝑝𝑝 – application graph

𝐷𝑛𝑣 – set of are non-virtual data nodes
output :𝐺 𝑓 𝑖𝑙𝑡 – optimized application graph

1 function eliminate_death_nodes(𝐺𝑎𝑝𝑝 , 𝐷𝑛𝑣)

/* Find candidate non-virtual roots and leaves */

2 𝐷𝑖𝑛 ← ∅, 𝐷𝑜𝑢𝑡 ← ∅
3 forall 𝑣 ∈ 𝐷𝑛𝑣 do
4 if deg− (𝑣) = 0 then
5 𝐷𝑖𝑛 ← 𝐷𝑖𝑛 ∪ 𝑣 // input non-virtual data nodes

6 end
7 else if deg+ (𝑣) = 0 then
8 𝐷𝑜𝑢𝑡 ← 𝐷𝑜𝑢𝑡 ∪ 𝑣 // out non-virtual data nodes

9 end
10 else
11 𝐷𝑖𝑛 ← 𝐷𝑖𝑛 ∪ 𝑣
12 𝐷𝑜𝑢𝑡 ← 𝐷𝑜𝑢𝑡 ∪ 𝑣
13 end
14 end

/* Mark the nodes between roots and leaves as alive */

15 𝐺𝑡𝑟𝑎𝑛𝑠 ← transpose_graph (𝐺𝑎𝑝𝑝 )
16 𝑉𝑎𝑙𝑖𝑣𝑒 ← ∅
17 forall 𝑣𝑠𝑡𝑎𝑟𝑡 ∈ 𝐷𝑜𝑢𝑡 do
18 𝑉𝑣 ← depth-first_visit (𝑣𝑠𝑡𝑎𝑟𝑡 , 𝐷𝑖𝑛 , 𝐺𝑡𝑟𝑎𝑛𝑠 )
19 𝑉𝑎𝑙𝑖𝑣𝑒 ← 𝑉𝑎𝑙𝑖𝑣𝑒 ∪ 𝑉𝑣
20 end

/* Filter, keep only the alive nodes and their edges */

21 𝐺 𝑓 𝑖𝑙𝑡 ← filter_graph (𝐺𝑎𝑝𝑝 , KEEP_EDGES, 𝑉𝑎𝑙𝑖𝑣𝑒 )
22 return 𝐺 𝑓 𝑖𝑙𝑡

23 end

apparent reason could be the usage of OpenVX compound CV functions for smaller
tasks. Consider Sobel3x3 as an example, which computes two images, one for the
horizontal and one for the vertical derivative of a given image. As the OpenVX API
does not offer these algorithms separately, programmers have to call Sobel3x3, even
when they are only interested in one of the two resulting images. Our implementation
is based on abstractions and allows a better analysis of the computation compared
to OpenVX’ CV functions, i.e., the Sobel API is implemented by two parallel local
operators, as shown in Figure 6.1. HipaccVX optimizes a given application graph
using the procedure described in Algorithm 3. Conventional compilers do not analyze
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this redundancy if utilizing the host/device execution paradigm (e.g., OpenCL, CUDA),
where OpenVX kernels are offloaded to an accelerator device, and the host executes
device kernels according to the application dependency (see Section 5.6.2).

Algorithm 3 assumes that the non-virtual data nodes whose input and output
degrees are zero must be the inputs (𝐷𝑖𝑛) and the results (𝐷𝑜𝑢𝑡 ) of an application,
respectively. Other non-virtual data nodes could be input, output, or intermediate
points of an application, depending on the number of connected virtual data nodes.
These are initialized in Line 2. Then, all of the nodes in the same component between
the node 𝑣𝑠𝑡𝑎𝑟𝑡 and the set 𝑉𝑖𝑛 are traversed via the depth-first visit function (Line 18)
and marked as alive (Lines 2 to 20). Finally, in Line 21, a filtered view of an application
graph is created from the set of alive nodes.

The complexity of the functions transpose (Line 15) and depth-first visit (Line 18)
are O(|𝑉 | + |𝐸 |) and O(|𝐸 |), correspondingly. The filter graph function (Line 21)
is only an adaptor that requires no change in the application graph [SLL02]. In
the worst case, the graph has |𝑉 | − 2 output data nodes. That is, the complexity of
Algorithm 3 becomes O(|𝑉 |2 + |𝐸 |) in time and O(|𝑉 | + |𝐸 |) in space.

5.6 Evaluation and Results

We present results for a Xilinx Zynq ZYNQ-zc706 FPGA using Xilinx Vivado HLS
2019.1 and an Nvidia GeForce GTX 680 with CUDA driver 10.0. We evaluate the
following applications:

• As image smoothers, we consider a Gaussian blur (Gauss) and a Laplacian filter
with a 5 × 5 and 3 × 3 local node, respectively.

• The filter chain (FChain) is an image pre-processing algorithm consisting of
three convolution (local) nodes.

• The SobelX determines the horizontal derivative of an input image using the
OpenVX vxSobel function.

• The edge detector in Figure 5.2 (EdgFig5.2) finds horizontal edges in an input
image, while Sobel computes both horizontal and vertical edges using three
CV nodes.

• The Unsharp filter sharpens the edges of an input image using one Gauss node
and three point operator nodes.

• Both Harris and Tomasi detect corners of a given image using 13 (4 local + 9
point) and 14 (4 local + 10 point) CV nodes, respectively.
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These applications are representative to show the optimization techniques discussed
in this chapter. The performance of a simple CV application (e.g., Gauss) solely de-
pends on the quality of code generation, while graph-based optimizations can further
optimize the performance of more complex applications (e.g., Tomasi). Laplacian uses
the OpenVX’ custom convolution API and EdgFig2 consists of redundant kernels.

5.6.1 Acceleration of User-Defined Nodes

User-defined nodes can be accelerated on a target platform (e.g., GPU accelerator)
when they are expressed using HipaccVX’ abstractions (see Section 5.5.2). A standard
C++ implementation of these custom nodes results in executing them on the host
device. This is illustrated in Figure 5.6 for a corner detection algorithm that consists
of nine kernels. The CPU codes for these custom nodes are also acquired using
Hipacc. As seen in Figure 5.6, HipaccVX provides the same performance invariant to
the number of user-defined nodes, whereas using the OpenVX API leads to a severe
decrease in throughput since each user-defined node has to be executed on the host
CPU.
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Figure 5.6: Throughput for different versions of the same corner detection applica-
tion (consisting of 9 kernels) on the Nvidia GTX680 (higher is better).
The blue bars denote an increasing number of CV functions implemented
as user-defined nodes using C++. In OpenVX, these user-defined func-
tions have to be executed on the host CPU, which leads to performance
degradation; whereas HipaccVX accelerates all user-defined nodes on
the GPU. (Figure reprinted from [ÖOQ+21], © CC BY)
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5.6.2 System-Level Optimizations based on OpenVX Graph

Reduction of Data Transfers HipaccVX eliminates the data transfers between
the execution of subsequent functions on a target accelerator device, as explained
in Section 5.5.3. This is disabled for naive implementations. The improvements for
the two applications are shown in Figure 5.7. HipaccVX’ throughput optimizations
reach a speedup of 13.5.
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Figure 5.7: Normalized execution time (lower is better) for 1024 × 1024 images.
HipaccVX eliminates redundant transfers by analyzing OpenVX’ graph-
based application code. (Figure reprinted from [ÖOQ+21], © CC BY)

Elimination of Dead Computation HipaccVX eliminates the computations that
do not affect the results of an application (see Section 5.5.3). This is illustrated in
Figure 5.8. HipaccVX improves the throughput by a factor of 2.1 on the GTX 680. The
throughput for the Zynq FPGA is only slightly improved since the applications fit into
the target device, thus, run in parallel. Yet, HipaccVX’ FPGA implementation for the
same application reduces the number of FPGA resources (elementary programmable
logic blocks called slices and on-chip block RAMs, short BRAMs) significantly (around
50% for SobelX) on the Zynq (see Figure 5.9).

5.6.3 Evaluation of the Performance

In Figure 5.10, we compare HipaccVX with the VisionWorks (v1.6) [NVI20] provided
by Nvidia, which provides an optimized commercial implementation of OpenVX.
HipaccVX, as well as typical library implementations, exploit the graph-based
OpenVX API to apply system-level optimizations [RVD+14], such as reduction of data
transfers (see Section 5.5.3). Additionally, HipaccVX generates code that is specific
to target GPU architectures and applies optimizations such as constant propagation,
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Figure 5.8: Normalized execution time (lower is better) for 1024 × 1024 images.
(Figure reprinted from [ÖOQ+21], © CC BY)
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Figure 5.9: The post place and route (PPnR) results for the Xilinx Zynq FPGA.
Elimination of dead computation significantly reduces the percentage of
resources used. (Figure reprinted from [ÖOQ+21], © CC BY)

thread coarsening, multiple program, multiple data (MPMD) [MRH+16]. As shown in
Figure 5.10, HipaccVX can generate implementations that provide higher throughput
than VisionWorks. Here, the speedups for applications that are composed of multiple
kernels (Harris, Tomasi, Sobel, Unsharp) are higher than the ones solely consisting of
one OpenVX CV function (Gauss and Laplacian). This performance boost is, to a large
extent, due to the locality optimization achieved by fusing consecutive kernels at the
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Figure 5.10: Comparison of Nvidia VisionWorks v1.6 and HipaccVX on the Nvidia
GTX 680. Image sizes are 2048×2048. (Figure reprinted from [ÖOQ+21],
© CC BY)

Table 5.3: PPnR results for the Xilinx Zynq for images of 1020 × 1020 and 𝑇target = 5
ns (corresponds to 𝑓target = 200 MHz).

App v BRAM SLICE DSP Latency [cyc.]

Gauss
1 HipaccVX 8 473 16 1044500

Halide-HLS 8 1823 50 1052673

4 HipaccVX 16 1519 64 261649
Halide-HLS 16 4112 180 266241

Harris
1 HipaccVX 20 1457 34 1042466

Halide-HLS 16 2688 35 1052673

2 HipaccVX 20 2326 68 521756
Halide-HLS 16 4011 70 528385

compiler level [QRH+19]. This requires code rewriting and the resource analysis of
the target GPU architectures.

There was no publicly available FPGA implementation of OpenVX at the time
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Figure 5.11: Comparison of throughput for the Nvidia GTX680, Xilinx Zynq, and
Intel i7-4790 CPU. The same OpenVX application code is used to gen-
erate different accelerator implementations. The HipaccVX framework
allows for both code and performance portability by generating opti-
mized implementations for various accelerators. (Figure reprinted from
[ÖOQ+21], © CC BY)

this thesis was written. Therefore, in Table 6.2, we compare HipaccVX with Halide-
HLS [PBY+17], which is a state-of-the-art DSL targeting Xilinx FPGAs. As can be
seen, HipaccVX uses fewer resources and achieves a higher throughput for the
benchmark applications. HipaccVX transforms a given OpenVX application into a
streaming pipeline by replacing virtual images with FIFO semantics. Thereby, it uses
an internal representation in SSA form. Furthermore, it replicates the innermost
kernel to achieve higher parallelism for a given factor 𝑣 . For practical purposes, we
present results only for Xilinx technology. Chapter 4 shows that Hipacc can achieve a
performance similar to handwritten examples provided by Intel for image processing.
This also indicates that the memory abstractions given in Table 5.2 are suitable to
generate optimized code for HLS tools.

Figure 5.11 compares the throughputs that were achieved from the same OpenVX
application code for different accelerators. Here, we generated OpenCL, CUDA,
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and Vivado HLS (C++) code to implement a given application on an Intel i7-4790
CPU, an Nvidia GTX680 GPU, and a Xilinx Zynq FPGA, respectively. GPUs and
FPGAs can exploit data-level parallelism by processing a significantly higher number
of operations in parallel compared to CPUs. This makes them very suitable for
computer vision applications. Modern GPUs operate on a higher clock frequency
compared to existing FPGAs. Therefore they could provide higher throughput for
abundantly parallel applications. This is the case for Gauss and Unsharp. However,
FPGAs can exploit temporal locality by using pipelining and eliminate unnecessary
data transfers to global memory between consecutive kernels. Therefore, all the
FPGA implementations in Figure 5.11 achieve a similar throughput.

