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Abstract
Cone-beam computed tomography (CBCT) imaging is becoming increasingly important for awide
range of applications such as image-guided surgery, image-guided radiation therapy aswell as
diagnostic imaging such as breast and orthopaedic imaging. The potential benefits of non-circular
source-detector trajectories was recognized in early work to improve the completeness of CBCT
sampling and extend thefield of view (FOV). Another important feature of interventional imaging is
that prior knowledge of patient anatomy such as a preoperative CBCTor prior CT is commonly
available. This provides the opportunity to integrate such prior information into the image acquisition
process by customizedCBCT source-detector trajectories. Such customized trajectories can be
designed in order to optimize task-specific imaging performance, providing intervention or patient-
specific imaging settings. The recently developed robotic CBCTC-arms aswell as novelmulti-source
CBCT imaging systemswith additional degrees of freedomprovide the possibility to largely expand
the scanning geometries beyond the conventional circular source-detector trajectory. This recent
development has inspired the research community to innovate enhanced image quality bymodifying
image geometry, as opposed to hardware or algorithms. The recently proposed techniques in thisfield
facilitate image quality improvement, FOV extension, radiation dose reduction,metal artifact
reduction aswell as 3D imaging under kinematic constraints. Because of the great practical value and
the increasing importance of CBCT imaging in image-guided therapy for clinical and preclinical
applications as well as in industry, this paper focuses on the review and discussion of the available
literature in theCBCT trajectory optimization field. To the best of our knowledge, this paper is the
first study that provides an exhaustive literature review regarding customizedCBCT algorithms and
tries to update the community with the clarification of in-depth information on the current progress
and future trends.

1. Introduction

Ever since the introduction ofmodern tomographic imaging techniques in nuclearmedicine (Kuhl and
Edwards 1970,Muehllehner 1971,Muehllehner andWetzel 1971, Jaszczak 2006) and, above all, x-ray imaging
(Hounsfield 1973, Peters et al 1973,Maier et al 2018,Noo andKachelriess 2019), reconstructionwas at the center
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of this research. Soon after the laconic presentation of solving the inverse problem as linear equations in
Hounsfield (1973), the importance ofmore advanced functional approaches developed earlier Radon (1917),
Cormack (1963) became evident, and a plethora of related researchworks on reconstruction techniqueswas
published ever since then Fessler (2013).

To reconstruct a two-dimensional slice, itmakes sense in computed tomography (CT) to choose the
trajectory of an x-ray source and the detector array in such away that both orbit a common isocenter. This
trajectory is not ideal for the analysis of three-dimensional structures, as it does not generate sufficient
information for three-dimensional reconstruction Tuy (1983). However, since it is comparatively
straightforward to apply, the overwhelmingmajority of transmission tomographic systems follow this
geometry. This holds true for allmajor developments inCT, starting in the early days fifty years ago over the
introduction ofmore powerful or efficient imaging geometries. In additionmotion patterns such as spiral CT
Kalender et al (1990), multislice CT (whichwas already envisioned inHounsfield (1973) but realized by Elscint
not earlier than 1992 Seifert et al 1997) and cone-beamCT (CBCT) (Pelc andChesler 1979, Feldkamp et al 1984)
followed such conventional geometry. Numerous accounts on the development of tomographic imaging and
various types of reconstruction techniques emerged in the past decades (Gordon andHerman 1974,Webb 1990,
Kak and Slaney 2001, Buzug 2010).

The use of free-form imaging geometries, on the other hand, has only received little attention. Yet there are
developments aiming at freehand single photon emission computed tomography (SPECT) systemswhich
provide additional diagnostic quality in an interventional suite (Kleinjan et al 2016); an unconstrained cone-
beam computed tomography (CBCT) system, however, could also add substantial clinical benefit.
Interventional imaging provides an ideal experimental field to customize source-detector trajectories to the
patient and to optimize diagnostic task for several reasons: a prior interventional image (CTorCBCT) formost
of patients usually exists,these provide a detailed representation of the patient anatomy. Furthermore, the
imaging target including the specific region of interest and particular image features to be reconstructed or
localized tend to be verywell defined andfinally, additional information, including the location and sizes of
implants or tools and the treatment planning is knownprior to the intervention.

The advent of x-ray based robotic interventional systems has opened the door to significantly increased
flexibility in the design of CBCT acquisition orbits. A breadth of alternative CBCT trajectories—which can all be
theoretically implemented on such a robotic C-armCBCT aswell as novelmulti-sourceCBCT systems- has thus
been investigated recently in order to address various issues in the clinical scenarios: non-circular, tilted,multi-
circle and sinusoidal orbits of various frequencies and combinations of them to improve image quality (Stayman
and Siewerdsen 2013, Gang et al 2015, Boone et al 2019, Stayman et al 2019, Gang et al 2020, Thies et al 2020,Wu
et al 2020), a combination ofmultiple arcs to avoid interfering structures (Meng et al 2013,Hatamikia et al
2020, 2020,Hatamikia 2021), circular tomosynthesis to reduce the imaging dose (Chung et al 2018) and reverse
helical orbits, line-ellipse-line andmultiple parallel circular orbits to increase the field-of-view aswell as
reduction in cone-beam artifacts (Yu et al 2013, 2014, 2015, 2016, Gang et al 2018, Boone et al 2019, Reynold et al
2021). Onemay also imagine very compact x-ray tube/detector combinationswhich cover a volume bymeans
of combinedmotions in both 3D rotation and translation, or the combination of sources and detectorsmounted
to independent robotic devices.

This review focuses on the published strategies to optimize CBCT trajectories in non-conventional
computed tomography; both trajectory optimization techniques and the special goal theywere designed for are
presented.

2.Developments on trajectory optimization inCBCT

The additionalflexibility provided by robotic CBCT systems allows for implementation ofmore general source-
detector trajectories which are beyond the traditional circular and helical trajectories that have been the standard
for CBCT imaging since decades. The non-conventional trajectories were initiallymainly employed to address
thefield of view (FOV) and the sampling issues in interventional CBCT. For instance, non-circular trajectories
were used to improve 3D sampling and to permit extended axial and elliptical FOVs in order to reduce the
artifacts arising from standard circular CBCT trajectory. Tilted circular orbits were also used due to their
superior performance in improving the image quality and target localization for instance to improve the image
quality adjacent to the skull base and to improve localization inCT-guided biopsies. During the last decade,
several studies have suggestedmodifications of the orbit beyond simple tilts bymeans of optimizing non-
conventional CBCT trajectories and have reported several clinical advantages using this approach. In this section
we propose different categorization of the available literature on non-conventional CBCT trajectory design
according to their final goal in performing the trajectory optimization. In addition, we provide table 1which
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Table 1.Categorization of different studies according to different factors includingmain application, goal of the study, prior knowledge, trajectory parameterization, objective function and the optimization approach.