5.7 Related Work

The OpenVX specification is not constrained to a particular memory model as
OpenCL and OpenMP. Therefore, it provides a better performance portability than
traditional libraries such as OpenCV [RVD+14]. It has been implemented by a few
major vendors, including Nvidia, Intel, AMD, and Synopsys [The18a]. The authors
of [EYA15; YAY+18; MWS+16; ZTS18; THM+18] focus on graph scheduling and
design space exploration for heterogeneous systems consisting of GPUs, CPUs, and
custom instruction-set architectures. Unlike the prior work, [THM+16] suggests static
OpenVX compilation for low-power embedded systems instead of runtime library
implementations. Our work is similar to this since we statically analyze a given
OpenVX application and combine the benefits of domain-specific code generation
approaches [RBA+13; MRH+16; MVB15; RÖM+17b; PBY+17; CVP+16].

Halide [RBA+13], Hipacc [MRH+16], and PolyMage [MVB15] are image process-
ing DSLs that provide language constructs and scheduling primitives to generate
optimized code for the target device, i.e., CPUs, GPUs. Halide [RBA+13] decouples
the algorithm description from scheduling primitives, i.e., vectorization, tiling, while
Hipacc [MRH+16] and PolyMage [MVB15] implicitly apply these optimizations on a
graph-based description similar to OpenVX. CAPH [Sér+13], RIPL [SMB+16], and
Rigel [HDD+16] are image processing DSLs that generate optimized code for FP-
GAs. Hipacc-FPGA [RÖM+17b] supports HLS tools of both Xilinx and Intel, while
Halide-HLS [PBY+17], PolyMage-HLS [CVP+16], and RIPL only target Xilinx devices.
CAPH relies upon the actor/dataflow model of computation to generate VHDL or
SystemC code. Our approach could also be used to implement OpenVX by these
image processing DSLs.

To the best of our knowledge, there is no publicly available OpenVX implementa-
tion for Xilinx FPGAs. Intel OpenVino [Int18] provides a few example applications
that are specific to Arria-10 FPGAs. Taheri et al. [THB+18] provide some initial
results for FPGAs, where the primary attention is the scheduling of statistical kernels
(i.e., histogram). The image processing DSLs in [RÖM+17b; CVP+16] use similar tech-
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niques to implement user applications as a streaming pipeline. Section 5.5.3 shows
how to instrument these techniques for the OpenVX API. Omidian et al. [OL18]
present a heuristic algorithm for the design space exploration of OpenVX graphs
for FPGAs. This algorithm could be simplified by using HipaccVX’ abstractions (see
Section 5.4.1) instead of OpenVX’ CV functions. Then it could be used in conjunc-
tion with HipaccVX to explore the design space of hardware/software platforms.
Moreover, Omidian et al. [OIL18] suggest an overlay architecture for FPGA implemen-
tations of OpenVX. The proposed overlay implementation requires the optimized
implementation of OpenVX’ CV functions, which DomVX could generate. Fur-
thermore, an overlay architecture based on HipaccVX’s abstractions, a smaller set
of functions compared to OpenVX CV functions, could reduce resource usage in
[OIL18].

Intel’s OpenVX implementation [AB17] is the first work extending the OpenVX
standard with an interoperability API for OpenCL. This is supported in OpenVX
v1.3 [The19]. Yet, performance portability still cannot be assured for the custom
nodes. An OpenCL code tuned for a specific CPU might perform very poorly on
FPGAs and GPU architectures [SFL+15; DWL+12]. Contrarily to our approach, the
performance of this approach relies on the user code.

5.8 Conclusion

In this chapter, we proposed implementing the OpenVX standard by a set of com-
putational abstractions that adhere to distinct memory access patterns and allow
code generation for different computing platforms. We presented HipaccVX, an
implementation for OpenVX using the proposed abstractions to generate code for
GPUs, CPUs, and FPGAs. In this way, we get the best of both worlds (OpenVX and
DSL works). HipaccVX uses Hipacc for code generation, but our approach is not
restricted to a specific DSL.

Our approach relies on OpenVX’ industry-standard graph specification and en-
ables DSL-based code generation. Users are offered well-known CV functions as well
as DSL elements (i.e., programming constructs, abstractions) for the description of
custom nodes. As a result, programmers are allowed to write functional descriptions
for custom nodes without having concerns about the performance; and, as a conse-
quence, are allowed to write performance-portable OpenVX programs for a larger
algorithm space.

Our findings show that our approach can facilitate optimizations that are beyond
the scope of traditional OpenVX graph implementations that rely solely on standard
computer vision functions. These optimizations can double the throughput on an
Nvidia GTX GPU and decrease the resource usage on a Xilinx Zynq FPGA by 50% for
our benchmarks. We showed that our proposed compiler framework could achieve
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better results than the state-of-the-art approaches Nvidia VisionWorks [NVI20] and
Halide-HLS [PBY+17].
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Part III

High-Level Synthesis with Partial
Evaluation
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6
AnyHLS: High-Level Synthesis using

Partial Evaluation

In previous chapters, we used template metaprogramming and developed a com-
piler backend for an image processing DSL to design high-level abstractions. These
techniques are not easy to use – that is, modifying a compiler or implementing a
well-designed generic C++ library require advanced programming skills. What is
more, metaprogramming and deeply embedded DSLs do not preserve well-typedness
of the generated program.

In this chapter, we present AnyHLS [ÖPM+20a; ÖPM+18], an approach to syn-
thesize FPGA designs in a modular and abstract way. AnyHLS is able to raise the
abstraction level of existing HLS tools by resorting to programming language features
such as types and higher-order functions as follows: It relies on partial evaluation to
specialize and to optimize high-level abstractions. Then, it generates vendor-specific
HLS code for Intel and Xilinx FPGAs. This is much more productive than current
C/C ++-based approaches and even DSL design techniques since no modification of
a compiler is required.

AnyHLS provides a high level of portability by avoiding vendor-specific pragmas
at the source code and by generating target-specific code (e.g., OpenCL or C ++) as
input to existing HLS tools. Writing pragma-annotated C/C++ programs prevents
portability across different vendors. Furthermore, pragmas are not first-class citizens
in the language. This makes it hard to use them in a modular way or utilize them
in high-level abstractions. Instead, AnyHLS use partial evaluation to apply code
transformations that depend on compile-time input parameters. One example is loop
unrolling shown in Section 6.3.2, which replicates its body function by specializing
it for compile-time parameters, e.g., the loop index. Similarly, we define array-like
memory abstractions (Regs1D) concisely from the desired small partitions instead
of the current way of declaring an array and partitioning by a pragma (see Section
3.2.4).

As a case study, in Section 6.4, we present a library for the domain of image pro-
cessing to demonstrate high productivity, modularity, and portability gains achieved
by AnyHLS.
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6.1 Introduction

There is an ongoing discussion whether C-based languages are good candidates
for HLS [Edw06; San06; CLN+11; BRS13; KFP+18]. Yet, most commonly used HLS
compilers (e.g., Vivado HLS, Altera SDK for OpenCL (AOCL), Catapult, LegUp) are
based on C-based languages [NSP+15; CLN+11; Xil17c; Int17]. The modularity and
readability of C/C++ or OpenCL descriptions often conflict with best coding practices
of HLS compilers [EZI+19; dSBL19]. Furthermore, the lack of standardization in HLS
languages and compilers hinders the portability of code across them. Often, the code
optimized for one HLS tool must significantly be changed to target another HLS
tool even when the same FPGA design is described. In this chapter, we advocate
describing FPGA designs using functional abstractions and using partial evaluation
to generate optimized HLS code.

6.1.1 Raising the Abstraction Level in HLS

As shown in Chapter 4, the abstraction level in HLS can be raised by designing
libraries, DSLs or source-to-source compilers, and thus low-level implementation de-
tails can be hidden from users with no hardware design knowledge. These approaches
improve the modularity and reduce code duplication but are hard to develop and
maintain when well-typedness of programs are preserved. Several works [dSBL19;
RAK18; EZI+19; ÖRH+17a] make extensive use of C++ template metaprogramming
to provide libraries that are optimized for Vivado-HLS. Generic programs can be
optimized for compile-time known values using metaprogramming techniques, but
it has the following drawbacks: (i) The well-typedness of the generated program
cannot be guaranteed in metaprogramming. This makes it difficult to understand
error messages. (ii) Metaprograms are hard to develop, maintain, and understand
since the meta language is different from the core language (C++ core vs. C++ template
language). For this reason, code cannot be easily moved between the core and the
meta language. (iii) Lambda expressions are not allowed to be used as template
arguments in C++. We refer to [LBH+18] for more details. In particular, [RAK18;
EZI+19] explain the challenges of implementing higher-order algorithms in C++ for
Vivado-HLS. OpenCL C does not support template metaprogramming, thus forces
users to use preprocessor macros for generic library design. Therefore, libraries
developed by using C++ template metaprogramming have to be rewritten completely
for OpenCL C, that is, for AOCL.

DSLs use domain-specific knowledge to parallelize algorithms and generate low-
level, optimized code [ORS+13]. Programming accelerators using DSLs is thus easier,
in particular for FPGAs, because the compiler performs scheduling (see Chapter 4).
Other examples include Lift that targets FPGAs via algorithmic patterns [KBS+19]
and Tiramisu [BRR+19] for data-parallel algorithms on dense arrays. Tiramisu takes
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as input a set of scheduling commands from the user and feeds it to the polyhe-
dral analysis of the compiler. However, a considerable portion of these scheduling
primitives remains platform-specific [DBA+18]. Spatial [KFP+18] is a language for
programming coarse-grained reconfigurable architectures (CGRAs) and FPGAs. Spa-
tial provides language constructs to express control, memory, and interfaces of
hardware implementation.

6.1.2 Main Contributions

In this chapter, it is shown that the described need to raise the abstraction level
in HLS can be accomplished by using recent compiler technology, in particular by
exploring the concepts of partial evaluation and high-order functions. Unlike the
aforementioned DSL compilers, AnyHLS allows programmers to build the basic
blocks and abstractions necessary for their application domain by themselves (see
Section 6.3). AnyHLS is thereby built on top of AnyDSL [LBH+18] (see Section 6.2.1).
AnyDSL offers partial evaluation to enable shallow embedding [LBH+15] without
the need for modifying a compiler. This means that there is no need to change the
compiler when adding support for a new application domain, since programmers can
design custom control structures. Partial evaluation specializes algorithmic variants
of a program at compile-time. Compared to metaprogramming, partial evaluation
operates in a single language and preserves the well-typedness of programs [LBH+18].
Furthermore, different combinations of static/dynamic parameters can be instantiated
from the same code. Please refer to Leißa et al. [LBH+18] for more details and a
thorough comparison to prior techniques.

Consider Figure 6.1 for an example from image processing: With a functional
language, we separate the description of the sobel_x operator from its realization in
hardware. The hardware realization make_local_op is a function that specifies the
data path, the parallelization, and the memory architecture. Thus, the algorithm and
hardware architecture descriptions are specified by a set of higher-order functions.
A partial evaluator ultimately combines these functions to generate an HLS code that
delivers high-performance circuit designs when compiled using HLS tools. Since the
initial descriptions are high-level, compact, and functional, they are reusable and
distributable as a library. We leverage the AnyDSL compiler framework [LBH+18]
to perform partial evaluation and extend it to generate input code for HLS tools
targeting Intel and Xilinx FPGA devices. We claim that this approach leads to a
modular and portable code other than existing HLS methods, and is able to produce
highly efficient hardware implementations.

In summary, this chapter makes the following contributions based on the publica-
tions1:

1The contents of this chapter are based on and partly published in [ÖPM+20a], which has appeared in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, and [ÖPM+18],
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let sobel_x = @|img , x, y|

-1 * img.read(x-1, y-1) + 1 * img.read(x+1, y-1) +

-2 * img.read(x-1, y ) + 2 * img.read(x+1, y ) +

-1 * img.read(x-1, y+1) + 2 * img.read(x+1, y+1);

let input = make_img_mem1d("sandiego.jpg");

let output = make_img_mem1d("output.jpg");

let operator = make_local_op(sobel_x);

with generate(vhls) { operator(input , output) }

Figure 6.1: AnyHLS example: The description of the sobel_x algorithm is decou-
pled from the description of its hardware realization. The function
make_local_op describes the hardware realization, including important
transformations for exploiting parallelism and memory architecture
specification. The function generate(vhls) selects the backend for code
generation, which is Vivado HLS in this case. Ultimately, an optimized
input code for HLS is generated by partially evaluating the algorithm
and realization of the functions. (Figure reprinted from [ÖPM+20a], ©
2020 IEEE)

• We present AnyHLS2, raising the abstraction level in HLS by using partial
evaluation of higher-order functions as a core compiler technology. It guarantees
the well-typedness of the residual program and offers considerably higher
productivity than existing DSL design techniques and C/C++-based approaches
(see Section 6.2).