Categorization

Study Main application Goal Prior knowledge Trajectory parameterization Objective function Optimization approach

Stayman (Stayman and

Siewerdsen 2013)
Interventional imaging Task-based image quality improvement Prior CT Arbitrary sets of views on a sphe-

rical orbit

NPWMFdetectability index Greedy optimization

Gang (Gang et al 2015) Interventional imaging Task-based image quality improvement Prior CT Tilted orbits NPWMFdetectability index Gradient-based

optimization

Stayman (Stayman et al 2015) Interventional imaging Task-based image quality improvement Prior CT Tilt angle for every rotation angle NPWMFdetectability index CMA-ES

Stayman (Stayman et al 2019) Interventional imaging Task-based image quality improvement Prior CT Compositions of basis functions by

using B-Splines

NPWMFdetectability index CMA-ES

Hatamikia (Hatamikia et al 2020) Interventional imaging collision avoidance and dose reduction Prior CT Combinations of two short arcs FSIM Brute force

Amirkhanov (Amirkhanov et al

2010)
Object position optimisation

in industry

Image quality improvement at the sur-

face, dimensionalmetrology

CADfile of the object Tilted orbits Radon analysis of the surface, pene-

tration lengths of x-rays

Brute force

Schielein (Schielein et al 2016) Object position optimization

in industry

Overall image quality improvement CADfile of the object Tilted orbits Shannon entropy from the recon-

structed image

Brute force

Grozmani (Grozmani et al 2019) Object position optimization

in industry

Overall and local image quality

improvement

CADfile of the object Tilted orbits Estimation of theCNR from simu-

lated projections

Brute force

Brierely (Brierley et al 2018) Multi-shot imaging for defect

detection

Optimal defect detection CADfile of the object, expec-

ted defects

Arbitrary views CNRof expected defects Genetic Algorithm

Fischer (Fischer et al 2016) Twin-robotic CBCT in

industry

Task-based image quality improvement CADfile of the object Arbitrary views NPWMFobserver Greedy

Bauer (Bauer et al 2020) Twin-robotic CBCT in

industry

Reduction of scan time CADfile of the object Arbitrary views Sparsity of Fourier coefficients of the

reconstructed volume

Brute force

Herl (Herl et al 2020) Twin-robotic CBCT in

industry

Local image quality improvement CADfile of the object Arbitrary views Data completeness Greedy

Herl (Herl et al 2021) Twin-robotic CBCT in

industry

Local, task-based image quality

improvement

CADfile of the object Arbitrary views Data completenss, NPWMFobserver Greedy

Wu (Wu et al 2020) Image-guided surgery Metal artifact reduction No exact prior information

required

Tilted circular and non-circular

orbits

Map of spectral shift CMA-ES

Hatamikia (Hatamikia et al 2021) Interventional imaging Collision avoidance Prior CT Combinations of three short arcs FSIM Brute force and heuristic

Gang (Gang et al 2020) Interventional imaging Metal artifact reduction Noprior knowledge Tilted circular and a sinusoidal

orbit

Local completenessmetric CMA-ES

Thies (Thies et al 2020) Interventional imaging Metal artifact reduction Neighboring projections Non-circular orbit Detectability index Brute force
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categorizes different studies according to different factors includingmain application, goal of the study, prior
knowledge, trajectory parameterization, objective function and the optimization approach.

2.1. Extended FOVCBCT
A limiting factor for the continued expansion of CBCT imaging to new image-guided surgical procedures and
radiation therapy treatments is the small FOV. In standardCBCT imaging, for example, the FOV is limited due
to hardware design (i.e. detector length) and the predominate use of simple circular source-detector trajectories.
Clinically, the limited FOVprevents long (e.g. head and neck, spine, and aorta) (Powell et al 2010, Kauffmann
et al 2015, Richter et al 2015, Gang et al 2018, Boone et al 2019) andwide (e.g. pelvis, thorax, and liver) (Pung et al
2017) anatomical sites frombeing captured in a single CBCT image.Withoutmodification to the hardware
design, extended FOVCBCT imaging has beenmade possible bymoving beyond the standard circular source-
detector trajectory. Table 2 summarizes the proposedmethods for CBCTFOV extension and helps to better
illustrate the historical evolution of CBCT trajectory optimizationwith the goal of FOV extension.

2.1.1. Extending the lateral FOV
For image-guided surgery, extended lateral FOV imaging on robotic C-armCBCTs has been solved by offset
detector, rotated detector and dual isocenter approaches (Jaffray and Siewerdsen 2000, Jaffray et al 2002,
Manhart et al 2010,Herbst et al 2015, Stromer et al 2016, 2016). In addition, extended lateral FOV imaging is
already available through pre-programmed elliptical trajectories that take advantage of the flexibility of the
system. The increase in lateral coverage, however, comes at the expense of longitudinal coverage. Comparatively
for image-guided radiation therapy (IGRT), extended lateral FOV imaging using the on-board kV imager of a
linac has been investigated theoretically with elliptical trajectories (Li et al 2010) and experimentally with
trajectories such asmultiple complementary circular scans (Yang et al 2014). In the complementary circular scan
approach, Yang et al (2014) used two circular scanswhere the scanswere offset in both the longitudinal and
lateral directions from each other, enabling a total FOVwith longitudinal coverage of 39.5 cm and lateral
coverage of 45 cm. This is in comparison to the standard FOV (for a 40× 30 cm2 detector)with longitudinal
coverage of 17 cm and lateral coverage of 25 cm and standard FOVwith lateral offset with longitudinal coverage
of 15.5 cm and lateral coverage of 45 cm. Ziehmmobile C-arm is a CBCT systemwhich accomplishes its orbits
through a series of shift and rotationswhich overcomes the limitations of a non-isocentric gantry.

2.1.2. Extending the longitudinal FOV
The conceptualization of non-circular source-detector trajectories, accompanied by specialized reconstruction
algorithms for exact reconstruction, to facilitate extended longitudinal FOVCBCT imaging begun in the 1990s
(Zeng andGullberg 1992, Tam1997). During the following two decades, as CBCT imaging systems became
sufficiently sophisticated to implement alternative trajectories, three source-detector trajectories were identified

Table 2. Summary of the proposedmethods for CBCTFOVextension.

Study Year Goal Approach

Zeng (Zeng andGullberg 1992) 1992 Longitudinal FOV extension Circle-and-line orbit

Kohler (Kohler et al 2001) 2001 Longitudinal FOV extension Parallel circular trajectories

Manhart (Manhart et al 2010) 2010 Lateral FOV extension Offset detector

Li (Li et al 2010) 2010 Lateral FOV extension Elliptical trajectory

Yu (Yu et al 2011) 2011 Longitudinal FOV extension Line plus arc trajectory

Yu (Yu et al 2011) 2011 Longitudinal FOV extension Reverse helical trajectory

Tan (Tan et al 2012) 2012 Longitudinal FOV extension Helical trajectory

Zheng (Zheng et al 2012) 2012 Longitudinal FOV extension Double orbit

Yu (Yu et al 2014) 2014 Longitudinal FOV extension Reverse helical trajectory

Yu (Yu et al 2014) 2014 Longitudinal FOV extension Multi-turn reverse helix trajectory

Yang (Yang et al 2014) 2014 Lateral FOV extension Complementary circular scan

Herbst (Herbst et al 2015) 2015 Lateral FOV extension Dynamic detector offset

Yu (Yu et al 2015) 2015 Longitudinal FOV extension Reverse helix trajectory

Stromer (Stromer et al 2016) 2016 Lateral FOV extension Rotated detector

Yu (Yu et al 2016) 2016 Longitudinal FOV extension Line-ellipse-line trajectory

Gang (Gang et al 2018) 2018 Longitudinal FOV extension Multi x-ray source

Boone (Boone et al 2019) 2019 Longitudinal FOV extension Multi x-ray source

Rafic (MohamathuRafic et al 2019) 2019 Longitudinal FOV extension Two circles with table translation

Guo (Guo et al 2020) 2020 Longitudinal FOV extension Extended line-ellipse-line trajectory

Becker (Becker et al 2020) 2020 Longitudinal FOV extension Multi x-ray source

Tess (Reynolds et al 2022) 2021 Longitudinal FOV extension Multi turn reverse helical trajectory
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as leading candidates for realizing extended longitudinal FOV in clinical settings. Theseweremultiple parallel
circles (Kohler et al 2001, Zheng et al 2012, Gang et al 2018, Boone et al 2019,MohamathuRafic et al 2019), the
reverse helical trajectory (Pearson et al 2010, Tan et al 2012, Yu et al 2015, Reynolds et al 2022) and the line-
ellipse-line (Yu et al 2016, Guo et al 2020) (an extension of the circle-line-circle trajectory Lu et al 2012), as
shown infigure 1.

Drawing inspiration from the established ‘step-and-shoot’ cine technique inCT, themultiple parallel circles
represent the simplestmodification of the standard circular source-detector trajectory (figure 1(a)). Thefirst
implementation of themultiple parallel circle trajectory clinically was in 2012 (Zheng et al 2012), using the on-
board kV imager of a linac during IGRT for head and neck aswell as prostate cancer. The trajectory contained
two parallel circles separated by a longitudinal couch shift, ensuringminimal overlap of the individually
reconstructed volumes, enabling an extension of the FOV from15.9 to 31.8 cm (full-fan acquisition).
Conceivably, increasing the number of circles would lead to further increases in the FOV.One advantage of the
multiple parallel circle trajectory is being able to utilize standard filtered back projection reconstructions
Feldkamp et al (1984), with no image acquisition occurring during the couch shift. Clinically, the disadvantages
of themultiple parallel circle trajectory are the potential of doubling the imaging dose in the overlap region
(especially if any organs at risk fall in the overlap) and possibility of reduction in geometric accuracy in thefinal
combined image if the individual reconstructions are not rigidly registered. Once again turning toCT
acquisitions for inspiration, the possibility of implementing helical trajectories onCBCT systems has also
considered (Gupta et al 2006, Yu et al 2011, 2014, 2014). However, unlike CT systemswhere the gantry can
continuously rotate, CBCT systems are typically limited to afinite rotation in one direction of between 240°and
400°. This requires the trajectory to take the formof a reverse helix, where the direction of the helix is reversed at
the end of each rotation. Thefirst experimental implementation of a reverse helical trajectory for extended
longitudinal FOVCBCT imagingwas conducted on a linac in 2012 (Tan et al 2012). Aswas the case for the
multiple parallel circle trajectory, the applicationwas again IGRT for both head and neck aswell as prostate
cancer. Tan et al (2012) combined simultaneous gantry rotation and table translation to complete the reverse
helical trajectory and extend the FOV from17 to 19 cmwith a 360°helical scan, and out to 54 cmwith a 720°
helical scan. Soon thereafter in 2015 Yu et al (2016), the reverse helical trajectory was applied to image-guided
surgery, enabling extended FOV in the interventional room. Taking advantage of the flexibility of robotic C-arm
CBCT imaging systems, Yu et al (2016) designed their reverse helical trajectory to be solely realized by the
movement of theC-arm (rotation and translation). This eliminated the need for precise couch control, which
was and still is not universally available in all interventional rooms.Using a robotic C-armCBCT imaging system
and completing a total of 5 turns (240°per turn), Figure 1 (b), the reverse helical trajectory described byYu et al
enabled extension of the FOV from16 to 27.4 cm. In 2021, Reynolds et al (2022) increased the angular coverage
of each turn to 400°and re-introduced a continuous couch shift, allowing the FOV to be extended from17 to
80 cm.Motivation to re-introduce the couch shift was driven by the limited spacewithin an interventional room
and the consideration of collision avoidance.Having theC-arm complete the entire trajectory (rotation and
translation) requires the entire length of the extended FOV to be cleared from surgical equipment and/or
personnel during the acquisition to avoid potential collisions. However, delegating the translationmotion to the
couch allows less clearance for the gantry rotation (i.e. that of a conventional circular source-detector trajectory).
In pursuit of shorter acquisition times and simpler source-detector trajectories, efforts were placed into looking
at including a line segment between rotational arcs (either elliptical Yu et al 2016 or circular Yu et al 2011, 2010)
to extend the FOV (figure 1(b)). Thefirst implementation of the line-ellipse-line trajectory on a robotic C-arm
CBCT systemwas in 2020. Guo et al (2020) utilized two elliptical arcs separated by three line segments (line-
ellipse-line-ellipse-line), enabling an extension of the FOV from17 to 20 cm.Conceivably, increasing the
number of ellipses and lines would lead to further increases in the FOV (figure 1(c)). Pivoting to hardware

Figure 1.Extending the longitudinalfield-of-view using (a)multiple parallel circles (Zheng et al 2012), (b) a reverse helical (Yu
et al 2011) and (c) a line-ellipse-line trajectory (Guo et al 2020).
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modifications, in 2018. Gang et al (2018) investigated the possibility of using 3 off-set sources, effectively
enabling 3 parallel circular acquisitions simultaneously without the need for any translation. The focus of the
workwas on allowing long extremity sites to be captured in a single image, with the resulting FOV from this
study, approximately 30 cm. In 2019, Boone et al (2019) looked to further expand the possible imaging
geometries of CBCT systems, increasing the number of x-ray sources further aswell as considering pulsing
groups of the sources for cone beam and tomosynthesis applications (Becker et al 2020).

2.2. Task-drivenCBCT trajectory optimization
CT scans are often performed to obtain the necessary information for a decision, either by a human or an
automated algorithm. Examples are CT for interventional neuroradiology (Capostagno et al 2019), CT to guide
screw placement (Yoo et al 2013), CT for bronchoscopy guidance (Setser et al 2020), weight-bearing CT (Maier
et al 2011, Choi et al 2013, 2014) andCT for the guidance of complex needle paths (Busser et al 2013). In this
context, a CT scan is ideal if it optimally increases the probability that the right decision ismade. Figure 2 shows a
workflow for task-driven imaging using a robotic C-armCT system fromStayman et al (2019).

LetH be a task-function that corresponds to a crucial signal in theCT-scan, describing the location of
interest and the frequencies of interest. Task-driven trajectory optimization aims to optimize theCT scan so that
such tasks can be detected optimally. In contrast, task-driven trajectory optimization does not optimise the
overall image quality of the CT scan. Thismeans that the image quality of some features, e.g. image areas and
evenmaterial transitions, canworsen, but the detectability of the specified task should be increased. Although
task-drivenCT scans therefore are ideal to analyze specific features with a small number of projections, they are
notwell suited to look for an unknown feature (Herl et al 2021).

To evaluate whether a CT assists in detecting a task, several options are available.Most obvious, experts,
mainly doctors, can be asked directly in a so-called visual grading analysis (Verdun et al 2015). However, this is
highly subjective and cannot be automated. Computationalmethods, so-calledmodel observers can be applied
to detect a task in aCT image automatically (Barrett et al 1993).Model observers can be described by a decision
functionλObserver thatmaps theCT image to a probability number in [0,1] that depends on the probability that
the task-signal is present in the image (Barrett et al 1993). The signal to noise ratio of amodel observer, also called
detectability index, indicates the performance of amodel observer. The research groups of Siewerdsen and
Stayman published several task-drivenCBCT trajectory optimization approaches (Stayman and
Siewerdsen 2013, Gang et al 2015, 2015, Stayman et al 2015, 2019). Gang et al (2011) showed that the so-called
non-prewitheningmatched filter observer (NPWMF) corresponds reasonably well to the human observer.
Following (Verdun et al 2015), the detectability index of theNPWMFobserver regarding a specific taskH can be
written in the Fourier-domain as:

( )∭
∭

( ) ≔
[ ( ) · ]

( ) · [ ( ) · ]
( )¢ Y

Y

Y Y
d

df df df

df df df

H

H

MTF

NPS MTF
. 1

x y z

x y z

NPWMF
2

l
2 2

l l
2

Figure 2. Illustration of a task-drivenCT imagingworkflow fromStayman et al (2019). The grey arrows represent the traditional task-
independent workflow,while thewhite arrows represent the task-drivenworkflow that integrates knowledge about the patient and
imaging task.
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WithMTFl andNPSl denoting the localmodulation transfer function (MTF) and the local noise power spectrum
(NPS) at a location l and the integrals computed over theNyquist region of ( fx, fy, fz) spatial frequencies.Ψ
generally denotes all available quantities of the image acquisition process, above all the projections.