• AnyHLS offers unprecedented target independence, and thus portability, across
different HLS tools by avoiding tool-specific pragma extensions and gener-
ating target-specific OpenCL or C++ code as input to existing HLS tools (see
Section 6.3).

• Productivity, modularity, and portability gains are demonstrated by presenting

which has appeared in Proceedings of the Fifth International Workshop on FPGAs for Software
Programmers (FSP).

2https://github.com/AnyDSL/anyhls
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an image processing library as a case study in Section 6.4. For this domain,
we show that a competitive performance in terms of throughput and resource
usage can be achieved in comparison with existing state-of-the-art DSLs (see
Section 6.5).

6.2 Overview, Background, and Related Work

In the following, we briefly discuss prior work and fundamental concepts of AnyDSL
(Section 6.2.1).

In order to achieve good quality of results (QoR), HLS languages often demand
programmers to specify the hardware architecture of an application instead of just
its algorithm. For this reason, HLS languages offer hardware-specific pragmas. This
ad-hoc mix of software and hardware features makes it difficult for programmers
to optimize an application. In addition, most HLS tools rely on their own C dialect,
which prevents code portability. For example, Xilinx Vivado HLS [Xil17c] uses C++
as base language while Intel SDK [Int17] (formerly Altera) uses OpenCL C. These
severe restrictions make it hard to use existing HLS languages in a portable and
modular way.

6.2.1 AnyDSL Compiler Framework

AnyDSL3 [LBH+15; LBH+18] is a compiler framework for designing high-performance,
domain-specific libraries. It provides the imperative and functional language Im-
pala. Impala’s syntax is inspired by Rust. We will now briefly discuss Impala’s most
important features that we rely on in AnyHLS.

Partial Evaluation

Partial evaluation is a technique for program optimization by specialization of
compile-time known values. Assume that each input of a program 𝐹 is classified as
either static 𝑠 or dynamic 𝑑 , and values for all of the static inputs are given. Then,
partial evaluation produces an optimized (residual) program 𝐹𝑠 such that

[[𝐹𝑠]] (𝑑) = [[𝐹 ]] (𝑠, 𝑑) (6.1)

and running 𝐹𝑠 on the dynamic inputs produces the same result as running the
original program 𝐹 on all of the inputs [JGS93]. Compiler techniques such as constant
propagation, loop unrolling, or inlining are examples where partial evaluation can
be successfully applied. Typically, the user has no control when these optimizations
are applied from a compiler.

3https://anydsl.github.io
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Impala allows programmers to partially evaluate [Fut82] a program at compile
time. Programmers control the partial evaluator via filters [Con88]. These are
Boolean expressions of the form @(expr) that annotate function signatures. Each
call site instantiates the callee’s filter with the corresponding argument list. The call
is specialized when the expression evaluates to true. The expression ?expr yields
true, if expr is known at compile-time; the expression $expr is never considered
constant by the evaluator. For example, the following @(?n) filter will only specialize
calls to pow if n is statically known at compile-time:

Listing 6.1: Description of a power function in AnyDSL. The compiler will generate an
optimized code accordingly after evaluating the input parameters x and n.
For instance, a compile-time constant will be generated when both x and n
are known at compile time.

1 fn @(?n) pow(x: int , n: int) -> int {

2 if n == 0 {

3 1

4 } else {

5 if n % 2 == 0 {

6 let y = pow(x, n / 2);

7 y * y

8 } else {

9 x * pow(x, n - 1)

10 }

11 }

12 }

Thus, the calls
let z = pow(x, 5); let z = pow(3, 5);

will result in the following equivalent sequences of instructions after specialization:
let y = x * x;

let z = x * y * y;

let z = 243;

The @ is a syntactic sugar (i.e., available as shorthand for @(true)) sets the partial
evaluator to always specialize the annotated function.

As a hardware circuit description must be static (e.g., memory size) for being
synthesizable, types, loops, functions, and interfaces must be resolved at compile-
time [ÖRH+17a; ÖRH+16; RAK18; EZI+19]. Partial evaluation has many advantages
compared to metaprogramming as discussed in Section 6.1.1. Hence, Impala’s partial
evaluation is particularly useful to optimize HLS descriptions.
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Generators

Impala provides the following for syntactic sugar4 for describing iterations as higher-
order functions. The loop
for var1 , ..., varn in iter(arg1 , ..., argn) { /* ... */ }

translates to
iter(arg1 , ..., argn , |var1 , ..., varn| { /* ... */ });

The body of the for loop and the iteration variables constitute an anonymous function
|var1 , ..., varn| { /* ... */ }

that is passed to iter as the last argument. We call functions that are invokable like
this generators. Domain-specific libraries implemented in Impala make busy use
of these features as they allow programmers to write custom generators that take
advantage of both domain knowledge and certain hardware features, as we will see
in the next section.

Generators are particularly powerful in combination with partial evaluation. Con-
sider the following functions:
type Body = fn(int) -> ();

fn @(?a & ?b) unroll(a: int , b: int , body: Body) -> () {

if a < b { body(a); unroll(a+1, b, body) }

}

fn @ range(a: int , b: int , body: Body) -> () {

unroll($a, b, body)

}

Both generators iterate from a (inclusive) to b (exclusive) while invoking body each
time. The filter unroll implies the partial evaluator to completely unroll the recursion
if both loop bounds are statically known at a particular call site.

6.3 The AnyHLS Library

Efficient and resource-friendly FPGA designs require application-specific optimiza-
tions. These optimizations and transformations are well known in the community.
For example, de Fine Licht, Meierhans, and Hoefler [dMH18] discuss the key trans-
formations of HLS codes such as loop unrolling and pipelining. They describe the
whole hardware design from the low-level memory layout to the operator implemen-
tations with support for low-level loop transformations throughout the design. In
our setting, the programmer defines and provides these abstractions using AnyDSL

4In computer science, syntactic sugar is a term used for a programming language syntax that allows
expressing a verbose form in an alternative style that is more clear and concise. The name is
coined by Landin [Lan65] in 1964 as part of a simple ALGOL-like programming language.
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Figure 6.2: FPGA code generation flows for Halide, Hipacc, and AnyHLS (from left
to right). VHLS and AOCL are used as acronyms for Vivado HLS and Intel
FPGA SDK for OpenCL, respectively. Halide and Hipacc rely on domain-
specific compilers for image processing. They use template libraries
(developed by using C-based metaprogramming techniques) to alleviate
the tasks of their source-to-source compiler backends (see Section 4.5 for
more details). AnyHLS allows defining all abstractions for the domain
of two-dimensional image processing algorithms in a language called
Impala and relies on partial evaluation for code specialization. This
ensures maintainability and extensibility of the provided compilation
flow for a domain, image processing in this thesis. (Figure reprinted
from [ÖPM+20a], © 2020 IEEE)

for the domain of 2D image processing algorithms in the form of a library. We rely on
partial evaluation to combine those abstractions and to remove overhead associated
with them. Ultimately, the AnyDSL compiler synthesizes optimized HLS code (C++

or OpenCL C) from a given functional description of an algorithm as shown in Fig-
ure 6.2. The generated code goes to the selected HLS tool. This is in contrast to other
domain-specific approaches like Halide-HLS [PBY+17] or Hipacc [RÖM+17b], which
rely on domain-specific compilers to instantiate predefined templates or macros.
Hipacc makes use of two distinct libraries to synthesize algorithmic abstractions to
Vivado-HLS and Intel AOCL, while AnyHLS uses the same image processing library
that is described in Impala.

6.3.1 HLS Code Generation

For HLS code generation, we implemented an intrinsic named vhls in AnyHLS to
emit Vivado HLS and an intrinsic named opencl to emit AOCL:
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with vhls() { body() } with opencl () { body() }

With opencl, we use a grid and block size of (1, 1, 1) to generate a single work-
item kernel, as the official AOCL documentation recommends [Int17]. We extended
AnyDSL’s OpenCL runtime by the extensions of Intel OpenCL SDK. To provide an
abstraction over both HLS backends, we create a wrapper generate that expects a
code generation function:
type Backend = fn(fn() -> ()) -> ();

fn @ generate(be: Backend , body: fn() -> ()) -> () {

with be() { body() }

}

Switching backends is now just a matter of passing an appropriate function to
generate:
let backend = vhls; // or opencl

with generate(backend) { body() }

6.3.2 Building Abstractions for FPGA Designs

In the following, we present abstractions for the key transformations and design pat-
terns that are common in FPGA design. These include (a) important loop transforma-
tions, (b) control flow and data flow descriptions such as reductions, (c) FSMs, and (d)
the explicit utilization of different memory types. Approaches like Spatial [KFP+18]
expose these patterns within the language—new patterns require dedicated support
from the compiler. Hence, these languages and compilers are restricted to a special-
ized application domain they have been designed for. In AnyHLS, Impala’s functional
language and partial evaluation allow us to design the abstractions needed for FPGA
synthesis in the form of a library. New patterns can be added to the library without
dedicated support from the compiler. This makes AnyHLS easier to extend compared
to the approaches mentioned afore.

Loop Transformations

C++ compilers usually provide certain preprocessor directives to trigger particular
code transformations. A common feature is to unroll loops (see Listings 6.2 and 6.3).

Listing 6.2: Loop unrolling using a pragma

1 for (int i=0; i<N/W; ++i) {

2 for (int w=0; w<W; ++w) {

3 #pragma unroll

4 body(i*W + w);

5 }

6 }

191



6 AnyHLS: High-Level Synthesis using Partial Evaluation

Listing 6.3: Loop unrolling using the loop abstractions in AnyHLS

1 for i in range(0, N/W) {

2 for w in unroll(0, W) {

3

4 body(i*W + w);

5 }

6 }

Such pragmas are built into the compiler. The Impala version (shown in Listing 6.3)
uses generators that are entirely implemented as a library. Partial evaluation op-
timizes Impala’s range and unroll abstractions as well as the input body function
according to their static inputs, i.e., N, W. The residual program consists of the con-
secutive 𝑏𝑜𝑑𝑦 function according to the value of the W as shown in Figure 6.3. This
generates a concise and clean code for the target HLS compiler, which is drastically
different from using a pragma.

Generators, unlike C++ pragmas, are first-class citizens of the Impala language. This
allows programmers to implement sophisticated loop transformations. For example,
the function tile shown in Listing 6.4 returns a new generator. It instantiates a tiled
loop nest of the specified tile size with the Loops inner and outer.

Listing 6.4: Implementation of loop tiling abstraction for AnyHLS

1 type Loop = fn(int , int , fn(int) -> ()) -> ();

2 fn @ tile(size: int , inner: Loop , outer: Loop) -> Loop {

3 @|beg , end , body| outer(0, (end -beg)/size ,

4 |i| inner(i*size + beg , (i+1)*size + end , |j| body))

5 }

6

7 let schedule = tile(W, unroll , range);

8 for i in schedule(0, N) {

9 body(i)

10 }

Passing W for the tiling size, unroll for the inner loop, and range for the outer loop
yields a generator that is identical to the loop nest at the beginning of this paragraph.
With this description, we can reuse or explore iteration techniques without touching
the actual body of a for loop. For example, consider the processing options for
a two-dimensional loop nest as shown in Figure 6.3: When just passing range as
inner and outer loop, the partial evaluator will keep the loop nest and, hence, not
unroll body and instantiate it only once. Unrolling the inner loop replicates body and
increases the bandwidth requirements accordingly. Unrolling the outer loop also
replicates body, but in a way that benefits data reuse from the temporal locality of
an iterative algorithm. Unrolling both loops replicate body for increased bandwidth
and data reuse for the temporal locality.

C/C++-based HLS solutions often use a pragma to mark a loop amenable for pipelin-
ing. This means parallel execution of the loop iterations in hardware. For example,
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Figure 6.3: Parallel processing. (Figure reprinted from [ÖPM+20a], © 2020 IEEE)

the code in Listing 6.6 uses an initiation interval (II) of 3:

Listing 6.5: Loop tiling pragma in C-based HLS

1 for (int i=0; i<N; ++i) {

2 #pragma HLS pipeline II=3

3 body(i);

4 }

Instead of using a pragma as in Listing 6.6, AnyHLS uses the intrinsic generator
pipeline as shown in Listing 6.6. Unlike the above loop abstractions (e.g., unroll),
Impala then emits a tool-specific pragma to implement/refine the pipeline abstrac-
tion. This provides portability across different HLS tools. Furthermore, it allows the
programmer to invoke and pass around pipeline—just like any other generator.

Listing 6.6: Loop tiling in AnyHLS

1 let II = 3;

2 for i in pipeline(II, 0, N) {

3 body(i)

4 }

Reductions

Reductions are useful in many contexts. The reduce function in Listing 6.7 takes an
array of values, a range within, and an operator:

Listing 6.7: Implementation of the reduction abstraction in AnyHLS

1 type T = int;
2 fn @(?beg & ?end) reduce(beg: int , end: int , input: &[T],

3 op: fn(T, T) -> T) -> T {

4 let n = end - beg;

5 if n == 1 {

6 input(beg)

7 } else {
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Figure 6.4: Multiplexers, finite state machines, and reductions. (Figure reprinted
from [ÖPM+20a], © 2020 IEEE)

8 let m = (end + beg) / 2;

9 let a = reduce(beg , m, input , op);

10 let b = reduce(m, end , input , op);

11 op(a, b)

12 }

13 }

The recursion in the above filter, will be completely unfolded if the range is statically
known. Thus,
reduce(0, 4, [a, b, c, d], |x, y| x + y)

will yield:
(a + b) + (c + d)

Finite State Machines

AnyHLS models computations that depend not only on the inputs but also on an
internal state with an FSM. To define an FSM, programmers need to specify states and
a transition function that determines when to change the current state based on the
machine’s input. This is especially beneficial for modeling control flow. To describe
an FSM in Impala, we introduce types to represent the states and the machine as
shown in Listing 6.8:

Listing 6.8: Implementation of the FSM state in AnyHLS

1 type State = int;
2 struct FSM {

3 add: fn(State , fn() -> (), fn() -> State) -> (),

4 run: fn(State) -> ()

5 }

194



6.3 The AnyHLS Library

An object of type FSM provides two operations: adding one state with add or running
the computation. The add method takes the name of the state, an action to be
performed for this state, and a transition function associated with this state. Once
all states are added, the programmer runs the machine by passing the initial state as
an input parameter. The example in Listing 6.9 adds 1 to every element of an array.

Listing 6.9: An example description of an FSM in AnyHLS

1 let buf = /*...*/;

2 let mut (idx , pixel) = (0, 0);

3 let fsm = make_fsm ();

4 fsm.add(Read , || pixel = buf(idx),

5 || if idx >=len { Exit } else { Compute });

6 fsm.add(Compute , || pixel += 1, || Write);

7 fsm.add(Write , || buf(idx++) = pixel , || Read );

8 fsm.run(Read);

Similar to the other abstractions introduced in this section, the constructor for an
FSM is not a built-in function of the compiler but a regular Impala function. In some
cases, we want to execute the FSM in a pipelined way. For this scenario, we add
a second method run_pipelined. As all the methods, e.g., make_fsm, add, run, are
annotated for partial evaluation (by @), input functions to these methods will be
optimized according to their static inputs. Ultimately, AnyHLS will emit the states
of an FSM as part of a loop according to the selected run method.

Memory Types and Memory Abstractions

FPGAs have different memory types of varying sizes and access properties. Impala
supports three memory specific to hardware design (see Figure 6.5): global memory,
on-chip memory, registers. In addition, it provides a memory abstraction for using
HLS streams. Global memory (typically DRAM) is allocated on the host using our
runtime and accessed through regular pointers. On-chip memory (e.g., BRAM or
M10K/M20K) for the FPGA is allocated using the reserve_onchip compiler intrinsic.
Memory accesses using the pointer returned by this intrinsic will map to on-chip
memory. Standard variables are mapped to registers, and a specific stream type is
available to allow for the communication between FPGA kernels. Memory-wise, a
stream is mapped to registers or on-chip memory by the HLS tools. These FPGA-
specific memory types in Impala will be mapped to their corresponding tool-specific
declarations in the residual program (on-chip memory will be defined as local memory
for AOCL, whereas it will be defined as an array in Vivado HLS).

Memory partitioning An array partitioning pragma must be defined as follows
to implement a C array with hardware registers using Vivado HLS [Xil17c]:
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Figure 6.5: Memory types provided for FPGA design. (Figure reprinted from
[ÖPM+20a], © 2020 IEEE)
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Figure 6.6: Memory abstractions. (Figure reprinted from [ÖPM+20a], © 2020 IEEE)

Listing 6.10: A typical way of partitioning an array by using pragmas in existing HLS
tools.

1 typedef int T;

2 T Regs1D[size];

3 #pragma HLS variable=Regs1D array_partition dim=0

Other HLS tools offer similar pragmas for the same task. Instead, AnyHLS pro-
vides a description of a register array by the recursive declaration of registers as in
Listing 6.11, and without using any tool-specific pragma.

Listing 6.11: Recursive description of a register array using partial evaluation instead
of declaring an array and partitioning it by HLS pragmas.

1 type T = int;
2 struct Regs1D {

3 read: fn(int) -> T,

4 write: fn(int , T) -> (),

5 size: int
6 }

7 fn @ make_regs1d(size: int) -> Regs1D {

8 if size == 0 {

9 Regs1D {

10 read: @|_| 0,

11 write: @|_, _| (),

12 size: size

13 }

14 } else {

15 let mut reg: T;

16 let others = make_regs1d(size - 1);

17 Regs1D {

18 read: @|i| if i+1 == size { reg }

19 else { others.read(i) },
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20 write: @|i, v| if i+1 == size { reg = v }

21 else { others.write(i, v) },

22 size: size

23 }

24 }

25 }

When the size is not zero, each recursive call to this function allocates a register
variable named reg, and creates a smaller register array with one element less named
others. The read and write functions test if the index i is equal to the index of
the current register. In the case of a match, the current register is used. Otherwise,
the search continues in the smaller array. The generator (make_regs1d) returns an
Impala variable that can be read and written by index values (regs in the following
code), similar to C arrays.
let regs = make_regs1d(size);

However, it defines size number of registers in the residual program instead of
declaring an array and partitioning it by tool-specific pragmas as in Listing 6.10.
The generated code does not contain any compiler directives; hence it can be used
for different HLS tools (e.g., Vivado HLS, AOCL). Since we annotated make_regs1d,
read, and write for partial evaluation, any call to these functions will be inlined
recursively. This means that the search to find the register to read to or write from
will be performed at compile time. These registers will be optimized by the AnyDSL
compiler, just like any other variables: unnecessary assignments will be avoided, and
an HLS code will be generated.

Correspondingly, AnyHLS provides generators (similar to Listing 6.11) for one
and two-dimensional arrays of on-chip memory (e.g., line buffers in Section 6.4),
global memory, and streams (as illustrated in Figure 6.6) instead of using memory
partitioning pragmas encouraged in existing HLS tools (as in Listing 6.10).

6.4 A Library for Image Processing on FPGA

AnyHLS allows for defining domain-specific abstractions and optimizations that are
used and applied prior to generating customized input to existing HLS tools. In this
section, we introduce a library that is developed to support HLS for the domain of
image processing applications. It is based on the fundamental abstractions introduced
in Section 6.3.2. Our low-level implementation is similar to existing domain-specific
languages targeting FPGAs [HDD+16; RÖM+17b]. For this reason, we focus on the
interface of our abstractions as seen by the programmer.

We design applications by decoupling their algorithmic description from their
schedule and memory operations. For instance, typical image operators, such as the
following Sobel filter, just resort to the make_local_op generator.
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Listing 6.12: Sobel filter as example local operator application described by using our
library.

1 let sobel_x = stencil(@|img , x, y|

2 -1 * img.read(x-1, y-1) + 1 * img.read(x+1, y-1) +

3 -2 * img.read(x-1, y ) + 2 * img.read(x+1, y ) +

4 -1 * img.read(x-1, y+1) + 2 * img.read(x+1, y+1),

5 extents(1, 1)); // stencil pattern for 3x3 filter

6

7 let img = create_host_image(input.png);

8 let dx = create_host_image(output.png);

9 let vect_factor = 4;

10 let operator = make_local_op(vect_factor , sobel_x , mirror , mirror);

11

12 with generate(vhls) { operator(img , dx); }

Similarly, we implement a point operator for RGB-to-gray color conversion as follows
(Listing 6.13):

Listing 6.13: RGB-to-gray color conversion as example point operator application de-
scribed by using our library.

1 let img = create_host_image(input.png);

2 let gray = create_host_image(output.png);

3 let vect_factor = 4;

4

5 let rgb2gray = make_point_op(@ |pix| {

6 let r = pix & 0xFF;

7 let g = (pix >> 8) & 0xFF;

8 let b = (pix >> 16) & 0xFF;

9 (r + g + b) / 3

10 });

11

12 with generate(aocl) { rgb2gray(vect_factor , img , gray); }

The image data structure is opaque. The target platform mapping determines its lay-
out. AnyHLS provides common border handling functions as well as point and global
operators such as reductions (see Section 6.3.2). These operators are composable to
allow for more sophisticated ones.

6.4.1 Vectorization

Image processing applications consist of loops that possess a very high degree of
spatial parallelism. This should be exploited to reach the bandwidth speed of memory
technologies. A resource-efficient approach, so-called vectorization or loop coarsening,
is to aggregate the input pixels to vectors and process multiple input data at the
same time to calculate multiple output pixels in parallel [SRH+15; ÖRH+17b; SGE+18].

198



6.4 A Library for Image Processing on FPGA

This replicates only the arithmetic operations applied to data (so-called datapath)
instead of the whole accelerator, similar to SIMD architectures. Vectorization re-
quires a control structure specialized to a considered hardware design. We support
the automatic vectorization of an application by a given factor v when using our
image processing library. In particular, our library uses the vectorization techniques
proposed in Chapter 3 [ÖRH+17b]. For example, the make_local_op function has
an additional parameter to specify the desired vectorization and will propagate this
information to the functions it uses internally: make_local_op(op, v). For brevity,
we omit the parameter for the vectorization factor for the remaining abstractions in
this section.

6.4.2 Memory Abstractions for Image Processing

Memory Accessor

An FPGA implementation of an algorithm has to be concise about memory addressing
since ambiguous code induces a complicated hierarchy that leads to waste of resources
and slow execution times. In particular, commercial HLS tools perform poorly when
on-chip-memory blocks are configured from arrays of primitive types [CWY+17].
In order to optimize memory access and encapsulate the contained memory type
(on-chip memory, etc.) into a data structure, we decouple the data transfer from the
data use via the following memory abstractions:

Listing 6.14: One-dimensional memory accessor structure in AnyHLS

1 struct Mem1D {

2 read: fn(int) -> T,

3 write: fn(int , T) ->(),

4 update: fn(int) -> (),

5 size: int
6 }

Listing 6.15: Two-dimensional memory accessor structure in AnyHLS

1 struct Mem2D {

2 read: fn(int , int) -> T,

3 write: fn(int , int , T) ->(),

4 update: fn(int , int) -> (),

5 width: int , height: int
6 }

Similar to hardware design practices, these memory abstractions require the mem-
ory address to be updated before the read/write operations. The update function
transfers data from/to the encapsulated memory to/from staging registers using
vector data types. Then, the read/write functions access an element of the vector.
This increases data reuse and DRAM-to-on-chip memory bandwidth [CCF+16].
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d0 d1

on-chip memory (𝑊 /𝑣)

Mem1D (𝑊, 𝑣 = 2)

memory (read)

addr_read
( = 1) dout

addr_up

(a) An update call loads the addr-upth data-
beat from the memory to the registers,
whereas a read outputs a datum from the
addr-read th register.

d0 d1

global memory (𝑊 /𝑣)

Mem1D (𝑊, 𝑣 = 2)

memory (write)

addr_write
(= 1) din

addr_up

(b) An update call loads a data-beat stored
in registers to the addr-upth address of the
memory, whereas a write inputs a datum
to the addr-writeth register.