For efficient calculation, Fessler (1996), Fessler andRogers (1996) presented approximations for theMTF
and theNPSwhen using the penalized-likelihood-reconstruction:

( ) ≔ { }
{ }

( )
b

Y
+







e

e Re

A DA

A DA
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∣ { }∣
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With  denoting the 3DFourier transform,A is the systemmatrix,D is a diagonalmatrix of the projection
values, el is a unit vector indicating the relevant voxel at the location l,R is a regularizationmatrix of the
penalized-likelihood-reconstruction andβ is a weight for this regularization.

Stayman and Siewerdsen applied these approximations to use the detectability index of theNPWMF as a
figure ofmerit for task-driven trajectory optimization formedical C-armCT systems. In several approaches,
they optimized trajectories using different parametrisation and optimization approaches. In Stayman and
Siewerdsen (2013), Stayman and Siewerdsen optimized arbitrary sets of views on a spherical orbit using a greedy
optimization approach. InGang et al (2015), as part of amore general framework for CTparameter
optimization, Gang et al applied theNPWMF for the optimization of task-specific circular trajectories using a
gradient-based optimization approach. In Stayman et al (2015), Stayman et al optimized the tilt angle for every
rotation angle using an evolutionary optimization algorithm, theCMA-ESHansen andKern (2004). In Stayman
et al (2019), Stayman et al optimized trajectories based on compositions of basis functions by using B-Splines,
again usingCMA-ES (Hansen andKern 2004) for optimization.

Capostagno et al (2019) demonstrated several examples for task-driven trajectory optimization following
Stayman et al (2019) for interventional neuroradiology. They showed a reduction in noise and an increase of the
detectability index ranging from7% to 28%.Asmetal influence reduces the detectability, Capastagno et al
showed that task-driven trajectory optimization ismost efficient in the presence of highly attenuating
components likemetal. Figure 3 fromCapostagno et al (2019) shows results for imaging an embolization coil
using task-driven trajectory optimization.

Several other works built on the task-driven trajectory optimization frameworks of Stayman et al
(2019, 2015). Zaech et al (2019) extended the approach for on-line trajectory optimization. Fischer et al (2016)
applied and extended the approach for industrial CT (see chapter 3)

2.3. CBCT artifact reduction
CBCTpresentsmany image quality factors; however, cone-beam sampling effects are among themost
challenging to assess in a rigorous, quantitativemanner since they are highly object-dependent. Tuyʼs sufficiency
condition (Tuy 1983) states that, for a known and fixed source trajectory, any plane through a point in the target
objectmust intersect the source trajectory to be precisely reconstructed. Tuy defines the requirements for
complete image sampling and, therefore, a theoretically accurate image reconstruction by identifying the points

Figure 3.Examples for task-driven trajectory optimization fromCapostagno et al (2019) for imaging around an embolization coil. (a)
Shows the scenario including 30 orangemarkers at which locations the detectability indexwas calculated. (b) and (c) Show several
trajectories; the task-driven trajectories are pink, while the standard circular trajectory is green.
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in the FOV that can be reliably reconstructed. In the scenario of a circular source trajectory, no point outside the
trajectory plane is fully sampled (in terms of the Tuyʼs condition). Various approaches with diverse source-
detector geometries such as theOnSight 3DExtremity CT System (CarestreamHealth, Rochester, NY,USA)
Gang et al (2018) featuring three pulsed sources and themulti-source IZOview breast CT System (Izotropic
Corporation, BC, Canada)Boone et al (2019), withmultiple simultaneously pulsed sources, as well as non-
circular scan trajectories allow improving data completeness. Nevertheless, thesemore complex systems and
configurations reveal the need for quantitative and practical image qualitymetrics that are not limited to the
axial plane. A newfigure ofmerit for sampling completeness (tan(Ψ)min) has been proposed (Tersol et al 2022)
to analytically quantify cone-beam artifact using a three-source CBCT scanner (figure 4), where for every point
in the FOV,Ψmin represents theminimum ray angle it generates with the source across the scan trajectory.
Effectively, tan(Ψ)min defines towhat extent the Tuyʼs condition ismet for any point in the FOV and is a
function of the scan trajectory and the relative position of the point in the test object with the source. Bymeans of
theCorgi PhantomSiewerdsen et al (2019), which contains a series of disk-pairs distributed across the z-axis and
parallel to a circular non-tilted scan trajectory (i.e. the axial plane), themagnitude of the artifact was computed
from themodulation in longitudinal signal profiles across the disk pairs. The higher themodulation, the lower
the artifact. The relationship between tan(Ψ)min and themodulationwas continuous and consistent across all
experiments performed, proving the connection between this analytical FOV and the empiricalmeasurements
and establishing tan(Ψ)minwhich is an easy computablemetric that provides valuable insight on sampling
completeness Tersol et al (2022). In addition, theworkTersol et al (2022) illustrated the advantages of tilted
source-detector trajectories, which displayed an evidently improvedmodulation between the disks, proving that
for C-arm tilts between 0°and 15°, themodulation range decreased significantly with an increase in the tilt.

The authors inCarrino et al (2014) performed an initial assessment of dose and the image quality of a CBCT
scanner including 3 sources along the z-direction used to extremity imaging (including theweight-bearing lower
extremities). They reported that a dedicated extremity CBCT scanner (e.g. scanner shown infigure 4)which is
able to image upper and lower extremities (includingweight-bearing examinations) can provide satisfactory
dose characteristics and an adequate image quality and less artifact which can be used for further evaluation in
clinical applications. In another study Zbijewski et al (2011), authors evaluated the design and initial imaging
performance of aCBCT systemused formusculoskeletal (MSK) extremities. Their proposed design
complements conventional CT andMRand showed that a variety of potential clinical scenarios e.g. diagnosis,
assessment of therapy and treatment planning can benefit from their approach. They used a theoretical
modeling including cascaded systems analysis ofMTF aswell as detective quantum efficiencywhichwas
computed as a function of dose, source power, kVp, system geometry and filtration. Their results demonstrated
that their proposed system can deliver volumetric images of the extremities inclusing soft-tissue contrast
resolutionwhich is comparable to diagnostic CT. In addition, their system can improve the spatial resolution
and reduce image artifact at potentially reduced dose. In another studyDemehri et al (2014), the same research
group evaluated visualization tasks using CBCT imaging in comparison tomulti-detector CT (MDCT) for
musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were used to assess soft tissue and bone
visualization tasks using a clinicalMDCT and a dedicatedCBCTprototype using nominal protocols (120 kV
p–300mAs forMDCT; 80 kVp–108mAs for CBCT). Their results showed theCBCT could lead to an excellent

Figure 4. Illustration of the three-source CarestreamCBCT scanner installed at Imaging for Surgery, Therapy andRadiology (I-STAR)
laboratory, JohnsHopkinsUniversity. Upper,Middle and Lower denote the upper,middle, and lower x-ray sources, respectively.
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image quality in visualization of bone visualization and satisfactory image quality in visualization of the soft
tissue.