Figure 6.7: Memory accessor structure is used to abstract the memory type. It
decouples the index arithmetic from memory access. (Figure reprinted
from [ÖPM+20a], © 2020 IEEE)

For example, consider Figure 6.7 where two memory accessors are used to encapsu-
late the contained memory types (on-chip memory, etc.) into an opaque data structure.
This makes it suitable as a gluing data type between the library components.

Stream Processing

Inter-kernel dependencies of an algorithm should be accessed on-the-fly in combina-
tion with fine-granular communication in order to pipeline the full implementation
with a fixed throughput. That is, as soon as a block produces one data, the next block
consumes it. In the best case, this requires only a single register of a small buffer
instead of reading/writing to temporary images:

Kernel2Kernel1 Kernel3
Mem1D Mem1DMem1D Mem1D

We define a stream between two kernels as shown in Listing 6.16.

Listing 6.16: Creating a memory accessor for an HLS stream in AnyHLS

1 fn make_mem_from_stream(size: int , data: stream) -> Mem1D;

Line Buffers

Storing an entire image to on-chip memory before execution is not feasible since
on-chip memory blocks are limited in FPGAs. On the other hand, feeding the data
on demand from main memory is extremely slow. Still, it is possible to leverage fast
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on-chip memory by using it as FIFO buffers containing only the necessary lines of
the input images (𝑊 pixels per line).

line buffer

line buffer

Mem2D (1, ℎ, 𝑣)

line buffers (𝑊,ℎ, 𝑣)

Mem1D (𝑊, 𝑣)

This enables parallel reads at the output for every pixel read at the input. We
model a line buffer as shown in Listing 6.18.

Listing 6.17: Creating a line buffer in AnyHLS

1 type LineBuf1D = fn(Mem1D) -> Mem1D;

2 fn make_linebuf1d(width: int) -> LineBuf1D;

3 // similar for LineBuf2D

Akin to Regs1D (see Section 6.3.2), a recursive call builds an array of line buffers
(each line buffer will be declared by a separate memory component in the residual
program similar to the on-chip array in Figure 6.6).

Sliding Window

Registers are the most amenable resources to hold data for highly parallelized access.
A sliding window of size 𝑤 × ℎ updates the constituting shift registers by a new
column of ℎ pixels and enables parallel access to 𝑤 · ℎ pixels.

Mem2D (𝑤,ℎ, 1)

sliding window

Mem2D
(1, ℎ, 𝑣)

This provides high data reuse for temporal locality and avoids waste of on-chip
memory blocks that might be utilized for a similar data bandwidth. Our imple-
mentation uses make_regs2d for an explicit declaration of registers and supports
pixel-based indexing at the output.

Listing 6.18: Creating a sliding window in AnyHLS

1 type Swin2D = fn(Mem2D) -> Mem2D;

2 fn @ make_sliding_window(w: int , h: int) -> Swin2D {

3 let win = make_regs2d(w, h);

4 // ...

5 }
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This will instantiate 𝑤 · ℎ registers in the residual program, as explained in Sec-
tion 6.3.2.

1D Data Selection for Border Handling

We provide border handling abstractions that select data beside the sliding window
to implement one-dimensional multiplexer arrays [ÖRH+17b]. Their hardware im-
plementation is explained in Chapter 3. Column and row selection apply the border
handling only in 𝑥- and 𝑦−direction, respectively. The sliding window expects the
row selection as input, while the column selection returns a Mem2D: We refer to
[ÖPM+18] for more details on these data selection abstractions and their use for
image border handling.

Row
Sel

(a) Row selection is a function that
inputs a data assignment function.

Col
Sel

Mem2D (𝑤,ℎ, 𝑣)
Mem2D
(𝑤,ℎ, 𝑣)

(b) Col selection creates a Mem2D structure at
the output.

Figure 6.8: 1D data selection functions to implement border handling. (Figure
reprinted from [ÖPM+20a], © 2020 IEEE)

6.4.3 Loop Abstractions for Image Processing

Point Operators

Algorithms such as image scaling and color transformation calculate an output pixel
for every input pixel. The point operator abstraction (see Listing 6.19) in AnyHLS
yields a vectorized pipeline over the input and output image. This abstraction is
parametric in its vector factor v and the desired operator function op.

Listing 6.19: Implementation of the point operator abstraction.

1 type PointOp = fn(Mem1D) -> Mem1D;

2 fn @ make_point_op(v: int , op: Op) -> PointOp {

3 @ |img , out| {

4 for idx in pipeline(1, 0, img.size) {

5 img.update(idx);

6 for i in unroll(0, v) {

7 out.write(i, op(img.read(i)));

8 }

9 out.update(idx);

10 }

202



6.4 A Library for Image Processing on FPGA

11 }

12 }

The total latency is

𝐿 = 𝐿arith + ⌈𝑊/𝑣⌉ · 𝐻 cycles (6.2)

where𝑊 and 𝐻 are the width and height of the input image, and 𝐿arith is the latency
of the data path.

Local Operators

Algorithms such as Gaussian blur and Sobel edge detection calculate an output pixel
by considering the corresponding input pixel and a certain neighborhood of it in a
local window. Thus, a local operator with a 𝑤 × ℎ window requires 𝑤 · ℎ pixel reads
for every output. The same (𝑤 − 1) ·ℎ pixels are used to calculate results at the image
coordinates (𝑥 , 𝑦) and (𝑥 + 1, 𝑦). This spatial locality is transformed into temporal
locality when input images are read in raster order for burst mode, and subsequent
pixels are sequentially processed with a streaming pipeline implementation. The
local operator implementation in AnyHLS (shown in Listing 6.20) consists of line
buffers and a sliding window to hold dependency pixels in on-chip memory and
calculates a new result for every new pixel read.

line buffer

line buffer
row
sel

col
sel

. . .
𝑜𝑝1

𝑜𝑝v

Mem2D

(1, ℎ, 𝑣)

line buffers

Mem2D

(𝑤 + 𝑣 − 1, ℎ, 1)
Mem2D

(𝑤 + 𝑣 − 1, ℎ, 1)

sliding window

local operator

Mem1D

(𝑊 × 𝐻, 𝑣)
Mem1D

(𝑊 × 𝐻, 𝑣)

This provides a throughput of 𝑣 pixels per clock cycle at the cost of an initial
latency (𝑣 is the vectorization factor)

𝐿initial = 𝐿arith + (⌊ℎ/2⌋ · ⌈𝑊/𝑣⌉ + ⌊⌈𝑤/𝑣⌉/2⌋) (6.3)

that is spent for caching neighboring pixels of the first calculation. The final latency
is thus:

𝐿 = 𝐿initial + (⌈𝑊/𝑣⌉ · 𝐻 ) (6.4)

Compared to the local operator in Figure 6.1, we also support boundary handling.
We specify the extent of the local operator (filter size / 2) as well as functions
specifying the boundary handling for the lower and upper bounds. Then, row
and column selection functions apply border handling correspondingly in 𝑥- and
𝑦−directions by using one-dimensional multiplexer arrays similar to Özkan et al.
[ÖRH+17b].
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Listing 6.20: Implementation of the local operator abstraction.

1 type LocalOp = fn(Mem1D) -> Mem1D;

2 fn @ make_local_op(v: int , op: Op, ext: Extents ,

3 bh_lower: FnBorder ,

4 bh_upper: FnBorder) -> LocalOp {

5 @ |img , out| {

6 let mut (col , row , idx) = (0, 0, 0);

7 let wait = /* initial latency */

8 let fsm = make_fsm ();

9 fsm.add(Read , || img.update(idx), || Compute);

10 fsm.add(Compute , || {

11 line_buffer.update(col);

12 sliding_window.update(row);

13 col_sel.update(col);

14 for i in unroll(0, v) {

15 out.write(i, op(col_sel.read(i)));

16 }

17 }, || if idx > wait { Write } else { Index });

18 fsm.add(Write , || out.update(idx -wait -1), || Index);

19 fsm.add(Index , || {

20 idx++; col++;

21 if col == img_width { col=0; row++; }

22 }, || if idx < img.size { Read } else { Exit });

23 fsm.run_pipelined(Read , 1, 0, img.size);

24 }

25 }

6.5 Evaluation and Results

In the following, we compare the quality of synthesized circuits using AnyHLS and
two other state-of-the-art domain-specific approaches including Halide-HLS [PBY+17]
and Hipacc [RÖM+17b]. The generated HLS codes are compiled using Intel FPGA
SDK for OpenCL 18.1 and Xilinx Vivado HLS 2017.2 targeting a Cyclone V GT
5CGTD9 FPGA and a Zynq XC7Z020 FPGA, respectively.

The generated hardware designs are evaluated for throughput, latency, and re-
source utilization. FPGAs possess two types of resources: (i) computational: LUTs
and DSP blocks; (ii) memory: FFs and on-chip memory (BRAM/M20K). A SLICE/ALM
is comprised of look-up tables (LUTs) and flip flops, thus indicate the resource usage
when considered with the DSP block and on-chip memory blocks.

The implementation results presented for Vivado HLS feature only the kernel
logic, while those by Intel OpenCL include PCIe interfaces. The execution time of
an FPGA circuit (Vivado HLS implementation) equals to 𝑇clk · latency, where 𝑇clk
is the period of the maximum achievable clock (lower is better). We measured the
timing results for Intel OpenCL by executing the applications on a Cyclone V GT
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5CGTD9 FPGA. This is the case for all analyzed applications. We have no intention
nor license rights [Xil14, §4] [Int09, §2] to benchmark and compare the considered
FPGA technologies or HLS tools.

6.5.1 Applications

In our experimental evaluation, we consider the following applications:

• Gaussian (Gauss) blurring an image with a 5 × 5 integer kernel

• Harris corner detector (Harris) consisting of 9 kernels that resort to integer
arithmetic and horizontal/vertical derivatives

• Jacobi smoothing an image with a 3 × 3 integer kernel

• filter chain (FChain) consisting of 3 convolution kernels as a pre-processing
algorithm

• bilateral filter (Bilateral), a 5× 5 floating-point kernel as an edge-preserving
and noise-reducing function based on exponential functions

• mean filter (MF), a 5 × 5 filter that determines the average within a local
window via 8-bit arithmetic

• SobelLuma, an edge detection algorithm provided as a design example by
Intel. The algorithm consists of RGB to Luma color conversion, Sobel filters,
and thresholding

6.5.2 Optimizations

AnyHLS exploits stream processing and performs implicit parallelization. The follow-
ing subsections show the impact of those optimizations applied as a set of functions
using partial evaluation of an initial specification.

Stream Processing

Memory transfers between FPGA’s programmable logic and external memory are one
of the most time-consuming parts of many image processing applications. AnyHLS
streaming pipeline optimization passes dependency pixels directly from the producer
to the consumer kernel, as explained in Section 6.4.2. This allows pipelined kernel
execution and makes intermediate images between kernels superfluous. The more
intermediate images are eliminated, the better the performance of the resulting
designs. For example, this eliminates 8 intermediate images in Harris corner and 2 in
filter chain, see Figure 6.9 for the performance impact.
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Figure 6.9: Execution time for naïve and streaming pipeline implementations of
the Harris and FChain for an Intel Cyclone V FPGA for images of size
1024 × 1024. (Figure reprinted from [ÖPM+20a], © 2020 IEEE)

The throughput of both streaming pipeline implementations is indeed determined
by their slowest individual kernel, which is a local operator. Consider Table 6.1,
which displays the Vivado HLS reports. The latency results correspond exactly to
the values computed using Eq. (6.4).

Table 6.1: Streaming pipeline implementations of Harris and FChain on a Xilinx
Zynq. Data is transferred to the FPGA only once, thus similar throughputs
are achieved. Images sizes are 1024 × 1024, 𝑣 = 1, 𝑓target = 200 MHz.

App. Largest mask Sequential Dependency Latency [cyc.] Throughput [MB/s]
FChain 5 × 5 local + local + local 1050649 821
Harris 3 × 3 local + local + point 1049634 825

Vectorization

Many FPGA implementations benefit from parallel processing to exploit available
memory bandwidth. AnyHLS implicitly parallelizes a given image pipeline by a
vectorization factor 𝑣 . As an example, Figure 6.10 shows the PPnR results, along with
the achieved memory throughput for different vectorization factors for the mean
filter on a Cyclone V. The speedup is almost linear, whereas resource utilization is
sub-linear to the vectorization factor, as Figure 6.10 depicts. AnyHLS exploits the data
reuse between consecutive iterations of the local operators. Data is read and written
with the vectorized data types. The line buffers and the sliding window are extended
to hold dependency pixels for vectorized processing. Thus, only the datapath is
replicated instead of the whole accelerator implementation (see Section 6.4.1). All the
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Figure 6.10: post place and route results of AnyHLS’s mean filter implementation
on an Intel Cyclone V FPGA. The memory bound of the device for
our setup is 1344.80 MB/s (measured by Intel’s diagnosis tool). (Figure
reprinted from [ÖPM+20a], © 2020 IEEE)

considered applications except Bilateral in Figure 6.12 reach the memory bound of the
Cyclone V FPGA. Bilateral is compute-bound due to its large number of floating-point
operations.
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6.5.3 Hardware Design Evaluation

We evaluate the generated hardware designs based on their throughput, latency,
and resource utilization. As a reference, we use the designs generated by Halide-
HLS [PBY+17] and Hipacc [RÖM+17b], two state-of-the-art image processing DSLs
that generate better results than previous approaches (e.g., Xilinx OpenCV). In
contrast to these, which implement dedicated HLS code generators, AnyHLS is
essentially implemented as a library within the AnyDSL framework, as illustrated
in Figure 6.2. Our focus is to show that higher-order abstractions, together with
partial evaluation, are powerful enough to design a library targeting different HLS
compilers.

Experiments using Xilinx Vivado HLS

We evaluate the results of circuits generated using AnyHLS in comparison with
the domain-specific language approaches Hipacc and Halide-HLS. We consider two
representative applications from the Halide-HLS repository with different configura-
tions (border handling mode and vectorization factor): Gauss and Harris. These DSLs
have been developed by FPGA experts and perform better than many other existing
libraries. The applications are rewritten for Hipacc and AnyHLS by respecting their
original descriptions. This ensures that Halide-HLS applications have been imple-
mented with adequate scheduling primitives. Hipacc and AnyHLS implementations
require only the algorithm descriptions as input.

For almost all applications and configurations in Tables 6.2 and 6.3, AnyHLS
implementations demand fewer resources and deliver higher performance. Of course,
this improvement mainly stems from our library implementation. AnyHLS achieves
a lower latency mainly because of the following reasons:

i) The latency of a local operator generated using the AnyHLS’ image processing
approach corresponds to the theoretical latency given in Eq. (6.4), which is
𝐿 = 𝐿arith +1.042.442 clock cycles for Gauss when 𝑣 = 1. 𝐿𝑎𝑟𝑖𝑡ℎ = 14 for AnyHLS’
Gauss implementation as shown in Table 6.2.

ii) Halide-HLS pads input images according to the selected border handling mode
(even when no border handling is defined). This increases the input image size
from (𝑊 , 𝐻 ) to (𝑊 +𝑤 − 1, 𝐻 + ℎ − 1), thus the latency.

iii) Hipacc does not pad input images, but executes (𝐻 + ⌊ℎ/2⌋ · (𝑊 + ⌊𝑤/2⌋)) loop
iterations for a (𝑊 × 𝐻 ) image and (𝑤 × ℎ) window. This is similar to the
convolution example in the Vivado Design Suite User Guide [Xil17c], but not
optimal.
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Table 6.2: post place and route results for the Xilinx Zynq board for images of size
1020 × 1020 and 𝑇target = 5 ns (corresponds to 𝑓target = 200 MHz). Border
handling is undefined.

App 𝑣 #BRAM #SLICE #DSP Latency [cyc.] Throughput [MB/s]

Gauss

1
AnyHLS 8 463 16 1042456 828.2
Halide-HLS 8 1823 50 1052673 438.2
Hipacc 8 473 16 1044500 764.7

4
AnyHLS 16 1441 80 260626 3041.4
Halide-HLS 16 4112 180 266241 1640.1
Hipacc 16 1519 64 261649 3064.6

Harris

1
AnyHLS 20 1405 22 1041450 829.0
Halide-HLS 16 2688 35 1052673 464.0
Hipacc 20 1457 34 1042466 828.2

2
AnyHLS 20 2513 44 520740 1450.4
Halide-HLS 16 4011 70 528385 895.0
Hipacc 20 2326 68 521756 1637.8

Table 6.3: post place and route results for the Gaussian blur with clamping at the
borders. Image sizes are 1024 × 1024, 𝑣 = 1, 𝑓target = 200 MHz.

Framework #BRAM #SLICE #DSP Latency [cyc.] Throughput [MB/s]
AnyHLS 8 1646 16 1050641 801.8
Halide-HLS 16 2096 50 1060897 458.7
Hipacc 8 1709 16 1052693 820.1

The execution time of an implementation equals 𝑇clk · latency, where 𝑇clk (1/𝑓clk)
is the period of the maximum achievable clock frequency (lower is better). Overall,
AnyHLS processes a given image faster than the other DSL implementations.

Halide-HLS uses more on-chip memory for line buffers (see Section 6.4.3) compared
to Hipacc and AnyHLS because of its image padding for border handling. Let us
consider the number of BRAMs utilized for the Gaussian blur: The line buffers need
to hold 4 image lines for the 5 × 5 kernel. The image width is 1024 and the pixel
size is 32 bits. Therefore, AnyHLS and Hipacc use eight 18K BRAMs as shown in
Table 6.2. However, Halide-HLS stores 1028 integer pixels, which require 16 18K
BRAMs to buffer four image lines. This doubles the number of BRAMs usage (see
Table 6.3).

AnyHLS use the vectorization architecture proposed in [ÖRH+17b]. This improves
the use of the registers compared to Hipacc and Halide.

The performance metrics and resource usage reported by Vivado HLS correlate
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with our Impala descriptions, hence we claim that the HLS code generated using the
AnyHLS’ image processing approach does not entail severe side effects for the syn-
thesis using Vivado HLS. Hipacc and Halide-HLS have dedicated compiler backends
for HLS code generation. These can be improved to achieve similar performance
to AnyHLS. However, this is not a trivial task and prone to errors. The advantage
of AnyDSL’s partial evaluation is that the user has control over code generation.
Extending AnyHLS’ image processing library only requires adding new functions
in Impala (see Figure 6.2). Our intention to compare AnyHLS with these DSLs is to
show that we can generate equally good designs without creating an entire compiler
backend.

Experiments using Intel FPGA SDK for OpenCL (AOCL)

Table 6.4 presents the implementation results for an edge detection algorithm pro-
vided as a design example by Intel. The algorithms consist of RGB to Luma color
conversion, Sobel filters, and thresholding. Intel’s implementations consist of a single-
work item kernel that utilizes shift registers according to the FPGA design paradigm.
These types of techniques are recommended by Intel’s optimization guide [Int17]
despite that the same OpenCL code performs drastically bad on other computing
platforms.

Table 6.4: post place and route results of an edge detection application for the Intel
Cyclone V. Image sizes are 1024 × 1024. None of the implementations use
DSPs.

𝑣 Framework #M10K #ALM #DSP Throughput [MB/s]

1
Intel’s Imp. 290 23830 0 419.5
AnyHLS 291 23797 0 422.5
Hipacc 318 25258 0 449.1

16
Intel’s Imp. - - 0 -
AnyHLS 337 29126 0 1278.3
Hipacc 362 35079 0 1327.7

32
Intel’s Imp. - - 0 -
AnyHLS 401 38069 0 1303.8
Hipacc 421 44059 0 1320.0

We described Intel’s handwritten SobelLuma example using Hipacc and AnyHLS.
Both Hipacc and AnyHLS provide a higher throughput even without vectorization.
In order to reach memory-bound, we would have to rewrite Intel’s hand-tuned design

210



6.5 Evaluation and Results

20 25 30 35 40 45 50 55 60 65 70 75 80 85

102

103

1

2

4

8

16

CU1/SIMD1

CU4/SIMD16

CU16/SIMD1

Hardware resources (logic utilization [%])

Th
ro

ug
hp

ut
in

[M
Pi

xe
l/s

]
AnyHLS
NDRange

Figure 6.11: Design space for a 5×5 mean filter using an NDRange kernel (using the
num_compute_units / num_simd_work_items attributes) and AnyHLS
(using the vectorization factor 𝑣) for an Intel Cyclone V FPGA. (Figure
reprinted from [ÖPM+20a], © 2020 IEEE)

example to exploit further parallelism. AnyHLS uses slightly less resources, whereas
Hipacc provides slightly higher throughput for all the vectorization factors. Similar
to Figure 6.10, both frameworks yield throughputs very close to the memory bound
of the Intel Cyclone V.

The OpenCL NDRange kernel paradigm conveys multiple concurrent threads for
data-level parallelism. OpenCL-based HLS tools exploit this paradigm to synthesize
hardware. AOCL provides attributes for NDRange kernels to transform their iter-
ation space. The num_compute_units attribute replicates the kernel logic, whereas
num_simd_work_items vectorizes the kernel implementation5. Combinations of those
provide a vast design space for the same NDRange kernel. However, as Figure 6.11
demonstrates, AnyHLS achieves implementations that are orders of magnitude faster
than using attributes in AOCL.

Finally, Table 6.5 and Figure 6.12 present a comparison between AnyHLS and
the AOCL backend of Hipacc [ÖRH+16]. As shown in Figure 6.2, Hipacc has an
individual backend and template library written with preprocessor directives to
generate high-performance OpenCL code for FPGAs. In contrast, the application
and library code in AnyHLS stays the same. The generated AOCL code consists of a
loop that iterates over the input image. Compared to Hipacc, AnyHLS achieves a

5These parallelization attributes are suggested in [Int17] for NDRange kernels, not for the single-
work item kernels using shift registers such as the edge detection application shown in Table 6.4.
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Figure 6.12: Throughput measurements for an Intel Cyclone V for the implementa-
tions generated from AnyHLS and Hipacc. Resource utilization for the
same implementations are shown in Table 6.5. (Figure reprinted from
[ÖPM+20a], © 2020 IEEE)

Table 6.5: PPnR for the Intel Cyclone V. Missing numbers (-) indicate that the gener-
ated implementations do not fit the board.

App v Framework #M10K #ALM #DSP Throughput [MB/s]

Gauss 16 AnyHLS 401 37509 0 1330.1
16 Hipacc 402 35090 0 1301.2

Jacobi 16 AnyHLS 370 31446 0 1328.8
16 Hipacc 372 30296 0 1282.9

Bilat. 1 AnyHLS 399 79270 153 326.6
1 Hipacc 422 79892 159 434.7

MF
16 AnyHLS 400 39266 0 1255.68
16 Hipacc - - - -
8 Hipacc 351 31796 0 1275.9

FChain 8 AnyHLS 418 44807 0 1230.6
8 Hipacc 645 64225 0 427.4

similar performance in terms of throughput. This shows that AnyHLS optimizes the
inter-kernel dependencies better than Hipacc (see Section 6.4.2).
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6.6 Conclusions

6.6 Conclusions

In this chapter, we advocate the use of modern compiler technologies for high-level
synthesis. We combine functional abstractions with the power of partial evaluation to
decouple a high-level algorithm description from its hardware design that implements
the algorithm. This process is entirely driven by code refinement, generating input
code to HLS tools, such as Vivado HLS and AOCL, from the same code base. To
specify important abstractions for hardware design, we have introduced a set of basic
primitives. Library developers can rely on these primitives to create domain-specific
libraries. As an example, we have implemented an image processing library for
synthesis to both Intel and Xilinx FPGAs. Finally, we have shown that our results
are on par or even better in performance compared to state-of-the-art approaches.
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7
Conclusion and Future Directions

The trend in computer architecture is moving towards specialization of hardware
(for an application or a class of applications) and software (for target hardware) to
overcome the limitations posed by the power constraints and the scaling of current
semiconductor technology (see Section 1.2) [HP19; Hor14; CCF+10; LTE+20]. Modern
processor dies are being built with a GPU and a number of specialized accelerators
designed for, e.g., image, audio, and video processing. FPGAs are commercially being
used in data centers to accelerate various tasks, e.g., by Microsoft [PCC+14; ORK+15],
or Baidu [OLQ+14]. Amazon rents various FPGAs in the cloud as part of their AWS
service [Ama22]. Programming such heterogeneous systems is challenging; program-
mers must write device-specific code to achieve high performance and efficiency.
Such optimized code is usually not portable, and rewriting programs for each target
is tedious. Improving compilers to automatically parallelize, optimize, and gener-
ate target-specific code from an application description written in a programming
language initially developed for a sequential (or multi-threaded) execution of older
computer architectures has been proven to be infertile [CCF+10]. The problem gets
even more complex for designing custom hardware specialized to a set of tasks.