2.4. Collision avoidance trajectory optimization and angular range reduction
One limitation regarding the conventional circular CBCT trajectory is thewide angular rangewhich is needed
for reconstructing the 3Dobject (either full circle (360°) or short circle (180°+fan arcs)). However, there are very
often clinical scenarios e.g. during surgery where only a small projection set with a limited angular range can be
acquired. The number and the nature of the assistant tools imposes restrictions on the available space in the
intervention room. In these cases, the standard circular trajectory is not realizable without rearranging the
surgical equipment and/or personnel. Several clinical applications have found the angular range less than 180°
beneficial (Sidky et al 2009, Je et al 2014,Hatamikia et al 2020). In addition to the interfering equipment, the
patient size can also impose such challenges specially in complex interventions where repetitive 3D scans are
needed and othermedical devices hamper access to the patient; therefore, such a circular trajectory withwide
angular range can be problematic due to the device collisions, patient positioning and the operation room setup
by itself (Ladikos et al 2008, Padilla et al 2015,Hua et al 2017,Mann et al 2019).

Two examples of possible kinematic constraints due to the patient size and othermedical devices are
illustrated on theC-arm geometry infigure 5. Alternative data acquisition trajectories can assist actuating the
CBCT system around any interfering structure and therefore limited angle collision-avoidance source-detector
trajectories are of great potential advantage for kinematically challenging clinical scenarios. Several collision
detection techniques have been researched for radiotherapy in different forms including 3Dor computer-aided
design (CAD)design systems (Humm et al 1995, Zou et al 2012, Yu et al 2015) or using optical detection
approach based on the laser camera (Brahme et al 2008). In a recent studyDavis et al (2019) authors proposed to
modify the source-detector trajectories to address the collision problem in radiotherapy. They investigated
trajectories for CBCT imaging in IGRTwhich are able to avoid collisionswhich happenmostly between the
gantry, kV detector and the patient due to the patient size, pose orfixation devices. They proposed to use a virtual
isocenter with an adjustablemagnification during the data acquisitionwhile keeping the image quality
comparable with conventional imaging. In their proposedmethod, a virtual isocenter trajectorymoves
constantly the patient while gantry rotation preserves the separation between these two. In their strategy, the kV
detector supported a dynamicmovement andmagnificationwhich helped to avoid the angular rangewith the
potential collisions while recording sufficient data to preserve required FOV. Their proposed technique of
collision avoiding trajectories could successfully avoid patient-device collisions while resulting in an image
quality comparable to the standard circular trajectory and therefore enabling CBCT imaging for those patients
who cannot otherwise be imaged.

In another study Zhao et al (2019) scan orbits and acquisition protocols were optimized for 3D imaging of
theweight-bearing spine using aMultitomRax system (twin-robotic x-ray system). The authors proposed a
simulation frameworkwhich can be used for systematic optimization of protocols in terms of imaging dose,
noise, scatter and task-based performance in 3D image reconstructions. In addition their proposed trajectories
using the Rax systemhas a largeflexibility to prevent patient collisions.

Non-coplanar radiation therapy is another clinical applicationwhere limited angle source-detector
trajectories can be of potential advantage. Non-coplanar beams are crucial in treatment of cranial/non-cranial
tumors.However, treatment verification usingCBCT is usually challenging due to the patient couch rotation/
kicks. The reason is that usually limited and unconventional angles are possible in order to prevent collisions
between gantry, patient, on-board imaging system and couch (Meng et al 2013, Padilla et al 2015). In such cases,

Figure 5.Non-coplanar source-detector trajectory. One example of (a) standardCBCT circular trajectory (b)non-conventional and
limited angle trajectory possible for CBCT verification in non-coplanar radiation therapy (Meng et al 2013,Hatamikia 2021).
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source-detector trajectorywith a limited angular range is required.Meng et al (2013) suggested a CBCT
verification strategywhich combines a prior image constrained compressed sensing (PICCS) reconstruction
methodwith the image registration step. They used a pre-existing CTorCBCT at the normal position. The
translated and rotated prior image according to the small patient table and translationwas served as the initial
image for PICCS reconstruction. Their results showed that using their approach efficient reconstructed images
from the patient can be reconstructed using projection sets with an angular range of 60°. They showed that they
can appropriately verify non-coplanar beams using theCBCT scanswith patient table rotations of 45°(figure 5).

Hatamikia et al (2020, 2021) proposed a framework for target-based trajectory design inCBCT imaging.
They designed collision avoidance source-detector trajectories which could enable CBCT imaging under
kinematic constraints for cases where standard circular trajectories are not feasible. They defined two different
types of rotation: (1) right anterior oblique (RAO)/left anterior oblique (LAO) rotationwhile having an oblique
at various fixed cranial (CRA)/caudal (CAU) angles, (2)CRA/CAU rotationwith an oblique at various fixed
RAO/LAOangles. Each of these possible rotationswere divided into subsets of short arcs (figure 5). This
approach allowed for additional degrees of freedom as compared to a limited view single arc as it allows for
increasedflexibility under inevitable kinematic constraints and facilitatedCBCTunder severe kinematic
constraints, for instancewhen arcs larger than 80°are not feasible. In addition, it provides flexibility which could
enhance reconstruction compared to a continuous limited view single arc. The Feature SIMilarity Index (FSIM)
was used as the objective function in order to evaluate the imaging quality provided by different novel
trajectories. They showed that their proposed optimized trajectories which included three short arcs could
achieve an image quality comparable to that of the standard circular CBCT for different anatomical targets.
Considering the fact that their proposed trajectories were designed under strong kinematic constraints, the
achieved performancewas significant (figure 6).

2.5.Dose reduction
The number of projections which are required to reconstruct an adequate CBCT image using a circular source-
detector trajectory is high and introduces a considerable radiation dose delivered to the patient. Recently, the
accumulated radiation dose due to the repetitive use of CBCT scans needed for image-guided procedures aswell
as daily pretreatment patient alignment for radiation therapy has become a concern. Therefore, it is desirable for
patient and health care providers to reduce the amount of radiation exposure required for these procedures.

Figure 6.Visualization of different kinematic constraints which can happen during interventions (upper row: collisionwith the
patient body (left) and collisionwith surgical equipment (right)). Yellow rectangle represents the collision area and black dashed plot
shows the circular trajectory. Reconstruction results using collision avoidance trajectory compared to circular trajectory (lower row,
left) and 3D visualization of the collision avoidance trajectory (red solid plot) compared to circular trajectory (black dashed plot)
(lower row, right)Hatamikia et al (2021, 2020).

10

Phys.Med. Biol. 67 (2022) 16TR03 SHatamikia et al



There are several studies which have evaluated the radiation dose fromCBCT for interventional procedures.
Authors in Stock et al (2012) reported that although the radiation dose from a single CBCT scan compared to the
treatment dose is negligible, the accumulatedCBCTdose received by patient during the entire radiotherapy
sessions can be significantly higher, therefore a careful dosemanagement is required. Another research group
reported Berris et al (2013) that in some cases C-armCBCTdelivers a comparatively high dose to patients and
the total delivered radiation dose can reach or even exceed the dose from a correspondingMDCTprotocol.
Different approaches have been proposed in order to perform aCBCTdose reduction bymeans offilters e.g.
copper or bowtie filters (Roxby et al 2009, Sun et al 2017), optimizing scan parameters (Wang et al 2008,
Abul-Kasim et al 2012), using statistical reconstruction (Wang et al 2014, Sohn et al 2020) and projection
reduction (Lu et al 2010). The authors in Lu et al (2010) investigated the effect of projection reduction on image
registration accuracy and image quality for CBCT reconstruction. In another study Sun et al (2017) authors
evaluated the breast dose using routine thoracic CBCT and investigated the possible dose reduction protocols.
They tried to reduce the exposure dose bymeans of partial arcwith bowtiefilter and investigated the effect of this
dose reductionmethod on image registration accuracy. The dose received by breast for variety of scanning
protocols and also for different breast sizes was compared. They concluded that using 220°partial CBCT arc scan
with bowtie filter a significantly lower dose could be received by contralateral breast while the accuracy of the
image registrationwas not reduced. Recently, the advent of advanced robotic C-arms for clinical usage has
prompted researcher to assess dose reduction possibilities bymeans ofmodifying imaging scan trajectories. A
full 3DCBCTdata set is not necessary to acquire for certainmedical applications and only specific information
such as the position of high-contrast objects or particular lesion is relevant. In diagnostics, tomosynthesis can
offer tomosynthesis specific scanning protocols for such applications (Stevens et al 2003, Nett et al 2007, Claus
et al 2015, Chung et al 2018). Although such scans offer less image quality compared to standardCBCT, they
provide the critical information at lower dose exposures for diagnosis applications. This can be helpful for
interventional tasks such as angiography, seed position checking or catheter trackingwhere only selective
information is essential. Therefore, the integration of tomosynthesismethods in interventional radiology would
offer a new approach to reduce the dose exposure in imaging. Chung et al implemented a circular tomosynthesis
orbit (figure 7(a)) on a clinical CBCT systemusing a step-and-shoot technique (Chung et al 2018). Although
limited angular artifacts were observed in the reconstructed images, they concluded that circular tomosynthesis
scans can help to reduce the dose exposure when only the positions of high-contrast objects need to be
determined. InHatamikia et al (2020, 2020) authors proposed a new approach for dose reduction inCBCTby
personalizing scan trajectories. The basic ideawas to design trajectories which include only themost informative
projectionswith arbitrary 3Dorientationwhile skipping unnecessary projection data in order to reconstruct
individual VOIs. They proposed customizedmulti-arc trajectories for C-armCBCT reconstruction. AVOIwas
selected froma prior diagnostic CT scan, and a variety of possible trajectory combinations from short arcs was
simulated and reconstructed. The optimal arc combination is selected throughmaximizing an objective
function fed by the imaging quality within aVOI provided by different x-ray positions on the digital phantom
(prior CT). Using this approach, they could achieve a reasonable image quality compared to the referenceC-arm
circular CBCT for different VOIs inside an anthropomorphic phantomwhile reducing projections to a fourth of

Figure 7.Two examples of non-conventional trajectories proposed for dose reduction inCBCT, (a) tomosynthesis trajectoryChung
et al (2018), (b)multi-arc trajectoryHatamikia et al (2020).
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a standard circular scan. The lower number of projectionsmakes their proposedmulti-arc trajectories suitable
for low-doseCBCT interventions. They also showed their proposed trajectories could improve the
reconstruction performance in theVOIwith respect to circular trajectories with equivalent angular sampling
(figure 7(b)).

2.6.Metal artifact reduction
Non-conventional trajectories as described in section 2.3 can help facilitating CBCTunder kinematic
constraints; however, even in case with adequate actuation spacewhere imagingwith the standard circular
trajectory is feasible, a suboptimal location of the imaging target adjacent tometal implants, needles, surgical
tools or other radiopaque structures such as bones can result in insufficient image quality in the reconstructed
CBCT image (Wu et al 2020). Deterioration of the image quality—which originates frommetal artifacts and
radiopague structures for instance—arises from a bias and/or discrepancy between the assumedmodel for
reconstruction of the projections (i.e. the inversemodel) and the actual physical processes of image formation (
i.e. the forwardmodel)Boas and Fleischmann (2012). Non-circular orbits can be used in some cases to avoid
non-beneficial projections and therefore improve image quality in vicinity of themetal objects substantially
Gang et al (2020). The authors in Thies et al (2020) tried to performorbit optimization on-the-fly in order to
improve reconstruction image quality in the presence ofmetal artifacts. They proposed to optimize theC-arm
CBCT source-detector trajectory during theCBCT scan to improve reconstruction image quality in the vicinity
ofmetal artifacts. They performed the adjustments during the scan using aConvolutional Neural Network
(CNN) and regressed an image qualitymetric over all possible next projections given the current x-ray image.
Adjusting the scan trajectory to obtain the optimal views resulted in non-circular source orbits that could avoid
poor images and improved image qualitymainly in terms ofmetal artifacts. Amethod in order to reduce the
impact ofmetal artifacts by prospectively definingC-arm source-detector orbits was proposed inWu et al (2020)
(figure 8). Their proposedmetal artifact avoidance (MAA)method couldmitigatemetal-induced biases in the
projection data and does not need exact prior information of the patient ormetal implants. TheMAAmethod
included coarse localization ofmetal objects,model-based estimate ofmetal-induced x-ray spectral shift for
possible source-detector trajectories and identification of an optimized orbit in order to reduce the variation in
spectral shift. Theirmetal-avoidance orbits could reduce root-mean-square error (RMSE) in the reconstructed
image and ‘blooming’ artifacts by 46%–70%and 20%–45% respectively.

InGang et al (2020),Maier et al (2015) the authors used non-circular trajectories tomaximize data
completeness in the presence ofmetal. They used a local data completenessmetric based onTuyʼs condition.
Theirmeasure counts the percentage of great circles which are sampled by an individual trajectory, accounts for
the presence ofmetal object and tries tomake use of x-rays that pass through the target object but avoid x-rays
that pass through themetal object. The performance of sinusoidal orbits at different frequencies andmagnitudes
inmetal artifact reductionwas investigated. They compared their results with circular and tilted circular
trajectories and they observed that a sinusoidal orbit of two cycles per rotation can performbetter in removing
metal artifacts. In another study using the same image qualitymetric Gang et al (2020), the authors tried to
optimize non-circular orbits in simulationswith the aimofmaximizing Tuyʼs condition in the presence ofmetal

Figure 8. Flowchart for theMAA algorithm. Scout views are pre-processed and backprojected to form a coarse attenuationmap,
which is segmented using aU-Net to localizemetal objects. Biases associatedwith spectral shift are then predicted as a function of
gantry rotation and tilt angles to yield ametricmapWu et al (2020).
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objects (figure 9). Their optimized orbits showed a great improvement inmetal artifacts reduction and visibility
of in-plane structures whichwould be obscured bymetal object. Their proposed orbital design scheme tried to
optimize trajectories over arbitrarymetal locations and therefore, the optimized arbitrary trajectorywas
generally useful regardless of wheremetal object is located. In addition, their approachwas resilience also in case
of havingmultiplemetal objects. In a recent studyHatamikia et al (2022), the performance of the prior image
constrained compressed sensing (PICCS)CBCT reconstruction in combinationwith optimized source-detector
trajectories in presence of a needle inside an anthropomorphic thorax phantomwas evaluated for cases where an
initial standardCBCT is a available. Their results using small projection set demonstrated a significant reduction
inmetal artifacts and improvement in needle localization compared to the FDK and PICCSmethodswhen using
a sparse-view circular trajectory.

3. Trajectory optimization in industrial CBCT

CBCT is also relevant for industrial applications (Zabler et al 2021), especially inmaterials research and quality
control. A high variety of objects is examined. In some cases, examined objects aremade fromonly onematerial,
e.g. plastic ormetal. In other cases, examined objects consist ofmany components of differentmaterials and
sizes.