Designing application-specific hardware removes the inefficiencies caused by un-
necessary logic, complex control flow, and a fixed memory system (see Section 1.2.3),
thus providing better energy efficiency. However, the same customization abilities,
which can facilitate orders-of-magnitude performance/watt gains, make hardware
design (for an FPGA or ASIC) a complex task that exposes low-level concerns. This
complexity poses a severe problem to the widespread adoption of FPGAs (despite
being easily accessible from a server) and increases the non-recurring engineering
(NRE) costs of ASIC design. Furthermore, the gap between algorithm development
and hardware design concerns prevents exploring algorithms that are optimized for
custom hardware design. That is, exploring/optimizing algorithms for FPGA/ASIC
requires hardware design knowledge, whereas modifying algorithms for a more
efficient hardware implementation requires algorithm knowledge.

HLS, an NP-complete problem, has taken much attention over the last five decades
as a remedy to the issues mentioned above. The latest generation of tools shows
promising results, especially for DSP and data-path-oriented applications, and of-
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fer system integration tools to enable a software-like development experience by
automatically synthesizing control interface and driver support. Nevertheless, HLS
is still not embraced by the community (not by algorithm/software developers as
well as hardware designers), and neither has it become an integral part of hardware
design. Modern HLS tools require hardware design knowledge to achieve good
results. They offer a language that forces users to describe hardware implementa-
tion using a mix of software and hardware design abstractions. The optimizations
are hard to understand and tool-specific. Users must think about hardware-centric
optimizations while writing software that looks like a program developed for an ISA.
This burdens HLS users and compilers, where the compiler has to extract a control
path and data path from an ambiguous description, e.g., spoiled with CPU-centric
style and hardware-specific compiler pragmas.

7.1 Summary

We have argued that the next step in HLS requires a clear separation of algorithmic
concerns from its implementation. We advocate that the design flow in HLS must
start from a purely behavioral description of an application free from hardware design
concerns. At the same time, it should allow hardware designers to describe their
implementation concisely using hardware design abstractions (but above RT-level
and in a productive way). Developing such an HLS tool is a challenging problem
when a general-purpose language is used for a design entry. However, we claim
that it is achievable when the algorithm description is constrained to a class of
applications, and domain knowledge is used to generate a concise description of the
behavior of an application-specific hardware as input to HLS. In this way, application
developers do not require hardware design knowledge to achieve good HLS results.

In this thesis, we used image processing as the domain of interest to test the
benefits of our approach and provide proof-of-concept implementations. In order to
leverage decades of research on HLS and thus use state-of-the techniques developed
for the tasks of hardware synthesis (e.g., scheduling, allocation, binding), we used
two commercially available tools, namely Xilinx Vivado HLS and Intel OpenCL SDK
for FPGAs. Our experiments show that these tools are able to synthesize highly
optimized hardware circuits that can rival with RTL implementations when the input
code describes an application-specific hardware concisely. That is, our application is
written in C++ or OpenCL but by using arrays and registers to describe a memory
hierarchy, loops to describe a pipelined hardware schedule. We also show that writing
NDRange code in OpenCL provides poor HLS results, where the NDRange paradigm
is used for the multi-threaded and multicore execution. Hence, despite the different
language syntaxes (OpenCL or C++), both of the HLS tools perform best for similar
input descriptions, where the main program uses one top-level loop and a single
thread.
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7.1 Summary

Our approach requires three main tasks for a framework developer: (i) identifying
performance-relevant and algorithmic-level (high-level) abstractions by investigating
the considered application domain, (ii) investigating implementation techniques for
the considered applications, and (iii) using code-generation techniques to provide a
productive, modular, and portable description for the application developers in the
form of a DSL or a function library.

We built our solutions by using high-level abstractions based on point, local, and
global operators. In Chapter 3, we proposed novel implementation techniques for
implementing image border handling and accelerating stencil-based image processing
applications using a technique called loop coarsening. These techniques require
modifying memory hierarchy, data path, and control path of a synthesized hardware,
and thus are hard to be inferred by HLS compilers. We showed order of magnitude
improvements in throughput and up to 80% less resource usage compared to compiler-
based automatic parallelization techniques of a modern HLS tool.

We then presented three distinct solutions based on different code generation
techniques to raise the abstraction level in HLS and to hide implementation details
from application developers:

(i) A novel source-to-source compiler (based on Clang/LLVM compiler infrastruc-
ture) that generates input code for Intel’s HLS tool (OpenCL SDK for FPGAs)
from the Hipacc image processing DSL [MRH+16] (see Chapter 4). Our backend
applies various transformations using domain knowledge, such as creating
a streaming pipeline and parallelizing image processing operators using our
implementation techniques introduced in Chapter 3. We demonstrated that
implementations produced by our compiler backend are on par with the hand-
written applications provided by Intel (when not parallelized) and significantly
better when compared with the parallelization intrinsics provided by the Intel
HLS compiler. Since Hipacc is able to generate high-performance code for
CPUs, and GPUs as well, we show that our approach allows using the same
application description to target drastically different computing platforms.

(ii) Using the C++ metaprogramming language to build a modular and highly
parameterizable function library for describing image processing applications
as stream-based data flow graphs of point, local, and global operators (see
Chapter 4). It is highly optimized with hardware design techniques such as bit-
level optimizations, deep pipelining, and our novel parallelization techniques
introduced in Chapter 3. Our library increases the productivity of HLS users
by providing high-level abstractions and key hardware design elements to
describe their hardware in a modular way. Moreover, we alleviated the tasks of
Hipacc’s HLS backends by integrating this library as part of its code generation
flow.

(iii) Introducing AnyHLS to advocate the benefits of using partial evaluation to
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raise the abstraction level in HLS (see Chapter 6). AnyHLS allows designing
and extending a library of domain-specific abstractions for C-based HLS as
easy as writing higher-order functions in a functional language. Our approach
is significantly more effortless than developing a source-to-source compiler
and guarantees the well-typedness of a generated program (unlike C++ metapro-
gramming). We showed the productivity, modularity, and portability gains by
presenting an image processing library as a case study.

In addition, we presented the HipaccVX framework to show the benefits of using
code generation techniques and domain-specific abstractions used in this thesis to
implement OpenVX (see Chapter 5). OpenVX is an industrial standard built for
achieving performance-portability across different computing platforms. It allows
for applying system-level optimizations between standard computer vision functions
(e.g., Gaussian, Harris corner) by offering a graph-based API where edges show
dependency between data and computation. This graph-based description of CV
functions is partially similar to Hipacc. However, the OpenVX standard does not
provide a protocol to accelerate user-defined kernels as part of an application graph.
Thus, it restricts users from describing their algorithms using a small set of com-
puter vision functions. As a remedy, HipaccVX extends the OpenVX standard to
use Hipacc’s domain-specific abstractions in a user-defined node to support writing
custom applications. Our approach reduced code repetition (e.g., replicated imple-
mentation of convolution functions for Gaussian and Sobel algorithms) and enabled
further optimizations while allowing users to describe their algorithm in a standard
language.

We envision a sea of domain-specific languages and application libraries built
to raise the abstraction level in HLS (ideally, one DSL or a library for one applica-
tion domain). Choosing the right software and hardware abstractions, as well as
increasing productivity of designing and extending these libraries while guarantee-
ing the correctness of a generated program are extremely important for realizing
this vision. Industrial practice to hide implementation details from users is to use
metaprogramming tools of a standard language to provide function libraries tailored
for one specific HLS tool. While this has the advantage of using a well-known
language, programmers suffer from using a metalanguage that optimizes the actual
program as a data structure (e.g., C++ templates and C++ core are different languages),
and entails writing programs that are hard to understand. Developing a DSL and a
source-to-source compiler provides more flexibility to compiler developers where the
same application code can be used for targeting different computing platforms (such
as CPUs, GPUs, and FPGAs), and the correctness of a generated program can be
guaranteed. However, this is a complex task that is time-consuming and error-prone,
thus not extension friendly. We showed that partial evaluation is a powerful tech-
nique that significantly increases developers’ productivity, especially when used for
specializing inputs of higher-order functions. Partial evaluation was not offered in a
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standard programming language when this thesis was written1. Hence, we believe
our contributions play a key role in convincing HLS tool developers.

This thesis shows that domain-specific solutions are able to bridge the gap between
algorithm developers and hardware designers and, even more, provide portability
across different computing platforms without sacrificing performance and efficiency
(e.g., of power and resource usage). These solutions restrict users to a specific
application domain and expect them to learn a new language (or a library). The
former limitation can even play a good role by saving algorithm developers (with no
digital circuit design expertise) from using FPGAs when they are not advantageous
over cheaper and more flexible ISAs. In other words, restricting input language by
offering a set of domain-specific high-level abstractions (that yield performance,
power, or energy gains when implemented for the target platform) restricts the way
input algorithms can be described. This restriction provides a safe space for algorithm
developers to explore variations of an input application without worrying about
making an implementation drastically worse for the target platform. We showed (by
HipaccVX framework) that the latter limitation (i.e., the requirement of learning a
new language) can be circumvented by implementing industrial standard languages
using domain-specific solutions.

7.2 Future Work

Many improvements could be made to increase the productivity of mapping algo-
rithms to specialized circuits and heterogeneous systems in general. More specifically,
extending our solutions with additional application domains, hardware-centric opti-
mization techniques, and also for other FPGA-based systems (i.e., FPGAs with HBM
memory) as well as for other HLS tools would be beneficial. Ultimately, our approach
helps profiling and mapping algorithms to heterogeneous systems when used as
part of design space exploration and partitioning algorithms of a system-level design
approach.

We argue that HLS tools should provide a language above RTL but allow for concise
descriptions of a hardware implementation using hardware abstractions. Designing
such a language is challenging and requires investigating several application domains
(in addition to image processing) to explore a correct set of hardware abstractions.
For this purpose, supporting language features that allow for a productive, modular,
extensible, and portable way of describing high-level abstractions (such as partial
evaluation, and zero-cost higher-order functions) is crucial. AnyHLS provides a
good base for this work since it can be extended easily and already supports two

1We used Impala, a language forked from Rust, to implement a state-of-the-art partial evaluation
technique as a core compiler technology [LBH+18]. However, Impala misses several fundamental
programming features, such as polymorphism.
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commercial HLS tools (same code, different HLS tools). Developing libraries for other
application domains, such as machine learning, security, linear algebra, filters, and
frequency domain applications in digital signal processing, would be very beneficial.
Similarly, Hipacc can be extended for 3D-stencil applications, computer vision, and
a significant portion of computer graphics applications (especially the pre-and post-
processing parts).

Another important direction is integrating additional hardware-centric optimiza-
tions to our frameworks, which would be hidden from application developers. We
have shown in a recent publication [SÖK+22a] that the efficiency of DSP utilization
can be increased in a generic way for low-precision arithmetic operations by packing
multiple operations into single DSP units. Similarly, automatically applying multipli-
erless multiple constant multiplication (MCM) algorithms (such as [VP07]) from a
high-level application reduces the number of resources required for implementing a
set of constant multiplications. At best, implementing a design space exploration
algorithm for mapping operations to DSP or logic resources (such as LUTs) by also
considering the techniques mentioned above would increase the quality of synthe-
sized hardware in many application domains. Applying these techniques before HLS
allows for using domain knowledge and does not burden HLS compilers; thus, they
are good optimization techniques showing the benefits of our approach.

In 2021, Xilinx open-sourced the front end of the Vitis HLS tool. Modifying Hipacc
and AnyHLS to directly emit LLVM code instead of generating C++ code as input
to its front end could help decrease the unwanted effects of syntactic variations.
Furthermore, a clean-slate HLS language (e.g., originated from AnyHLS) could be
developed as a final product. Extending Hipacc and AnyHLS for other open-source
HLS tools, even better, providing a standard way of using these HLS tools would
significantly benefit the community for cumulative progress.

One exciting and promising research direction is to use DSL-based code generation
techniques as part of a system-level design methodology. Hipacc is able to generate
highly optimized code for CPUs, GPUs, and FPGAs. Similarly, we used AnyHLS to
develop an FPGA branch for Stincilla DSL2, which was formerly able to target CPUs
and GPUs. Developing a top-level ESL algorithm that leverages domain knowledge to
partition an input algorithm into a heterogeneous system automatically and generates
code using Hipacc or Stincilla would be very valuable.

2FPGA branch of https://github.com/AnyDSL/stincilla

220

https://github.com/AnyDSL/stincilla


German Part

Deklarative
Programmierungstechniken zur

Hardware-Synthese von
Bildverarbeitungsanwendungen

221





Zusammenfassung

Herkömmliche Hardwarebeschreibungssprachen (HDLs) wie VHDL und Verilog
werden häufig für den Entwurf digitaler elektronischer Schaltungen, z. B. anwen-
dungsspezifischer integrierter Schaltungen (ASICs), oder für die Programmierung
feldprogrammierbarer Gate-Arrays (FPGAs) verwendet. Die Verwendung von HDLs
für die Implementierung komplexer Algorithmen oder die Aufrechterhaltung großer
Projekte ist jedoch selbst für Experten mühsam und zeitaufwändig. Dies verhindert
auch den weit verbreiteten Einsatz von FPGAs. Als Lösung wird seit Jahrzehnten
die High-Level-Synthese (HLS) erforscht, um die Produktivität zu erhöhen, indem
letztlich eine Verhaltensbeschreibung eines Algorithmus (was macht die Schaltung?)
als Design-Eingabe genommen und automatisch eine Register-Transfer-Level (RTL)-
Implementierung erzeugt wird. Kommerzielle HLS-Tools gehen von bekannten
Programmiersprachen aus (z. B. C, C++ oder OpenCL), die ursprünglich für pro-
grammierbare Prozessoren mit einer Befehlssatzarchitektur (ISA) entwickelt wur-
den. Diese Werkzeuge liefern jedoch nur dann eine zufriedenstellende Qualität der
Hardwaresynthese-Ergebnisse, wenn die Programmierer für ihre Anwendungen
hardwarefreundliche Implementierungen beschreiben (wie die Schaltung aufgebaut
ist?), die z. B. eine bestimmte Speicherarchitektur, einen Steuerpfad und einen
Datenpfad nutzen. Dies erfordert ein tiefgehendes Verständnis der Prinzipien des
Hardware-Designs. Um Software-Programmiersprachen für den Hardware-Entwurf
zu übernehmen, verwendet jedes HLS-Tool seinen eigenen Sprachdialekt und führt
einen nicht standardisierten Satz von Pragmas ein. Die gemischte Verwendung von
Software- und Hardwaresprachabstraktionen behindert ein rein verhaltensorien-
tiertes Design und macht Optimierungen schwer verständlich, da der erwartete
Code weder eine reine Hardwarebeschreibung noch eine reguläre Softwareimple-
mentierung ist. Darüber hinaus muss ein Code, der für ein HLS-Tool optimiert wurde,
erheblich geändert werden, um für ein anderes HLS-Tool geeignet zu sein, und ist
auf einer ISA schlecht zu handhaben. Unserer Überzeugung nach, wird der näch-
ste Entwicklungsschritt bei HLS auf sprachlicher Seite liegen, um Produktivitäts-,
Portabilitäts- und Leistungshürden zu überwinden, die durch Unzulänglichkeiten
des Verhaltensdesigns bestehender Werkzeuge verursacht werden.

In dieser Dissertation werden drei verschiedene Lösungen vorgestellt und evaluiert,
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um die Beschreibung des Verhaltens (was?) eines Algorithmus von seiner Implemen-
tierung (wie?) zu trennen und gleichzeitig qualitativ hochwertige Hardwaresynthe-
seergebnisse für die Klasse der Bildverarbeitungsanwendungen zu liefern. Dies wird
durch die Generierung von einem hochoptimiertem, zielspezifischem Eingabecode
für kommerzielle HLS-Tools aus High-Level-Abstraktionen erreicht, die Parallelität,
Lokalität und Speicherzugriffsinformationen einer Eingabeanwendung erfassen. Bei
diesen Ansätzen wird eine Bildverarbeitungsanwendung als eine Reihe grundle-
gender Bausteine beschrieben, nämlich Punkt-, lokale und globale Operatoren,
ohne Berücksichtigung der Implementierung auf niedriger Ebene. Anschließend
wird optimierter Eingabecode für das gewählte HLS-Tool (Vivado HLS oder Intel
OpenCL SDK for FPGAs) unter Verwendung einer der folgenden unterschiedlichen
Programmiertechniken generiert: (i) ein Source-to-Source-Compiler, der für eine
domänenspezifische Sprache (DSL) der Bildverarbeitung entwickelt wurde, oder (ii)
Template-Metaprogrammierung zur Spezialisierung von C++-Eingabeprogrammen
zur Übersetzungszeit, (iii) eine partielle Evaluierungstechnik zur Spezialisierung von
Funktionen höherer Ordnung.

Wir stellen ersten den Source-to-Source-Compiler vor, der optimierten Eingabecode
für Intel OpenCL SDK für FPGAs aus einer DSL generiert. Wir verwenden das Het-
erogeneous Image Processing Acceleration (Hipacc) framework, bestehend aus einer
Bildverarbeitungs-DSL und einen Source-to-Source-Compiler, der ursprünglich für
Grafikprozessoren (GPUs) entwickelt wurde. Die Hipacc-DSL bietet High-Level-
Abstraktionen für Punkt-, lokale und globale Operatoren in Form von Sprachkon-
strukten. Während der Codegenerierung wandelt das Compiler-Frontend den DSL-
Eingabecode in eine abstrakte Syntaxbaum-Darstellung (AST) um und nutzt dabei die
Clang/LLVM-Compiler-Infrastruktur. Durch die Nutzung des Domänenwissens, das
aus dem eingegebenen DSL-Code gewonnen wird, wendet unser Backend mehrere
Transformationen an, um eine Beschreibung einer Streaming-Hardware-Pipeline
zu generieren. Im letzten Schritt generiert Hipacc OpenCL-Code als Eingabe für
den HLS-Compiler von Intel. Die Qualität unserer Hardware-Synthese-Ergebnisse
kann mit denen von Intels handoptimierten OpenCL-Code-Beispielen mithalten, was
den Durchsatz und die Ressourcennutzung angeht. Darüber hinaus erreicht Hipaccs
Code-Generierung einen signifikant höheren Durchsatz und verbraucht weniger
Ressourcen im Vergleich zu Intels Parallelisierungs-Intrinsic.

Zweitens stellen wir einen auf Template-Metaprogrammierung basierenden Ansatz
zur Entwicklung modularer und hochgradig parametrisierbarer Funktionsbiblio-
theken vor, die bei der Kompilierung mit HLS-Tools auch qualitativ hochwertige
Hardware-Syntheseergebnisse liefern. Bei diesem Ansatz besteht die Anwendungspro-
grammierschnittstelle (API) der Bibliothek aus generischen High-Level-Funktionen
zur Deklaration von Bausteinen von Bildverarbeitungsanwendungen, z. B. Punkt-,
lokale und globale Operatoren, im Gegensatz zu typischen Bibliotheken, die Funktio-
nen für komplette Algorithmen anbieten, wie z. B. OpenCV. Die Bibliothek ist mit
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den Best Practices von Vivado HLS sowie hardware-zentrierten Entwurfstechniken
wie Deep Pipelining, Coarse-Level-Parallelisierung und Bit-Level-Optimierungen
optimiert. Die Bibliothek enthält mehr als ein Vorlagendesign für jede algorithmische
Instanz, um für die Eingabeparameter optimierte Implementierungen nutzen zu kön-
nen. Sie enthält beispielsweise mehrere Implementierungen für die Behandlung von
Bildrändern und Parallelisierungsstrategien auf höherer Ebene, die für verschiedene
Eingabeparameter einer lokalen Operatorspezifikation in Betracht gezogen werden.
Darüber hinaus wird ein Auswahlalgorithmus zur Kompilierzeit vorgeschlagen, um
die am besten geeignete Implementierung anhand eines analytischen Modells für
Ressourcennutzung, Geschwindigkeit und Latenzzeit auszuwählen. Auf diese Weise
werden Implementierungsdetails auf niedriger Ebene vor den Benutzern verborgen.

Zusätzlich zu den vorgestellten Vorteilen der Verwendung von High-Level-Abstrak-
tionen zur Erhöhung der Abstraktionsebene in HLS zeigen wir, dass dieser Ansatz für
die Portabilität der Leistung über verschiedene Computerplattformen von Vorteil ist.
Ähnlich wie bei FPGAs kann die Leistungsfähigkeit von CPUs und GPUs nur dann voll
ausgeschöpft werden, wenn Anwendungsprogramme mit architekturspezifischen Op-
timierungen auf niedriger Ebene abgestimmt werden. Diese Optimierungen beruhen
auf grundlegend unterschiedlichen Programmierparadigmen und -sprachen. Als
Lösung hat Khronos OpenVX als ersten Industriestandard für die graphbasierte Spez-
ifikation von Computer-Vision-Anwendungen (CV) veröffentlicht. Die graphbasierte
Spezifikation ermöglicht die Optimierung von Speicherübertragungen zwischen ver-
schiedenen CV-Funktionen von einem gerätespezifischen Backend aus. Außerdem
verbirgt der Standard Implementierungsdetails auf niedriger Ebene vor der Algorith-
musbeschreibung. So sind beispielsweise die Speicherhierarchie und die Gerätesyn-
chronisation für den Benutzer nicht sichtbar. Der OpenVX-Standard unterstützt
jedoch nur eine kleine Anzahl von Computer-Vision-Funktionen und bietet keinen
Mechanismus, um Anwendercode als Teil eines OpenVX-Graphen einzubinden. Als
nächster Schritt wird HipaccVX als eine OpenVX-Implementierung und -Erweiterung
vorgestellt, die die Codegenerierung für eine Vielzahl von Computerplattformen un-
terstützt. HipaccVX nutzt die Standard-API und Graphen-Spezifikation von OpenVX
und bietet gleichzeitig neue Sprachkonstrukte zur Beschreibung von Algorithmen
unter Verwendung von High-Level-Abstraktionen, die sich an bestimmte Speicherzu-
griffsmuster halten (z.B. lokale Operatoren). Somit unterstützt es die Beschleunigung
von benutzerdefiniertem Code sowie die CV-Funktionen von OpenVX. Auf diese
Weise kombiniert HipaccVX die Vorteile von DSL-Designtechniken mit einer indus-
triellen Standardspezifikation.

Schließlich wird AnyHLS vorgestellt, ein neuartiger Ansatz zur Erhöhung der
Abstraktionsebene in HLS durch die Verwendung partieller Evaluierung als zen-
trale Compilertechnologie. Lediglich eine Sprache und eine Funktionsbibliothek
werden verwendet, um einen zielspezifischen Eingabecode für zwei kommerzielle
HLS-Tools zu erzeugen, nämlich Xilinx Vivado HLS und Intel FPGA SDK for OpenCL.

225



German Part

Hardware-zentrierte Optimierungen, die Code-Transformationen erfordern, werden
als Funktionen höherer Ordnung implementiert, ohne werkzeugspezifische Pragma-
Erweiterungen zu verwenden. Die Erweiterung von AnyHLS um neue Funktionen
erfordert keine Änderungen an einem Compiler oder einem Codegenerator, der
in einer anderen (Host-) Sprache geschrieben ist. Im Gegensatz zur Metaprogram-
mierung ist die Wohltypisierung eines Restprogramms garantiert. Infolgedessen
wird eine wesentlich höhere Produktivität als bei den bestehenden Techniken und
ein noch nie dagewesenes Maß an Portabilität zwischen verschiedenen HLS-Tools
erreicht. Die Produktivitäts-, Modularitäts- und Portabilitätsgewinne werden anhand
einer Bildverarbeitungsbibliothek als Fallstudie demonstriert.
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