Figure 9. 3D visualization of a circular, helical and designed orbit as source location connected to the center of rotation (up),
Reconstructed images from singlemetal and doublemetal phantoms using three plotted orbits (down) (Gang et al 2020).
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In principle, trajectory optimization in industry is equally relevant and follows the same basic steps as in
medicine. Asmany relevant objects containmetal or aremade completely ofmetal, artefact reduction and image
quality improvement is crucial formany applications. Dose reduction is not necessary as x-rays do not harm
objects. Nevertheless, a reduction of the projection number is beneficial to reduce the scan time and the cost of
the scan.

Analogous tomedicine, inmost industrial trajectory optimization approaches, the source-object-distance
and the source-detector-distance is assumed to be constant. In a standard industrial CBCT system, an object is
placed on a turntable between the x-ray source and the x-ray detector. By rotating the object, projections are
generated from a circular trajectory. In this case, the optimization of such circular trajectories is performed by
optimizing the object position on the turntable. In order to demonstrate the influence of the object position
regarding image quality andmetal artefacts, figure 10 shows twoCT scans of the same object, but with different
object positions. In both cases,metal artefacts appear in front of and behindmetal components. However, due to
the rotation, different regions of the object are disturbed bymetal artefacts.

With standard industrial CBCT systems, objects of up to 40 cmmaximal diameter can be scanned. To scan
large-scale objects, e.g. automobiles, non-standard systems like robot-supported CBCT systems are required. In
industrial twin robotic CBCT systems, the source and the detector aremounted on two separate robots that can
move freely around the object. This allows for arbitrary scanning trajectories, limited only by the range and
flexibility of the robots and the size and shape of the object. Figure 11 shows an industrial twin-robotic CBCT
system.

In the following,first, trajectory optimization approaches for standard industrial CBCT system for circular
trajectories and, second, trajectory optimization approaches for twin robotic CBCT systems for arbitrary
trajectories are reviewed.

3.1.Object position optimization in standard industrial CBCT
Amirkhanov et al (2010) usedCADdata of the object in formof an STL (Standard Triangle/Tessellation
Language)file as the prior knowledge. They optimized the object position ofmonomaterial objects with the aim
of optimally digitising the surface of the object given by this STLfile. They used a brute force approach utilizing
threefigures ofmerit. First, for each position themaximumand the average penetration lengths of the relevant
x-rays were considered. High penetration lengths led to higher probability and strength of artefacts and image
quality issues like beamhardening, noise andmetal artefacts and, thus, wereminimized. Second, for each of the
surface triangles, they considered its representation in the Radon space. If x-rays parallel to a surface triangle
have beenmeasured, the necessary information for imaging the corresponding surface has been acquired. To
ensure true reconstruction ofmost surfaces, the amount of surfaces for which parallel x-rays aremeasured is
maximized. Additionally, ametric for the object stability is considered. Using these threemetrics, a brute force
approachwas applied for finding the optimal object position.

Figure 10.Comparison of twoCT scans of an intervertebral disc implant of theMedtronic GmbH: the two rows correspond to two
different positions of the object during aCT scan.
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Ametova et al (2017) andButzhammer et al (2020) examined the concept of analyzing themeasurements
according to each surface triangle for further object position optimisation. Reisinger et al (2011) and Schmitt
et al (2012) both analyzed the penetration lengths for object position optimization.

Schielein et al (2016) andXue and Suzuki (2017) optimized object positions for scanswith optimal image
quality for complete objects. Based on reconstructions of simulated projections as prior knowledge, they applied
brute force using the Shannon entropy (Shannon 1949) as the objective function. Inmost industrial CBCT
scans, objects consists of a small amount of homogeneousmaterials like plastic ormetal. Therefore the
histogramof reconstructed volumes should contain only a few valueswith high numbers andmany values close
to zero. The Shannon entropy, a concept of information theory, is utilized to analyze the histogram accordingly.

Grozmani et al (2019) optimized object positions for scanswith optimal image quality for complete objects.
They used simulated projections as the prior khowledge and applied a brute force approach for the optimization.
In Buratti et al (2016), Buratti presented amethod to the contrast-to-noise-ratio (CNR) in the reconstructed
volume based on the ratio of the initial intensity and themeasured intensity at the detector. Grozmani et al
utilized this estimation to choose the object position for optimizing the expected CNRof the resulting
reconstruction.

3.2.Optimization of arbitrary trajectories for industrial twin robotic CBCT
To optimally detect defects in two-dimensional projections without reconstruction, Brierley et al (2018)used
CADdata aswell as the type of the defect, i.e. shape and size of expected defects as prior knowledge. After
simulating projections of the examined object with andwithout the defect, they analyzed theCNRof the
difference of both projections, i.e. the influence of the defect.Maximising this CNR, the best viewswere chosen
usingwere chosen usingGenetic algorithm as the optimizationmethod (Jones 2006).

For optimization of the image quality of specific tasks,mainly specific object surfaces, Fischer et al (2016)
extended the approach of Stayman et al (2015) (see section 2.2) to industrial CT applications, based on simulated
projections fromCADdata. Using the detectability index of the non-prewhiteningmodel observer as object
function, they optimize arbitrary views using a greedy optimization approach.

For the reduction of scan timewhile ensuring task-based image quality, Bauer et al (2020) analysed the
Fourier transformof the reconstructed volumes using simulated projections fromCADdata. Based on the
assumption that the Fourier coefficients should be sparse, they optimized arbitrary views using a brute force
approach.

Herl et al optimized sets of arbitrary views based on data completeness conditions (Herl et al 2020, 2021).
Tuy presented necessary conditions for trajectories that ensure true reconstruction (Tuy 1983). However, the so-
called Tuy conditions only work for continuous curves, i.e. continuous trajectories. Herl et al extended the Tuy
conditions, to generatemetrics for the data completeness of sets of arbitrary views that do not have to share a
continuous curve. Using thesemetrics as figures ofmerit, Herl et al optimizedCT trajectories for several
different scenarios. For standard industrial CBCT systems, they optimized circular trajectories and
complementary circles formultipositional data fusionHerl et al (2018, 2019) using brute force optimization. For
twin-robotic CBCT systems, they optimised arbitrary sets of views by iteratively choosing the views that
optimally increased thesemetrics for provided regions of interest. By excluding x-rays that are corrupted due to

Figure 11.Twin robotic CT systemof theDeggendorf Institute of Technology at the Technology Campus Plattling.
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metal influence, the approach ofHerl et al can be applied tofind trajectories that reducemetal artefacts.
Figure 12 shows optimized trajectories for different scenarios for a simulatedmulti-material test specimen.

InHerl et al (2021), Herl et al presented a trajectory optimization approach that jointly applied these data
completenessmetrics and the detectability index of theNPWMF, following Stayman et al (2019) (see
section 2.2). Thereby they created a trajectory optimization approach that can befine-tuned to optimize task-
dependently, task-independently or a combination of both.

4.Discussion

CBCT imaging is widely used in image-guided therapy e.g. image-guided surgery and image-guided radiation
therapy. In image-guided interventions, the CBCT systemswhich are installed on portable C-arms are highly
flexible imaging options and significantly supportminimally invasive surgeries which are conducted
increasingly with robotic assistance in themodern, hybrid intervention rooms. The potential for improved
CBCT image quality via non-circular orbits was recognized in early work on cone-beam reconstruction.While
the conventional CBCT imaging neglects the benefit of prior knowledge in the image acquisition process, the
proposed trajectory optimization techniques in the last decade leverages thewealth of available information and
combines it with advancedmethods to perform a target-based reconstruction. Therefore, the existing
information in interventional imaging is fundamentally integrated into the image acquisition process. This
makes the imaging systemsmore aware of the objects and imaging tasks which are intended to be imaged and
therefore can lead to an increased imaging performance and potential reduction in dose. Another important
advantage of this approach is the possibility of 3D imaging under severe kinematic constraints, which can be
achieved bymodifying the scan geometry taking into account any available spatial constraints due to patient size
or othermedical devices. So far, the proposed collision avoidance trajectories only included optimizing
angulation; bymeans offlexible imaging platforms such as a robotic C-arms, additional degrees of freedom, for
example translation of the source and/or detector, can also be incorporated which can providemoreflexibility
and access and also potentially better imaging performance. One other recent application inwhich non-
conventional CBCT trajectories are to be ofmost benefit is the reconstruction in presence ofmetal objects. Task-
driven orbits were demonstrated to significantly improve strongmetal artifacts and strong streaks which
confound visualization of nearby, low-contrast structures. This is a commonproblem in image-guided
interventionswhere CBCT imageswhich are taken during the interventions often includemetal objects, and the
regions of interest tend to be in vicinity to suchmetal instrumentation.

Over the last decade, there has been constant efforts to formulate sophisticated objective functions to solve
the orbit optimization problem. In order to optimize data acquisition, cascaded systems analysis as well as
approximations of local noise and spatial resolution have been utilized to calculate the detectability index of
tomosynthesis and task-aware orbits. The detectability index integrates knowledge on the imaging task aswell as
the spatial-frequency dependent transfer of the noise and spatial resolution. It is generally accepted that the use
of thesemeasures provides an ideal definition of the imaging performance. However, such computations are
very time consuming and there is usually the immediate need, for an optimization algorithm to be able to
accommodate the strict time restrictions of intra-interventional implementation and therefore online trajectory
optimization is a particularly valuable tool. There were recent efforts to performorbit optimizations on-the-fly
in order to reducemetal artifacts bymeans of leveraging CNN rapidity to predict the next best view angle aswell
enabling an online CBCT imaging under kinematic constraints by combiningmultiple arc trajectories.
However, there are still several challenges; for instance, online geometric calibration is needed to be addressed to
enable the online trajectory optimization approach in order to fulfill the level of accuracy and robustness needed

Figure 12.Optimized trajectories (using the optimization approach ofHerl et al (2020)) for a simulated test specimenmade of plastic,
surrounded by squaremetal plates. (a) shows the optimized circular trajectory, (b) shows two optimized complementary circles and
(c) shows a set of 100 optimized arbitrary views.
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for clinical applications. Although such a geometric calibration is very challenging, several practical solutions
have been already proposed in the literature in order to address this problem.Wu et al (2020) showed a library of
geometric calibrations can be interpolated to give reasonable calibration of an arbitrary non-circular orbit.
Another study byCapostango et al (2016) solved such calibration problem forCBCT imaging using a 2D/3D
registration approach. In another study Jacobson et al (2018) the authors proposed a calibration approach using
an array of line-shaped, radio-opaquewire segments. The geometric parameter estimation could be
accomplished bymeans of relating the 3D line equations which is a representation of thewires to the 2D line
equations related to their projections. Their approach based on linefiducials could simplifymany challenges
regarding fiducial recognition aswell as extraction in an orbit-independentmanner.

Aside from the optimization prospective of the orbit geometry before or during intervention, the subsequent
reconstruction of the projections acquired using the non-circular trajectory remains a challenge. Typically,
reconstruction algorithms for non-circular trajectory data have relied on bothmodel-based and analytical
techniques. Theories for exact solutions exist for explicit classes of non-circular orbits; some are a kind offiltered
back projection or differentiated back projection—including a subsequent inverseHilbert transform in the
image domain.However, for an exact reconstruction of a region of interest, there is the general requirement for
that region to be covered in so-called R-lines; consequently, analysis of R-line coverage is necessarywhen
investigating new source trajectories (Pack et al 2005, Yu et al 2011). As an alternative,model-based iterative
reconstruction (MBIR) techniques can be applied to arbitrary trajectory data without requirement for
adaptions;MBIR technique then provides a general best-estimate based on the available data as it can integrate
knowledge on the stochastic process of image formation and therefore can improve noise suppression.
However, due to their iterative nature and the repeated forward- and back projection, such algorithms are
computationally highly expensive, which poses amajor limitation in particlar for interventional applications.
The recent invention ofmachine-learning- and data-driven-based reconstructionmethods can potentially
provide opportunities for superior image quality and reconstruction speed comparable toMBIR techniques
(Würfl et al 2016,Maier et al 2019, Russet al 2022).

Several clinical prerequisites are needed to be consideredwhile designing trajectory optimization
frameworks. For instance, in themost of studies done in thisfield, an anatomicalmodel whichwas an exact
representation of the patient/object and did not consider potential uncertainty in realistic clinical scenarios e.g.
regions of high attenuationwithin the patient due to contrast agent , surgical tools and unplanned embolization
sites wherewere not accounted in the anatomicalmodel of the patient. This introduces a limitation that can be
explored further, for instance, bymeans of using probability distributions for the anatomicalmodel and
parameters which are defined for the imaging tasks (Capostagno et al 2019). Consequently, a distribution of
trajectories fromwhich a robust approximation of the group optimumcould be selected. There are also several
challenges when acquiring such non-circular data. For instance, amajor barrier for the clinical translation of
current and future extended FOVCBCT imaging techniques, especially in the interventional room, is limited
vendor support. To date, novel trajectories implemented on clinical imaging hardware have required additional
software or hardware control of the systemprovided by the vendor.One example of non-circular trajectories
which has already been implemented in clinic is the Sine Spin orbit which has been implemented on Icono
biplaneC-arm system (SiemensHealthineers, Forchheim). The additional control often comes at the expense of
system capabilities (i.e. limiting the gantry rotation and table translation speeds), limiting the ability to optimize
the trajectories experimentally. In addition,manufacturers of the imaging technologies currently do not fully
support the realization of arbitrary trajectories on theirmachines. As a consequence, the implementation of
arbitrary trajectories on clinical CBCTmachines is still an ongoing effort and still encountersmajor challenges
e.g. robust calibration due to geometrical uncertainties of the CBCTmachines. In addition, the velocity and
acceleration constraints of C-armmachines need to be integrated into the design prior to translation of such
non-conventional trajectories onto physical imaging systems.

One other important practical consideration for such trajectory optimization frameworks is that the
methodologymainly assumes having a registered prior image for the trajectory design.Hence, a registration step
is needed to have a practical workflow. This can be done using some initial projections and 2D/3D registration
(Ouadah et al 2016). In this case, an adaptive on-the-fly trajectory designwould be of potential benefit as then the
trajectory can be adjusted tomaximize the imaging performance.

Another future perspective can also be the expansion of optimization parameters in order to further improve
the trajectory and overall imaging performance for instance a parallel optimization of the reconstruction
parameters (regularization constants) aswell as imaging factors (kV andmAs). Such a task-drivenCBCT
scanning procedure introduces a new paradigm for further improvement of image quality and/or reduction in
the patient dose.
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5. Conclusion

CustomizedCBCT trajectories offer the potential to improve imaging performance in the interventional room,
they are a new approach for dose reduction and can enable imaging against complications in the operating
theater. In industrial CT, customizedCBCT trajectories enable scans of large-scale objects and allow image
quality improvements. The current study focuses on the review and discussion of the available literature and
developments in the area of CBCT trajectory optimization. This is the first study that provides a comprehensive
literature review regarding proposed task-aware CBCToptimization algorithms and tries to update the research
community with the thorough information on the recent progress and the future trends.
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